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Γ-SUPERCYCLICITY

S. CHARPENTIER, R. ERNST, Q. MENET

Abstract. We characterize the subsets Γ of C for which the notion of Γ-supercyclicity
coincides with the notion of hypercyclicity, where an operator T on a Banach space X is
said to be Γ-supercyclic if there exists x ∈ X such that Orb(Γx, T ) = X . In addition we
characterize the sets Γ ⊂ C for which, for every operator T on X , T is hypercyclic if and
only if there exists a vector x ∈ X such that the set Orb(Γx, T ) is somewhere dense in
X . This extends results by León-Müller and Bourdon-Feldman respectively. We are also
interested in the description of those sets Γ ⊂ C for which Γ-supercyclicity is equivalent to
supercyclicity.

1. Introduction and statements of the main results

1.1. Introduction. Let X be a complex Banach space and let L(X) denote the space of
bounded linear operators on X . For T in L(X), x in X , and Γ a non-empty subset of
the complex plane C, we denote Orb(Γx, T ) = {γT nx : γ ∈ Γ, n ≥ 0}. We say that x is
Γ-supercyclic for T if Orb(Γx, T ) is dense in X and T will be said to be Γ-supercyclic if
it admits a Γ-supercyclic vector. In particular, if Γ = C, x Γ-supercyclic for T reads x
supercyclic for T and if Γ reduces to a single nonzero point, x Γ-supercyclic for T reads
x hypercyclic for T . The notion of hypercyclicity was already studied by Birkhoff in the
twenties but it really began to attract much attention in the late seventies. The terminology
follows that of supercyclicity, introduced by Hilden and Wallen [14] in the early seventies,
and the former notion of cyclicity. While the latter is directly connected with the well-known
Invariant Subspace Problem, hypercyclicity is connected with the Invariant Subset Problem.
To learn much about linear dynamics, we refer to the very nice books [3, 12].
One of the first important results was Kitai Criterion [15], refined by Bès [6] in the following

form and known as the Hypercyclicity Criterion.

Theorem (Hypercyclicity Criterion). Let T ∈ L(X). We assume that there exist two
dense subsets X0, Y0 ⊂ X, an increasing sequence (nk)k ⊂ N, and maps Snk

: Y0 → X such
that for any x ∈ X0 and y ∈ Y0 the following holds:

(1) T nkx → 0 as k → ∞;
(2) Snk

y → 0 as k → ∞;
(3) T nkSnk

y → y as k → ∞.

Then T is hypercyclic.

We mention that there also exists a so-called Supercyclicity Criterion due to Salas [23],
which is easily seen to be non-necessary for supercyclicity. The Hypercyclicity Criterion
gives an effective way of proving that an operator is hypercyclic and covers a wide range of
concrete hypercyclic operators, allowing to directly recover historical examples of hypercyclic
operators exhibited by Birkhoff [8], MacLane [18] or Rolewicz [22]. A long-standing major
open question was to know whether the Hypercyclicity Criterion is necessary for an operator
to be hypercyclic. Bès and Peris [7] observed that satisfying the Hypercyclicity Criterion is
in fact equivalent to being hereditarily hypercyclic or weakly mixing and, in 2008, De La
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2 S. CHARPENTIER, R. ERNST, Q. MENET

Rosa and Read built a Banach space and a non-weakly mixing hypercyclic operator acting
on this space, giving a negative answer to the above mentioned question. A bit later, Bayart
and Matheron [2] provided such an example on many classical Banach spaces, including the
separable Hilbert space. We also refer to [5] where the authors show equivalence between the
Hypercyclicity Criterion and other criteria, and unify different versions of the Supercyclicity
Criterion.

Anyway the existence of effective characterizations of hypercyclicity and supercyclicity
has been a wide subject of interest and several results have been given. In this direction,
Herrero [13] conjectured that an operator T needs to be hypercyclic if we only assume that
the orbit under T of some finite set of vectors is dense in X . In 2000, Peris [21] and Costakis
[10] independently gave a positive answer to Herrero’s conjecture. In 2004 León and Müller
proved another result in the same spirit [17, Corollary 2].

Theorem (León-Müller Theorem). Let T ∈ L(X). Then x ∈ X is hypercyclic for T if
and only if x is T-supercyclic for T .

Here, it is remarkable that we can replace the orbit of a single vector by the orbit of
an uncountable set of vectors. Nevertheless it is worth noting that this uncountable set of
vectors is one dimensional and that a specific group structure is underlying. We mention
that, as a corollary of this theorem, León and Müller proved that for any complex number
λ with modulus 1, T is hypercyclic if and only if λT is hypercyclic (with same hypercyclic
vectors), answering another question posed by Herrero [13].

Roughly speaking the two previous results refer to the general problem of how big can be a
set with dense orbit in order to still ensure hypercyclicity. So, in the context of León-Müller
Theorem the following question arises.

Question 1. Is it possible to characterize the sets Γ ⊂ C such that T is hypercyclic if and
only if T is Γ-supercyclic?

The proof of León-Müller Theorem heavily relies on the group (or rather semigroup)
structure of T with respect to the complex multiplication. This group-theoretic approach
has been deeply developed by Shkarin [24] and Matheron [19] (see also [3, Chapter 3]) in a
much more general and abstract setting, tending to suggest that it is inevitable.

A different approach for characterizing hypercyclicity in an (apparently) weaker way may
consist in considering how small can be the orbit of a given vector under T to still ensure
that T is hypercyclic. The first result in this direction is obtained by Feldman [11] in 2002
who proved that an operator is hypercyclic if and only if there exists d > 0 and a vector
x ∈ X having a d-dense orbit, where a set is said to be d-dense if it intersects any open ball of
radius d. Moreover, Feldman also proved that a vector with d-dense orbit is not necessarily
a hypercyclic vector. In the same year Bourdon and Feldman [9] proved a very nice result:

Theorem (Bourdon-Feldman Theorem). Let X be a Banach space, T ∈ L(X) and
x ∈ X. Then x is hypercyclic for T if and only if Orb(x, T ) is somewhere dense in X.

We remark that Peris and Costakis’ result is a corollary of the latter. Later on, Bayart
and Matheron [3] used the group-theoretic approach initiated by León and Müller to extend
Bourdon-Feldman Theorem to a general framework involving semigroups. We just quote
their result in a peculiar case, that is T = {λT n; λ ∈ T, n ∈ N} using their notations.

Theorem (Theorem 3.13 of [3]). Let X be a complex Banach space, T ∈ L(X) and x ∈ X.
Then x is hypercyclic for T if and only if Orb(Tx, T ) is somewhere dense in X.

Here again, the following question naturally arises.
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Question 2. Is it possible to characterize the sets Γ ⊂ C such that x is hypercyclic for T if
and only if Orb(Γx, T ) is somewhere dense?

Similar questions have been addressed in the context of supercyclicity where it makes sense
to consider the finite dimensional setting. A reasonable question is to find a small set Γ ⊂ C
such that T is supercyclic if and only if T is Γ-supercyclic. However supercyclicity allows
more exoticism, for example in terms of spectral properties of supercyclic operators. We
recall that if T is supercyclic then the point spectrum σp(T

∗) of the adjoint of T contains at
most one nonzero point and that for any nonzero complex number α there exists a supercyclic
operator T with σp(T

∗) = α. In 2001, Montes-Rodŕıguez and Salas [20] proved that if T
satisfies the Supercyclicity Criterion then σp(T

∗) is empty and T needs to be R+-supercyclic
(sometimes called positive supercyclic [16]). Later, in [17], the same crucial tool used to prove
León-Müller Theorem allows the authors to show the equivalence between supercyclicity
and R+-supercyclicity whenever σp(T

∗) = ∅. This result complemented the previous work
of Bermúdez, Bonilla and Peris [4] who proved that T is R-supercyclic if and only if T is
R+-supercyclic, whatever the spectrum of T ∗, and also provided counterexamples to the
equivalence with supercyclicity when σp(T

∗) 6= ∅. Finally, answering a question by León and
Müller, Shkarin used his abstract group-theoretic approach to characterize the operators for
which the equivalence between R+-supercyclicity and supercyclicity holds [24].

Theorem (Shkarin Theorem). Let X be a complex Banach space and T ∈ L(X). T is
R+-supercyclic if and only if T is supercyclic and either the point spectrum σp(T

∗) is empty
or σp(T

∗) = {reiθ}, with r 6= 0 and θ ∈ π(R \Q).

More generally the following question arises, an answer to which would involve the spec-
trum of T ∗.

Question 3. For which Γ ⊂ C is supercyclicity equivalent to Γ-supercyclicity?

1.2. Statements of the main results. The purpose of this article is to discuss Questions
1, 2 and 3. In order to deal with Questions 1 and 2 we introduce two properties that a subset
of C can enjoy or not.

Definition 1.1. Let Γ be a subset of C.

(1) Γ is said to be a hypercyclic scalar set if the following holds true: For every
infinite-dimensional complex Banach space X , every T ∈ L(X) and every x ∈ X

Orb(Γx, T ) = X if and only if x is hypercyclic for T.

(2) Γ is said to be a somewhere hypercyclic scalar set if the following holds true:
For every infinite-dimensional complex Banach space X , every T ∈ L(X) and every
x ∈ X

Orb(Γx, T ) is somewhere dense in X if and only if x is hypercyclic for T.

Obviously, if Γ is a somewhere hypercyclic scalar set then Γ is a hypercyclic scalar set and
if Γ is a hypercyclic (resp. somewhere hypercyclic) scalar set then any smaller set is also a
hypercyclic (resp. somewhere hypercyclic) scalar set. According to León-Müller Theorem
and the refinement of Bourdon-Feldman Theorem stated above, T is a somewhere hypercyclic
scalar set.
We provide complete answers to Question 1 (Theorem A) and Question 2 (Theorem B):

Theorem A. A non-empty subset Γ of C is a hypercyclic scalar set if and only if Γ \ {0} is
non-empty, bounded and bounded away from 0.

In Theorem B below, we denote by ΓT the set {γz : γ ∈ Γ, |z| = 1}.
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Theorem B. A non-empty subset Γ of C is a somewhere hypercyclic scalar set if and only
if ΓT \ {0} is non-empty, bounded and bounded away from 0 and has an empty interior.

In view of Theorems A and B, Γ is a somewhere hypercyclic scalar set if and only if Γ is
a hypercyclic scalar set and ΓT has an empty interior.

Remark 1.2. (1) Theorems A and B can be stated in a slightly different way in the real
setting, namely for real Banach spaces. Since it makes no particular difficulties to adapt the
above statements and the corresponding proofs given in the remaining of the paper, we leave
the details to the reader.
(2) Using Theorem A and counterexamples given in Section 2, we can observe that Γ is a
hypercyclic scalar set if and only if it satisfies the following: For every infinite-dimensional
complex Banach space X , every T ∈ L(X),

T is hypercyclic if and only if T is Γ-supercyclic.

(3) Similarly Γ is a somewhere hypercyclic scalar set if and only if it satisfies the following:
For every infinite-dimensional complex Banach space X , every T ∈ L(X),

T is hypercyclic if and only if Orb(Γx, T ) is somewhere dense in X for some x ∈ X.

For example any ring {µλ, µ ∈ [a, b], λ ∈ T} with 0 < a < b < +∞ is a hypercyclic scalar
set but not a somewhere hypercyclic scalar set. The same holds for any closed paths in C
which do not contain 0, different from a nonzero multiple of the unit circle T. Moreover a
union of circles centered at 0 with bounded and bounded away from zero radii is a somewhere
hypercyclic scalar set if and only if the family of these radii has an empty interior.

Furthermore we give a general anwser to Question 3 when σp(T
∗) is non-empty.

Theorem C. Let X be a complex Banach space.

(1) For every θ ∈ R, Γ ⊂ C satisfies the property: ”For every T ∈ L(X) with σp(T
∗) =

{eiθ} and every x ∈ X

x is Γ-supercyclic for T if and only if x is supercyclic for T”

if and only if ΓGθ is dense in C, where Gθ stands for the subgroup of T generated by
eiθ.

(2) For any r 6= 1 and any θ ∈ R, there exist T ∈ L(X) with σp(T
∗) = {reiθ} and Γ ⊂ C

satisfying ΓGθ = C, such that T is supercyclic but not Γ-supercyclic.

Remark 1.3. (1) For every θ ∈ R, Theorem C provides a complete understanding of the
problem of describing those subsets Γ of C such that for every X , every T ∈ L(X) with
σp(T

∗) = {eiθ} and every x ∈ X ,

x is Γ-supercyclic for T if and only if x is supercyclic for T.

Nevertheless such a problem for every T (namely for those T such that σp(T
∗) = ∅ or

σp(T
∗) = {reiθ} with r 6= 1) remains unclear.

(2) One shall notice that, when θ ∈ π(R\Q), the condition ΓGθ = C is equivalent to ΓT = C.
(3) It is worth observing that the equivalence between Γ-supercyclicity and supercyclicity
for T with σp(T

∗) = reiθ, θ ∈ π(R \Q), depends on r. This differs from the particular case
of the R+-supercyclicity which is treated in Shkarin Theorem.
(4) It may also be interesting to notice that, in (1), the equivalence between x Γ-supercyclic
and x supercyclic not only depends on the fact that θ is a rational or an irrational multiple
of π (as in Shkarin Theorem) but also depends on every θ ∈ πQ. Indeed if θ, θ′ ∈ πQ∩]0; π[
with θ < θ′ and Γ = {reiα, r ∈ R+, α ∈ [0; θ]}, then ΓGθ = C while ΓGθ′ 6= C.
(5) Observe that contrary to Theorems A and B, it makes sense to also consider finite
dimensional Banach spaces X in Theorem C.
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The article is organized as follows. The purpose of Section 2 is to show the necessity
part of Theorem A. In Section 3 we prove the sufficiency part of Theorem A which is the
most difficult one. Section 4 is devoted to the proof of Theorem B and Section 5 to that of
Theorem C.

2. Theorem A - Necessity part

To prove that if Γ is a hypercyclic scalar set then Γ \ {0} is bounded and bounded away
from zero, it suffices to exhibit examples of Γ-supercyclic operators that are not hypercyclic
when Γ \ {0} is not bounded or not bounded away from zero. Note that if Γ is a hypercyclic
scalar set then obviously Γ \ {0} needs to be non-empty.
We begin by proving that if Γ is a hypercyclic scalar set then Γ is bounded.

Proposition 2.1. Let Γ be an unbounded subset of C. Then, the backward shift operator B
on ℓ2(N) is Γ-supercyclic but not hypercyclic.

Proof. It is well-known that B is not hypercyclic, since the orbit of any vector is bounded.
Let Γ be an unbounded subset of C. We are going to construct a Γ-supercyclic vector for B.
Let {yk : k ∈ N} be a dense subset of c00. We denote by F the forward shift on ℓ2(N)

and we let d(yk) = max{j ≥ 0 : yk(j) 6= 0}. First, we construct by induction a sequence
(γk)k∈N ⊂ Γ \ {0}, and a sequence of integers (mk)k∈N such that for every k ∈ N:

(i) ‖ 1
γk
yk‖ < 2−k;

(ii) For every i < k, |γi|
|γk|

‖yk‖ < 2−k.

(iii) For every i < k, mk > mi + d(yi);

If m0, . . . , mk−1 and γ0, · · · , γk−1 have been chosen, we remark that it suffices to choose γk
sufficiently big in order to satisfy (i) and (ii) and to choose mk sufficiently big in order to
satisfy (iii).
Thanks to (i), we can let x =

∑+∞
i=0

1
γi
Fmiyi since ‖Fmiyi‖ = ‖yi‖ and we claim that x is

Γ-supercyclic for T .
Let k ∈ N. We have

‖γkB
mkx− yk‖ ≤

∑

j<k

‖
γk
γj

Bmk(Fmjyj)‖+ ‖
γk
γk

Bmk(Fmkyk)− yk‖+
∑

j>k

‖
γk
γj

Bmk(Fmjyj)‖

≤
∑

j<k

0 + 0 +
∑

j>k

|γk|

|γj|
‖yj‖ by (iii)

≤
∑

j>k

2−j = 2−k −→
k→+∞

0 by (ii).

�

Since the backward shift has norm 1, we cannot hope using it to prove that Γ \ {0} has
to be bounded away from zero. Thus, we will use a bilateral shift instead.

Proposition 2.2. Let Γ be a subset of C and assume that Γ \ {0} is not bounded away from
zero. Then, the shift operator Bw on ℓ2(Z), with weight sequence wi = 2 if i > 0 and wi = 1
else, is Γ-supercyclic but not hypercyclic.

Proof. It is well-known that Bw is not hypercyclic, since the orbit of any non-zero vector is
bounded away from zero. Let Γ be a subset of C such that Γ\{0} is not bounded away from
zero. We are going to construct a Γ-supercyclic vector for Bw.
Let {yk : k ∈ N} be a dense subset of c00(Z). We let d(yk) = max{j ≥ 0 : yk(j) 6= 0} and

we denote by F 1

w
the inverse of Bw on ℓ2(Z). In other words, F 1

w
is the forward weighted



6 S. CHARPENTIER, R. ERNST, Q. MENET

shift Fν where νi =
1
2
if i ≥ 0 and νi = 1 else. First, we construct by induction a sequence

(γk)k∈N ⊂ Γ \ {0} and a sequence of integers (mk)k∈N such that for every k ∈ N:

(i) ‖ 1
γk
Fmk

1

w

yk‖ < 2−k;

(ii) For every i < k, |γi|
|γk|

‖Bmi
w Fmk

1

w

yk‖ < 2−k.

(iii) For every i < k, |γk|
|γi|

‖Bmk
w Fmi

1

w

yi‖ < 2−k;

If m0, . . . , mk−1 and γ0, · · · , γk−1 have been chosen, we first remark that we can choose γk
sufficiently small such that for every i < k, we have |γk|

|γi|
‖Bm

w Fmi
1

w

yi‖ < 2−k for every m ≥ 0

since
|γk|

|γi|
‖Bm

w Fmi
1

w

yi‖ ≤
|γk|

|γi|
2mi+d(yi)‖yi‖.

We can then choosemk sufficiently big in order to satisfy (i) and (ii) since for every y ∈ c00(Z),
we have Fmy → 0 as m → ∞.

Thanks to (i), we can let x =
∑+∞

i=0
1
γi
Fmi

1

w

yi and we claim that x is Γ-supercyclic for T .

Let k ∈ N. We have

‖γkB
mk
w x− yk‖ ≤

∑

j<k

‖
γk
γj

Bmk
w F

mj

1

w

yj‖+ ‖
γk
γk

Bmk
w Fmk

1

w

yk − yk‖+
∑

j>k

‖
γk
γj

Bmk
w F

mj

1

w

yj‖

≤
∑

j<k

1

2k
+ 0 +

∑

j>k

1

2j
by (ii) and (iii)

≤
k + 1

2k
−→

k→+∞
0.

�

Propositions 2.1 and 2.2 give the necessity part of Theorem A.

3. Theorem A - Sufficiency part

Let X be an infinite-dimensional complex Banach space. In this section, we intend to
prove the following theorem.

Theorem 3.1. Let T ∈ L(X) and Γ ⊂ C be such that Γ \ {0} is non-empty, bounded and
bounded away from 0. If x is Γ-supercyclic for T then x is hypercyclic for T .

Let T ∈ L(X) and let x ∈ X be Γ-supercyclic for T . As it is clear that the point zero
plays no role, in what follows we are going to suppose that 0 /∈ Γ. Then, we notice that Γ
is included in some ring of the form [a, b]T, with 0 < a ≤ b < +∞, and that x is [a, b]T-
supercyclic whenever x is Γ-supercyclic. In addition, up to a dilation, we see that x is
[a, b]T-supercyclic if and only if x is [1, b/a]T-supercyclic. Therefore, to prove Theorem 3.1
we are reduced to prove the following

Theorem 3.2. Let T ∈ L(X) and 1 ≤ b < +∞. If x is [1, b]T-supercyclic for T then x is
hypercyclic for T .

The proof of Theorem 3.2 relies on several lemmas.

Lemma 3.3. Let Γ ⊂ C be a non-empty set bounded and bounded away from 0, let T ∈ L(X)
and let x be a Γ-supercyclic vector for T . Then for every y ∈ X, there exists γ ∈ Γ and an
increasing sequence (nk) of integers such that γT nkx → y.

Proof. We first remark that Orb(Γx, T ) has an empty interior by the Baire Category The-
orem. Let y ∈ X . We deduce from the above assertion that there exists a sequence (yk) ⊂
Orb(Γx, T )\Orb(Γx, T ) converging to y. We remark that if z ∈ Orb(Γx, T )\Orb(Γx, T )
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then there exist an increasing sequence (nk) ⊂ N and (γj) ⊂ Γ such that γjT
njx → z.

We can thus construct a sequence (γk) ⊂ Γ and an increasing sequence (nk) such that
‖yk − γkT

nkx‖ < 2−k. By using the compactness of Γ and the fact that Γ is bounded away
from 0, we then obtain the desired result. �

We now deduce the following corollary which is an immediate consequence of the previous
lemma.

Corollary 3.4. Let Γ ⊂ C be a non-empty set bounded and bounded away from 0, let
T ∈ L(X) and let x be a Γ-supercyclic vector for T . Then for every n ≥ 0, we have

⋃

γ∈Γ

Orb(γT nx, T ) = X.

The following lemma is well-known in the case of hypercyclic operators, we provide here
a slight generalization with its proof for the sake of completeness.

Lemma 3.5. If T is Γ-supercyclic with Γ ⊂ C non-empty, bounded and bounded away from
0, then p(T ) has dense range for any nonzero polynomial p.

Proof. It is a well-known fact that it suffices to prove that the point spectrum σp(T
∗) of the

adjoint T ∗ of T is empty. Let x be a Γ-supercyclic vector for T . By contradiction, assume
that α ∈ σp(T

∗) and let y∗ ∈ X∗ \ {0} be such that T ∗y∗ = αy∗. Since x is Γ-supercyclic for
T , we get

C = {〈γT nx, y∗〉 : γ ∈ Γ, n ≥ 0} = {γαn : γ ∈ Γ, n ≥ 0}〈x, y∗〉.

If |α| ≤ 1 or 〈x, y∗〉 = 0 then the last set is bounded and cannot be dense in C; if |α| > 1
and 〈x, y∗〉 6= 0 then it is bounded away from 0, hence a contradiction. �

From this lemma, we can deduce the following one which shows that as soon as T is Γ-
supercyclic then the set of Γ-supercyclic vectors contains a particular dense linear subspace
apart from zero.

Lemma 3.6. If x is Γ-supercyclic for T with Γ ⊂ C non-empty, bounded and bounded away
from 0, then p(T )x is Γ-supercyclic for T for every nonzero polynomial p.

Proof. Since x is Γ-supercyclic for T , it follows from Lemma 3.5 that p(T )(Orb(Γx, T )) is
dense and we get the desired result by remarking that Orb(Γp(T )x, T ) ⊃ p(T )(Orb(Γx, T )).

�

We will now assume as in Theorem 3.2 that Γ = [1, b]T for some b ≥ 1. The following
result aims to divide Γ-supercyclic operators into two categories: the hypercyclic ones and
the non-hypercyclic ones. Moreover, it gives some necessary properties satisfied by the non-
hypercyclic ones.

Proposition 3.7. Let b ≥ 1. If x is [1, b]T-supercyclic then one of the two following condi-
tions holds:

(1) x is hypercyclic for T ;
(2) There exists 1 < c ≤ b such that x is [1, c]T-supercyclic but Orb(Tx, T ) ∩ [1, c]Tx =

Tx ∪ cTx. In particular, T is not hypercyclic.

Proof. We will need two claims.

Claim 1. If there exist λ ∈]1, b] and n ≥ 0 such that λT nx ∈ Orb(Tx, T ), then x is [1, λ]T-
supercyclic for T .
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Proof of Claim 1. If λT nx ∈ Orb(Tx, T ) then there exists (nk) ⊂ N and γ ∈ T such that
γT nkx → λT nx. It follows that for every m ∈ N and every µ > 0,

µγ

λ
T nk+mx → µT n+mx

and thus

(3.1) Orb(µTT n+mx, T ) ⊂ Orb(
µ

λ
TTmx, T ).

Let now J ∈ N be such that (1/λ)J ≤ λ/b. Then for every µ ∈ [1, b], there exists
0 ≤ jµ ≤ J such that µ

λjµ ∈ [1, λ]. Thus it follows from (3.1) that

Orb(µTT Jnx, T ) ⊂ Orb(µTT jµnx, T ) ⊂ Orb(
µ

λjµ
Tx, T ).

Using Corollary 3.4 we get

X =
⋃

µ∈[1,b]

Orb(µTT Jnx, T ) ⊂
⋃

ν∈[1,λ]

Orb(νTx, T ).

Claim 2. Let 1 ≤ c < b. If x is [1, λ]T-supercyclic for every λ ∈]c, b] then x is [1, c]T-
supercyclic.

Proof of Claim 2. Let y ∈ X and c < b. Since x is [1, c+1/k]T-supercyclic for every k large
enough, there exists µk ∈ [1, c+ 1/k]T, and nk such that

‖µkT
nkx− y‖ ≤

1

k
.

Up to take a subsequence, we may assume that µk → µ for some µ ∈ [1, c]T. We deduce
that µT nkx → y and thus that x is [1, c]T-supercyclic.

We now finish the proof of Proposition 3.7. Set

c = inf{λ ∈ [1, b] : x is [1, λ]T-supercyclic}.

If x is not hypercyclic, then c > 1, because if not Claim 2 implies that x is T-supercyclic hence
hypercyclic, by León-Müller Theorem. Then, first, we deduce from Claim 1 that for every
λ ∈]1, c[, λx /∈ Orb(Tx, T ). Moreover cx must belong to Orb(Tx, T ) because if not there
exists ε > 0 such that the interval ]x, (c+ ε)x] is included in the complement of Orb(Tx, T )
and then (c+ ε)x /∈ Orb([1, c]Tx, T ), what contradicts the fact that x is [1, c]T-supercyclic.
Thus, we have Orb(Tx, T ) ∩ [1, c]Tx = Tx ∪ cTx.

Finally if we are in such a case, then T fails to be hypercyclic. Indeed if y ∈ X is hypercyclic
for T then, according to Corollary 3.4, there exists λ ∈ [1, c] such that y ∈ Orb(λTx, T ).
From this and the hypercyclicity of y, we deduce that

X = Orb(y, T ) ⊂ Orb(λTx, T ).

By León-Müller Theorem again, λx would then be hypercyclic for T and thus x would be
hypercyclic for T .

�

The remaining of the proof will consist in showing that there cannot exist an operator
T ∈ L(X) admitting a [1, b]T-supercyclic vector x with b > 1 such that

Orb(Tx, T ) ∩ [1, b]T = Tx ∪ bTx.

This will conclude the proof of the sufficiency part of Theorem A in view of the previous
result. To do so we will show that if such an operator T exists then we can build a certain
continuous function Λ from span{Orb(x, T )}\{0} into T inducing an homotopy in T between
a single point and a closed path having nonzero winding number around 0, what is known
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to be impossible. The construction of this continuous function Λ will rely for any y ∈
span{Orb(x, T )} \ {0} on the existence of a unique parameter λy ∈ [1, b[ such that y ∈
Orb(λyTx, T ). The existence of this parameter will be obtained for every [1, b]-supercyclic
vector and thus for every element in span{Orb(x, T )} \ {0} in view of Lemma 3.6.
This will be done thanks to the following lemmas which help to understand how the orbit

of x approaches real multiples of a fixed [1, b]-supercyclic vector y. We first remark that
if x is a [1, b]T-supercyclic vector satisfying Orb(Tx, T ) ∩ [1, b]Tx = Tx ∪ bTx then every
[1, b]T-supercyclic vector satisfies this property.

Lemma 3.8. If x is [1, b]T-supercyclic for T but Orb(Tx, T ) ∩ [1, b]Tx = Tx ∪ bTx then for
every [1, b]T-supercyclic vector y, we have Orb(Ty, T ) ∩ [1, b]Ty = Ty ∪ bTy.

Proof. Let y be a [1, b]T-supercyclic vector for T . By Proposition 3.7 there exists 1 < c ≤ b
such that y is [1, c]T-supercyclic for T and Orb(Ty, T ) ∩ [1, c]T = Ty ∪ cTy. It is enough to
show that c = b. Let µ ∈ [1, b] be such that y ∈ Orb(µTx, T ). We have

X = Orb([1, c]Ty, T ) ⊂ Orb([1, c]Tµx, T ),

so that µx and then x are [1, c]T-supercyclic for T , which is true if and only if c = b. �

We can also characterize the multiples of x belonging to the orbit of x itself.

Lemma 3.9. Let x be [1, b]T-supercyclic for T such that Orb(Tx, T ) ∩ [1, b]Tx = Tx ∪ bTx.
If, for some µ > 0, µx belongs to Orb(Tx, T ) then µbmx belongs to Orb(Tx, T ) for every
m ∈ Z.

Proof. Since bx ∈ Orb(Tx, T ) we get Orb(Tbmx, T ) ⊂ Orb(Tbm−1x, T ) for every m ≥ 1 so,
if µx ∈ Orb(Tx, T ) then we deduce that µbmx ∈ Orb(Tbmx, T ) ⊂ Orb(Tx, T ) for every
m ≥ 0. Similarly, to prove that the latter holds also for m < 0 it is enough to show that
1
b
x ∈ Orb(Tx, T ). Now observe that x is [ 1

b2
, 1
b
]T-supercyclic for T so Orb(Tx, T ) must

contain an element of [ 1
b2
, 1
b
]Tx. But, by the previous, if λx ∈ Orb(Tx, T ) ∩ [ 1

b2
, 1
b
]Tx for

some λ ∈ R+ then λb2x ∈ Orb(Tx, T ) ∩ [1, b]Tx hence λ = 1/b2 or λ = 1/b by hypothesis.
Finally if λ = 1/b2 then 1

b
x = 1

b2
bx ∈ Orb(Tx, T ). �

Moreover, this characterization transfers to arbitrary [1, b]T-supercyclic vectors for T .

Lemma 3.10. If x is [1, b]T-supercyclic for T but Orb(Tx, T ) ∩ [1, b]Tx = Tx ∪ bTx then
for every [1, b]T-supercyclic vector y, we have Orb(Ty, T ) ∩ R+y = {bny : n ∈ Z}.

Proof. From Lemmas 3.8 and 3.9, since y ∈ Orb(Ty, T ),

Orb(Ty, T ) ∩ R+y ⊃ {bny : n ∈ Z} .

Let now µy ∈ Orb(Ty, T ) ∩ R+y with µ ∈ R+. By Lemmas 3.8 and 3.9, there exists m ∈ Z
such that µbmy ∈ Orb(Ty, T )∩ [1, b]y. If µ 6= bn for any n ∈ Z, then we have a contradiction
with Lemma 3.8. �

Thanks to the previous lemmas, we are now able to describe completely the set Orb(Tx, T )∩
R+y in a unified way where the dependence on y appears only through a single parameter
λ.

Proposition 3.11. If x is [1, b]T-supercyclic for T but Orb(Tx, T ) ∩ [1, b]Tx = Tx ∪ bTx
then for every [1, b]T-supercyclic vector y, there exists λ ∈ [1, b] such that

Orb(Tx, T ) ∩ R+y =

{
bn

λ
y : n ∈ Z

}
.
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Proof. Let y be [1, b]T-supercyclic for T . Since x is [1, b]T-supercyclic for T there exists
λ ∈ [1, b] such that y ∈ Orb(λTx, T ). Then, Lemma 3.10 implies

Orb(Tx, T ) ⊃
⋃

n∈Z

Orb(bnTx, T ) ⊃

{
bn

λ
y : n ∈ Z

}
.

Let now µy ∈ Orb(Tx, T ). Since y is [1, b]T-supercyclic there exists τ ∈ [1, b] such that
x ∈ Orb(τTy, T ). Thus Orb(τTy, T ) ⊃ {µy, y/λ} hence by Lemma 3.10 µ = τbn and
1
λ
= τbm for some m,n and thus µ = bn−m/λ. �

Let x be [1, b]T-supercyclic for T such that Orb(Tx, T ) ∩ [1, b]Tx = Tx ∪ bTx. Given a
[1, b]T-supercyclic vector y, observe that if the λ given by the previous proposition belongs
to ]1, b[ then it is unique. Otherwise, λ = 1 and λ = b works for y. Also note that if λ ∈]1, b[
then it is the unique λ ∈]1, b[ such that y ∈ Orb(λTx, T ). Similarly, λ ∈ {1, b} if and only if
y ∈ Orb(Tx, T ).

Let ϕ : [1, b] → T be the parametrization of T given by ϕ(t) = exp(2iπ t−1
b−1

). According
to the previous observation and thanks to Lemma 3.6, we can define an application Λ :
span{Orb(x, T )} \ {0} → T by

Λ(y) =

{
ϕ(λy) if y /∈ Orb(Tx, T ) where λy is uniquely given by Proposition 3.11
1 if y ∈ Orb(Tx, T ).

This application Λ is well-defined according to the above observation. Moreover, we remark
that for every λ ∈ [1, b], we have u ∈ Orb(λTx, T ) ∩ span{Orb(x, T )} \ {0} if and only if
Λ(u) = ϕ(λ). It will play a crucial role to end up with a contradiction, assuming that such
an operator T exists.

Corollary 3.12. Let x be a [1, b]T-supercyclic vector for T such that Orb(Tx, T )∩ [1, b]Tx =
Tx ∪ bTx. The following properties hold.

(1) Λ is continuous;
(2) Λ(µT nx) = ϕ(µ) for every n ≥ 0 and every µ ∈ [1, b].

Proof. (1) It is sufficient to prove that, for every sequence (un) ⊂ span{Orb(x, T )} \ {0} and
every u ∈ span{Orb(x, T )} \ {0}, if un → u then Λ(u) is the only limit point of (Λ(un))n.
By compactness of T, we can assume without loss of generality that Λ(un) → α ∈ T and
we have to show that α = Λ(u). If Λ(un) = 1 for infinitely many n then first α = 1 and,
second, infinitely many un belongs to Orb(Tx, T ). It follows that u ∈ Orb(Tx, T ) so that
Λ(u) = 1 = α. If we are not in the previous case, then we can assume that un /∈ Orb(Tx, T )
for every n so Λ(un) = ϕ(λn), n ≥ 0, with λn ∈]1, b[ and un ∈ Orb(λnTx, T ). By compactness
we can assume that λn → λ ∈ [1, b] so that u ∈ Orb(λTx, T ). By continuity of ϕ it follows
that ϕ(λ) = α = Λ(u).
(2) comes easily from the fact that T nx ∈ Orb(Tx, T ) for any n ≥ 0 and the definition of
Λ. �

We are now ready to finish the proof of Theorem 3.2.

Proof of Theorem 3.2. We assume by contradiction that x is not hypercyclic for T . By
Proposition 3.7 we can assume that x is a [1, b]T-supercyclic vector for T such that Orb(Tx, T )∩
[1, b]Tx = Tx∪bTx, and thus that the application Λ : span{Orb(x, T )}\{0} → T introduced
above is well-defined.
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For every y0, y1 ∈ span{Orb(x, T )}, we let [y0, y1] := {(1 − t)y0 + ty1 : t ∈ [0, 1]} and if
0 /∈ [y0, y1], we define the closed (continuous) curve γ[y0,y1] : [0, 1] → T by γ[y0,y1] = Λ ◦ γ̃[y0,y1]
where γ̃[y0,y1] : [0, 1] → span{Orb(x, T )} is given by

γ̃[y0,y1](t) = (1− t)y0 + ty1.

Note that 0 does not belong to the image of ˜γ[Tnx,Tmx] for any n,m ≥ 0, and that γ[Tnx,Tmx] is
a closed continuous curve by Corollary 3.12. Moreover we observe that γ[Tnx,Tn+1x] = γ[x,Tx]

for any n ≥ 0. Indeed this comes from the definition of Λ and from the fact that if y ∈
Orb(λTx, T ) then T ny ∈ Orb(λTx, T ) for every n ∈ N. So in particular, Ind0γ[Tnx,Tn+1x] =
Ind0γ[x,Tx] for any n ≥ 0, where Ind0γ stands for the winding number of a closed continuous
curve γ around 0. On the other hand, for each θ ∈ [0, 2π[ and each y ∈ span{Orb(x, T )}\{0}
we define the closed (continuous) curve γθ,y : [0, 1] → T by γθ,y = Λ◦ γ̃θ,y where γ̃θ,y : [0, 1] →
span{Orb(x, T )} \ {0} is given by

γ̃θ,y(t) = eiθty.

It is again easily seen by definition of Λ that γθ,y is the constant path equal to Λ(y), therefore
Ind0γθ,y = 0. Similarly, we observe that Ind0γ[bx,x] = −1.

Now, using Lemma 3.10, we deduce that bx ∈ Orb(Tx, T ) \ Orb(Tx, T ) because other-
wise Orb(Tx, T ) would be contained in a finite dimensional space contradicting the [1, b]T-
supercyclicity of x. Then, by compactness of T, there exists θ ∈ [0, 2π[ and (nk)k ⊂ N
increasing such that eiθT nkx → bx as k tends to ∞. We assert that, up to take a subse-
quence, (nk)k can be chosen in such a way that Ind0γ[eiθTnkx,bx] = 0. Indeed, if we assume
by contradiction that for some N ≥ 0 and every k ≥ N the winding number Ind0γ[eiθTnkx,bx]

is nonzero, then for every λ ∈ [1, b[,

[eiθT nkx, bx] ∩Orb(λTx, T ) 6= ∅

for any k ≥ N . Yet for every ε > 0, there exists Nε ≥ N such that for every k ≥ Nε

[eiθT nkx, bx] ⊂ B(bx, ε). In other words, for any λ ∈ [1, b[, there exists a sequence (yn)
converging to bx such that for every n ≥ 0, yn ∈ Orb(λTx, T ). Thus bx ∈ Orb(λTx, T ) for
every λ ∈ [1, b[, a contradiction with Proposition 3.11.
For the remaining of the proof, let θ ∈ [0, 2π[ and (nk)k ⊂ N increasing be such that for

every k ≥ 0, Ind0γ[eiθTnkx,bx] = 0.
Given any n ≥ 0, we define γ̃n,θ : [0, 1] → span{x, . . . , T nx} by

γ̃n,θ(s) =





˜γ[T jx,T j+1x]((n + 3)s− j)) if j

n+3
≤ s ≤ j+1

n+3
, 0 ≤ j ≤ n− 1

γ̃θ,Tnx((n+ 3)s− n) if n
n+3

≤ s ≤ n+1
n+3

˜γ[eiθTnx,bx]((n+ 3)s− (n+ 1)) if n+1
n+3

≤ s ≤ n+2
n+3

γ̃[bx,x]((n+ 3)s− (n + 2)) if n+2
n+3

≤ s ≤ 1.

By construction, one easily notices that γ̃n,θ does never take the value zero. Then we can
set γn,θ = Λ ◦ γ̃n,θ for every n ≥ 0. Moreover, since span{Orb(x, T )} is infinite dimensional
we can retract, staying in span{Orb(x, T )} \ {0}, the closed curve γ̃n,θ onto some Tmx ∈
span{Orb(x, T )} \ span{x, . . . , T nx} for every n ≥ 0 and some m > n, and thus build an
homotopy of closed curves in T such that γn,θ is homotopic to the constant path Λ(Tmx).
Thus Ind0γn,θ = 0 for every n ≥ 0.
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With θ and (nk)k as above and as a consequence of the observations made at the beginning
at the proof, we deduce that for every k ≥ 0

0 = Ind0γnk,θ

=

nk−1∑

j=0

Ind0γ[T jx,T j+1x] + Ind0γθ,Tnkx + Ind0γ[eiθTnkx,bx] + Ind0γ[bx,x]

= nkInd0γ[x,Tx] + 0 + 0− 1,

and it follows that nkInd0γ[x,Tx] = 1 for any k ≥ 0, which is impossible since nk tends to
∞. �

4. Proof of Theorem B

The aim of this section is to prove Theorem B. We begin by proving the sufficiency.

Theorem 4.1. Let T ∈ L(X) and let Γ ⊂ C be such that ΓT \ {0} is bounded and bounded
away from zero with an empty interior. If the set Orb(ΓTx, T ) is somewhere dense in X,
then x is a hypercyclic vector for T .

Proof. Without loss of generality, we can suppose that 0 /∈ Γ. Let

Λn := {λ ∈ R+ : T nx ∈ Orb(λTx, T )}.

By definition, the sequence (Λn) is a non-decreasing sequence and Λn ∪ {0} is a closed set.
Moreover, if λ ∈ Λn then for every ε > 0, there exists m ≥ n and θ ∈ [0, 2π] such that
‖λeiθTmx − T nx‖ < ε. We can assume that m ≥ n because otherwise we would have
T nx ∈ span{x, . . . , T n−1x} and thus Orb(ΓTx, T ) would not be somewhere dense. This
implies that for every n ≥ 0, if λ, λ′ ∈ Λn then the product λλ′ ∈ Λn. Indeed, if λ, λ′ ∈ Λn

then for every ε > 0, there exists m ≥ n and θ ∈ [0, 2π] such that ‖λeiθTmx − T nx‖ < ε
2

and there exists m′ ≥ 0 and θ′ ∈ [0, 2π] such that ‖λ′eiθ
′

Tm′

x− T nx‖ < ε
2
λ−1‖Tm−n‖−1. We

then get

‖λλ′ei(θ+θ′)Tm+m′−nx− T nx‖

≤ λ‖λ′eiθ
′

Tm+m′−nx− Tmx‖+ ‖λeiθTmx− T nx‖

≤ λ‖Tm−n‖‖λ′eiθ
′

Tm′

x− T nx‖ + ‖λeiθTmx− T nx‖ ≤ ε.

In particular, if λ ∈ Λn then λk ∈ Λn for every k ≥ 1.

The idea of the proof of this theorem consists in showing that if Orb(ΓTx, T ) is somewhere
dense in X and ΓT has an empty interior then

⋃

n

Λn ⊃ [1,+∞[ or
⋃

n

Λn ⊃ [0, 1]

and that if one of these inclusions holds then Orb(Tx, T ) is also somewhere dense and thus
x is hypercyclic by the generalized Bourdon-Feldman Theorem given in [3, Theorem 3.13]
and stated in the introduction.

To this end, we consider a non-empty open set U such that U ⊂ Orb(ΓTx, T ). We deduce
that for every y ∈ U , there exists γ ∈ |Γ| such that y ∈ Orb(γTx, T ) where |Γ| = {|γ| : γ ∈ Γ}
is bounded and bounded away from zero. Given y ∈ U , we let γ(y) := inf{γ ∈ |Γ| : y ∈
Orb(γTx, T )}. In particular, we have y ∈ Orb(γ(y)Tx, T ) and we remark that if yn → y
then lim inf γ(yn) ≥ γ(y).
Let M = supy∈U γ(y) and ε > 0. There exists y ∈ U such that γ(y) > M − ε. Since there
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exists a sequence (nk) such that γ(y)T nkx → y and γ(y)T nkx ∈ U , we deduce that there
exists n ≥ 0 such that

γ(y)T nx ∈ U and γ(γ(y)T nx) > M − 2ε.

We now prove that Λn contains a limit point belonging to [M−2ε
M

, M
M−ε

]. Since U is a non-
empty open set, there exists η > 0 such that the set {λ′γ(y)T nx : 1 ≤ λ′ < 1+η} is included
in U . We construct by induction a sequence (λk) ⊂]1, 1 + η[ tending to 1 and a sequence
(γk)k ⊂ |Γ| such that for every k 6= j,

γk
λkγ(y)

∈ Λn and
γk

λkγ(y)
6=

γj
λjγ(y)

.

Let λ1 ∈]1, 1 + η[. Since λ1γ(y)T
nx ∈ U , there exists γ1 ∈ |Γ| such that

λ1γ(y)T
nx ∈ Orb(γ1Tx, T )

and we deduce that γ1
λ1γ(y)

∈ Λn. Assume that λ1, · · · , λk have been fixed. We then choose

λk+1 ∈]1, 1+
η

k+1
[ such that for every j ≤ k,

λk+1γj
λj

/∈ |Γ|. Such a constant λk+1 exists because

|Γ| has an empty interior. Therefore, since λk+1γ(y)T
nx ∈ U , there exists γk+1 ∈ |Γ| such

that

λk+1γ(y)T
nx ∈ Orb(γk+1Tx, T )

and we deduce that
γk+1

λk+1γ(y)
∈ Λn and that for every j ≤ k,

γk+1

λk+1γ(y)
6=

γj
λjγ(y)

since
λk+1γj

λj
/∈ |Γ|. Finally, since |Γ| is compact and λn → 1, there exists an increasing

sequence (nk) and γ ∈ |Γ| such that
γnk

λnk
γ(y)

→ γ

γ(y)
and thus γ

γ(y)
∈ Λn. Moreover, we have

γ ≥ γ(γ(y)T nx) and thus γ

γ(y)
∈ [M−2ε

M
, M
M−ε

]. We conclude that γ

γ(y)
is a limit point of Λn

belonging to [M−2ε
M

, M
M−ε

].

In other words, we have proved that for every ε > 0, there exists n ≥ 0 such that Λn

contains a limit point in ]1 − ε, 1 + ε[. In particular, this implies that 1 is a limit point of⋃
nΛn. Since each power of an element of Λn still belongs to Λn, we deduce that

⋃

n

Λn ⊃ [1,+∞[ or
⋃

n

Λn ⊃ [0, 1].

We now show that each of these inclusions implies that Orb(Tx, T ) is somewhere dense.
We first remark that if we let U∞ = U\Orb(ΓTx, T ) then since the interior of Orb(ΓTx, T )
is empty, we have U∞ ⊃ U . It thus suffices to prove that Orb(Tx, T ) contains a nonzero
multiple of U∞ in order to conclude.
Assume that

⋃
n Λn ⊃ [0, 1] and let c = inf |Γ|. By definition, for every y ∈ U∞, there exist

an increasing sequence (nk), γ ∈ |Γ| and θ ∈ [0, 2T] such that

γeiθT nkx → y.

Since γ

c
≥ 1 and

⋃
nΛn ⊃ [0, 1], there also exists a sequence λk ∈ Λnk

such that 1
λk

→ γ

c
.

We then deduce that eiθ

λk
T nkx → y

c
and since eiθ

λk
T nkx ∈ Orb(Tx, T ), we conclude that

y

c
∈ Orb(Tx, T ). If

⋃
nΛn ⊃ [1,∞[, we get, by applying the same method, that Orb(Tx, T ) ⊃

1
d
U∞ where d = sup |Γ|. The desired result follows. �
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We now show the necessity part. It is enough to build an operator T acting on some
Banach space X such that there exists x ∈ X with Orb(Γx, T ) somewhere dense in X but
Orb(x, T ) non dense in X .

Proposition 4.2. Let Γ ⊂ C be non-empty. We assume that for every complex Banach
space X, every T ∈ L(X) and every x ∈ X, if Orb(Γx, T ) is somewhere dense in X, then x
is hypercyclic for T . Then Γ ⊂ C is such that ΓT \ {0} is bounded and bounded away from
zero with an empty interior.

Proof. If Γ\{0} is not bounded or not bounded away from 0 then counterexamples are given
in Section 2. Let then Γ\{0} be a bounded, bounded away from 0 subset of C such that the
interior of ΓT is non-empty. By [4, Theorem 2.1 and Theorem 2.2.(b)], there exists an R+-

supercyclic operator T = eiθ ⊕ T̃ acting on a Banach space X = C⊕ Y with R+-supercyclic
vector (1, y). Clearly (1, y) is not hypercyclic for T . Let V be a non-empty open subset in
Y and U ⊂ ΓT × V nonempty and open. We intend to prove that U is in the interior of
Orb(Γ(1, y), T ).
Let (a, x) ∈ U . Since a ∈ ΓT, there exists (γk)k∈N ⊂ Γ and µ ∈ [0, 2π[ such that γk → |a|eiµ.
Moreover, since (1, y) is R+-supercyclic for T , there also exist an increasing sequence (nk)k∈N
and (λk)k∈N ⊂ R+ such that

λke
iθnk → ae−iµ et λkT̃

nky → xe−iµ.

From this we deduce that λk → |a| and thus

eiθnk →
a

|a|eiµ
et T̃ nky →

x

|a|eiµ
.

Finally, reintroducing γk, we obtain

γke
iθnk → a et γkT̃

nky → x.

Hence γkT
nk(1, y) → (a, x) which had to be shown. �

Theorem B follows from the combination of Theorem 4.1 and Proposition 4.2.

5. Proof of Theorem C

In a matter of convenience we recall Theorem C.

Theorem C. Let X be a complex Banach space.

(1) For every θ ∈ R, Γ ⊂ C satisfies the property: ”For every T ∈ L(X) with σp(T
∗) =

{eiθ} and every x ∈ X

x is Γ-supercyclic for T if and only if x is supercyclic for T”

if and only if ΓGθ is dense in C, where Gθ stands for the subgroup of T generated by
eiθ.

(2) For any r 6= 1 and any θ ∈ R, there exist T ∈ L(X) with σp(T
∗) = {reiθ} and Γ ⊂ C

satisfying ΓGθ = C, such that T is supercyclic but not Γ-supercyclic.

For the proof of (1) we will use the following lemma which is reminiscent from Shkarin’s
proof of [24, Proposition 5.1] when θ is such that Gθ = T. The proof for θ ∈ R works along
the same lines.

Lemma 5.1. If T is a supercyclic operator with σp(T
∗) = {eiθ} where θ ∈ R then there

exists f ∈ X∗ such that Orb(x, T ) is dense in {y ∈ X : f(y) ∈ Gθ}.
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Proof of Theorem C. (1) Let θ ∈ R and assume that ΓGθ is dense in C. If x is a supercyclic
vector for an operator T with σp(T

∗) = {eiθ} then we know thanks to Lemma 5.1 that there
exists f ∈ X∗ such that Orb(x, T ) is dense in {y ∈ X : f(y) ∈ Gθ}. Since ΓGθ = C,
Γ{y ∈ X : f(y) ∈ Gθ} is dense in X and thus ΓOrb(x, T ) is also dense in X . This proves
the sufficiency.
For the necessity part, let θ ∈ R and assume that ΓGθ is not dense in C. Let us consider

the operator R := e−iθId on C. Then, σp(R
∗) = {eiθ} and it is clear that 1 is supercyclic for

R while ΓOrb(1, R) ⊂ ΓG−θ is not dense in C. Indeed observe that G−θ = Gθ when θ ∈ πQ,
and that G−θ = Gθ = T when θ ∈ π(R \ Q). Now we decompose X as a sum X = C ⊕ Y

and consider T := R ⊕ T̃ where T̃ : Y → Y satisfies Kitai Criterion (or the Hypercyclicity
Criterion along the whole sequence of integers). Then, it is clear that σp(T

∗) = {eiθ} and
that T is not Γ-supercyclic. Moreover, if Gθ is not dense in T then it is not difficult to check
that T is supercyclic thanks to Ansari Theorem [1] for example. Finally, if Gθ is dense in T
then the proof of the supercyclicity of T is similar to the proof of [4, Theorem 2.2.(b)].

(2) Let r > 0 with r 6= 1 and θ ∈ R. Up to write X = C⊕Y and consider T = R⊕ T̃ with

T̃ satisfying Kitai Criterion, one can assume that X = C and we only have to exhibit Γ ⊂ C
satisfying ΓGθ = C and R : C → C supercyclic but not Γ-supercyclic, with σp(R

∗) = {reiθ}
(see [4, Theorem 2.2.(b)] as previously). Then consider the operatorR := re−iθId acting on C
and set Γ = {rte−itθ; t ∈ R}. We first remark that 1 is supercyclic for R and σp(R

∗) = {reiθ}.
By contradiction we assume that R is Γ-supercyclic. In this case, there exist a non-decreasing
sequence (nk)k∈N of integers and (γk)k∈N ⊂ Γ such that

γkr
nke−iθnk → −1.

Writing γk = rtke−itkθ for some (tk)k∈N ⊂ R, we deduce that

e−iθ(tk+nk) → −1 and rtk+nk → 1.

It follows that tk + nk → 0 and −1 = limk→∞ e−iθ(tk+nk) = 1, a contradiction.
�
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Souvraz S.P. 18 , 62307 Lens, FRANCE

E-mail address : quentin.menet@univ-artois.fr


	1. Introduction and statements of the main results
	1.1. Introduction
	1.2. Statements of the main results

	2. Theorem A - Necessity part
	3. Theorem A - Sufficiency part
	4. Proof of Theorem B
	5. Proof of Theorem C
	References

