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Introduction and statements of the main results

1.1. Introduction. Let X be a complex Banach space and let L(X) denote the space of bounded linear operators on X. For T in L(X), x in X, and Γ a non-empty subset of the complex plane C, we denote Orb(Γx, T ) = {γT n x : γ ∈ Γ, n ≥ 0}. We say that x is Γ-supercyclic for T if Orb(Γx, T ) is dense in X and T will be said to be Γ-supercyclic if it admits a Γ-supercyclic vector. In particular, if Γ = C, x Γ-supercyclic for T reads x supercyclic for T and if Γ reduces to a single nonzero point, x Γ-supercyclic for T reads x hypercyclic for T . The notion of hypercyclicity was already studied by Birkhoff in the twenties but it really began to attract much attention in the late seventies. The terminology follows that of supercyclicity, introduced by Hilden and Wallen [START_REF] Hilden | Some cyclic and non-cyclic vectors of certain operators[END_REF] in the early seventies, and the former notion of cyclicity. While the latter is directly connected with the well-known Invariant Subspace Problem, hypercyclicity is connected with the Invariant Subset Problem.

To learn much about linear dynamics, we refer to the very nice books [START_REF] Bayart | Dynamics of linear operators[END_REF][START_REF] Grosse-Erdmann | Linear Chaos[END_REF].

One of the first important results was Kitai Criterion [START_REF] Kitai | Invariant closed sets for linear operators[END_REF], refined by Bès [START_REF] Bès | Three problems on hypercyclicity operators[END_REF] in the following form and known as the Hypercyclicity Criterion.

Theorem (Hypercyclicity Criterion). Let T ∈ L(X). We assume that there exist two dense subsets X 0 , Y 0 ⊂ X, an increasing sequence (n k ) k ⊂ N, and maps S n k : Y 0 → X such that for any x ∈ X 0 and y ∈ Y 0 the following holds:

(1) T n k x → 0 as k → ∞;

(2) S n k y → 0 as k → ∞;

(3) T n k S n k y → y as k → ∞. Then T is hypercyclic.

We mention that there also exists a so-called Supercyclicity Criterion due to Salas [START_REF] Salas | Supercyclicity and weighted shifts[END_REF], which is easily seen to be non-necessary for supercyclicity. The Hypercyclicity Criterion gives an effective way of proving that an operator is hypercyclic and covers a wide range of concrete hypercyclic operators, allowing to directly recover historical examples of hypercyclic operators exhibited by Birkhoff [START_REF] Birkhoff | Démonstration d'un théorème élémentaire sur les fonctions entières[END_REF], MacLane [START_REF] Maclane | Sequences of derivatives and normal families[END_REF] or Rolewicz [START_REF] Rolewicz | On orbits of elements[END_REF]. A long-standing major open question was to know whether the Hypercyclicity Criterion is necessary for an operator to be hypercyclic. Bès and Peris [START_REF] Bès | Hereditarily hypercyclic operators[END_REF] observed that satisfying the Hypercyclicity Criterion is in fact equivalent to being hereditarily hypercyclic or weakly mixing and, in 2008, De La Rosa and Read built a Banach space and a non-weakly mixing hypercyclic operator acting on this space, giving a negative answer to the above mentioned question. A bit later, Bayart and Matheron [START_REF] Bayart | Hypercyclic operators failing the hypercyclicity criterion on classical banach spaces[END_REF] provided such an example on many classical Banach spaces, including the separable Hilbert space. We also refer to [START_REF] Bermúdez | On hypercyclicity and supercyclicity criteria[END_REF] where the authors show equivalence between the Hypercyclicity Criterion and other criteria, and unify different versions of the Supercyclicity Criterion.

Anyway the existence of effective characterizations of hypercyclicity and supercyclicity has been a wide subject of interest and several results have been given. In this direction, Herrero [START_REF] Herrero | Hypercyclic operators and chaos[END_REF] conjectured that an operator T needs to be hypercyclic if we only assume that the orbit under T of some finite set of vectors is dense in X. In 2000, Peris [START_REF] Peris | Multi-hypercyclic operators are hypercyclic[END_REF] and Costakis [START_REF] Costakis | On a conjecture of D. Herrero concerning hypercyclic operators[END_REF] independently gave a positive answer to Herrero's conjecture. In 2004 León and Müller proved another result in the same spirit [17, Corollary 2].

Theorem (León-Müller Theorem). Let T ∈ L(X). Then x ∈ X is hypercyclic for T if and only if x is T-supercyclic for T .

Here, it is remarkable that we can replace the orbit of a single vector by the orbit of an uncountable set of vectors. Nevertheless it is worth noting that this uncountable set of vectors is one dimensional and that a specific group structure is underlying. We mention that, as a corollary of this theorem, León and Müller proved that for any complex number λ with modulus 1, T is hypercyclic if and only if λT is hypercyclic (with same hypercyclic vectors), answering another question posed by Herrero [START_REF] Herrero | Hypercyclic operators and chaos[END_REF].

Roughly speaking the two previous results refer to the general problem of how big can be a set with dense orbit in order to still ensure hypercyclicity. So, in the context of León-Müller Theorem the following question arises. Question 1. Is it possible to characterize the sets Γ ⊂ C such that T is hypercyclic if and only if T is Γ-supercyclic?

The proof of León-Müller Theorem heavily relies on the group (or rather semigroup) structure of T with respect to the complex multiplication. This group-theoretic approach has been deeply developed by Shkarin [START_REF] Shkarin | Universal elements for non-linear operators and their applications[END_REF] and Matheron [START_REF] Matheron | Subsemigroups of transitive semigroups[END_REF] (see also [START_REF] Bayart | Dynamics of linear operators[END_REF]Chapter 3]) in a much more general and abstract setting, tending to suggest that it is inevitable.

A different approach for characterizing hypercyclicity in an (apparently) weaker way may consist in considering how small can be the orbit of a given vector under T to still ensure that T is hypercyclic. The first result in this direction is obtained by Feldman [START_REF] Feldman | Perturbations of hypercyclic vectors[END_REF] in 2002 who proved that an operator is hypercyclic if and only if there exists d > 0 and a vector x ∈ X having a d-dense orbit, where a set is said to be d-dense if it intersects any open ball of radius d. Moreover, Feldman also proved that a vector with d-dense orbit is not necessarily a hypercyclic vector. In the same year Bourdon and Feldman [START_REF] Bourdon | Somewhere dense orbits are everywhere dense[END_REF] proved a very nice result: Theorem (Bourdon-Feldman Theorem). Let X be a Banach space, T ∈ L(X) and x ∈ X. Then x is hypercyclic for T if and only if Orb(x, T ) is somewhere dense in X.

We remark that Peris and Costakis' result is a corollary of the latter. Later on, Bayart and Matheron [START_REF] Bayart | Dynamics of linear operators[END_REF] used the group-theoretic approach initiated by León and Müller to extend Bourdon-Feldman Theorem to a general framework involving semigroups. We just quote their result in a peculiar case, that is T = {λT n ; λ ∈ T, n ∈ N} using their notations.

Theorem (Theorem 3.13 of [START_REF] Bayart | Dynamics of linear operators[END_REF]). Let X be a complex Banach space, T ∈ L(X) and x ∈ X. Then x is hypercyclic for T if and only if Orb(Tx, T ) is somewhere dense in X.

Here again, the following question naturally arises. Question 2. Is it possible to characterize the sets Γ ⊂ C such that x is hypercyclic for T if and only if Orb(Γx, T ) is somewhere dense? Similar questions have been addressed in the context of supercyclicity where it makes sense to consider the finite dimensional setting. A reasonable question is to find a small set Γ ⊂ C such that T is supercyclic if and only if T is Γ-supercyclic. However supercyclicity allows more exoticism, for example in terms of spectral properties of supercyclic operators. We recall that if T is supercyclic then the point spectrum σ p (T * ) of the adjoint of T contains at most one nonzero point and that for any nonzero complex number α there exists a supercyclic operator T with σ p (T * ) = α. In 2001, Montes-Rodríguez and Salas [START_REF] Montes-Rodríguez | Supercyclic subspaces: Spectral theory and weighted shifts[END_REF] proved that if T satisfies the Supercyclicity Criterion then σ p (T * ) is empty and T needs to be R + -supercyclic (sometimes called positive supercyclic [START_REF] León-Saavedra | The positive supercyclicity theorem[END_REF]). Later, in [START_REF] León-Saavedra | Rotations of hypercyclic and supercyclic operators[END_REF], the same crucial tool used to prove León-Müller Theorem allows the authors to show the equivalence between supercyclicity and R + -supercyclicity whenever σ p (T * ) = ∅. This result complemented the previous work of Bermúdez, Bonilla and Peris [START_REF] Bermúdez | C-supercyclic versus R + -supercyclic operators[END_REF] who proved that T is R-supercyclic if and only if T is R + -supercyclic, whatever the spectrum of T * , and also provided counterexamples to the equivalence with supercyclicity when σ p (T * ) = ∅. Finally, answering a question by León and Müller, Shkarin used his abstract group-theoretic approach to characterize the operators for which the equivalence between R + -supercyclicity and supercyclicity holds [START_REF] Shkarin | Universal elements for non-linear operators and their applications[END_REF].

Theorem (Shkarin Theorem). Let X be a complex Banach space and T ∈ L(X). T is R + -supercyclic if and only if T is supercyclic and either the point spectrum σ p (T * ) is empty or σ p (T * ) = {re iθ }, with r = 0 and θ ∈ π(R \ Q).

More generally the following question arises, an answer to which would involve the spectrum of T * . Question 3. For which Γ ⊂ C is supercyclicity equivalent to Γ-supercyclicity? 1.2. Statements of the main results. The purpose of this article is to discuss Questions 1, 2 and 3. In order to deal with Questions 1 and 2 we introduce two properties that a subset of C can enjoy or not. Definition 1.1. Let Γ be a subset of C.

(1) Γ is said to be a hypercyclic scalar set if the following holds true: For every infinite-dimensional complex Banach space X, every T ∈ L(X) and every x ∈ X Orb(Γx, T ) = X if and only if x is hypercyclic for T.

(2) Γ is said to be a somewhere hypercyclic scalar set if the following holds true: For every infinite-dimensional complex Banach space X, every T ∈ L(X) and every x ∈ X Orb(Γx, T ) is somewhere dense in X if and only if x is hypercyclic for T.

Obviously, if Γ is a somewhere hypercyclic scalar set then Γ is a hypercyclic scalar set and if Γ is a hypercyclic (resp. somewhere hypercyclic) scalar set then any smaller set is also a hypercyclic (resp. somewhere hypercyclic) scalar set. According to León-Müller Theorem and the refinement of Bourdon-Feldman Theorem stated above, T is a somewhere hypercyclic scalar set.

We provide complete answers to Question 1 (Theorem A) and Question 2 (Theorem B): In view of Theorems A and B, Γ is a somewhere hypercyclic scalar set if and only if Γ is a hypercyclic scalar set and ΓT has an empty interior.

Theorem A. A non-
Remark 1.2. (1) Theorems A and B can be stated in a slightly different way in the real setting, namely for real Banach spaces. Since it makes no particular difficulties to adapt the above statements and the corresponding proofs given in the remaining of the paper, we leave the details to the reader.

(2) Using Theorem A and counterexamples given in Section 2, we can observe that Γ is a hypercyclic scalar set if and only if it satisfies the following: For every infinite-dimensional complex Banach space X, every T ∈ L(X), T is hypercyclic if and only if T is Γ-supercyclic.

(3) Similarly Γ is a somewhere hypercyclic scalar set if and only if it satisfies the following: For every infinite-dimensional complex Banach space X, every T ∈ L(X), T is hypercyclic if and only if Orb(Γx, T ) is somewhere dense in X for some x ∈ X.

For example any ring {µλ, µ ∈ [a, b], λ ∈ T} with 0 < a < b < +∞ is a hypercyclic scalar set but not a somewhere hypercyclic scalar set. The same holds for any closed paths in C which do not contain 0, different from a nonzero multiple of the unit circle T. Moreover a union of circles centered at 0 with bounded and bounded away from zero radii is a somewhere hypercyclic scalar set if and only if the family of these radii has an empty interior.

Furthermore we give a general anwser to Question 3 when σ p (T * ) is non-empty.

Theorem C. Let X be a complex Banach space.

(1) For every θ ∈ R, Γ ⊂ C satisfies the property: "For every T ∈ L(X) with σ p (T * ) = {e iθ } and every x ∈ X

x is Γ-supercyclic for T if and only if x is supercyclic for T " if and only if ΓG θ is dense in C, where G θ stands for the subgroup of T generated by e iθ . (2) For any r = 1 and any θ ∈ R, there exist T ∈ L(X) with σ p (T * ) = {re iθ } and Γ ⊂ C satisfying ΓG θ = C, such that T is supercyclic but not Γ-supercyclic.

Remark 1.3. (1) For every θ ∈ R, Theorem C provides a complete understanding of the problem of describing those subsets Γ of C such that for every X, every T ∈ L(X) with σ p (T * ) = {e iθ } and every x ∈ X,

x is Γ-supercyclic for T if and only if x is supercyclic for T.

Nevertheless such a problem for every T (namely for those T such that σ p (T * ) = ∅ or σ p (T * ) = {re iθ } with r = 1) remains unclear.

(2) One shall notice that, when θ ∈ π(R\Q), the condition ΓG θ = C is equivalent to ΓT = C.

(3) It is worth observing that the equivalence between Γ-supercyclicity and supercyclicity for T with σ p (T * ) = re iθ , θ ∈ π(R \ Q), depends on r. This differs from the particular case of the R + -supercyclicity which is treated in Shkarin Theorem.

(4) It may also be interesting to notice that, in (1), the equivalence between x Γ-supercyclic and x supercyclic not only depends on the fact that θ is a rational or an irrational multiple of π (as in Shkarin Theorem) but also depends on every θ ∈ πQ.

Indeed if θ, θ ′ ∈ πQ∩]0; π[ with θ < θ ′ and Γ = {re iα , r ∈ R + , α ∈ [0; θ]}, then ΓG θ = C while ΓG θ ′ = C.
(5) Observe that contrary to Theorems A and B, it makes sense to also consider finite dimensional Banach spaces X in Theorem C.

The article is organized as follows. The purpose of Section 2 is to show the necessity part of Theorem A. In Section 3 we prove the sufficiency part of Theorem A which is the most difficult one. Section 4 is devoted to the proof of Theorem B and Section 5 to that of Theorem C.

Theorem A -Necessity part

To prove that if Γ is a hypercyclic scalar set then Γ \ {0} is bounded and bounded away from zero, it suffices to exhibit examples of Γ-supercyclic operators that are not hypercyclic when Γ \ {0} is not bounded or not bounded away from zero. Note that if Γ is a hypercyclic scalar set then obviously Γ \ {0} needs to be non-empty.

We begin by proving that if Γ is a hypercyclic scalar set then Γ is bounded.

Proposition 2.1. Let Γ be an unbounded subset of C. Then, the backward shift operator B on ℓ 2 (N) is Γ-supercyclic but not hypercyclic.

Proof. It is well-known that B is not hypercyclic, since the orbit of any vector is bounded.

Let Γ be an unbounded subset of C. We are going to construct a Γ-supercyclic vector for B.

Let {y k : k ∈ N} be a dense subset of c 00 . We denote by F the forward shift on ℓ 2 (N) and we let d(y k ) = max{j ≥ 0 : y k (j) = 0}. First, we construct by induction a sequence (γ k ) k∈N ⊂ Γ \ {0}, and a sequence of integers (m k ) k∈N such that for every k ∈ N:

(i) 1 γ k y k < 2 -k ; (ii) For every i < k, |γ i | |γ k | y k < 2 -k . (iii) For every i < k, m k > m i + d(y i ); If m 0 , . . . , m k-1 and γ 0 , • • • , γ k-1
have been chosen, we remark that it suffices to choose γ k sufficiently big in order to satisfy (i) and (ii) and to choose m k sufficiently big in order to satisfy (iii).

Thanks to (i), we can let x = +∞ i=0 1 γ i F m i y i since F m i y i = y i and we claim that x is Γ-supercyclic for T . Let k ∈ N. We have

γ k B m k x -y k ≤ j<k γ k γ j B m k (F m j y j ) + γ k γ k B m k (F m k y k ) -y k + j>k γ k γ j B m k (F m j y j ) ≤ j<k 0 + 0 + j>k |γ k | |γ j | y j by (iii) ≤ j>k 2 -j = 2 -k -→ k→+∞ 0 by (ii).
Since the backward shift has norm 1, we cannot hope using it to prove that Γ \ {0} has to be bounded away from zero. Thus, we will use a bilateral shift instead. Proposition 2.2. Let Γ be a subset of C and assume that Γ \ {0} is not bounded away from zero. Then, the shift operator B w on ℓ 2 (Z), with weight sequence w i = 2 if i > 0 and w i = 1 else, is Γ-supercyclic but not hypercyclic.

Proof. It is well-known that B w is not hypercyclic, since the orbit of any non-zero vector is bounded away from zero. Let Γ be a subset of C such that Γ \ {0} is not bounded away from zero. We are going to construct a Γ-supercyclic vector for B w .

Let {y k : k ∈ N} be a dense subset of c 00 (Z). We let d(y k ) = max{j ≥ 0 : y k (j) = 0} and we denote by F 1 w the inverse of B w on ℓ 2 (Z). In other words, F 1 w is the forward weighted shift F ν where ν i = 1 2 if i ≥ 0 and ν i = 1 else. First, we construct by induction a sequence (γ k ) k∈N ⊂ Γ \ {0} and a sequence of integers (m k ) k∈N such that for every k ∈ N:

(i) 1 γ k F m k 1 w y k < 2 -k ; (ii) For every i < k, |γ i | |γ k | B m i w F m k 1 w y k < 2 -k . (iii) For every i < k, |γ k | |γ i | B m k w F m i 1 w y i < 2 -k ;
If m 0 , . . . , m k-1 and γ 0 , • • • , γ k-1 have been chosen, we first remark that we can choose γ k sufficiently small such that for every i < k, we have

|γ k | |γ i | B m w F m i 1 w y i < 2 -k for every m ≥ 0 since |γ k | |γ i | B m w F m i 1 w y i ≤ |γ k | |γ i | 2 m i +d(y i ) y i .
We can then choose m k sufficiently big in order to satisfy (i) and (ii) since for every y ∈ c 00 (Z), we have

F m y → 0 as m → ∞. Thanks to (i), we can let x = +∞ i=0 1 γ i F m i 1 w
y i and we claim that x is Γ-supercyclic for T . Let k ∈ N. We have

γ k B m k w x -y k ≤ j<k γ k γ j B m k w F m j 1 w y j + γ k γ k B m k w F m k 1 w y k -y k + j>k γ k γ j B m k w F m j 1 w y j ≤ j<k 1 2 k + 0 + j>k 1 2 j by (ii) and (iii) ≤ k + 1 2 k -→ k→+∞ 0.
Propositions 2.1 and 2.2 give the necessity part of Theorem A.

Theorem A -Sufficiency part

Let X be an infinite-dimensional complex Banach space. In this section, we intend to prove the following theorem.

Theorem 3.1. Let T ∈ L(X) and Γ ⊂ C be such that Γ \ {0} is non-empty, bounded and bounded away from 0. If x is Γ-supercyclic for T then x is hypercyclic for T .

Let T ∈ L(X) and let x ∈ X be Γ-supercyclic for T . As it is clear that the point zero plays no role, in what follows we are going to suppose that 0 / ∈ Γ. Then, we notice that Γ is included in some ring of the form [a, b]T, with 0 < a ≤ b < +∞, and that x is [a, b]Tsupercyclic whenever x is Γ-supercyclic. In addition, up to a dilation, we see that

x is [a, b]T-supercyclic if and only if x is [1, b/a]T-supercyclic.
Therefore, to prove Theorem 3.1 we are reduced to prove the following

Theorem 3.2. Let T ∈ L(X) and 1 ≤ b < +∞. If x is [1, b]T-supercyclic for T then x is hypercyclic for T .
The proof of Theorem 3.2 relies on several lemmas. Lemma 3.3. Let Γ ⊂ C be a non-empty set bounded and bounded away from 0, let T ∈ L(X) and let x be a Γ-supercyclic vector for T . Then for every y ∈ X, there exists γ ∈ Γ and an increasing sequence (n k ) of integers such that γT n k x → y.

Proof. We first remark that Orb(Γx, T ) has an empty interior by the Baire Category Theorem. Let y ∈ X. We deduce from the above assertion that there exists a sequence (y k ) ⊂ Orb(Γx, T )\Orb(Γx, T ) converging to y. We remark that if z ∈ Orb(Γx, T )\Orb(Γx, T ) then there exist an increasing sequence (n k ) ⊂ N and (γ j ) ⊂ Γ such that γ j T n j x → z. We can thus construct a sequence (γ k ) ⊂ Γ and an increasing sequence (n k ) such that y kγ k T n k x < 2 -k . By using the compactness of Γ and the fact that Γ is bounded away from 0, we then obtain the desired result.

We now deduce the following corollary which is an immediate consequence of the previous lemma.

Corollary 3.4. Let Γ ⊂ C be a non-empty set bounded and bounded away from 0, let T ∈ L(X) and let x be a Γ-supercyclic vector for T . Then for every n ≥ 0, we have γ∈Γ Orb(γT n x, T ) = X.

The following lemma is well-known in the case of hypercyclic operators, we provide here a slight generalization with its proof for the sake of completeness. Lemma 3.5. If T is Γ-supercyclic with Γ ⊂ C non-empty, bounded and bounded away from 0, then p(T ) has dense range for any nonzero polynomial p.

Proof. It is a well-known fact that it suffices to prove that the point spectrum σ p (T * ) of the adjoint T * of T is empty. Let x be a Γ-supercyclic vector for T . By contradiction, assume that α ∈ σ p (T * ) and let y * ∈ X * \ {0} be such that T * y * = αy * . Since x is Γ-supercyclic for T , we get

C = { γT n x, y * : γ ∈ Γ, n ≥ 0} = {γα n : γ ∈ Γ, n ≥ 0} x, y * .
If |α| ≤ 1 or x, y * = 0 then the last set is bounded and cannot be dense in C; if |α| > 1 and x, y * = 0 then it is bounded away from 0, hence a contradiction.

From this lemma, we can deduce the following one which shows that as soon as T is Γsupercyclic then the set of Γ-supercyclic vectors contains a particular dense linear subspace apart from zero. Lemma 3.6. If x is Γ-supercyclic for T with Γ ⊂ C non-empty, bounded and bounded away from 0, then p(T )x is Γ-supercyclic for T for every nonzero polynomial p.

Proof. Since x is Γ-supercyclic for T , it follows from Lemma 3.5 that p(T )(Orb(Γx, T )) is dense and we get the desired result by remarking that Orb(Γp(T )x, T ) ⊃ p(T )(Orb(Γx, T )).

We will now assume as in Theorem 3.2 that Γ = [1, b]T for some b ≥ 1. The following result aims to divide Γ-supercyclic operators into two categories: the hypercyclic ones and the non-hypercyclic ones. Moreover, it gives some necessary properties satisfied by the nonhypercyclic ones.

Proposition 3.7. Let b ≥ 1. If x is [1, b]
T-supercyclic then one of the two following conditions holds: [START_REF] Ansari | Hypercyclic and cyclic vectors[END_REF] x is hypercyclic for T ;

(2) There exists

1 < c ≤ b such that x is [1, c]T-supercyclic but Orb(Tx, T ) ∩ [1, c]Tx = Tx ∪ cTx.
In particular, T is not hypercyclic.

Proof. We will need two claims. Orb(µTT Jn x, T ) ⊂ ν∈ [1,λ] Orb(νTx, T ).

Claim 2. Let 1 ≤ c < b. If x is [1, λ]T-supercyclic for every λ ∈]c, b] then x is [1, c]T- supercyclic. Proof of Claim 2. Let y ∈ X and c < b. Since x is [1, c + 1/k]T-supercyclic for every k large enough, there exists µ k ∈ [1, c + 1/k]T, and n k such that µ k T n k x -y ≤ 1 k .
Up to take a subsequence, we may assume that µ k → µ for some µ ∈ [1, c]T. We deduce that µT n k x → y and thus that x is [1, c]T-supercyclic.

We now finish the proof of Proposition 3.7. Set

c = inf{λ ∈ [1, b] : x is [1, λ]T-supercyclic}.
If x is not hypercyclic, then c > 1, because if not Claim 2 implies that x is T-supercyclic hence hypercyclic, by León-Müller Theorem. Then, first, we deduce from Claim 1 that for every λ ∈]1, c[, λx / ∈ Orb(Tx, T ). Moreover cx must belong to Orb(Tx, T ) because if not there exists ε > 0 such that the interval ]x, (c + ε)x] is included in the complement of Orb(Tx, T ) and then (c

+ ε)x / ∈ Orb([1, c]Tx, T ), what contradicts the fact that x is [1, c]T-supercyclic. Thus, we have Orb(Tx, T ) ∩ [1, c]Tx = Tx ∪ cTx.
Finally if we are in such a case, then T fails to be hypercyclic. Indeed if y ∈ X is hypercyclic for T then, according to Corollary 3.4, there exists λ ∈ [1, c] such that y ∈ Orb(λTx, T ). From this and the hypercyclicity of y, we deduce that

X = Orb(y, T ) ⊂ Orb(λTx, T ).
By León-Müller Theorem again, λx would then be hypercyclic for T and thus x would be hypercyclic for T .

The remaining of the proof will consist in showing that there cannot exist an operator

T ∈ L(X) admitting a [1, b]T-supercyclic vector x with b > 1 such that Orb(Tx, T ) ∩ [1, b]T = Tx ∪ bTx.
This will conclude the proof of the sufficiency part of Theorem A in view of the previous result. To do so we will show that if such an operator T exists then we can build a certain continuous function Λ from span{Orb(x, T )}\{0} into T inducing an homotopy in T between a single point and a closed path having nonzero winding number around 0, what is known to be impossible. The construction of this continuous function Λ will rely for any y ∈ span{Orb(x, T )} \ {0} on the existence of a unique parameter λ y ∈ [1, b[ such that y ∈ Orb(λ y Tx, T ). The existence of this parameter will be obtained for every [1, b]-supercyclic vector and thus for every element in span{Orb(x, T )} \ {0} in view of Lemma 3.6.

This will be done thanks to the following lemmas which help to understand how the orbit of x approaches real multiples of a fixed [1, b]-supercyclic vector y. We first remark that if x is a [ We can also characterize the multiples of x belonging to the orbit of x itself.

Lemma 3.9. Let x be [1, b]T-supercyclic for T such that Orb(Tx, T ) ∩ [1, b]Tx = Tx ∪ bTx.
If, for some µ > 0, µx belongs to Orb(Tx, T ) then µb m x belongs to Orb(Tx, T ) for every m ∈ Z.

Proof. Since bx ∈ Orb(Tx, T ) we get Orb(Tb m x, T ) ⊂ Orb(Tb m-1 x, T ) for every m ≥ 1 so, if µx ∈ Orb(Tx, T ) then we deduce that µb m x ∈ Orb(Tb m x, T ) ⊂ Orb(Tx, T ) for every m ≥ 0. Similarly, to prove that the latter holds also for m < 0 it is enough to show that This application Λ is well-defined according to the above observation. Moreover, we remark that for every λ ∈ [1, b], we have u ∈ Orb(λTx, T ) ∩ span{Orb(x, T )} \ {0} if and only if Λ(u) = ϕ(λ). It will play a crucial role to end up with a contradiction, assuming that such an operator T exists. Proof. [START_REF] Ansari | Hypercyclic and cyclic vectors[END_REF] It is sufficient to prove that, for every sequence (u n ) ⊂ span{Orb(x, T )} \ {0} and every u ∈ span{Orb(x, T )} \ {0}, if u n → u then Λ(u) is the only limit point of (Λ(u n )) n . By compactness of T, we can assume without loss of generality that Λ(u n ) → α ∈ T and we have to show that α = Λ(u). If Λ(u n ) = 1 for infinitely many n then first α = 1 and, second, infinitely many u n belongs to Orb(Tx, T ). It follows that u ∈ Orb(Tx, T ) so that Λ(u) = 1 = α. If we are not in the previous case, then we can assume that u n / ∈ Orb(Tx, T ) for every n so Λ(

u n ) = ϕ(λ n ), n ≥ 0, with λ n ∈]1, b[ and u n ∈ Orb(λ n Tx, T ). By compactness we can assume that λ n → λ ∈ [1, b] so that u ∈ Orb(λTx, T ). By continuity of ϕ it follows that ϕ(λ) = α = Λ(u).
(2) comes easily from the fact that T n x ∈ Orb(Tx, T ) for any n ≥ 0 and the definition of Λ.

We are now ready to finish the proof of Theorem 3.2.

Proof of Theorem 3.2. We assume by contradiction that x is not hypercyclic for T . By Proposition 3.7 we can assume that x is a [1, b]T-supercyclic vector for T such that Orb(Tx, T )∩ [1, b]Tx = Tx∪bTx, and thus that the application Λ : span{Orb(x, T )}\{0} → T introduced above is well-defined.

For every y 0 , y 1 ∈ span{Orb(x, T )}, we let [y 0 , y 1 ] := {(1t)y 0 + ty 1 : t ∈ [0, 1]} and if 0 / ∈ [y 0 , y 1 ], we define the closed (continuous

) curve γ [y 0 ,y 1 ] : [0, 1] → T by γ [y 0 ,y 1 ] = Λ • γ [y 0 ,y 1 ] where γ [y 0 ,y 1 ] : [0, 1] → span{Orb(x, T )} is given by γ [y 0 ,y 1 ] (t) = (1 -t)y 0 + ty 1 .
Note that 0 does not belong to the image of γ [T n x,T m x] for any n, m ≥ 0, and that γ [T n x,T m x] is a closed continuous curve by Corollary 3.12. Moreover we observe that γ [T n x,T n+1 x] = γ [x,T x] for any n ≥ 0. Indeed this comes from the definition of Λ and from the fact that if y ∈ Orb(λTx, T ) then T n y ∈ Orb(λTx, T ) for every n ∈ N. So in particular, Ind 0 γ [T n x,T n+1 x] = Ind 0 γ [x,T x] for any n ≥ 0, where Ind 0 γ stands for the winding number of a closed continuous curve γ around 0. On the other hand, for each θ ∈ [0, 2π[ and each y ∈ span{Orb(x, T )}\{0} we define the closed (continuous) curve γ θ,y : [0, 1] → T by γ θ,y = Λ • γ θ,y where γ θ,y : [0, 1] → span{Orb(x, T )} \ {0} is given by

γ θ,y (t) = e iθt y.
It is again easily seen by definition of Λ that γ θ,y is the constant path equal to Λ(y), therefore Ind 0 γ θ,y = 0. Similarly, we observe that Ind 0 γ [bx,x] = -1. Now, using Lemma 3.10, we deduce that bx ∈ Orb(Tx, T ) \ Orb(Tx, T ) because otherwise Orb(Tx, T ) would be contained in a finite dimensional space contradicting the [1, b]Tsupercyclicity of x. Then, by compactness of T, there exists θ ∈ [0, 2π[ and (n k ) k ⊂ N increasing such that e iθ T n k x → bx as k tends to ∞. We assert that, up to take a subsequence, (n k ) k can be chosen in such a way that Ind 0 γ [e iθ T n k x,bx] = 0. Indeed, if we assume by contradiction that for some N ≥ 0 and every k ≥ N the winding number Ind 0 γ [e iθ T n k x,bx] is nonzero, then for every

λ ∈ [1, b[, [e iθ T n k x, bx] ∩ Orb(λTx, T ) = ∅
for any k ≥ N. Yet for every ε > 0, there exists N ε ≥ N such that for every k ≥ N ε [e iθ T n k x, bx] ⊂ B(bx, ε). In other words, for any λ ∈ [1, b[, there exists a sequence (y n ) converging to bx such that for every n ≥ 0, y n ∈ Orb(λTx, T ). Thus bx ∈ Orb(λTx, T ) for every λ ∈ [1, b[, a contradiction with Proposition 3.11.

For the remaining of the proof, let θ ∈ [0, 2π[ and (n k ) k ⊂ N increasing be such that for every k ≥ 0, Ind 0 γ [e iθ T n k x,bx] = 0.

Given any n ≥ 0, we define γ n,θ : [0, 1] → span{x, . . . , T n x} by

γ n,θ (s) =          γ [T j x,T j+1 x] ((n + 3)s -j)) if j n+3 ≤ s ≤ j+1 n+3 , 0 ≤ j ≤ n -1 γ θ,T n x ((n + 3)s -n) if n n+3 ≤ s ≤ n+1 n+3 γ [e iθ T n x,bx] ((n + 3)s -(n + 1)) if n+1 n+3 ≤ s ≤ n+2 n+3 γ [bx,x] ((n + 3)s -(n + 2)) if n+2 n+3 ≤ s ≤ 1.
By construction, one easily notices that γ n,θ does never take the value zero. Then we can set γ n,θ = Λ • γ n,θ for every n ≥ 0. Moreover, since span{Orb(x, T )} is infinite dimensional we can retract, staying in span{Orb(x, T )} \ {0}, the closed curve γ n,θ onto some T m x ∈ span{Orb(x, T )} \ span{x, . . . , T n x} for every n ≥ 0 and some m > n, and thus build an homotopy of closed curves in T such that γ n,θ is homotopic to the constant path Λ(T m x). Thus Ind 0 γ n,θ = 0 for every n ≥ 0.

With θ and (n k ) k as above and as a consequence of the observations made at the beginning at the proof, we deduce that for every k ≥ 0

0 = Ind 0 γ n k ,θ = n k -1 j=0 Ind 0 γ [T j x,T j+1 x] + Ind 0 γ θ,T n k x + Ind 0 γ [e iθ T n k x,bx] + Ind 0 γ [bx,x] = n k Ind 0 γ [x,T x] + 0 + 0 -1,
and it follows that n k Ind 0 γ [x,T x] = 1 for any k ≥ 0, which is impossible since n k tends to ∞.

Proof of Theorem B

The aim of this section is to prove Theorem B. We begin by proving the sufficiency. Theorem 4.1. Let T ∈ L(X) and let Γ ⊂ C be such that ΓT \ {0} is bounded and bounded away from zero with an empty interior. If the set Orb(ΓTx, T ) is somewhere dense in X, then x is a hypercyclic vector for T .

Proof. Without loss of generality, we can suppose that 0 / ∈ Γ. Let

Λ n := {λ ∈ R + : T n x ∈ Orb(λTx, T )}.
By definition, the sequence (Λ n ) is a non-decreasing sequence and Λ n ∪ {0} is a closed set. Moreover, if λ ∈ Λ n then for every ε > 0, there exists m ≥ n and θ ∈ [0, 2π] such that λe iθ T m x -T n x < ε. We can assume that m ≥ n because otherwise we would have T n x ∈ span{x, . . . , T n-1 x} and thus Orb(ΓTx, T ) would not be somewhere dense. This implies that for every n ≥ 0, if λ, λ ′ ∈ Λ n then the product λλ ′ ∈ Λ n . Indeed, if λ, λ ′ ∈ Λ n then for every ε > 0, there exists m ≥ n and θ ∈ [0, 2π] such that λe iθ T m x -T n x < ε 2 and there exists m ′ ≥ 0 and θ ′ ∈ [0, 2π] such that λ ′ e iθ ′ T m ′ x -T n x < ε 2 λ -1 T m-n -1 . We then get

λλ ′ e i(θ+θ ′ ) T m+m ′ -n x -T n x ≤ λ λ ′ e iθ ′ T m+m ′ -n x -T m x + λe iθ T m x -T n x ≤ λ T m-n λ ′ e iθ ′ T m ′ x -T n x + λe iθ T m x -T n x ≤ ε. In particular, if λ ∈ Λ n then λ k ∈ Λ n for every k ≥ 1.
The idea of the proof of this theorem consists in showing that if Orb(ΓTx, T ) is somewhere dense in X and ΓT has an empty interior then

n Λ n ⊃ [1, +∞[ or n Λ n ⊃ [0, 1]
and that if one of these inclusions holds then Orb(Tx, T ) is also somewhere dense and thus x is hypercyclic by the generalized Bourdon-Feldman Theorem given in [START_REF] Bayart | Dynamics of linear operators[END_REF]Theorem 3.13] and stated in the introduction.

To this end, we consider a non-empty open set U such that U ⊂ Orb(ΓTx, T ). We deduce that for every y ∈ U, there exists γ ∈ |Γ| such that y ∈ Orb(γTx, T ) where |Γ| = {|γ| : γ ∈ Γ} is bounded and bounded away from zero. Given y ∈ U, we let γ(y) := inf{γ ∈ |Γ| : y ∈ Orb(γTx, T )}. In particular, we have y ∈ Orb(γ(y)Tx, T ) and we remark that if y n → y then lim inf γ(y n ) ≥ γ(y). Let M = sup y∈U γ(y) and ε > 0. There exists y ∈ U such that γ(y) > Mε. Since there exists a sequence (n k ) such that γ(y)T n k x → y and γ(y)T n k x ∈ U, we deduce that there exists n ≥ 0 such that γ(y)T n x ∈ U and γ(γ(y)T n x) > M -2ε.

We now prove that Λ n contains a limit point belonging to [ M -2ε M , M M -ε ]. Since U is a nonempty open set, there exists η > 0 such that the set {λ ′ γ(y)T n x : 1 ≤ λ ′ < 1 + η} is included in U. We construct by induction a sequence (λ k ) ⊂]1, 1 + η[ tending to 1 and a sequence (γ k ) k ⊂ |Γ| such that for every k

= j, γ k λ k γ(y) ∈ Λ n and γ k λ k γ(y) = γ j λ j γ(y) . Let λ 1 ∈]1, 1 + η[. Since λ 1 γ(y)T n x ∈ U, there exists γ 1 ∈ |Γ| such that λ 1 γ(y)T n x ∈ Orb(γ 1 Tx, T )
and we deduce that 

(y) ∈ [ M -2ε M , M M -ε ]. We conclude that γ γ(y) is a limit point of Λ n belonging to [ M -2ε M , M M -ε ].
In other words, we have proved that for every ε > 0, there exists n ≥ 0 such that Λ n contains a limit point in ]1ε, 1 + ε[. In particular, this implies that 1 is a limit point of n Λ n . Since each power of an element of Λ n still belongs to Λ n , we deduce that

n Λ n ⊃ [1, +∞[ or n Λ n ⊃ [0, 1].
We now show that each of these inclusions implies that Orb(Tx, T ) is somewhere dense. We first remark that if we let U ∞ = U\Orb(ΓTx, T ) then since the interior of Orb(ΓTx, T ) is empty, we have U ∞ ⊃ U. It thus suffices to prove that Orb(Tx, T ) contains a nonzero multiple of U ∞ in order to conclude. Assume that n Λ n ⊃ [0, 1] and let c = inf |Γ|. By definition, for every y ∈ U ∞ , there exist an increasing sequence (n k ), γ ∈ |Γ| and θ ∈ [0, 2T] such that γe iθ T n k x → y.

Since γ c ≥ 1 and n Λ n ⊃ [0, 1], there also exists a sequence λ k ∈ Λ n k such that 1 λ k → γ c . We then deduce that e iθ λ k T n k x → y c and since e iθ λ k T n k x ∈ Orb(Tx, T ), we conclude that We now show the necessity part. It is enough to build an operator T acting on some Banach space X such that there exists x ∈ X with Orb(Γx, T ) somewhere dense in X but Orb(x, T ) non dense in X. Proposition 4.2. Let Γ ⊂ C be non-empty. We assume that for every complex Banach space X, every T ∈ L(X) and every x ∈ X, if Orb(Γx, T ) is somewhere dense in X, then x is hypercyclic for T . Then Γ ⊂ C is such that ΓT \ {0} is bounded and bounded away from zero with an empty interior.

Proof. If Γ \ {0} is not bounded or not bounded away from 0 then counterexamples are given in Section 2. Let then Γ \ {0} be a bounded, bounded away from 0 subset of C such that the interior of ΓT is non-empty. By [4, Theorem 2.1 and Theorem 2. 

Proof of Theorem C

In a matter of convenience we recall Theorem C.

Theorem C. Let X be a complex Banach space.

(1) For every θ ∈ R, Γ ⊂ C satisfies the property: "For every T ∈ L(X) with σ p (T * ) = {e iθ } and every x ∈ X

x is Γ-supercyclic for T if and only if x is supercyclic for T " if and only if ΓG θ is dense in C, where G θ stands for the subgroup of T generated by e iθ . (2) For any r = 1 and any θ ∈ R, there exist T ∈ L(X) with σ p (T * ) = {re iθ } and Γ ⊂ C satisfying ΓG θ = C, such that T is supercyclic but not Γ-supercyclic.

For the proof of (1) we will use the following lemma which is reminiscent from Shkarin's proof of [START_REF] Shkarin | Universal elements for non-linear operators and their applications[END_REF]Proposition 5.1] when θ is such that G θ = T. The proof for θ ∈ R works along the same lines. Lemma 5.1. If T is a supercyclic operator with σ p (T * ) = {e iθ } where θ ∈ R then there exists f ∈ X * such that Orb(x, T ) is dense in {y ∈ X : f (y) ∈ G θ }.

Proof of Theorem C. (1) Let θ ∈ R and assume that ΓG θ is dense in C. If x is a supercyclic vector for an operator T with σ p (T * ) = {e iθ } then we know thanks to Lemma 5.1 that there exists f ∈ X * such that Orb(x, T ) is dense in {y ∈ X : f (y) ∈ G θ }. Since ΓG θ = C, Γ{y ∈ X : f (y) ∈ G θ } is dense in X and thus ΓOrb(x, T ) is also dense in X. This proves the sufficiency.

For the necessity part, let θ ∈ R and assume that ΓG θ is not dense in C. Let us consider the operator R := e -iθ Id on C. Then, σ p (R * ) = {e iθ } and it is clear that 1 is supercyclic for R while ΓOrb(1, R) ⊂ ΓG -θ is not dense in C. Indeed observe that G -θ = G θ when θ ∈ πQ, and that G -θ = G θ = T when θ ∈ π(R \ Q). Now we decompose X as a sum X = C ⊕ Y and consider T := R ⊕ T where T : Y → Y satisfies Kitai Criterion (or the Hypercyclicity Criterion along the whole sequence of integers). Then, it is clear that σ p (T * ) = {e iθ } and that T is not Γ-supercyclic. Moreover, if G θ is not dense in T then it is not difficult to check that T is supercyclic thanks to Ansari Theorem [START_REF] Ansari | Hypercyclic and cyclic vectors[END_REF] for example. Finally, if G θ is dense in T then the proof of the supercyclicity of T is similar to the proof of [4, Theorem 2.2.(b)].

(2) Let r > 0 with r = 1 and θ ∈ R. Up to write X = C ⊕ Y and consider T = R ⊕ T with T satisfying Kitai Criterion, one can assume that X = C and we only have to exhibit Γ ⊂ C satisfying ΓG θ = C and R : C → C supercyclic but not Γ-supercyclic, with σ p (R * ) = {re iθ } (see [4, Theorem 2.2.(b)] as previously). Then consider the operator R := re -iθ Id acting on C and set Γ = {r t e -itθ ; t ∈ R}. We first remark that 1 is supercyclic for R and σ p (R * ) = {re iθ }. By contradiction we assume that R is Γ-supercyclic. In this case, there exist a non-decreasing sequence (n k ) k∈N of integers and (γ k ) k∈N ⊂ Γ such that γ k r n k e -iθn k → -1.

Writing γ k = r t k e -it k θ for some (t k ) k∈N ⊂ R, we deduce that e -iθ(t k +n k ) → -1 and r t k +n k → 1.

It follows that t k + n k → 0 and -1 = lim k→∞ e -iθ(t k +n k ) = 1, a contradiction.

Claim 1 .

 1 If there exist λ ∈]1, b] and n ≥ 0 such that λT n x ∈ Orb(Tx, T ), then x is [1, λ]Tsupercyclic for T . Proof of Claim 1. If λT n x ∈ Orb(Tx, T ) then there exists (n k ) ⊂ N and γ ∈ T such that γT n k x → λT n x. It follows that for every m ∈ N and every µ > 0, µγ λ T n k +m x → µT n+m x and thus (3.1) Orb(µTT n+m x, T ) ⊂ Orb( µ λ TT m x, T ). Let now J ∈ N be such that (1/λ) J ≤ λ/b. Then for every µ ∈ [1, b], there exists 0 ≤ j µ ≤ J such that µ λ jµ ∈ [1, λ]. Thus it follows from (3.1) that Orb(µTT Jn x, T ) ⊂ Orb(µTT jµn x, T ) ⊂ Orb( µ λ jµ Tx, T ). Using Corollary 3.4 we get X = µ∈[1,b]

Lemma 3 . 8 .

 38 1, b]T-supercyclic vector satisfying Orb(Tx, T ) ∩ [1, b]Tx = Tx ∪ bTx then every [1, b]T-supercyclic vector satisfies this property. If x is [1, b]T-supercyclic for T but Orb(Tx, T ) ∩ [1, b]Tx = Tx ∪ bTx then for every [1, b]T-supercyclic vector y, we have Orb(Ty, T ) ∩ [1, b]Ty = Ty ∪ bTy. Proof. Let y be a [1, b]T-supercyclic vector for T . By Proposition 3.7 there exists 1 < c ≤ b such that y is [1, c]T-supercyclic for T and Orb(Ty, T ) ∩ [1, c]T = Ty ∪ cTy. It is enough to show that c = b. Let µ ∈ [1, b] be such that y ∈ Orb(µTx, T ). We have X = Orb([1, c]Ty, T ) ⊂ Orb([1, c]Tµx, T ), so that µx and then x are [1, c]T-supercyclic for T , which is true if and only if c = b.

1 b 1 λ

 11 x ∈ Orb(Tx, T ). Now observe that x is [ 1 b 2 , 1 b ]T-supercyclic for T so Orb(Tx, T ) must contain an element of [ 1 b 2 , 1 b ]Tx. But, by the previous, if λx ∈ Orb(Tx, T ) ∩ [ 1 b 2 , 1 b ]Tx for some λ ∈ R + then λb 2 x ∈ Orb(Tx, T ) ∩ [1, b]Tx hence λ = 1/b 2 or λ = 1/b by hypothesis. Finally if λ = 1/b 2 then 1 b x = 1 b 2 bx ∈ Orb(Tx, T ). Moreover, this characterization transfers to arbitrary [1, b]T-supercyclic vectors for T . Lemma 3.10. If x is [1, b]T-supercyclic for T but Orb(Tx, T ) ∩ [1, b]Tx = Tx ∪ bTx then for every [1, b]T-supercyclic vector y, we have Orb(Ty, T ) ∩ R + y = {b n y : n ∈ Z}. Proof. From Lemmas 3.8 and 3.9, since y ∈ Orb(Ty, T ), Orb(Ty, T ) ∩ R + y ⊃ {b n y : n ∈ Z} . Let now µy ∈ Orb(Ty, T ) ∩ R + y with µ ∈ R + . By Lemmas 3.8 and 3.9, there exists m ∈ Z such that µb m y ∈ Orb(Ty, T ) ∩ [1, b]y. If µ = b n for any n ∈ Z, then we have a contradiction with Lemma 3.8. Thanks to the previous lemmas, we are now able to describe completely the set Orb(Tx, T )∩ R + y in a unified way where the dependence on y appears only through a single parameter λ. Proposition 3.11. If x is [1, b]T-supercyclic for T but Orb(Tx, T ) ∩ [1, b]Tx = Tx ∪ bTx then for every [1, b]T-supercyclic vector y, there exists λ ∈ [1, b] such that Orb(Tx, T ) ∩ R + y = b n λ y : n ∈ Z . Proof. Let y be [1, b]T-supercyclic for T . Since x is [1, b]T-supercyclic for T there exists λ ∈ [1, b] such that y ∈ Orb(λTx, T ). Then, Lemma 3.10 implies Orb(Tx, T ) ⊃ n∈Z Orb(b n Tx, T ) ⊃ b n λ y : n ∈ Z . Let now µy ∈ Orb(Tx, T ). Since y is [1, b]T-supercyclic there exists τ ∈ [1, b] such that x ∈ Orb(τ Ty, T ). Thus Orb(τ Ty, T ) ⊃ {µy, y/λ} hence by Lemma 3.10 µ = τ b n and = τ b m for some m, n and thus µ = b n-m /λ. Let x be [1, b]T-supercyclic for T such that Orb(Tx, T ) ∩ [1, b]Tx = Tx ∪ bTx. Given a [1, b]T-supercyclic vector y, observe that if the λ given by the previous proposition belongs to ]1, b[ then it is unique. Otherwise, λ = 1 and λ = b works for y. Also note that if λ ∈]1, b[ then it is the unique λ ∈]1, b[ such that y ∈ Orb(λTx, T ). Similarly, λ ∈ {1, b} if and only if y ∈ Orb(Tx, T ). Let ϕ : [1, b] → T be the parametrization of T given by ϕ(t) = exp(2iπ t-1 b-1 ). According to the previous observation and thanks to Lemma 3.6, we can define an application Λ : span{Orb(x, T )} \ {0} → T by Λ(y) = ϕ(λ y ) if y / ∈ Orb(Tx, T ) where λ y is uniquely given by Proposition 3.11 1 if y ∈ Orb(Tx, T ).

Corollary 3 . 12 .

 312 Let x be a [1, b]T-supercyclic vector for T such that Orb(Tx, T ) ∩[1, b]Tx = Tx ∪ bTx. The following properties hold. (1) Λ is continuous; (2) Λ(µT n x) = ϕ(µ) for every n ≥ 0 and every µ ∈ [1, b].

λ

  k+1 γ(y) ∈ Λ n and that for everyj ≤ k, γ k+1 λ k+1 γ(y) = γ j λ j γ(y) since λ k+1 γ j λ j / ∈ |Γ|.Finally, since |Γ| is compact and λ n → 1, there exists an increasing sequence (n k ) and γ ∈ |Γ| such that γn k λn k γ(y) → γ γ(y) and thus γ γ(y) ∈ Λ n . Moreover, we have γ ≥ γ(γ(y)T n x) and thus γ γ

yc∈ 1 d

 1 Orb(Tx, T ). If n Λ n ⊃ [1, ∞[, we get, by applying the same method, that Orb(Tx, T ) ⊃ U ∞ where d = sup |Γ|. The desired result follows.

  2.(b)], there exists an R +supercyclic operator T = e iθ ⊕ T acting on a Banach space X = C ⊕ Y with R + -supercyclic vector (1, y). Clearly (1, y) is not hypercyclic for T . Let V be a non-empty open subset in Y and U ⊂ ΓT × V nonempty and open. We intend to prove that U is in the interior of Orb(Γ(1, y), T ). Let (a, x) ∈ U. Since a ∈ ΓT, there exists (γ k ) k∈N ⊂ Γ and µ ∈ [0, 2π[ such that γ k → |a|e iµ . Moreover, since (1, y) is R + -supercyclic for T , there also exist an increasing sequence (n k ) k∈N and (λ k ) k∈N ⊂ R + such thatλ k e iθn k → ae -iµ et λ k T n k y → xe -iµ .From this we deduce that λ k → |a| and thuse iθn k → a |a|e iµ et T n k y → x |a|e iµ .Finally, reintroducing γ k , we obtainγ k e iθn k → a et γ k T n k y → x.Hence γ k T n k (1, y) → (a, x) which had to be shown. Theorem B follows from the combination of Theorem 4.1 and Proposition 4.2.

  empty subset Γ of C is a hypercyclic scalar set if and only if Γ \ {0} is non-empty, bounded and bounded away from 0.In Theorem B below, we denote by ΓT the set {γz : γ ∈ Γ, |z| = 1}. Theorem B. A non-empty subset Γ of C is a somewhere hypercyclic scalar set if and only if ΓT \ {0} is non-empty, bounded and bounded away from 0 and has an empty interior.

  γ 1 λ 1 γ(y) ∈ Λ n . Assume that λ 1 , • • • , λ k have been fixed. We then choose λ k+1 ∈]1, 1+ η k+1[ such that for every j ≤ k,

	λ k+1 γ j
	λ j

/ ∈ |Γ|. Such a constant λ k+1 exists because |Γ| has an empty interior. Therefore, since λ k+1 γ(y)T n x ∈ U, there exists γ k+1 ∈ |Γ| such that λ k+1 γ(y)T n x ∈ Orb(γ k+1 Tx, T ) and we deduce that