N

N

Simulating a Shared Register in an Asynchronous
System that Never Stops Changing
Hagit Attiya, Hyun Chul Chung, Faith Ellen, Saptaparni Kumar, Jennifer L.
Welch

» To cite this version:

Hagit Attiya, Hyun Chul Chung, Faith Ellen, Saptaparni Kumar, Jennifer L. Welch. Simulating a
Shared Register in an Asynchronous System that Never Stops Changing. DISC 2015, Toshimitsu
Masuzawa; Koichi Wada, Oct 2015, Tokyo, Japan. 10.1007/978-3-662-48653-5_6 . hal-01199855

HAL Id: hal-01199855
https://hal.science/hal-01199855

Submitted on 16 Sep 2015

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01199855
https://hal.archives-ouvertes.fr

Simulating a Shared Register in an
Asynchronous System that Never Stops Changing
(Extended Abstract)

Hagit Attiya', Hyun Chul Chung?+*, Faith Ellen?,
Saptaparni Kumar?, and Jennifer L. Welch?

! Department of Computer Science, Technion
2 Department of Computer Science and Engineering, Texas A&M University
3 Department of Computer Science, University of Toronto

Abstract. Simulating a shared register can mask the intricacies of designing al-
gorithms for asynchronous message-passing systems subject to crash failures,
since it allows them to run algorithms designed for the simpler shared-memory
model. The simulation replicates the value of the register in multiple servers and
requires readers and writers to communicate with a majority of servers. The suc-
cess of this approach for static systems, where the set of nodes (readers, writers,
and servers) is fixed, has motivated several similar simulations for dynamic sys-
tems, where nodes may enter and leave. However, all existing simulations need
to assume that the system eventually stops changing for a long enough period or
that the system size is fixed.

This paper presents the first simulation of an atomic read/write register in a crash-
prone asynchronous system that can change size and withstand nodes continually
entering and leaving. The simulation allows the system to keep changing, pro-
vided that the number of nodes entering and leaving during a fixed time interval
is at most a constant fraction of the current system size.

1 Introduction

Simulating a shared read/write register can mask the intricacies of designing algorithms
for asynchronous message-passing systems subject to crash failures, since it allows
them to run algorithms designed for the simpler shared-memory model. The ABD sim-
ulation [5] replicates the value of the register in server nodes. It assumes that a majority
of the server nodes do not fail. Consider the simplified case of a single writer and a sin-
gle reader. To write the value v, the writer sends v, tagged with a sequence number, to
all servers and waits for acknowledgements from a majority of them. Similarly, to read,
the reader contacts all servers, waits to receive values from a majority of them and then,
returns the value with the highest sequence number. This approach can be extended to
the case of multiple writers and multiple readers by having each operation consist of a
read phase, used by a writer to determine its sequence number and used by a reader to
obtain the return value, followed by a write phase, used by a writer to disseminate the

* Hyun Chul Chung is currently working at Epoch Labs, Inc. Austin, TX USA.

value (and sequence number) and used by a reader to announce the sequence number
of the value it is about to return [[16].

The success of this approach for static systems, where the set of readers, writers,
and servers is fixed, has motivated several similar simulations for dynamic systems,
where nodes may enter and leave, a phenomenon called churn. (See [21] for a survey.)
However, existing simulations rely either on the assumption that churn eventually stops
for a long enough period (e.g., [2}/7]) or on the assumption that the system size never
changes (e.g., [[6]).

In this paper, we take a different approach: we allow churn to continue forever, while
still ensuring that read and write operations complete and nodes can join the system.
Our churn model puts an upper bound on the number of nodes that can enter or leave
during any time interval of a certain length. The upper bound is a constant fraction of
the number of nodes that are present in the system at the beginning of the time interval.
So, as the system size grows, the allowable number of changes to its composition grows
as well. Similarly, as the system size shrinks, the allowable number of changes shrinks.

The time interval with respect to which the churn is bounded is set as the maximum
message delay. We assume an unknown upper bound D on the delay of any message
(between nonfaulty nodes). Our churn model is that, in any time interval of length D,
the number of nodes that can enter or leave in the interval is at most a constant fraction
« of the number of nodes in the system at the beginning of the interval. It is important
to note that we set no lower bound on the delay of messages, so consensus cannot be
solved in this model even in the static case with no nodes entering or leaving but the
possibility of one node crashing.

We believe ours is a reasonable churn model. For instance, if each node has the
same probability of leaving in a time interval, then the number of leaves is expected
to be a fixed fraction of the total number of nodes. (See [15]] for a discussion of churn
behavior in practice.)

Our algorithm, called CCREG (for Continuous Churn Register), combines the sim-
ple static algorithm for multiple readers and multiple writers outlined above with a
joining protocol and careful estimations of the number of nodes from which responses
should be received for joining, reading, and writing. In order to join, a newly entered
node announces its entry and waits to receive sufficiently many acknowledgements.
Then it joins as a participating node and announces that it has done so. A node leaves
the system by announcing its departure. Each node maintains a set of changes to the
composition of the system, based on the announcements of nodes entering, joining and
leaving. This information is also propagated through appropriate echo messages and by
having each node append its changes set to its messages that echo enter announcements.

A joining node calculates the number of acknowledgements it needs as a fraction
(depending on «) of the number of nodes it believes are in the system when it first re-
ceives an acknowledgement from a node that has already joined. Then it subtracts f, the
maximum number of crashes. This number must be large enough to ensure that at least
one acknowledgement is from a node p that has been in the system sufficiently long,
so that p has up-to-date information. This ensures that information about the system
composition is propagated properly. The number of necessary acknowledgements must
also be small enough to ensure that the node will eventually receive enough of them.

Each reader and writer keeps track of the number of servers that have joined, but not
left. We call these members. The read and write phases of operations wait for responses
from a fixed fraction of the servers believed to be members, plus f/2. As in the joining
protocol, this number of responses must be small enough so that termination is guaran-
teed. To prove CCREG is linearizable, we consider two cases: If a read occurs close to
a write, then we must ensure that the sets of servers contacted by the two operations are
intersecting. This is analogous to the situation in the static, majority algorithm. If oper-
ations are farther apart in time, then, as in the join protocol, we ensure that information
about writes to the register is propagated properly.

Our churn model has the pleasing property that it is algorithm-independent: It only
refers to nodes that enter or leave and ignores whether they complete the join protocol.

Related Work: A simple simulation of a single-writer, multi-reader register in a static
network was presented in [5]. It was followed by extensions that, for example, reduce
complexity [410413,14], support multiple writers [[16], or tolerate Byzantine failures 1}
31/18},120]. To optimize load and resilience, the simple majority quorums used in these
papers can be replaced by other, more complicated, quorum systems (e.g., [[19,24]]).

RAMBO [17] was the first simulation of a multi-writer, multi-reader register in a
dynamic system, where nodes may enter and leave. It includes a dedicated reconfigura-
tion module for handling configuration changes and for installing a new quorum system.
This module relies on eventually-terminating consensus. As long as the consensus does
not terminate, the protocol communicates with quorums from a possibly large number
of different configurations. This assumption is also made in other variants of RAMBO
(e.g., [8}9L[11L{12]]). These papers assume that churn eventually stops.

DynaStore [2] simulates a multi-writer, multi-reader register in a dynamic system,
by reconfiguring the servers without using consensus. Dynastore and its variant [22]
also assume that churn eventually stops.

One simulation whose model has a similar flavor to ours is [|6], in that at most a fixed
fraction of nodes enter and leave periodically and there is an unknown upper bound on
message delay. However, in their model, the system size is assumed to be constant (and
known to the nodes), i.e., the number of nodes entering is the same as the number of
nodes leaving at each point in time. Our model is more general, as we do not require
that the system size is always the same. Instead, in our model, the system can grow,
shrink, or alternately grow and shrink.

Baldoni et al. [6]] also prove that it is impossible to simulate a register when there
is no upper bound on message delay. Their proof works by considering scenarios in
which at least half of the nodes fail or leave. Then they invoke the lower bound in [5]],
which shows that simulating a register is impossible unless fewer than half the nodes are
faulty. Their proof can be adapted to hold when there is an unknown upper bound, D,
on message delay and half the nodes can be replaced during any time interval of length
D, provided that nodes are not required to announce when they leave. This means that
leaves are essentially the same as crashes.

In the same vein, the discrepancy between our result and those in [23[] and a footnote
in [2]] claiming that a finite number of changes is necessary for liveness can be attributed
to differences in the churn models. An important difference between our simulation
and those in [2,|17] is that they ensure safety even when their churn and synchrony

assumptions are violated, whereas ours does not when the churn is very large. One of the
contributions of this paper is to point out that by making different, yet still reasonable,
assumptions on churn it is possible to get a solution with different, yet still reasonable,
properties and, in particular, to overcome the prior constraint that churn must stop to
ensure liveness. That is, we are suggesting a different point in the solution space.

2 Model

We consider an asynchronous message-passing system, with nodes running client (reader
or writer) and server threads. Each node runs exactly one server thread, at most one
reader thread, and at most one a writer thread. Nodes can enter and leave the system
during an execution. A node that leaves the system cannot re-enter the system. (This
restriction is easy to remove by giving a new name to a node that wants to re-enter.) We
assume that at most f > 0 nodes can crash during an execution.

We say that a node is present at time ¢ if it has entered but has not left by time ¢ and
we let N (¢) denote the number of servers whose nodes are present at time ¢. We assume
that there are always at least IV,,;,, servers whose nodes are present in the system, i.e.,
at all times ¢, N(t) > Nyin.

Nodes communicate through a broadcast service that provides a mechanism to send
the same message to all nodes in the system. If a server wants to send a message to one
of the clients, it can do so by broadcasting the message and indicating that it should
be ignored by the other clients. A message that is broadcast by a node p at time ¢
is guaranteed to arrive at each node ¢ # p within D units of time, provided that ¢ is
present throughout the interval [¢, t + D]. If q is present for some but not all of [¢, t+ D],
then ¢ might or might not receive the message. Nodes that enter after time ¢t + D do
not (directly) receive the message. All messages broadcast by p are received by ¢ in the
order in which p sent them. In addition to the maximum transmission delay, D includes
the maximum time for handling the message at both the sender and the receiver. There
is no lower bound on the actual length of time it takes for a message to be transmitted,
nor on the amount of time to perform local computation at a node, i.e., they could take
an aribtrarily small amount of time.

Nodes do not have clocks, so they cannot determine the current time nor directly
measure how much time has elapsed since some event. They also do not know the value
of D. The system is essentially asynchronous as there is no bound on the ratio between
the fastest and slowest messages. In fact, any problem that can be solved in our model
can be solved in the same model, but without the upper bound, D, on message delivery
time. To see why, consider any execution in an asynchronous message passing model.
Suppose that step 7 of this execution occurs at time 1 — 27%, Then every message that
is received by a process is received within time D = 1. Moreover, if, in the original
execution, messages are received along a link in the order they were sent, then the same
is true in this timed execution. Hence, consensus cannot be solved in our model.

We assume the set of nodes that are present does not change too quickly: For all
times ¢, at most « - N (¢) nodes enter or leave during the interval [t, ¢ + D]. We call «
the churn rate and we assume that the value of « is known to all nodes.

Let Sy denote the set of nodes that are present initially, i.e. at time 0; | S| = N (0).

3 The CCREG Algorithm

The algorithm combines a mechanism for tracking the composition of the system, with
a simple algorithm, very similar to [[16], for reading and writing the register.

In order to track the composition of the system (Algorithm [I)), each node p main-
tains a set of events, Changes,, concerning the nodes that have entered the system.
When a node ¢ enters, it adds enter(q) to Changes, and broadcasts an enter message
requesting information about prior events. When a node p finds out that ¢ has entered
the system, either by receiving this message or by learning indirectly from another node,
it adds enter(g) to Changes,. When ¢ has received sufficiently many messages in re-
sponse to its request, it knows relatively accurate information about prior events and
the value of the register. (Setting the bound on the number of messages that should be
received is a key challenge in the algorithm.) When this happens, ¢ adds join(q) to
Changes,, sets its is_joined, flag to true, and broadcasts a message saying that it
has joined. We say that g joins when this broadcast is sent. When p finds out that ¢ has
joined, either by receiving this message or by learning indirectly from another node, it
adds join(q) to Changes,. When g leaves, it simply broadcasts a leave message. When
p finds out that ¢ has left the system, either by receiving this message or by learning
indirectly from another node, it adds leave(q) to Changes,,.

When a node p receives an enter message from a node ¢, it responds with an enter-
echo message containing C'hanges,, its current estimate of the register value (together
with its timestamp), is_joined,, (indicating whether p has joined yet), and g. When
q receives an enter-echo in response (i.e., that ends with ¢), it increments its join-
counter. The first time ¢ receives such an enter-echo from a joined node, it computes
join_bound, the number of enter-echo messages it needs in response before it can join.

Once a node has joined, its reader and writer threads can handle read and write
operations. A node is a member at time ¢ if it has joined but not left by time ¢.

Initially, Changes, = {enter(q),join(q) | ¢ € So}, if p € Sy, and 0 otherwise.
A node p also maintains the set Present, = {q | enter(q) € Changes, A leave(q) &
Changesp} of nodes that p thinks are present, i.e., nodes that have entered, but have
not left, as far as p knows.

The server, reader and writer threads at the node share the variable Changes as well
as its derived variable Present.

The client thread treats read and write operations in a similar manner (Algorithm 2)).
Both operations start with a read phase, used to obtain the current value of the register,
using a query message, followed by a write phase, using an update message. A read
operations just broadcasts the value it is about to return, keeping its sequence number.
As in [5]], write-back is needed to ensure linearizability of read operations. A write
operation broadcasts the new value it wishes to write, with a sequence number one
larger than the largest sequence number it has seen. Both the read phase and the read
phase wait to receive sufficiently many response messages. (Again, setting the bound
on the number of messages that should be received is a key challenge in the algorithm.)

A client p maintains a sequence number, tag, which it increments at the beginning
of each read phase. This is used to identify responses with the right read or write phase.

The server thread is simple (Algorithm [3). The server maintains the latest value of
the register it knows about. When it receives an update message with a newer value

Algorithm 1 CCREG—Common code, for node p.

I:
2:

3:
4:

5:

Local Variables:

is_joined // Boolean to check if p has joined the system; initially false

join_counter // for counting the number of enter-echo messages received by p; initially O
join_bound // if non-zero, the number of enter-echo p should receive before joining; initially
0

Changes I set of enter(:)’s, leave(-)’s, and join(-)’s known by p; initially
{enter(q), join(q) | g € So} if p € So, and), otherwise

val // latest register value known to p; initially L

seq /I sequence number of latest value known to p; combined with next variable to make a
unique timestamp for the write; initially 0

id // id of node that wrote latest value known to p; initially L

Derived Variable:
Present = {q | enter(q) € Changes N leave(q) ¢ Changes}

When p enters the system: When (“joined”, g) is received:
beast (“enter”, p) 16: add join(q) to Changes
Add enter(p) to Changes 17: add enter(q) to Changes

18: beast (“joined-echo”, ¢)
When (‘“‘enter”, g) is received:

add enter(q) to Changes When (“joined-echo”, ¢) is received:
beast (“enter-echo”, Changes, 19: add join(q) to Changes

(val, seq,id), is_joined, q) 20: add enter(q) to Changes
When (“‘enter-echo”, C, (v, s,1), j, q) When p leaves the system:

is received: 21: beast (“leave”, p)
if (s,1) > (segq, id) then

(val, seq,id) := (v, s,1) When (“leave”, q) is received:
Changes := Changes U C 22: add leave(q) to Changes

. if —is_joined A (p = ¢) then 23: beast (“leave-echo”, ¢)
if (j = true) A(join_bound = 0) then
join_bound := ~ - |Present| — f When (“leave-echo”,) is received:
join_counter++ 24: add leave(q) to Changes

if join_counter > join_bound >0 then
is_joined := true
add join(p) to Changes
beast (“joined”, p)

for the register, it updates the current value. (Note that (seq,id) pairs are compared
lexicographically.) When it receives a query, it responds with the current value.

The correctness of CCREG relies on the following relations between the parameters:
f/(1—a)® < Npin (A)

3f/20-a)®

(1-a)p/(I+a)* =3~

Algorithm 2 CCREG—Client code, for node p.

30:
31:

32:
33:
34:

35:
36:
37:
38:
39:

Local Variables:

rw_value // temporary storage for the written value or the return value

tag // used to uniquely identify read and write phases of an operation; initially 0
quorume_stize // stores the quorum size for a read or write phase; initially O
heard_from // the number of responses/acks received for a read/write phase; initially O
rp_pending // Boolean indicating whether a read phase is in progress; initially false
wp_pending // Boolean indicating whether a write phase is in progress; initially false
read_pending // Boolean indicating whether a read is in progress; initially false
write_pending // Boolean indicating whether a write is in progress; initially false

When READ is invoked: Procedure BeginWritePhase((v, s, 1))
read_pending := true 47: if write_pending then
call BeginReadPhase() 48: seq++
49: beast (“update”, (rw-value, seq, p),
When WRITE(v) is invoked: tag, p)
write_pending := true 50: if read_pending then
rw_value := v 51: bcast (“update”, (v, s,1), tag, p)
call BeginReadPhase() 52: quorum_size := (|Members| + f/2
53: heard_from :=0
Procedure BeginReadPhase() 54: wp-pending := true
tag++
beast (“query”, tag, p) When (“ack”, wt) is received:
quorum_size := 3|Members| + f /2 55: if wp_pending A (wt = tag) then
heard_from := 0 56: heard_from++
rp_pending := true 57. if heard_from > quorum_size then
58: wp-pending := false
When (“response”, (v, s,1%), rt) 59: if read_pending then
is received: 60: read_pending := false
. if rp_pending A (rt = tag) then 61: RETURN rw_value
if (s,4) > (seq,id) then 62: if write_pending then
(val, seq, id) := (v, s,1) 63: write_pending := false
heard_from++ 64: ACK

if heard_from > quorum_size then
rp_pending := false
call BeginWritePhase((val, seq, id))

These assumptions hold for & = 0.04 and N,,;, = 10f, when taking 5 = 0.65 and

[(14+7)(1 =) = (1+a)®|Npin > 2f (©)
(1-a)/(1+a)’ >y (D)

1+a)® -1
S <o (®)
(1+6a+2a)/(2—2a+a?) < B (F)

~ = 0.5. Taking a smaller churn rate &« = 0.02 reduces the minimal size to N,,,;, = 5f,

Algorithm 3 CCREG—Server code, for node p.

When (“update”, (v, s,1), wt, q) When (“query”, rt, q) is received:
is received: 75: if is_joined then
70: if (s,7) > (seq, id) then 76: send (“response”, (val, seq, id), rt) to
7. (val, seq,id) := (v, s,1) (read-phase invoker) ¢
72: if is_joined then When (“update-echo”, (v, s, 1))
73: send (“ack”, wt) to is received:
(write-phase invoker) g 77 if (s,1) > (segq, id) then
74: beast (“update-echo”, (val, seq, id)) 78: (val, seq,id) := (v, s, 1)

with 8 = 0.58 and v = 0.56. Note that for both these values of «,
—1/logy(1 —) > 4 (€))

4 Correctness Proof

Consider any execution. We begin by putting bounds on the number of nodes that enter
and leave during an interval of time and the number of nodes that are present at the
end of the interval, as compared to the number present at the beginning. Extra work is
required in the proof of Lemma [2]as the calculation of the maximum number of nodes
that leave during an interval is complicated by the possibility of nodes entering during
an interval and thus allowing additional nodes to leave.

Lemma 1. Foralli € Nandallt > 0, at most ((1+ «)® — 1) N (t) nodes enter during
(t,t + Di]and (1 — a)'N(t) < N(t + Di) < (1 +)’ N(2).

Lemma 2. For all nonegative integers i < —1/logy(l — «) and all t > 0, at most
(1 — (1 — @)")N(t) nodes leave during (t,t + Di).

We say that a node is active at time ¢ if it has entered by time ¢, but has not left or
crashed by time ¢. The next lemma shows that some node remains active throughout
any interval of length 3D.

Lemma 3. Foreveryt > 0, at least one node is active throughout [max{0,t—2D},t+
D).

We define Sysinfo’ = {enter(q) | te e IY U {join(q) | t# € I} U{leave(q) | t} €
I} to be the set of all enter, join, and leave events that occur during time interval I.
In particular, SysInfol®%! = {enter(q) | ¢ € So} U {join(q) | ¢ € So}. The next
observation holds since a node p that is active throughout [t5, ¢+ D] will directly receive
all enter, joined, and leave messages broadcast during [t] within D time.

Observation 1 For every node p and all times t > t¢, if p is active at time t + D, then
Sys[nfo[t;’t] C Changes?q

[0,0]

Together with the assumption that SysInfo C Changesg for all p € Sy, we get:

Observation 2 For every node p € Sy, if p is active at time t > 0, then
SysInfolOm@{0:t=D} Changes;.

The purpose of Lemmas] [5] and|[6]is to show that information about nodes entering,
joining, and leaving is propagated properly, via the Changes sets.

Lemma 4. Suppose a node p € Sy receives an enter-echo message at time t'’ from a
node q that sent it at time t' in response to an enter message from p. If p is active at time
t+2D and q is active throughout [max{0,t' —2D}, t+ D], where max{0,t” —2D} <
t <ty, then Syslnfo(max{o’t/_2D}7t] - Changes;”D.

Proof. Consider any node r that enters, joins, or leaves at time ¢, where max{0, ' —
2D} < t < t.If q receives the message about this change from r before the enter
message from p, then the change is in Changes;” - Changes;”D . Otherwise, q re-
ceives the message from r after the enter message from p and sends an echo message
in response by time ¢ + D. Since p receives this message from ¢ by time ¢ + 2D <

t + 2D, it follows that the change is in Changes;fw . Thus, Syslnfo(max{o’t/_QD hi]

t+2D

<
b 0

Changes

0,t—D]

N

Lemma S. For every node p, if p is active at time t > t; + 2D, then SysInfo[
Changes;.

Lemma 6. For every node p & Sy, if p joins at time tg, and is active at time t > t{,,
then SysInfol®™>{0:t=2D} Changes;.

Proof. Letp ¢ Sy be a node that joins at time tg; < t and suppose the claim holds for
all nodes that join before p. If ¢ > t; + 2D, then the claim follows by LemmaE} So,
assume that t <ty + 2D.

Before p joins, it receives an enter-echo message from a joined node in response to
its enter message. Suppose p first receives such an enter-echo message at time " and
this enter-echo was sent by ¢ at time #'. Then 5 < ' < " < tJ. Since ¢ joined prior
to p and is active at time t’ > tg, Syslnfo[o’max{o’t,_QD 1 Changesf]/ - Changes;” C
Changes;. If t < 2D then max{0,¢ — 2D} = 0 and the claim is true. So, assume that
t>2D.

Let S be the set of nodes present at time max{0,t — 2D}, so |S| = N(max{0,t —
2D}). By Lemmal[2Jand Assumption (G), at most (1 — (1 — a)?)|S| nodes leave during
(max{0,t'—2D}, '+ D]. Since t” < t'4 D, it follows that |Present§l | > |S]—-(1—-(1—
a)®)|S| = (1 — «)?|S|. Hence, p waits until it has received at least 7|Present;”| —-f>
(1 — @)3|S| — f enter-echo messages before joining.

By Lemmal[l] the number of nodes that enter during (max{0, ¢ —2D},¢' + D] is at
most ((1 + «)® — 1)|S|. The number of nodes that leave during this interval is at most
(1 — (1 — @)?)|S| and at most f nodes crash. Note that p enters during [max{0, ¢ —
2D}, t'+ D], but does not receive an enter-echo message from itself. Hence, the number
enter-echo messages p receives before joining from nodes that were active throughout

[max{0,t' — 2D}, ¢ + D] is at least
(1= a)’[S] = f = [(L+a)® =1)[S]+ (1~ (1 = a))|S| + f 1]
=1+ -a)’ =1 +a)S|-2f+1

This is at least 1, since v = (1 — «)3/(1 +)3 and f < |S|[(1 —)% + (1 — a)3(1 +
a)® — (1 +a)%]/2(1 + a)3. (By Assumption (C).)

Hence p receives an enter-echo message by time t{, from a node ¢’ that is active
throughout [max{0,t' — 2D}, ¢ 4+ D] D [max{0,¢ — 2D},t — D].

Since max{0,t" — 2D} <t —2D < tf <t <t + D, Lemmaimplies that
SysInfo[max{o’tl_2D}’t_2D] - Changes;. However, Syslnfo[o’max{o’t/_2D}] - Changes;,
and hence, SysInfol®mx{0:t=2D} Changes;. O

Next we prove that every node that remains active sufficiently long after it enters
succeeds in joining.

Theorem 1. Every node p & So that is active at time t, + 2D joins by time L}, + 2D.

Proof. Letp € Sy be anode that enters at time ¢, and is active at time ¢7,+-2D. Suppose
the claim is true for all nodes that enter before p.

By Lemma there is a node ¢ that is active throughout [max{t;, — 2D, 0}, t; + D].
If ¢ € Sy, then g joins at time 0. If not, then t; < t;, so, by the induction hypothesis, ¢
Joins by t¢g + 2D < t;. Since q is active at time ¢, + D, it receives the enter message
from p during [t;, iy, + D] and sends an enter-echo message in response. Since p is
active at time ¢; + 2D, it receives the enter-echo message from ¢ by time ¢ + 2D.
Hence, by time ¢, + 2D, p received at least one enter-echo message from a joined node
in response to its enter message.

Suppose the first enter-echo message p received from a joined node in response
to its enter message was sent by node ¢’ at time ¢’ and received by p at time t”. By
Lemma Syslnfo[o’max{o’t/_QD Hc Changesf;, C Changesg/.

Let S be the set of nodes present at time max{0,¢ — 2D}. Then, by Lemma
N(' — D) < (1+a)|S]and N(t') < (1 + «)?|S|. Since t"" < ' + D, it follows from
the churn assumption that at most a(1 + (1 + «) + (1 + «)?)|S| nodes entered during
(' —2D,t"]. Thus, |Present’, | < (1+a(1+ (1+a)+ (1+a)?)[S| = (1 +a)?[S|
and join_bound, < (1 + a)3|S| — f.

By Lemmaand Assumption (G), at most (1 — (1 — «)?)|S| nodes leave during
(max{0,t" — 2D}, " + DJ. Since t; < ' < t7 + D and at most f nodes crash, at
least (1 — «)®|S| — f nodes in S were active throughout [t¢, & + D] and, hence, sent
enter-echo messages in response to p’s enter message. By time t; + 2D, p receives all
these enter-echo messages. Since (1 —a)? = (1 +a)? (Assumption @)), node p joins
by time ¢, + 2D. O

We now proceed to show that all read and write operations terminate. The key is to
show that the number of responses for which an operation waits is small enough so that
it is guaranteed to receive at least that many.

Since enter(q) is added to Changes,, whenever join(q) is, we get:

Observation 3 For every time t > 0 and every node p that is active at time t,
Members; C Present;’,.

Lemma [7]relates the number of nodes present in the system 2D time in the past to
the value of a node’s current estimate of the number of nodes present. Lemma §]relates
the number of nodes present in the system 4D time in the past to the value of a node’s
current estimate of the number of nodes that are members. These are useful for showing
that a node’s calculated quorum size is close to reality.

Lemma 7. For every node p and every time t > tg, at which p is active,
(1 —a)?- N(max{0,t — 2D}) < |Present)| < (1 + a)? - N(max{0,t — 2D}).

Lemma 8. For every node p and every time t > tg) at which p is active,
(1 —a)*- N(max{0,t —4D}) < |Members;| < (14 a)* - N(max{0,t — 4D}).

The next lemma shows a lower bound on the number of nodes that will reply to an
operation’s query or update message.

Lemma 9. Ifnode p is active at time t > t{;, then the number of nodes that join by time

1— 3
214_3;2 \Present;\ - f.

t and are still active at time t + D is at least
Theorem 2. Every read or write operation completes.

Proof. Each operation consists of a read phase and a write phase. Thus, if both the read
and write phases of an operation terminate, then the operation itself terminates. We
show that each phase terminates within 2D time, provided the client does not crash.

Consider a phase of an operation by client p that starts at time ¢. Every node that
joins by time ¢ and is still active at time ¢ 4+ D receives p’s query or update message and
replies with a response or ack message by time ¢ + D. By Lemma 9] there are at least
%\Present;\ — f such nodes.

From Lemma 7]and Assumption (B),

|Present),| > (1 — @)?N(max{0,t — 2D}) > (1 — @)*Nypin
S 3f/2
T (1-a)p/(l+a)-p

PRY:
|Present§,| (8 n 3;2 — 5) %

SO

Y

Hence, by Observation [3]
M|Pr€sentt| — f > B|Present’ | + f/2
(1+a)? P = P
> B|Members,| + f/2 = quorum._sizel,.
Thus, by time t+2D, p receives sufficiently many response or ack messages to complete
the phase. a

Now we prove linearizability of the CCREG algorithm.

A write operation w by node p consists of a read phase followed by a write phase.
Let t,, denote the time at the beginning of its write phase. At time ¢,,, node p broadcasts
an update message (on Line @] or Line |51 of Algorithm [2)) containing a triple (v, s,),

where value(w) = v is the value written by w and ts(w) = (s,1) = (seql”,id}») is
the timestamp of w.

For any node p, let ts, = (seq},, id},) denote the timestamp of node p at time ¢. Note
that timestamps are created by write operations (on Line 48] of Algorithm [2) and are
sent via enter-echo, update, and update-echo messages. Initially, tsg = (0, L) for all
nodes p. For any read or write operation o by node p, the timestamp of its read phase is
ts™ (o) = ts;, where t is the time at the end of its read phase (i.e., when the conditional
in Line (44| of Algorithm is true). The timestamp of its write phase is ts*? (o) = ts;,
where ¢ is the time at the beginning of its write phase (i.e., when it broadcasts on Line[49)]
or Line [51] of Algorithm [2). Note that ts(w) = ts*?(w) for every write operation w.
Likewise, ts(r) = ts"P(r) is the timestamp of a read operation r.

The next series of lemmas (10]through[I3)) show that information about writes prop-
agates properly throughout the system, and is analogous to previous results relating to
the propagation of information about nodes entering, joining, and leaving (Observation
[2]and Lemmas [] through [6).

Lemma 10. If o is an operation whose write phase starts at t,,,, node p is active at time
t >ty + D, and t;, < t,, then ts), > ts“? (o).

Lemma 11. Suppose a node p & Sy receives an enter-echo message at time t" from
a node q that sends it at time t' in response to an enter message from p. If o is an
operation whose write phase starts at t,,, p is active at time t > max{t",t,, + 2D},
and q is active throughout [t,,, t,, + D), then ts, > ts"P (o).

Lemma 12. If o is an operation whose write phase starts at t,, and node p is active at
time t > max{t;, 4+ 2D, t,, + D}, then ts], > ts"?(0).

Lemma 13. If o is an operation whose write phase starts at t,,, node p € Sy joins at
time t], and p is active at time t > max{t}, t,, + 2D}, then ts!, > ts"?(0).

Theorem 3. CCREG ensures linearizability.

Proof. Given an execution, we order all the read and write operations in the execution
as follows. First, order the write operations in order of their timestamps. Note that all
write operations have different timestamps, since each write operation by node p has a
timestamp with second component p and first component larger than any timestamp p
has previously seen. Then insert each read operation immediately following the write
operation with the same timestamp. Break ties among read operations by their start
times. By construction, this total order is legal. It remains to show that if op; finishes
before op- starts, then the construction orders op; before ops.

Since each operation consists of a read phase followed by a write phase, it suffices
to show that ts*?(op1) < ts"P(op2). For convenience, we will refer to ts“?(opy) as 7,
and ts"P(ops) as 7.

Let w denote the write phase of op; and let r denote the read phase of opy. Let pq
be the node that invokes op; and let po be the node that invokes ops. Let t,, be the start
time of w and ¢, be the start time of . Then ¢,, < t,. Let Q,, be the set of nodes that
p1 hears from during w (i.e. that sent messages causing p; to increment heard_from
on Line [56] of Algorithm[2)) and @, be the set of nodes that p, hears from during r (i.e.

that sent messages causing ps to increment heard_from on Line [d3]of Algorithm [2)).
Let P, and M,, be the sizes of the Present and Members sets of p; at time t,,, and P,
and M. be the sizes of the Present and Members sets of po at time ¢,..

Casel: t,. > t, +2D.

We start by showing there exists a node ¢ in @, such that) < max{0,t, — 2D}.
Each node ¢ € @, receives and responds to r’s query, so it joins by time ¢, + D.
By Theorem |1} the number of nodes that can join in (¢, — 2D, t, + D] is at most
the number of nodes that can enter in (max{0,¢, — 4D},t, + D]. By Lemma |1} the
number of nodes that can enter in (max{0,t, — 4D}, t, + D] is at most ((1 + «)® —
1) - N(max{0, ¢, — 4D}). By Lemma[8] N(max{0,t — 4D}) < M, /(1 — a)*. From
the code, |Q,| > BM, + f/2, which is larger than 3M,.. By Assumption (E), it follows
that 3M,. > M, ((1 + «)® —1)/(1 — a)*, which is at most the number of nodes that
can enter in (max{0,¢, — 4D}, t, + D]. Thus |Q,| is larger than the number of nodes
that join in (max{0, ¢, — 2D}, t, + D].

Suppose g receives r’s query message at time ¢’ > t,.. If ¢ € Sg, then tg = 0 and,
by Lemma tsf; > Tyw- So, suppose ¢ & Sp. Then 0 < té <t —2D < t'. Since
tw +2D < t, < ¥, Lemma implies that tsf; > Ty. Thus, g responds to r’s query
message with a timestamp at least as large as 7, and, as a result, 7,, > 7.

Casell: t,. <t, +2D.

Let J be the set of nodes that could reply to r’s query. Then J = {p | tg) <trandp
is active at time ¢, } U{p | ¢, <t} < ¢, + D}. By TheoremEI, all nodes that are present
at time max{0, ¢, — 2D} join by time ¢,. if they remain active. Therefore all nodes in .J
are either active at time max{0, ¢, — 2D} or enter during (max{0,t, — 2D}, t, + D]
and, by Lemmal[l] |.7| < N(max{0, ¢, —2D})+ ((1+)® —1)N(max{0, t, —2D}) =
(14 «)3N(max{0,t, — 2D}).

Let K = {p| tg; < t,, pisactive at £, +D, and tsf[;‘ > Tw }- Note that K contains all
the nodes in @, that do not leave or fail during [t,,, t, + D] C [max{0,t, — 2D}, ¢, +
D]. By Lemmaand Assumption , at most (1 — (1 — a)3)N(max{0, ¢, — 2D})
nodes leave during this interval and at most f fail. From the code, |Q,| > SM,. + f/2
and, by Lemma M, > (1 — a)*N(max{0,t, — 4D}). Similarly, |Q.,| > B(1 —
a)*N(max{0,t, —4D}) + f /2. Therefore, |[K| > (8(1—a)*N(max{0,t, —4D}) +
5y~ (1 - (1 - @)®)N(max{0,t, — 2D}) — f. Since t,, < t, < t,, + 2D, Lemmall
implies that N (max{0, t,,—4D}) > (1—a) 2N (max{0, t,—4D}). Also by Lemmal|l|
N(max{0,t, —4D}) > (1 — a) 2N (max{0,t, — 2D}).

By Assumption (IE) B> (1+6a+2a%)/(2—2a+ a?). Hence

Q| + K] = B(1 —)N (max{0, , — 4D})
+B(1 —a)*(1 — a) 2N (max{0,t, — 4D})
— (1 — (1 - a)*)N(max{0,t, —2D})
= B(1 — a)?(2 — 2a + a*) N (max{0, ¢, — 4D})
— (3a — 3a? + @®)N(max{0,t, — 2D})
> B(2 — 2a + *)N(max{0,t, — 2D})
— (3a — 3a? + &®) N (max{0, ¢, — 2D}).

Thus |Q,| + |K| > [(1+ 6a + 2a*) — (3a — 3a® + a*)]N(max{0,t, — 2D})
= [1 + 3a + 3a? + ®|N(max{0, ¢, — 2D})
= (1+ a)®N(max{0,t, — 2D})

> |J].

This implies that K and @, intersect, since K, @Q,. C J. For each node p in the inter-
section, ts,, > T, when p sends its response to r and, thus, 7, > 7. O

5 Discussion

We have shown how to simulate an atomic read/write register in a crash-prone asyn-
chronous system where nodes can enter and leave, as long as the number of nodes
entering and leaving during each time interval of length D is at most a constant fraction
of the current system size.

It would be nice to improve the constants for the churn rate and the maximum frac-
tion of faulty nodes, perhaps with a tighter analysis. Proving lower bounds or tradeoffs
on these parameters is an interesting avenue for future work. In fact, it might be possi-
ble to completely avoid the bound « on the churn rate, by spreading out the handling of
node joins and leaves: To ensure a minimal number of nonfaulty nodes, a node might
need to obtain permission before leaving, similarly to joins. This will also mean that the
algorithm will maintain safety even when the churn bound is exceeded.

CCREG sends increasingly large Changes sets. The amount of information commu-
nicated might be reduced by sending only recent events, or by removing very old events.
Another interesting research direction is to extend CCREG to tolerate more severe kinds
of failures.

Acknowledgments: This work is supported by the Israel Science Foundation (grants 1227/10
and 1749/14), by Yad HaNadiv foundation, by the Natural Science and Engineering Research
Council of Canada, and by the US National Science Foundation grant 0964696.

References

1. Abraham, I., Chockler, G., Keidar, 1., Malkhi, D.: Byzantine disk paxos: optimal resilience
with Byzantine shared memory. Dist. Comp. 18(5), 387-408 (2006)

2. Aguilera, M.K., Keidar, I., Malkhi, D., Shraer, A.: Dynamic atomic storage without consen-
sus. J. ACM 58(2), 7 (2011)

3. Aiyer, A.S., Alvisi, L., Bazzi, R.A.: Bounded wait-free implementation of optimally resilient
byzantine storage without (unproven) cryptographic assumptions. In: Proceddings of 21st
International Symposium on Distributed Computing. pp. 7-19 (2007)

4. Attiya, H.: Efficient and robust sharing of memory in message-passing systems. J. Alg. 34(1),
109-127 (Jan 2000)

5. Attiya, H., Bar-Noy, A., Dolev, D.: Sharing memory robustly in message-passing systems.
J. ACM 42(1), 124-142 (Jan 1995)

6. Baldoni, R., Bonomi, S., Kermarrec, A.M., Raynal, M.: Implementing a register in a dynamic
distributed system. In: IEEE International Conference on Distributed Computing Systems.
pp- 639-647 (2009)

10.

11.

12.

15.

16.

17.

18.
19.
20.
21.

22.

23.

24.

. Baldoni, R., Bonomi, S., Raynal, M.: Implementing a regular register in an eventually syn-

chronous distributed system prone to continuous churn. IEEE Transactions on Parallel and
Distributed Systems 23(1), 102-109 (2012)

. Beal, J., Gilbert, S.: RamboNodes for the metropolitan ad hoc network. In: Workshop on

Dependability in Wireless Ad Hoc Networks and Sensor Networks (2003)

. Chockler, G., Gilbert, S., Gramoli, V., Musial, PM., Shvartsman, A.A.: Reconfigurable dis-

tributed storage for dynamic networks. J. Par. Dist. Comp. 69(1), 100-116 (2009)

Dutta, P.,, Guerraoui, R., Levy, R.R., Chakraborty, A.: How fast can a distributed atomic
read be? In: Proceedings of the 23rd Annual ACM Symposium on Principles of Distributed
Computing. pp. 236-245 (2004)

Georgiou, C., Musial, PM., Shvartsman, A.A.: Long-lived RAMBO: Trading knowledge for
communication. Theo. Comp. Sci. 383(1), 59-85 (2007)

Gilbert, S., Lynch, N.A., Shvartsman, A.A.: Rambo: A robust, reconfigurable atomic mem-
ory service for dynamic networks. Dist. Comp. 23(4), 225-272 (2010)

. Guerraoui, R., Levy, R.: Robust emulations of shared memory in a crash-recovery model. In:

Proceedings of the International Conference on Distributed Computing Systems. pp. 400—
407 (2004)

. Guerraoui, R., Vukoli¢, M.: Refined quorum systems. In: Proceedings of the 26th Annual

ACM Symposium on Principles of Distributed Computing. pp. 119-128 (2007)

Ko, S.Y., Hoque, 1., Gupta, I.: Using tractable and realistic churn models to analyze quies-
cence behavior of distributed protocols. In: IEEE Symposium on Reliable Distributed Sys-
tems. pp. 259-268 (2008)

Lynch, N.A., Shvartsman, A.A.: Robust emulation of shared memory using dynamic
quorum-acknowledged broadcasts. In: Proceedings of the 27th International Symposium on
Fault-Tolerant Computing. pp. 272-281 (1997)

Lynch, N.A., Shvartsman, A.A.: Rambo: A Reconfigurable Atomic Memory Service for Dy-
namic Networks. In: Proceedings of the 16th International Conference on Distributed Com-
puting. pp. 173-190 (2002)

Malkhi, D., Reiter, M.K.: Byzantine quorum systems. Dist. Comp. 11(4), 203-213 (1998)
Malkhi, D., Reiter, M.K., Wool, A., Wright, R.N.: Probabilistic quorum systems. Information
and Computation 170(2), 184-206 (2001)

Martin, J.P., Alvisi, L., Dahlin, M.: Minimal byzantine storage. In: Proceedings of the 16th
International Conference on Distributed Computing. pp. 311-325 (2002)

Musial, P., Nicolaou, N., Shvartsman, A.A.: Implementing distributed shared memory for
dynamic networks. Commun. ACM 57(6), 88-98 (2014)

Shraer, A., Martin, J.P., Malkhi, D., Keidar, I.: Data-centric reconfiguration with network-
attached disks. In: Proceedings of the 4th International Workshop on Large Scale Distributed
Systems and Middleware. pp. 22-26 (2010)

Spiegelman, A., Keidar, I.: On liveness of dynamic storage. CoRR abs/1507.07086 (Jul
2015), http://arxiv.org/abs/1507.07086

Vukolic, M.: Quorum Systems: With Applications to Storage and Consensus. Synthesis Lec-
tures on Distributed Computing Theory, Morgan & Claypool Publishers (2012)

http://arxiv.org/abs/1507.07086

	Simulating a Shared Register in an Asynchronous System that Never Stops Changing (Extended Abstract)

