
HAL Id: hal-01199821
https://hal.science/hal-01199821v1

Submitted on 16 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Wait-Freedom is Harder than Lock-Freedom under
Strong Linearizability

Oksana Denysyuk, Philipp Woelfel

To cite this version:
Oksana Denysyuk, Philipp Woelfel. Wait-Freedom is Harder than Lock-Freedom under Strong Lin-
earizability. DISC 2015, Toshimitsu Masuzawa; Koichi Wada, Oct 2015, Tokyo, Japan. �10.1007/978-
3-662-48653-5_5�. �hal-01199821�

https://hal.science/hal-01199821v1
https://hal.archives-ouvertes.fr

Wait-Freedom is Harder than Lock-Freedom
under Strong Linearizability

Oksana Denysyuk and Philipp Woelfel

Department of Computer Science, University of Calgary, Canada
{oksana.denysyuk,woelfel}@ucalgary.ca

Abstract. In randomized algorithms, replacing atomic shared objects
with linearizable [1] implementations may affect probability distributions
over outcomes [2]. To avoid this problem in the adaptive adversary model,
it is necessary and sufficient that implemented objects satisfy strong lin-
earizability [2]. In this paper we study the existence of strongly lineariz-
able implementations from multi-writer registers. We prove the impossi-
bility of wait-free strongly linearizable implementations for a number of
standard objects, including snapshots, counters, and max-registers, all
of which have wait-free linearizable implementations. To do so, we intro-
duce a new notion of group valency that is useful to analyze (strongly
linearizable) implementations from registers. Furthermore, we show that
many objects, including snapshots, do have lock-free strongly linearizable
implementations. These results separate lock-freedom from wait-freedom
under strong linearizability.

1 Introduction

Linearizability [1] is the gold standard for correctness conditions of concurrent
shared memory algorithms. The main reason for its attractiveness is that replac-
ing atomic objects in a deterministic shared memory algorithm with linearizable
ones preserves the worst-case behaviour of the algorithm. This simplifies pro-
gramming concurrent code significantly, as it allows programmers to assume
that the implemented linearizable operations get completed in a single atomic
step. Unfortunately, linearizability has anomalies that can cause undesirable ef-
fects when used with randomized algorithms [2]: probability distributions over
outcomes of an algorithm that uses atomic objects can differ significantly from
those of the same algorithm using linearizable objects. As a result, algorithm
designers cannot analyze running times or error probabilities of their algorithms
under the assumption that linearizable operations complete in a single step.

To address this problem, strong linearizability [2] has been introduced.
Roughly, strong linearizability requires operations to be linearized based on past
and present behavior rather than the future. In a system where processes are
scheduled by a strong adaptive adversary (i.e., the future schedule may depend
on all past random decisions made by processes), this requirement preserves
probability distributions over outcomes of algorithms, if atomic objects are re-
placed with strongly linearizable ones (see Section 2 for details). Moreover, strong
linearizability is necessary to achieve this behaviour [2].

Unfortunately, little is known about whether and how strongly linearizable
objects can be implemented. Clearly, using only registers, it is impossible to
obtain wait-free or lock-free implementations of any type with consensus number
two or greater [3] under linearizability. This implies a fortiori impossibilities
under strong linearizability.

Many useful shared memory primitives, such as snapshots or counters, have
wait-free linearizable implementations even from single-writer registers. Prior to
our work it was unclear, however, whether those primitives have also wait-free
strongly linearizable implementations. For systems providing only single-writer
atomic registers, Helmi, Higham, and Woelfel [4] already showed that many ob-
jects have no wait-free strongly linearizable implementations, even though they
have linearizable ones. In particular, under the stronger correctness condition
multi-writer registers cannot be implemented from single-writer ones. But their
proof technique does not apply to systems that readily provide atomic multi-
writer registers. We present new proof techniques that yield the following result.

Theorem 1. There are no deterministic strongly linearizable wait-free imple-
mentations of snapshots, counters, or max-registers for three or more processes,
from multi-writer registers.

We also show that, perhaps surprisingly, these types do have lock-free strongly
linearizable implementations.

Theorem 2. There exist deterministic strongly linearizable lock-free implemen-
tations of (general) counters, snapshots, and logical clock objects for any number
of processes, from multi-writer registers.

Theorems 1 and 2 provide a separation between these two progress conditions
under strong linearizability. In fact, to our knowledge, this is the first result to
show a separation of wait-free and lock-free implementations for natural types
such as snapshots and counters. Prior work [5] claims a separation between
wait-freedom and lock-freedom under linearizability for an ad hoc object called
“iterated approximate agreement”.

To prove Theorem 1, we show that a monotonic counter does not have a
wait-free strongly linearizable implementation from registers (even though it has
a wait-free linearizable implementation [6]). By reduction, this implies the other
impossibilities stated in Theorem 1. To facilitate the proof, we introduce two
new concepts, group valency and supervalency, which generalize the traditional
notion of valency used in the FLP impossibility result for consensus [7,8]. (In
a consensus algorithm, all participating processes have to agree on one of their
input values.) In the consensus impossibility proof, a history H is multivalent if
it has two different extensions, in which different values are output. Intuitively,
that means that the decision has not been determined at the end of H. To show
our result, we extend the notion of valency in two ways.

First, we consider the ability of a set G of processes to linearize the operation
op of another process p 6∈ G. Roughly, v is in the G-valency of op, if processes
in G executing alone can linearize op, causing op to return v. This is closely

tied to the notion of helping in wait-free implementations, where one or more
processes help another process to complete op. In the impossibility proof for
strongly linearizable monotonic counters, we apply the notion of group valency
to a group G of processes that repeatedly increment the counter while another
process p 6∈ G wishes to execute op to read the counter. Using group valency,
we show that if processes in G try to help p, they end up causing p to execute
forever, thus violating wait-freedom.

Second, we introduce the notion of supervalent histories. In the traditional
FLP proof, a multivalent (or bivalent) history is one in which the consensus
output is undetermined (so both decisions of 0 or 1 are possible). We extend
this notion to a history in which, not only the outcome of some operation op by
p 6∈ GF is undetermined, but processes in G can execute an unbounded number
of steps alone without fixing the outcome of op (i.e., without linearizing op). This
is called a G-supervalent history. Intuitively, in executing an unbounded number
of steps, processes in G can influence the future return value of op to be any
of an unbounded number of possibilities (e.g., as processes in G increment the
counter, the future return value of the operation op that reads the counter can
be arbitrarily high). We show that a supervalent history may remain supervalent
forever, so that op can never return the correct value of the counter. The notion of
supervalent histories is more powerful than the notion of multivalent histories for
our impossibility result: we found algorithms for which it is impossible to show
that a multivalent history can remain multivalent as op continues to execute.

Theorem 2 identifies several common primitives that have lock-free strongly
linearizable implementations from registers. To prove this, we first define a class
of versioned types, which are types that maintain a monotonic version number
that increases for each update operation. Many objects of the standard types
(snapshots, max-registers, counters, logical clocks) can be easily extended into
objects of a versioned type by incorporating a counter as the version number.
Moreover, many lock-free linearizable implementations of those types have the
additional property that update operations consist of a single atomic step. We
then transform such linearizable implementations into strongly linearizable lock-
free ones. This transformation uses a simple generalization of a max-register,
which admits a strongly linearizable lock-free implementation [4].

2 Preliminaries

We consider the standard shared memory model, where n asynchronous pro-
cesses with distinct IDs in {0, . . . , n−1} communicate by accessing shared atomic
multi-reader multi-writer registers. Each register R has initially value χ, and sup-
ports operations R.read(), which returns the value of R, and R.write(), where
R.write(x) changes the value of R to x and returns nothing.

Atomicity and Linearizability. A type specifies operations, and the outcome of
those operations in any sequential execution. An object is obtained by imple-
menting the operations of type, by providing algorithms for them. A process p

executes an operation op by executing the steps of the algorithm beginning with
an invocation step and ending with a response step. Other processes can be tak-
ing steps during the interval in which p is executing the method for o and these
steps may interleave. This sequence of steps that results as processes execute
their program is called a history. We restrict our attention to histories that can
arise in an execution. Consider an object O and the histories that can arise as
processes execute operations on O. A method of O is atomic, if it consists of a
single shared memory step 1. In this case, we may assume that the invocation
and response step of the method occur at the same time as the shared memory
step. An object is atomic, if all its methods are, and the histories that can arise
by processes executing operations on such an object are sequential.

The behaviour of a type is given by its sequential specification, which is a
set of sequential histories that are allowed to arise from atomic objects of that
type. An implemented history on O arises when the operations on O may be
non-atomic. The interpretation of an implemented history H, denoted Γ (H),
is formed by removing from H all the steps of every method call except the
invocation and response steps. Let H be an implemented history arising from
an execution of operations on O. Operation op completes in H if H contains
the invocation and response of op. Cmp(H) denotes the set of operations that
complete in H. Operation op is pending in H if H contains the invocation but
not the response of op. For implemented operations op1 and op2, op1 happens-
before op2 in H, denoted op1≺op2, if the response of op1 precedes the invocation
of op2 in H. Interpreted history H is linearizable if, for some subset S of pending
operations in H, there is a sequential history Hseq that contains each operation in
Cmp(H)∪S exactly once, is in the sequential specification of O, and preserves ≺.
Such Hseq is linearization of H. An implementation of O is linearizable if every
history that can arise from the implementation is linearizable. The property
that makes linearizability attractive is the following: If A is a deterministic
algorithm that uses objects of some type T , then for every history H that can
arise from A, the linearization of Γ (H) can arise from the same algorithm using
atomic objects of type T instead. But linearizability may not preserve probability
distributions over outcomes, if A is a randomized algorithm. Thus, linearizable
implementations are less suitable to accurately analyze the expected running
times or error probabilities of randomized algorithms.

Strong Linearizability. In a randomized algorithm, processes can use local coin
flips to decide which steps to execute in their program. The type and object of
an operation may influence the speed with which an operation is executed, so
the order in which processes take steps is indirectly influenced by their random
decisions. Adversary models are used to capture that influence. One of the most
common adversaries is the strong adaptive one. Informally, the strong adaptive
adversary can look at the entire past execution, including the result of all coin
flips made by processes, to decide which process will take the next step.

1 Sometimes, however, in literature atomicity is defined to be the same as linearizabil-
ity [9].

Let close(H) denote the prefix closure of a set of histories in H. That is,
G∈close(H) if and only if there is a sequence S of invocation and response steps
such that G ◦ S∈H. (Operation ◦ denotes concatenation.) A function f that
maps a set H of histories to a set H′ of histories, is prefix preserving, if for any
two histories G,H∈H, where G is a prefix of H, f(G) is a prefix of f(H).

Definition 3. [2]A set of histories H is strongly linearizable if there exists a
function f mapping histories in close(H) to sequential histories, such that for
any H ∈ close(H), f(H) is a linearization of the interpreted history Γ (H), and
f is prefix preserving. A function satisfying these properties is called a strong
linearization function for H.

Intuitively, strong linearizability requires that the linearization points of method
calls are determined as the history is created. As soon as a step is taken, whether
or not a particular method is linearized at that step is uniquely determined by
the history up to this step; it cannot be influenced by future steps.

We say an object is strongly linearizable, if the set of histories that can
be obtained by executions of operations on that object is strongly linearizable.
Golab et al. [2] showed that strongly linearizable objects can serve the same
purpose for randomized algorithms under a strong adaptive adversary model,
as linearizable objects do for deterministic algorithms: Consider a randomized
algorithms A and an adversary Z. For an infinite vector c = (c1, c2, . . .) over
{0, 1}, let HZ,A,c be the unique history obtained if algorithm A is scheduled by
adversary Z, and the sequence of coin flips of HZ,A,c is a prefix of c (or equals c
if the history is infinite). Now suppose A is a randomized algorithm using atomic
objects of some type, and A′ is obtained by replacing those atomic objects with
strongly linearizable ones of the same type. Golab et al. proved that for every
strong adversary Z ′ there exists a strong adversary Z, such that for every coin
flip vector c, Γ (HZ,A,c) and Γ (HZ′,A′,c) have a common linearization. Moreover,
strong linearizability is necessary for this: If for some adversary Z ′ there exists an
adversary Z such that Γ (HZ,A,c) and Γ (HZ′,A′,c) have a common linearization
for every coin flip vector c, then the set of all histories Γ (HZ′,A′,c) obtained from
all possible coin flip vectors c is strongly linearizable. Hence, atomic objects can
be replaced with implemented ones without changing the probability distribution
over linearizations only, if the set of possible histories that can be obtained from
any possible strong adversary is strongly linearizable.

Thus, strong linearizability is the correctness condition of choice for random-
ized algorithm against the strong adaptive adversary.

Configurations, Schedules, and Progress Conditions. A configuration C of a sys-
tem with n processes and m registers is a tuple (s1, . . . , sn, v1, . . . , vm), which
denotes that process pi, 1 ≤ 1 ≤ n, is in state si, and register rj , 1 ≤ j ≤ m, has
value vj . The initial configuration is denoted by C0. We usually assume with-
out mentioning it explicitly that histories are obtained by processes taking steps
starting in C0.

A schedule σ is a (possibly infinite) sequence of process indices. Let C be a
configuration resulting from execution of a finite history H. H.σ denotes a his-

tory resulting from executing a sequence of steps in σ beginning in configuration
C and moving through successive configurations one at a time. At each step,
next process p indicated in σ takes the next step in its deterministic program.
If σ is a sequence of length one, we say σ=p. If σ and π are finite schedules then
σπ denotes the concatenation of σ and π. Let P be a set of processes, and σ a
schedule. We say σ is P -only if only indices of processes in P appear in σ.

Configurations C1=(s1, . . . , sn, r1, . . . , rm) and C2=(s′1, . . . , s
′
n, r
′
1, . . . , r

′
m)

are indistinguishable to process pi, denoted C1
pi∼ C2, if si=s

′
i and rj=r

′
j for

1≤j≤m. If S is a set of processes, and C1
p∼ C2 for every process p ∈ S, then

we write C1
S∼ C2; if S={1, . . . , n} is the set of all processes, we simply write

C1 ∼ C2. If C1
p∼ C2, then for any S-only schedule σ, configurations resulting

from execution of σ from C1 and C2 are indistinguishable to every process in S.
Two histories H1 and H2 are indistinguishable, denoted H1 ∼ H2, if H1 and H2

generate indistinguishable configurations.
An implementation is lock-free if, for any history H and every infinite sched-

ule σ, there exists a process p with a pending operation op in H, and p takes
infinitely many steps in σ, then op completes in a finite number of steps in his-
tory H.σ. An implementation is wait-free [7] if, in any history, any process with
a pending operation completes in a finite number of steps, regardless of the steps
taken by other processes.

Some Common Types. We refer to the types monotonic counters, (general)
counters, max-registers, and snapshots, as defined below: A monotonic counter
has two operations, increment() and read(), where increment() increases the
counter value by one, and read() returns the counter value. A (general) counter
is defined similarly, but the increment() operations takes an argument, x, and
increases the value of the counter by x. A max-register has two operations,
maxWrite(v) and read(), such that read() returns the largest value written by
any preceding maxWrite operation. A snapshot object stores n segments, one
for each process. It supports two operations, update(v) and scan(). Operation
update(v), when executed by process i, changes the value of the i-th segment to
v, and scan() returns a vector of n elements containing the n segments.

3 Impossibilities

We show that there is no strongly linearizable wait-free implementation of a
monotonic counter from registers. Assume by contradiction that there exists
such an implementation. We will consider an execution with three processes: r,
w0, and w1. We call r the reader and wi the writers. Initially, r starts executing
read(), while w0 and w1 start executing increment(). If process w0 or w1 finishes
executing increment(), it invokes the operation again and again in an infinite
loop. We will construct an infinite fair schedule, i.e., a schedule in which every
process takes infinitely many steps, such that r never finishes its read(). This
contradicts the assumption that the implementation is wait-free.

3.1 Group Valency and Super Valency

We now define the notions total valency and group valency. In the definitions,
op denotes an operation, S a set of processes, and H a finite history.

Definition 4 (Total Valency). The total valency of H (w.r.t. op) is the set
of values ν such that, for some finite schedule σ, op returns ν in history H.σ.

In the proofs, op is a fixed operation so we often omit references to it. To prove
the impossibility, it will be critical to consider the possible values the reader may
return if it gets linearized by the writers. To facilitate this we define the notion
of group-valency.

Definition 5 (Group valency). The S-valency of H (with respect to op) is
the set of values ν for which there exists an S-only schedule σ, such that in
f(H.σ) op returns ν.

Some histories have the property that all sufficiently long S-only schedules will
linerize op, even if op is not an operation by a process in S. These are called
S-closed. Histories that are not S-closed are called S-supervalent.

Definition 6 (Supervalency). We say that H is S-closed (w.r.t. op) if there
exists an integer K ≥ 0 such that, for every S-only schedule σ of length at least
K, op appears in f(H.σ). We say that H is S-supervalent (w.r.t. op) if H is
not S-closed, that is, for every K, there is an S-only schedule σ of length at least
K such that op does not appear in f(H.σ).

The above definitions immediately imply the following:

Observation 7. (1) If H is S-closed then the S-valency of H is not empty.
(2) All S-only extensions of an S-closed history are S-closed. (3) From an S-
supervalent history H, there exists an S-only non-empty schedule σ such that
H.σ is also S-supervalent. (4) For any finite schedule σ, the S-valency of H.σ
is contained in the S-valency of H.

3.2 Impossibility Proof

In the proof we analyze the possible outputs of the read() operation using the
concepts of group valency and supervalency when the group is the set of writers.
Specifically, we fix op to be the read() operation of r, and we fix S to be the set
of both writers {w0, w1}. For a finite history H, we denote by V (H) the total
valency of H (w.r.t. op), and we denote by W(H) the S-valency of H (w.r.t.
op). Because S is the set of writers, we often use the terms writers-valency,
writers-supervalent, and writers-closed to refer to the concepts of S-valency, S-
supervalent, and S-closed defined above, respectively.

By the standard argument we obtain the following.

Lemma 8. Consider some valid histories H and H ′:

(a) If H is writers-supervalent then read() is not in f(H).
(b) If |W(H)| ≥ 2 then read() is not in f(H).
(c) If H ∼ H ′ then V (H) = V (H ′) and W(H) =W(H ′).

(d) If H is writers-closed and H
wi,r∼ H ′, for some i∈{0, 1}, then

W(H)∩W(H ′)6=∅.

In the following lemma we show that if history H is writers-closed and
|W(H)| ≥ 2, then there exists a step by a writer wi such that |W(H.wi)| ≥ 2.

Lemma 9. If H is writers-closed and |W(H)| ≥ 2, then for some i∈{0, 1},
H.wi is writers-closed and |W(H.wi)| ≥ 2.

Proof. By Lemma 8(b), since |W(H)| ≥ 2, read is not in f(H). Suppose H is
writers-closed. From Observation 7, for all writers-only schedules σ, H.σ is also
writers-closed. By contradiction, suppose that for all i ∈ {0, 1}, |W(H.wi)| ≤
1. By Observation 7, W(H.wi) is not empty. Thus, W(H.w0) = {x0} and
W(H.w1) = {x1} for two distinct x0, x1 ∈ W(H).

Case 1 For some i∈{0, 1}, wi is poised to read in H. Then H.wi
r,w1−i∼ H

and so H.wiw1−i
r,w1−i∼ H.w1−i. However, W(H.wiw1−i) ⊆ W(H.wi) and

W(H.w1−i) ∩ W(H.wi) = ∅, and so W(H.w1−i) ∩ W(H.wiw1−i) = ∅. This
contradicts Lemma 8(d).
Case 2 Both writers are poised to write to different registers. Then H.w0w1 ∼
H.w1w0. Since W(H.w0) ∩ W(H.w1) = ∅, W(H.w0w1) ∩ W(H.w1w0) = ∅.
This contradicts Lemma 8(d).

Case 3 Both writers are poised to write to the same register. Then H.w0w1
r,w1∼

H.w1. Since W(H.w0) ∩ W(H.w1) = ∅, W(H.w0w1) ∩ W(H.w1) = ∅. This
contradicts Lemma 8(d). �

The above lemma implies that the writers-valency of writers-closed histories
contains only one value.

Lemma 10. If history H is writers-closed, then |W(H)| = 1.

In the following we show that, from a writers-supervalent history H, no
writers-only schedules can linearize the read operation, i.e.W(H) = ∅. To proof
is by contradiction, assuming thatW(H) contains an element x. In the following
lemma, we first show that if such a writers-supervalent history H exists, then we
can extend that history to a history H ′, so that the writers-valencies obtained
by a single step of w0 respectively w1 are distinct.

Lemma 11. If there exists a writers-supervalent history H such that x ∈ W(H),
then there is a finite writers-only schedule σ and an index j ∈ {0, 1}, such that

(a) H.σwj is writers-supervalent and x 6∈ W(H.σwj); and
(b) H.σw1−j is writers-closed and W(H.σw1−j) = {x}.

In particular, W(H.σwj) ∩W(H.σw1−j) = ∅.

Proof. Let σ be a longest possible writers-only schedule such that for each prefix
σ′′ of σ, history H.σ′′ is writers-supervalent and x ∈ W(H.σ′′).

First we prove that σ is finite. Suppose it is not. Then in H.σ at least one of
the writers takes infinitely many steps. By wait-freedom that writer completes
infinitely many increment operations in H.σ. Let σ′ be some finite prefix of σ
such that H.σ′ contains at least x+1 complete increment operations. By the
construction of σ, H.σ′ is writers-supervalent and x ∈ W(H.σ′). From writers-
supervalency it follows that the read cannot appear in f(H.σ′), while on the
other hand this linearization contains at least x+1 increment operations. Since
f is prefix preserving, if the read appears in f(H.σ′λ) for any schedule λ, then
it must be preceded by at least x+1 increment operations, and thus return a
value of at least x+1. Hence, x 6∈ W(H.σ′), contradicting the construction of σ.

We conclude that σ is finite. In particular, for every writer wi, i∈{0, 1}, ei-
ther H.σwi is writers-closed or x/∈W(H.σ). According to Observation 7, the
extensions H.σw0 and H.σw1 cannot be both writers-closed. Hence, there is
an index j∈{0, 1} such that H.σwj is writers-supervalent and H.σw1−j is
writers-closed. Since H.σwj is writers-supervalent, we know from the defini-
tion of σ that x/∈W(H.σwj). But since x∈W(H.σ)=W(Hσw0)∪W(H.σw1),
it must be in W(H.σw1−j). Because H.σw1−j is writers-closed, we obtain
from Lemma 10 that W(H.σw1−j)={x}. Hence, (a)-(b) are satisfied, and thus
W(H.σwj)∩W(H.σw1−j)=∅. �

Lemma 12. If history H is writers-supervalent, then W(H) = ∅.

Proof. Suppose that H is writers-supervalent and assume by contradiction that
there exists some value ν ∈ W(H). By Lemma 8(a), read is not in f(H). By
Lemma 11, there is an extension H ′ of H and an index i∈{0, 1} such that

H ′.w1−i is writers-closed and W(H ′.w1−i) ∩W(H ′.wi) = ∅. (1)

Let R1−i and Ri be the registers that w1−i and wi are poised to access in H ′.

Case 1 There is an index j∈{0, 1} such that in H ′, wj is poised to read Rj . Then

H ′.wj
r,w1−j∼ H ′ and so H ′.wjw1−j

r,w1−j∼ H ′.w1−j . Now, either H ′.wjw1−j
or H ′.w1−j is writers-closed (depending on whether j=i or j=1−i). Thus, by
Lemma 8(d), W(H ′.wjw1−j)∩W(H ′.w1−j)6=∅. This contradicts Eq. (1).
Case 2 w0 is poised to write to R0 in H ′, w1 is poised to write to R1 and R0 6=R1.
Then H ′.w0w1∼H ′.w1w0. Also, either H ′.w0w1 or H ′.w1w0 is writers-closed.
By Lemma 8(d), W(H ′.w0w1) ∩W(H ′.w1w0) 6= ∅, contradicting Eq. (1).
Case 3 w0 is poised to write to R0 in H ′, w1 is poised to write to R1 and R0=R1.

Then H ′.w0w1
r,w1∼ H ′.w1. Now, either H ′.w0w1 or H ′.w1 is writers-closed (de-

pending on whether i=1 or i=0). By Lemma 8(d),W(H ′.w0w1)∩W(H ′.w1) 6=∅.
This contradicts Eq. (1).

In all cases the assumption that ν∈W(H) is contradicted. Hence, W(H)=∅. �

Lemma 13. Let H be a writers-supervalent history and S ⊆ {w1, w2}. Then:

(a) For any integer y and any infinite S-only schedule γ, there is a prefix γ′ of γ
such that for every schedule λ, either W(H.γ′λ)=∅ or min(W(H.γ′λ))>y.

(b) If x ∈ W(H.r), then there exists a finite S-only schedule σ, such that x ∈
W(H.σr) and x 6∈ W(H.σwir) for any wi ∈ S.

Proof. We first prove Part (a). In H.γ at least one of the writers executes
infinitely many steps, and thus by wait-freedom infinitely many increment op-
erations. Hence, there is a finite prefix γ′ of γ such that in H.γ′ at least y+1
increment operations complete. By Lemma 12, W(H) = ∅, and since γ′ is
writers-only, the read does not linearize in H.γ′. I.e., f(H.γ′) does not contain
a read, while it contains at least y+1 increment operations. Since f is prefix-
preserving it follows that if the read appears in f(H.γ′λ) for any schedule λ,
then it is preceded by at least y+1 increment operations and thus returns a
value of at least y+1. Hence, either W(H.γ′λ) = ∅ or minW(H.γ′λ) ≥ y+1.

For Part (b), we let σ be a longest possible S-only schedule with x∈W(H.σr).
From Part (a) (with λ=r) we obtain that σ is finite. Hence, by construction
x∈W(H.σr) and x 6∈W(H.σwir) for any wi∈S. This completes the proof. �

Below we state and prove our main lemma. It says that from any writers-
supervalent history H we can construct a finite schedule σ, which includes at
least one step by r, such that H.σ is writers-supervalent.

Lemma 14. If a history H is writers-supervalent, then there exists a finite
writers-only schedule σ, such that H.σr is also writers-supervalent.

Proof. LetH be a writers-supervalent history. For the purpose of a contradiction,
we suppose that for every finite writers-only schedule σ, W(H.σr) is writers-
closed. By Lemma 10, for every such σ, |W(H.σr)|=1.

By Lemma 13 (b) there exists a writers-only schedule yielding an extension
H ′ of H such that W(H ′.r) = {x}, and x 6∈ W(H ′.w0r) ∪ W(H ′.w1r). By
our assumption H ′.wir is writers-closed for any i∈{0, 1}, and by Lemma 10,
|W(H ′.wir)| = 1. Thus, there exist values y0, y1 such that

∀i∈{0, 1} : W(H ′.wir) = {yi} 6= {x} =W(H ′.r). (2)

In particular, for any schedule λ, by W(H ′.rλ) ⊆ W(H ′.r), we have

∀i∈{0, 1} : W(H ′.wir) ∩W(H ′.rλ) = ∅. (3)

We look at the steps that the processes are poised to take in H ′. Let R0,
R1, and R2 be registers accessed by w0, w1, and r respectively. Recall that by
assumption all extensions H ′ ◦H ′′ of H ′ are writer-closed provided that r takes
a step in H ′′.

Case 1 There is an index i∈{0, 1} such that in H ′ process wi is poised to read Ri.

Then, H ′.r
r,w1−i∼ H ′.wir, and thus by Lemma 8(d),W(H ′.r)∩W(H ′.wir) 6= ∅.

This contradicts (3).
Case 2 Both w0 and w1 are poised to write in H ′:

Case 2.1 There is an index i∈{0, 1} such that Ri 6= R2. This means that
H ′.wir∼H ′.rwi and thus by Lemma 8(d), W(H ′.wir) ∩W(H ′.rwi)6=∅, which
contradicts (3).
Case 2.2 All three processes access the same register. I.e., there exists register
R such that for any i ∈ {0, 1, 2}, R = Ri.
Case 2.2.1 r is poised to write in H ′. Then, H ′.w0rw1 ∼ H ′.rw0w1 and thus
by Lemma 8(d), W(H ′.w0rw1) ∩W(H ′.rw0w1) 6= ∅. This contradicts (3).
Case 2.2.2 r is poised to read in H ′. We will construct two indistinguishable
histories, in which r outputs different values. This establishes a contradiction.
Recall that by our assumption, for any writers-only schedule σ, H ′σr is writers-
closed and thus by Lemma 10, |W(H ′σr)|=1. Then according to Lemma 13 (a),
there is a w1-solo schedule wk1

1 of length k1 such that for any schedule λ,
the unique value in W(H ′.wk1

1 λr) is larger than y0. Let z be the value in
W(H ′.wk1

1 r). Applying Lemma 13 (b), we obtain a w1-solo schedule wk2
1 of

length k2 such that for k=k1+k2 we have z∈W(H ′.wk
1r) and z 6∈W(H ′.wk+1

1 r).
In particular,

W(H ′.wk
1r) ∩W(H ′.wk+1

1 r) = ∅. (4)

We now consider the histories
H1 = H ′.wk

1w0rw1 and H2 = H ′.w0rw
k+1
1 .

Recall that by the construction above, for any schedule λ, the unique value in
W(H ′.wk1

1 λr) is larger than y0. In particular, this is true for λ=wk2
1 w0, and

thus W(H ′.wk
1w0r}=W(H1)={z′}, for some integer z′>y0. On the other hand,

by (2), W(H ′ · w0r)={y0}, and thus W(H2)={y0}. Therefore, W(H1) 6=W(H2).
We now show that H1∼H2. This contradicts Lemma 8(d) according to which
W(H1)=W(H2).
First, observe that all processes take equally many steps after H ′. By the as-
sumption of Case 2, the first step by each process w0 and w1 following H ′ is a
write to R, while the first step by r is a read of R. Hence, in both histories in
their single steps following H ′, process w0 writes some value ν to R and process
r reads that value ν.
Observe that w1 is poised to write to R in H ′.wk

1 . Otherwise, the steps w1 and

r would be commutative and thus H ′.wk+1
1 r

r,w1∼ H ′.wk
1rw1. Then Lemma 8(d)

would imply W(H ′.wk+1
1 r)∩W(H ′.wk

1rw1)6=∅, which contradicts (4). Since the
first step by w1 is also a write to R, in both histories following H ′, in each single
step process w1 either writes to R, it reads from R what itself has written to R,
or it accesses a register other than R. In any of those cases, w1 cannot distinguish
between H1 and H2. Thus, we conclude that H1∼H2.

Hence, the assumption that from a writers-supervalent history, all finite
schedules {w0, w1}∗r lead to writers-closed histories, leads to contradictions in
all cases. This completes the proof of the lemma. �

Lemma 15. Any history H, in which r has taken no steps, is writers-
supervalent.

Proof. For the purpose of a contradiction assume that H is writers-closed. By
Lemma10 there is an integer x ≥ 0 such that W(H) = {x}. Then there is a

writers-only schedule γ such that f(H.γ) contains a read operation that returns
x. By wait-freedom, there is a w0-only schedule σ such that in H.γσ process
w0 completes at least x+1 increment operations. Again by wait-freedom, for a
long enough r-only schedule λ, the read operation returns in history H.γσλ. In
that history, the read is invoked after at least x+1 increment operations com-
pleted, so in f(H.γσλ) the read also appears only after at least x+1 increment

operations. But then f(H.γσ), where the read appears after only x increment

operations, cannot be a prefix of f(H.γσλ), contradicting the prefix-preserving
property of f . �

Theorem 16. There is no (deterministic) strongly linearizable wait-free imple-
mentation of a monotonic counter for three processes, from registers.

Proof. Suppose by contradiction that there exists such a wait-free strongly lin-
earizable implementation of a counter. Consider an algorithm, where processes
w0 and w1 execute repeated increment operations in an infinite loop and process
r executes a single read operation.

We prove by induction that for any integer k ≥ 0 there is a writers-
supervalent history H0 ◦H1 . . . ◦Hk in which r takes at least k steps. We let H0

be the empty history. By Lemma 15, H0 is writers-supervalent. Now suppose
we constructed a writers-supervalent history H0 ◦ . . . ◦ Hk in which r takes at
least k steps. By Lemma 14, there is a schedule σ such that r∈σ and history
H0 ◦ . . .◦Hk ◦Hk+1:=H0 ◦ . . .◦Hk.σ is also writers-supervalent. In that history r
takes at least k+1 steps, and the inductive hypothesis follows. Since H0 ◦ . . .◦Hk

is writers-supervalent, the read is pending in this history, as it does not appear
in f(H0 ◦ . . .◦Hk). Hence, there exists a history in which r takes infinitely many
steps but never finishes its read operation. This contradicts wait-freedom. �

Strong linearizability is a composable property [2]. Hence, if there is a
strongly linearizable implementation of a type T from atomic base objects of
types in a set B, then T also has a strongly linearizable implementation from
strongly linearizable objects of types in B. Strongly linearizable monotonic coun-
ters can be implemented from atomic (and thus from strongly linearizable) snap-
shot objects and general counters. Thus, Theorem 1 for snapshots and general
counters follows from Theorem 16.

Now suppose there is a wait-free strongly linearizable max-register R. In
Section 4, we give an algorithm that uses a linearizable object V of a type T from
a certain class of types together with R, and yields a strongly linearizable object
Vstrong of type T . The algorithm itself is wait-free, so if V and R are wait-free,
then so is Vstrong. We can apply this algorithm, using for V a standard wait-
free implementation of a monotonic counter with atomic increment operations.
Using that we obtain a wait-free strongly linearizable monotonic counter Vstrong,
contradicting Theorem 16. As a consequence, the assumption that there is a wait-
free strongly linearizable max-register R is wrong. This completes the proof of
Theorem 1.

4 Lock-Free Implementations

We now explain how to obtain several lock-free strongly linearizable objects from
atomic multi-writer registers. These objects include monotonic counters, snap-
shot objects, general counters, and logical clocks. We first define the notion of
a versioned object, which is an object that increases a version number when-
ever it changes the state of the object. We give several examples of linearizable
lock-free versioned objects including counters and snapshot objects. All those
implementations have in common that update operations are atomic, and only
the read operations are non-atomic. Then, we show how to transform any lock-
free linearizable versioned object with atomic update operations into a lock-free
strongly linearizable object of the same type. This transformation yields many
lock-free strongly linearizable implementations from multi-writer registers.

Versioned Objects Many objects are easy to augment with version numbers that
increase with every successful update operation. In the following we define such
versioned variants of those types formally.

We consider a class T of types that support two operations, read() and
update(v). The sequential specification of each type in the class is uniquely
defined by the state space Q of the sequential object of that type, its initial
state, q0, and two functions, f and g. For the following discussion, the initial
state, q0, is not relevant, so we ignore it, and denote such a type as TQ,f,g.
A read() operation on the sequential object does not change the state of the
object, but returns f(q), where q is its current state. The operation update(v)
changes the state of the object from its current state, s, to g(s), and does not
return anything. It is easy to see that snapshots, counters, and max-registers
are all types in T . For example, the monotonic counter is the type TQ,f,g with
Q = N ∪ {0}, f(x) = x, and g(x) = x+ 1.

Let TQ,f,g be some type in T . A type TQ′,f ′,g′ is called a versioned variant
of type T , if Q′ = Q × N, f ′(x, v) = (f(x), v), and g′(x, v) = (g(x), v′), where
v′ > v. I.e., the versioned variant of type T stores exactly the same information
as T in addition to a version number, v. That version number gets returned
by read operations, and increased with every update operation. For example, a
versioned variant of the monotonic counter is the type TQ′,f ′,g′ , where Q′=N×N,
f(x, x)=(x, x), and g(x)=(x+1, x+1).

It is easy to obtain linearizable versioned variants of some popular types,
including snapshots, by embedding in each object an internal counter that gets
incremented atomcially with each update operation. The lock-free linearizable
snapshot implementation by [6] has the property that update operations are
atomic. Hence, for the versioned variants of all types mentioned above, in par-
ticular snapshots, (general) counters and logical clocks, we obtain lock-free lin-
earizable implementations from registers, with atomic update operations.

Making Linearizable Versioned Objects Strongly Linearizable We show that any
lock-free linearizable implementation of a versioned object can be transformed
into a lock-free strongly linearizable one, provided that update operations of the

versioned object are atomic. For that we use the lock-free strongly linearizable
max-register implementation of Helmi et al. [4]. We augment the integer value
stored in a max-register with some additional information.

An augmented max-register stores a pair (x, y), where x ∈ N ∪ {0}, and y
is from some arbitrary domain D. It supports the operations maxRead() and
maxWrite(x, y). If the state of the object is (x, y), then a maxRead() returns
(x, y), and maxWrite(x′, y′) changes the object’s state to (x′, y′) provided that
x′ > x. Otherwise, the object’s state remains unchanged.

Existing linearizable max-register implementations from registers (e.g., [10])
can be easily transformed into linearizable augmented max-register objects. This
is also true for the lock-free strongly linearizable max-register implementation
of Helmi et al. [4].

We now give an implementation of an object Vstrong of type T ∈ T , from an
implementation V of a versioned variant of T and an augmented max-register R.
Object Vstrong is strongly linearizable, provided that R is strongly linearizable,
V is linearizable, and the update operations of V are atomic.

The idea is simple: to execute Vstrong.update(x), a process first updates V
using V.update(x), and then reads V to obtain the pair (y, vno), where vno is
the current version number of the object. Finally, it max-writes the pair (vno, y)
into the augmented max-register R. To read object Vstrong, a process simply
returns the augmented value read from the max-register R.

Lemma 17. If R is strongly linearizable, V is linearizable, and operations
V.update are atomic, then Vstrong is strongly linearizable.

The implementation of Vstrong uses only wait-free code in addition to the
operations on V and R. Hence, if V and R are lock-free, then so is Vstrong. As
mentioned, there exists a lock-free implementation of augmented max-registers.
Thus, we obtain the following theorem, which immediately implies Theorem 2.

Theorem 18. Let T be a type in T , and T ′ a versioned variant of T . If T ′ has
a lock-free linearizable implemenation with atomic update operations, then T ′

also has a lock-free strongly linearizable implementation.

5 Discussion

In this paper, we proved that several important types, such as snapshots, coun-
ters, and max-registers, have lock-free, but not wait-free, strongly linearizable
implementations from registers. The negative results show that in a system with
atomic registers, strong linearizability is significantly harder to obtain than lin-
earizability.

On the other hand, recall that strong linearizability is necessary to preserve
probability distributions when replacing atomic objects with implemented ones
in randomized algorithms scheduled by a strong adaptive adversary [2]. There-
fore, it remains an important task to find ways of implementing synchronization
primitives that are robust for randomized algorithms. This can be achieved, for

example, by using stronger base objects, such as compare-and-swap. However,
care needs to be taken to ensure that the system that provides those base objects
(e.g., the hardware) ensures that they are at least strongly linearizable. Another
way could be to use randomized wait-free implementations of objects. Note that
strong linearizability has been defined only for deterministic objects (whereas
the algorithms that use those objects can be randomized). Additional work is
needed to formalize an equivalent notion for randomized objects.

Acknowledgments This research was undertaken, in part, thanks to funding from
the Canada Research Chairs program and from the Discovery Grants program
of the Natural Sciences and Engineering Research Council of Canada (NSERC).

We thank Hagit Attiya for the useful discussion on wait-freedom versus lock-
freedom.

References

1. Herlihy, M.P., Wing, J.M.: Linearizability: A correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12 (1990) 463–492

2. Golab, W., Higham, L., Woelfel, P.: Linearizable implementations do not suffice for
randomized distributed computation. In: Proceedings of the Forty-third Annual
ACM Symposium on Theory of Computing. STOC ’11, New York, NY, USA, ACM
(2011) 373–382

3. Herlihy, M.: Wait-free synchronization. ACM Trans. Program. Lang. Syst. 13
(1991) 124–149

4. Helmi, M., Higham, L., Woelfel, P.: Strongly linearizable implementations: Possi-
bilities and impossibilities. In: Proceedings of the 2012 ACM Symposium on Prin-
ciples of Distributed Computing. PODC ’12, New York, NY, USA, ACM (2012)
385–394

5. Herlihy, M.: Impossibility results for asynchronous pram (extended abstract). In:
Proceedings of the Third Annual ACM Symposium on Parallel Algorithms and
Architectures. SPAA ’91, New York, NY, USA, ACM (1991) 327–336

6. Afek, Y., Dolev, D., Attiya, H., Gafni, E., Merritt, M., Shavit, N.: Atomic snap-
shots of shared memory. In: Proceedings of the Ninth Annual ACM Symposium
on Principles of Distributed Computing. PODC ’90, New York, NY, USA, ACM
(1990) 1–13

7. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. J. ACM 32 (1985) 374–382

8. Loui, M.C., Abu-Amara, H.H.: Memory requirements for agreement among unre-
liable asynchronous processes. Advances in Computing Research (1987) 163–183

9. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA (1996)

10. Aspnes, J., Attiya, H., Censor, K.: Max registers, counters, and monotone cir-
cuits. In: Proceedings of the 28th ACM Symposium on Principles of Distributed
Computing. PODC ’09, New York, NY, USA, ACM (2009) 36–45

	Wait-Freedom is Harder than Lock-Freedomunder Strong Linearizability
	!Oksana Denysyuk and Philipp Woelfel

