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ABSTRACT
This paper proposes an analysis of the effect of vertical position of the pivot point of the inverted
pendulum during humanoid walking. We introduce a new feature of the inverted pendulum by
taking a pivot point under the ground level allowing a natural trajectory for the center of pressure
(CoP), like in human walking. The influence of the vertical position of the pivot point on energy
consumption is analysed here. The evaluation of the energy consumption is done using a sthenic
criterion in a 3D dynamics simulation of the humanoid robot ROMEO (Aldebaran Robotics) and
shows a consequent reduction of the robot torque solicitation with a pivot point under the ground.

Keywords: Inverted pendulum, pivot point, walking robots, energy consumption, joint torques.

1 INTRODUCTION
The linear inverted pendulum (LIP) was proposed by Kajita et al. to generate humanoid walk-
ing trajectories [4, 1]. This model was widely applied to various bipedal robots like HRP-2 [8],
Asimo [9], and UT-Theta [10]. The main advantage of this approach is the simplicity of the
dynamics and the analytical solution. The Generalized Inverted Pendulum model (GIP) [6] is a
particular case of inverted pendulum models with a pivot point under the ground level in opposi-
tion to all other inverted pendulum models (for robot control or human motion) with a pivot point
at ground level. It describes human normal walking from the external forces point of view, taking
into account the mechanism of foot.

This work uses the GIP model [6], initially proposed to model human walking, to generate a more
human inspired walking pattern of humanoid robots. The vertical component of the pivot point
has been determined in a manner to minimize the energy consumed by the system.

This paper is organised as follows: First, we show that the dynamics equations system does not
change if the pivot point is located under the ground or at ground level. Then, we show the effect
of the vertical position of the pivot point on the inverted pendulum energy. After, we present
a simulation results on the humanoid robot Romeo using trajectories with different depth of the
pivot point.

2 Dynamics equation for an inverted pendulum with a pivot point under the ground
In this section, we will study the dynamics of the inverted pendulum in the general case: The
CoM is not constrained to maintain a constant height during the movement and whose pivot point
is located under the ground. Fig. 1 illustrates the inverted pendulum in the sagittal plane, where
the mass M moves under the force f and the gravity g. The mass is connected to the ground
with a massless rod. The pivot point of the pendulum is a virtual revolt joint located under the
ground, zp is its vertical component. θ is the angle between the rod and the vertical axis. The
global coordinates system is defined by the forward axis

→
x , the up-ward vertical axis

→
z and the

transversal axis
→
y=
→
z × →x .

The force f and the gravity create an acceleration of the CoM [ẍ ÿ z̈]>. Along the vertical axis z :

fz−Mg = Mz̈ (1)



Figure 1: Generalized inverted pendulum in the sagittal plane.

f cosθ −Mg = Mz̈ (2)

f =
M(g+ z̈)

cosθ
(3)

Along the the forward axis x :
fx = M ẍ (4)

f sinθ = M ẍ (5)

By substituting Eq. (3) in Eq. (5), we obtain

M (g+ z̈)
sinθ

cosθ
= M ẍ (6)

sinθ

cosθ
= tanθ =

x
z− zp

(7)

The minus sing of zp is justified by the fact that zp ≤ 0.

(g+ z̈)
x

z− zp
= ẍ (8)

x =
z− zp

g+ z̈
ẍ (9)

In a similar manner, we obtain the motion equation in the frontal plane.

y =
z− zp

g+ z̈
ÿ (10)

The motion of the CoM is characterized by the second order differential equations (9) and (10).
These equations are very similar to those in the case where the pivot point is located at ground level.
The only difference is that the term z is replaced by z− zp. Before the term zp was sometimes used
to express the vertical component of origin of the frame attached to the foot with respect to the
global coordinate system and the pivot point was always in the foot. But now, zp expresses the
vertical distance between the pivot point and the ground. The differential equations 9 and 10 can be
solved analytically when z = const. When z 6= const, these two equations are solved numerically.



3 Modeling
Let us consider a humanoid robot composed of nact actuators to control its body movements in 3D.
Let q and X denote the system generalized and operational coordinates vectors, respectively. We
introduce the following notations:

X (6×1) Absolute position and orientation of the waist ;
X fi (6×1) Absolute position and orientation of foot i (i = 1,2);
qlegi (nleg×1) Actuated joints of legi (ankle, knee and hip joints);
q (n×1) Vector grouping the controlled variables (n = nact +6).

The vector q contains the joint variables and the 3D position and orientation of the frame R0 fixed
in the left foot. The reference frame is defined such that x0 denotes the horizontal advancement
direction, z0 is the vertical bottom-up direction, and y0 = z0×x0 is the lateral direction.

3.1 Walking cycle – Assumptions
The walking cycle is defined by two successive steps (right and left legs). One step is composed
of a single support phase (SS) on the stance leg, delimited by swinging foot takeoff and swinging
foot strike, and a double support phase (DS) where the body weight is distributed on both legs, de-
limited by swinging foot strike and other foot takeoff. In what follows, the following assumptions
will be considered for the complete motion:

A1 There is no rotation of the swing foot and the basin of the biped with respect to the roll,
pitch, and yaw axes.

A2 The stance foot has a flat contact on the ground;

A3 Feet velocity and acceleration are equal to zero at foot strike. Thus no impact is considered.

A4 The CoM and the waist segment have the same linear velocity and acceleration profiles;

As humanoid systems are highly redundant, these assumptions allow setting the control schemes
while reducing the redundancy order by setting arbitrarily several parameters. The motion of
the swinging foot is defined as a polynomial function, where the polynomial coefficients were
determined using initial and final positions, velocities, and accelerations.

3.2 Kinematics
For given desired Cartesian trajectories of the waist X and the feet X fi (i = 1,2), the inverse
kinematics model leads to the values of the desired joint variables as detailed in Eq. (11).[

V fi

ω fi

]
=

[
I3×1 −L̂
03×1 I3×1

][
V
ω

]
+Jlegi q̇legi (i = 1,2) (11)

where Ẋ fi = [V>fi
ω>fi

]>, Ẋ = [V> ω>]>, Jlegi (i = 1,2) denotes the 6×nleg Jacobian matrix associ-
ated to the i-th leg, L is the position vector between the waist and foot fi andˆis the skewsymetric
matrix. Due to assumption A1, ω = ω fi = 0, thus Eq. (11) becomes

q̇legi = J−1
legi

[
Ẋ fi− Ẋ

03×1

]
(i = 1,2) (12)

The desired n×1 controlled velocities vector q̇ can be rebuilt as follows.

q̇ =
[
q̇leg1 q̇leg2 q̇ f ree Ẋ

]> (13)

where q̇ f ree denotes joint velocities of trunk and arms which can be set freely.

The rank of the Jacobian matrix of each leg was verified at each sampling period of motion to
ensure that there is no singularity.



3.3 Dynamics
The dynamics of the system may be described by the three following equations.

Dq̈+Cq̇+G = BΓΓΓ+J>1 R1 if in single support, leg1
Dq̈+Cq̇+G = BΓΓΓ+J>2 R2 if in single support, leg2
Dq̈+Cq̇+G = BΓΓΓ+J>1 R1 +J>2 R2 if in double support

(14)

The matrices D(q), C(q, q̇) and G(q) describe respectively the inertia, Coriolis and gravity forces
acting on the system. ΓΓΓ is the vector of the actuator torques ΓΓΓi, i = 1, · · · ,nact. The matrix B is
the actuation matrix; it expresses the contribution of each joint torque in the virtual work δw:

δw = ΓΓΓ1δq1 +ΓΓΓ2δq2 + . . .+ΓΓΓnact δqnact = δq>BΓΓΓ

where ΓΓΓ =
[
ΓΓΓ1 ΓΓΓ2 . . . ΓΓΓnact

]> and B =
[
0nact×6 Inact

]>. The vectors R1 and R2 are the ground
reaction forces exerted on foot1 and foot2 respectively.

R1 =
[
R1x R1y R1z M1x M1y M1z

]> R2 =
[
R2x R2y R2z M2x M2y M2z

]>
In single support, there are n unknown variables which are the components of (ΓΓΓ,R1) or (ΓΓΓ,R2)
depending on which foot is in contact with the ground. So, the n independent equations in the
two first lines of Eq. (14) are sufficient for solving. On the other hand, in double support there
are n+ 6 unknown variables in (ΓΓΓ,R1,R2) and only n equations available. In order to solve the
problem in double support, six variables should be chosen and set to completely describe the
system dynamics. The variables we choose are the six components of the ground reaction forces
exerted on the foot that was supporting before the considered double support. Similarly to Omran
et al. [5], these components are defined as third-order polynomial functions of time ensuring the
continuity of the ground reaction forces with the two single support phases around the considered
double support.

4 Energy consumption
Many criteria exist to evaluate energy consumption of a mechanical system, however to our best
knowledge there is no ideal criterion [3]. In this approach, we chose the sthenic criterion which
is defined by the integral of the quadratic actuators torques per unit of distance, as shown in
Eq. (15). Its physical meaning is to be an image of the Joule effects if the actuators are DC motors.
Furthermore, the torque amplitudes are decreased with the minimization of this criterion [2]. Then
if we design an optimal walking gait with this criterion we can limit the weight of the needed
motors.

CΓ =
1
d

∫ t f

t0
ΓΓΓ
>

ΓΓΓdt (15)

where t0 and t f denote the beginning and ending instants of the total observed motion, d is the
travelled distance. The sthenic criterion is a quantity proportional to the energy solicitation by
actuators per unit of distance, while the quadratic torque deals with the instantaneous norm of
motor torques: E0(t) = ΓΓΓ

>
ΓΓΓ.

5 Simulation settings
For the validation of method, we use the model of the 33 degrees-of-freedom (dof) humanoid
robot ROMEO[7]. The robot total weight is 40.53 kg and its height is 1.43 m. ROMEO dof are
distributed as follows: 6 per leg, 1 for each toe, 7 per arm, 1 for the trunk, 2 for the neck and 2 for
the head. As we focus on the locomotion, only the 12 dof of the legs were controlled in motion
and the other dof were set to zero. The kinematic chain of the lower body of Romeo is shown
in Fig. 2. To show the effect of the vertical position of pivot point, the robot performs one step



Figure 2: Lower body of humanoid robot Romeo.

forward on a flat surface. The step length is set to 0.4 m, the step width is set to 0.192 m and the
step duration is 0.5 s. The height of the CoM is constant zc = 0.64 m. The horizontal position
of the pivot point is set in the left foot center, so the robot takes one step forward with its right
foot, as shown in Fig. 3. This motion is done many times, with different depth of the pivot point
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Figure 3: Feet placement for motion planing. The projection of the pivot point in the horizontal
plane is represented by the black asterisk.

zp taken in the range [0,−1] m. After calculating the CoM trajectory in the horizontal plane, we
obtain joint angles using the inverse kinematic model, then we calculate the joint torques using the
dynamic model. In the end, we calculate the sthenic criterion for each trajectory.

6 Results
The resulting trajectories for each zp are compared in terms of dynamic balance, joint torques and
energy consumption.



6.1 Horizontal trajectory of CoM
The motion described in Sec. 5 is realized by the robot Romeo in five cases corresponding to five
values of zp: [0,−0.25,−0.5,−0.75,−1] m. Fig. 4 shows the fives resulting CoM trajectories in
x and y directions as a function of time. We note that the x component of the CoM comes closer to
a straight line when |zp| increases. On the other hand, the oscillation amplitude of the y component
decreases when the pivot point goes farther under the ground.
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Figure 4: Horizontal trajectory of CoM as a function of time for five values of zp

6.2 Trajectory of CoP
Fig. 5 represents two inverted pendulums. The first one with a pivot point at ground level (zp = 0),
its motion in the sagittal and frontal planes is represented in Fig. 5(a) and Fig. 5(c) respectively.
The second one with a pivot point under ground level (zp =−1 m), its motion in the sagittal and
frontal planes is represented in Fig. 5(b) and Fig. 5(d) respectively.

In Fig. 5, the CoM is represented by circles and the CoP is represented by triangles. The ground
level (z = 0) is represented by a green line. We notice that the CoP coincides with the pivot point
when zp = 0. In this case, the CoP is a fixed point. But when the pivot point is under the ground
level, the CoP moves in x and y directions as we can see in Fig. 5(b) and Fig. 5(d) respectively. For
this reason, we must verify that the distances travelled by the CoP in x and y directions are smaller
than the robot foot dimensions before applying the trajectory to a humanoid robot.
To describe the relation between the CoP trajectory and the depth of the pivot point, we consider
three inverted pendulums having the same parameters of step length L, step width Lw, and the CoM
height zc. The pivot point depth for these pendulums are zp1 = 0, zp2 and zp3 such as 0 < |zp2| <
|zp3|. These three pendulums are illustrated in Fig. 6 in the sagittal and frontal planes. The foot is
also represented in this figure by a bold green line.

We notice that the travelled distance by the CoP in x direction, increases when the pivot point
depth increases (L2 < L3). Along the y direction, the CoP does not move when the pivot point is
at ground level, but it moves in a range when the pivot point is under the ground. The range of the
CoP along the y axis is increasingly far from the foot center when the |zp| increases. As we can
see that l2 is closer to the foot center than l3.

For the bigger values of |zp|, the CoP trajectory may leave the foot. For example, in Fig. 6, the
CoP of the pendulum corresponding to zp3 leaves the contact zone between the foot and the ground.
Therefore, for each foot size and step length and width, there is an upper limit of |zp| that keeps
the CoP inside the foot.

For a robot with feet of length Lx and width Ly, performing a step of length L and width Lw, the
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Figure 5: The inverted pendulum motion in sagittal and frontal planes in two cases: zp = 0 and
zp =−1 m
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Figure 6: The inverted pendulum during one step for three different pivot points.

upper limit of |zp| respects the following relation:

In the sagittal plane:
2Lx

L
=

|zp,max|
|zp,max|+ z0

if L > Lx (16)



In the frontal plane:
Ly

Lw
=

|zp,max|
|zp,max|+ z0

if Lw > Ly (17)

From these two equations, we can deduce the limit of zp.

|zp,max,sagittal|=
2 Lx z0

L−2 Lx
|zp,max, f rontal|=

Ly z0

Lw−Ly
(18)

The upper limit of |zp| is chosen as:

|zp,max|= min(|zp,max,sagittal|, |zp,max, f rontal|) (19)

When we generate trajectories for experiments on a real robot, we should consider a security
margin for CoP before calculating |zp,max|. The security margin can be defined as a percentage of
foot dimensions. In simulation, the security margin may be not considered.

The humanoid robot Romeo feet are 0.289 m in length and 0.121 m in width. By applying Eq. (19),
we obtain: |zp,max| = 1.09 m. If we consider a margin of security of 50% of the foot, we obtain
|zp,max| = 0.29 m. The robot foot with the security margin is illustrated in Fig. 7.

Figure 7: The foot and the CoP area.

6.3 Joint torque
In this section, we consider two trajectories for humanoid robot Romeo. The first one was cal-
culated using an inverted pendulum with a pivot point at ground level (zp=0) and the second one
was calculated using an inverted pendulum with a pivot point under the ground (zp = −zp,max =
−0.29 m). The two inverted pendulums have the same parameters for step length, step width, step
duration and CoM height as given in Sec. 5. We compare joint torques for these two trajectories.

Fig. 8 shows the torques at the legs joints. The support leg contains six joints: ankle roll (Γ2),
ankle pitch (Γ3), knee pitch (Γ4), hip pitch (Γ5), hip roll (Γ6), and hip yaw (Γ7). The swing leg
contains six joints also: ankle roll (Γ13), ankle pitch (Γ12), knee pitch (Γ11), hip pitch (Γ10), hip
roll (Γ9), and hip yaw (Γ8). In global, the two trajectories show similar behaviour. We can see that
Γ5, Γ10, Γ11, and Γ12 are almost the same. For these joints, the torque is a little reduced (between
1.8% and 5.2%) with a pivot point under the ground than with a pivot point at ground level.

For Γ3, Γ4, Γ7, Γ8, and Γ9, we can observe two or three peaks for each torque. The torque
amplitude peak-to-peak is reduced for zp =−zp,max compared to the case zp = 0 by 20%, 10.8%,
1.3%, 20.2% and 26% respectively.

We can notice that main differences happen at ankle roll for the two legs Γ2 and Γ13. Γ2 is reduced
when zp = −0.29 m compared to zp = 0, we give the reduction rate at three moment within the
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Figure 8: Joint torques for legs joints of Romeo for 2 values of the pivot point depth

motion: 9.8% at (t=0 s), 91% at the peak (t=0.31 s) and 58.8% at the end of the step (t=0.5s). In the
same manner, Γ13 is also reduced when zp =−0.29 m compared to zp = 0, we give the reduction
rate at the three peaks: 29.4% at (t=0.1 s), 21.6% at (t=0.25 s) and 29.5% at (t=0.4 s).

The torque at the hip roll of the support leg Γ6 is the only one that increases when the pivot point
is under the ground level. The rate of increase with respect to the case zp = 0 is given at three
moment within the motion: 6.22% at (t=0s), 1.97% at (t=0.31s) and 6.39% at (t=0.5s).



6.4 Energy evaluation
The profile of the quadratic torque E0 = Γ>Γ during one step is shown in Fig. 9. The simulations
were run with two values of the pivot point depth: zp = 0 and zp = −0.29 m. The two graphs of
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Figure 9: Quadratic torque

Fig. 9 show a peak of value at the beginning of single supports followed by a valley at midstance.
Fig. 9 shows that E0 values at the beginning and at the end of the single support are lower with
a pivot point under the ground level that with a pivot point at ground level. The evolution of
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Figure 10: Sthenic criterion

the sthenic criterion as a function of the pivot point depth is shown in Fig. 10, for values of
zp between [0 −1.09] m, which is the maximum authorized in simulation. The situation zp =
−0.718 m minimizes the sthenic criterion, with the criterion value being reduced by 10.5% in
comparison to the case zp = 0. When we consider a security margin of 50% of foot dimensions,
zp,max =−0.29 m corresponds to 9% reduction of the sthenic criterion compared to the case zp = 0.



7 CONCLUSIONS
This paper proposed an analysis of the effect of the vertical position of the pivot point on the
energy consumption for humanoid walking gait. A 3D simulation was proposed to compare the
classical inverted pendulum with a pivot point on the ground level and an inverted pendulums with
a pivot point under the ground level. The dynamics analysis showed that the use of a pivot point
under the ground reduced considerably the torque solicitation especially in the beginning of the
single support. Moreover,the sthenic energy can be minimized for an optimal pivot point depth.

The results can be included in walking pattern generators in order to reduce energy consumption
during walking and to obtain a natural rolling of feet.
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