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Abstract. This paper addresses the problem of synchronous beeping,
as addressed by swarms of fireflies. We present Byzantine-resilient algo-
rithms ensuring that the correct processes eventually beep synchronously
despite a subset of nodes beeping asynchronously. We assume that n >
2f (n is the number of processes and f is the number of Byzantine
processes) and that the initial state of the processes can be arbitrary
(self-stabilization). We distinguish the cases where the beeping period is
known, unknown or approximately known. We also consider the situation
where the processes can produce light continuously.

1 Introduction

Biologically inspired algorithms have become increasingly popular in the last
decades [21]. This field is motivated by fascinating emerging phenomena in na-
ture: swarms of simple individuals (cells [15], ants [3], cuckoos [7], bats [13],
. . . ) that seem to achieve a very consistent and regular behavior without cen-
tralized control and with very limited communications. It is appealing to design
distributed algorithms reproducing their behavior with minimal communication
assumptions.

One of these phenomena is the synchronization of fireflies [18, 19]. Fireflies are
insect that can produce flashes of light at night. They can do so synchronously
and with a regular period. Our interest here is to recreate this phenomena in
the field of distributed computing.

At first sight, this problem has similarities with the problem of clock syn-
chronization [9, 4, 8], which can also be declined for wireless ad hoc networks
[16] and simultaneous-action synchronization problems [20]. These problems are
however typically studied in message passing systems: the processes can identify
each other and send semantically rich messages with timestamps. Such strong
communication assumptions do not seem to be available in a fireflies swarm. In
this paper, we therefore consider minimal communication primitives.

The fireflies synchronization problem has first been studied from a math-
ematical point of view [12, 14]: the individuals are represented as dynamical
oscillators, and the problem is modeled as a system of differential equations.
Another model, more related to the field of distributed computing, proposed in
[2, 11, 17], involves processes that can produce discrete beeps at arbitrary mo-
ments, and must eventually beep synchronously.



Solutions to these problems [2, 11, 17] use averaging methods to achieve syn-
chronous beeping. These solutions are efficient, but are also very sensitive to
incorrect processes, which can easily move forward the mean value. Therefore, if
there is no limit on the frequency of malicious beeps, one single incorrect process
is sufficient to prevent synchronization.

In this paper, we consider that some fireflies may have an incorrect behavior:
they can be broken, dead, ill, or trying to eat each other [1]. Our motivation is
the intuition that a biological system should be inherently resilient to such mal-
functions. We thus consider the problem of synchronous beeping in the presence
of malicious (Byzantine) processes. A first solution relaxes the requirement to
“beeping in a bounded interval” [5]. However, we would like to preserve perfect
synchronous beeping here. In order to tolerate malicious beeps, our strategy is
not based on averaging methods, but on the number of simultaneous beeps and
the delay between two groups of beeps.

Our contribution. We consider a system where each process can produce dis-
crete and anonymous beeps (flashes of light). Each process can “see” all beeps,
and count the number of beeps produced at a given instant. The processes can
however not distinguish the authors of the beeps, and no other communication
is allowed between the processes. We consider the most general failure model:
Byzantine failures [10], where the failing processes have a totally arbitrary be-
havior. Among the n processes, at most f are Byzantine. We assume that n > 2f
(we show that this condition is necessary in Section 3).

We consider the context of self-stabilization [6]: the initial state is arbitrary
– that is, each process has initially memorized an arbitrary sequence of beeps.
This assumption encompasses any chaotic sequence of events occurring before
the synchronization (for instance, some processes can join and leave the system,
which is usually the case in swarms of insects). Then, we show how to achieve
synchronous beeping: all correct processes beep simultaneously and with the
same period, whatever the behavior of Byzantine processes may be.

We present the model and the problem in Section 2, and show that the
condition n > 2f is necessary in Section 3. Then, we present four algorithms for
this problem:

– We first give two algorithms for the cases where the desired beeping period
is known (Section 4) and unknown (Section 5).

– Then, we give an algorithm for the case where each process has an approx-
imate knowledge of the desired period (Section 6), which may be the case
of insects. Thus, the correct processes must agree on a same period, and
this period must be in the range of the desired one. This problem is more
difficult, as correct processes are disorganized while Byzantine processes are
perfectly coordinated. In this part, we relax the self-stabilization property
(we give an impossibility result) and assume that n > 3f .

– Finally, we consider an alternative model where processes can produce light
continuously. We give an algorithm with approximate period knowledge that
does not relax the two aforementioned properties (Section 7).



These solutions show that synchronous beeping is feasible even in the pres-
ence of adversaries with an unbounded power. They could be adapted for clock
synchronization with minimal communication assumptions.

2 Model and Problem

In this section, we state the distributed system model and the problem.

Communication model. We consider a distributed system of n processes and a
continuous time domain. A process can beep at any time t. A beep is discrete,
and is entirely described by its time position t (we will revisit this assumption
in Section 7). No other communication than beeping is available, and the beeps
are anonymous.

For any time t, let S(t) be a multiset containing the time of each previous
beep (∀t′ ∈ S(t), t′ < t). If m processes beep simultaneously at time t′, then t′

appears m times in S(t) (for instance, if S(t) = {t1, t2, t2, t2, t3} with t1 < t2 <
t3, 3 processes beep simultaneously at time t2). For S(t) = {t1, t2, t3, . . . }, let
S′(t) = {t− t1, t− t2, t− t3, . . . }.

For any time t, each process knows the set S′(t). In other words, each process
only knows the position of the previous beeps relatively to the current time: there
is no common time origin (otherwise, the problem would be trivial and would not
correspond to swarms of fireflies). The processes can count the beeps at a given
instant, but cannot distinguish the authors of the beeps. We do not consider
any memory restriction that would prevent the processes from knowing S′(t)
entirely. No other form of memory (such as internal variables) is available.

We denote by m(t) the number of processes beeping at time t. The beeps
are strictly discrete: there exists no time interval [t1, t2] with t1 < t2 such that,
∀t ∈ [t1, t2], m(t) 6= 0. Therefore, there must always be a time interval between
two successive and non-simultaneous beeps.

Correct and Byzantine processes. At most f processes are Byzantine, and may
exhibit an arbitrary behavior. The other processes are correct, and follow the
algorithm assigned to them. We assume that n > 2f . All correct processes follow
the same algorithm.

Self-stabilization. Our objective is to achieve synchronization despite any arbi-
trary initial state. Therefore, we assume the previous model encompasses such
an arbitrary initial state.

Let t0 be a given time, unkown to the correct processes. We assume that,
before t0, each correct process has memorized an arbitrary sequence of beeps
(which may be different for each process). Then, starting from t0, all correct
processes register the same beeps.

More precisely, for any process p, let A(p) = {t1, t2, t3, . . . } be an arbitrary
set with repetition such that, ∀t ∈ A(p), t < t0. A(p) represents the arbitrary
sequence of beeps memorized by p before t0. For any time t, let A′(p, t) =



{t − t1, t − t2, t − t3, . . . }. Then, we now assume that for any time t, p knows
S′(t) ∪A′(p, t).

An algorithm ensuring a given property in such a context (the initial state is
arbitrary) is self-stabilizing [6]. In particular, it can represent the fact that some
processes join and leave the system arbitrarily before t0.

Problem. Let T be any time period. We say that the processes achieve syn-
chronous beeping at time t if, starting from time t, all correct processes beep
and only beep at time t, t+ T , t+ 2T , t+ 3T , . . .

3 Lower bound

Is this section, we show that it is necessary to have a strict majority of correct
processes (n > 2f) to solve the problem.

Theorem 1. An algorithm can only ensure synchronous beeping if n > 2f .

Proof. Suppose the opposite: there exists an algorithm ensuring synchronous
beeping with n ≤ 2f . In particular, let us suppose that n = 2f .

We first show that for any initial state, there exists a time period T ′ and a
time t1 such that, ∀t ≥ t1, the behavior of the correct processes at time t (that
is, their decision to beep or not) only depends of the time interval ]t − T ′, t[.
Suppose the opposite. Then, there exists an initial state such that ∀t ≥ t0, there
exists t′ ≥ t such that two correct processes do not have the same behavior at
time t′. Therefore, at time t′, at least one correct process beeps and at least
one correct process does not beep. Thus, as synchronous beeping requires all
correct processes to have the same behavior after a time t ≥ t0, we do not have
synchronous beeping: contradiction. Thus, there exists such a time t1 and such
a time period T ′.

Let t, t + T, t + 2T . . . be the times of synchronous beeping. Let us suppose
that the Byzantine processes beep at times t+T/2, t+3T/2, t+5T/2 . . . Let i be
an integer such that iT > T ′ and t+ iT ≥ t1. As we have synchronous beeping,
all correct processes must beep at time t+ (i+ 1)T . As f processes beep a time
t, t+ T/2, t+ T, t+ 3T/2 . . . , the interval ]t′ − T ′, t′[ contains exactly the same
beeps for t′ = t + (i + 1)T and for t′ = t + (i + 1)T + T/2. Thus, all correct
processes also beep at time t+ (i+ 1)T + T/2, and we do not have synchronous
beeping: contradiction.

4 Known Beeping Period

In this section, we assume that all correct processes know the same time period
T . We give an algorithm ensuring synchronous beeping in this setting.



4.1 Algorithm (Known Period Synchronous Beeping - KPSB)

A correct process beeps at time t if at least one of the two following conditions
is true:

1. ∀t′ ∈]t− T, t[, m(t′) = 0

2. (m(t− T ) 6= 0) ∧ (∀t′ ∈]t− T, t[,m(t′) ≤ f)

4.2 Informal description

The KPSB algorithm performs in three steps:

– If no process beeps, then eventually, some correct process beeps (condition
1 of the algorithm).

– Then, T time units after a beep, all correct processes beep (condition 2 of
the algorithm).

– Finally, when at least f + 1 processes beep at the same time, the correct
processes wait T time units and beep (condition 2 of the algorithm). Then,
we have synchronous beeping.

4.3 Correctness proof

Lemma 1. There exists t ≥ t0 such that m(t) 6= 0.

Proof. Suppose the opposite: ∀t ≥ t0, m(t) = 0. Then, according to condition 1
of the algorithm, a correct process eventually beeps: contradiction.

Lemma 2. There exists t ≥ t0 such that m(t) > f .

Proof. Suppose the opposite: ∀t ≥ t0,m(t) ≤ f . According to Lemma 1, there
exists a time t′ ≥ t0 such that m(t′) 6= 0. Then, according to condition 2 of
the algorithm, all correct processes beep at time t′ + T , and m(t′ + T ) > f :
contradiction. Thus, the result.

Theorem 2. Algorithm KPSB ensures synchronous beeping.

Proof. According to Lemma 2, there exists a time t such that m(t) > f . Then,
according to condition 2 of the algorithm, no correct process can beep in ]t+T [.

Suppose that a correct process p does not beep at time t + T . Consider the
point of view of p. Then, according to condition 2 of the algorithm, there exists
t′ ∈]t, t+T [ such that m(t′) > f . Thus, as no correct process beeps in ]t+T [, at
least f + 1 Byzantine processes beep at time t′: contradiction. Thus, all correct
processes beep a time t+ T , and m(t+ T ) > f .

Therefore, by induction, we achieve synchronous beeping at time t+ T .



5 Unknown Beeping Period

We now assume that no common time period is initially known to the processes.
We thus give an algorithm where the correct processes achieve synchronous beep-
ing after agreeing on a same period. Note that, as the processes do no have any
common time metric, this can represent the case where the processes have a
different perception of time.

5.1 Preliminaries

The algorithm makes use of the following predicates.
Let t be any time, let t1 < t, and let t2 < t1. We define the following

predicates:

– C1(t, t1, t2) ≡ (m(t1) > f) ∧ (m(t2) > f) ∧ (∀t′ ∈]t2, t1[∪]t1, t[,m(t′) ≤ f)
– C2(t, t1, t2) ≡ (m(t1) 6= 0) ∧ (m(t2) 6= 0)

For any time t and ∀i ∈ {1, 2}, we also define the following predicates:

– nowi(t): there exists t1 < t and t2 < t1 such that Ci(t, t1, t2) is true and
t− t1 = t1 − t2

– waiti(t): there exists t1 < t and t2 < t1 such that Ci(t, t1, t2) is true and
t− t1 < t1 − t2

5.2 Algorithm (Unknown Period Synchronous Beeping - UPSB)

Let p be a correct process. Let T (p) be a totally arbitrary time period known
by p.

Process p beeps if one of the following conditions is satisfied:

1. now1(t)
2. ¬wait1(t) ∧ now2(t)
3. ¬wait1(t) ∧ ¬wait2(t) ∧ (∀t′ ∈]t− T (p), t[,m(t′) = 0)

5.3 Informal description

The UPSB algorithm performs in three steps:

– If no process beeps, then eventually, some correct process beeps (condition
3 of the algorithm).

– If two processes beep with a time interval T , then all correct processes beep T
time units after the second beep (condition 2 of the algorithm). This ensures
that at least f + 1 processes beep at the same time.

– If at least f + 1 processes beep at two different times, then all correct pro-
cesses beep with the same time interval (condition 1 of the algorithm). Thus,
we have synchronous beeping.

To avoid collisions between the conditions, we define the algorithm such
that condition 1 has priority over condition 2, and condition 2 has priority over
condition 3. This is ensured by the conditions waiti and nowi.



5.4 Correctness proof

Lemma 3. Let t ≥ t0. There exists t′ ≥ t such that m(t) 6= 0.

Proof. Suppose the opposite: ∀t′ > t,m(t) = 0.

Consider the point of view of a given process p.

– If there exists t1 < t and t2 < t1 such that C1(t, t1, t2) is true and t − t1 ≤
t1 − t2, then according to condition 1 of the algorithm, p beeps at time
t′ = 2t1 − t2 ≥ t.

– Otherwise, if there exists t1 < t and t2 < t1 such that C2(t, t1, t2) is true and
t − t1 ≤ t1 − t2, then according to condition 2 of the algorithm, p beeps at
time t′ = 2t1 − t2 ≥ t.

– Otherwise, according to condition 3 of the algorithm, p beeps at time t′ ∈
[t, t+ T (p)].

Therefore, in all cases, p beeps at a time t′ ≥ t: contradiction. Thus, the
result.

Lemma 4. Let t ≥ t0. There exists t′ ≥ t such that m(t) > f .

Proof. Suppose the opposite: ∀t′ ≥ t,m(t) ≤ f .

Consider the point of view of a given correct process p. If there exists t1 < t
and t2 < t1 such that C1(t, t1, t2) is true, then ∀t′ > 2t1 − t2, now1(t′) is false.
Otherwise, ∀t′ ≥ t, now1(t′) is false. Thus, there exists a date t3(p) ≥ t such
that, ∀t′ ≥ t3(p), now1(t′) and now2(t′) are false. Let t3 be such that, for any
correct process p, t3 ≥ t3(p).

According to Lemma 3, there exists t4 ≥ t3 and t5 > t4 such that m(t4) 6= 0
and m(t5) 6= 0. Thus, at time t′ = 2t5 − t4, now3(t′) is true. As t5 > t4 ≥ t0, for
all correct processes, condition 2 of the algorithm is satisfied at time t′. Thus, all
correct processes beep at time t′, and m(t′) > f : contradiction. Thus, the result.

Theorem 3. Algorithm UPSB ensures synchronous beeping.

Proof. According to Lemma 4, there exists t ≥ t0 and t1 > t such that m(t) > f
and m(t1) > f . Let t2 be the earliest time such that t2 > t and m(t2) > f . Let
T = t2 − t.

According to the algorithm, no correct process can beep a time t′ ∈]t, t+T [.
Thus, as there is at most f Byzantine processes, ∀t′ ∈]t, t+ T [, m(t) ≤ f . Thus,
as t ≥ 0, for all correct processes, condition 1 of the algorithm is satisfied at
time t+ T . Thus, all correct process beep at time t, and m(t) > f .

Therefore, by induction, we achieve synchronous beeping at date t, with a
period T .



6 Average Beeping Period

In the two previous sections, we gave an algorithm for the case where a same
period T is initially known to all correct processes, and then one for the case
where this period is unknown, and where the correct processes must agree on
the same period. However, this can be any period.

We now consider the case where the correct processes have an approximate
knowledge of a desired period T0, and must agree on a period close to T0. This is
a more difficult problem, as correct processes are disorganized while Byzantine
processes keep their perfect coordination capabilities.

For these reasons, we consider a more restrictive setting than the previous
section. We now assume that n > 3f , and that no process beeps before a time
t0. This second assumption is justified in Section 6.1.

We assume that each correct process knows a time period T (p) which is in a
certain interval around T0: T (p) ∈ [T0, (1+ ε)T0], with ε ∈]0, 1[. The parameter ε
can be as small as we want, and represents the precision of the knowledge of the
period. We give an algorithm that ensures synchronous beeping with a period
T ∈ [(1− ε)T0, (1 + ε)T0].

6.1 Lower bound

First, let us justify the removal of the self-stabilizing property for this part.
We show that, if we require self-stabilization, no algorithm can ensure that the
beeping period is in the desired interval.

Theorem 4. There is no self-stabilizing algorithm ensuring synchronous beep-
ing with a period T ∈ [(1− ε)T0, (1 + ε)T0].

Proof. Suppose the opposite. Then, for a given initial state, there exists T ′ and
t1 such as described in Theorem 1.

Let t be a time where we have synchronous beeping with a period T . Let i
be such that iT ≥ T ′. Then, all correct processes beep at time t2 = t+ (i+ 1)T .
Let p be a correct process and let T1 = T (p).

Now, let q be a correct process, and suppose that the content of the interval
]t2 − T ′, t2[ is the initial state for q. Then, if T (q) = T1, q beeps at times t0,
t0 + T1, t0 + 2T1 . . .

Let us show that there exists T2 > T1 such that, if T (q) = T2, q does not
beep at all times t0, t0 +T1, t0 +2T1 . . . Suppose the opposite. Then, the beeping
period T1 is independent of T (q), and it is impossible to ensure that T1 ∈ [(1−
ε)T0, (1+ε)T0]: contradiction. Let T2 be the smallest period having this property,
and let T3 = T2/(1 + ε).

Now, let us consider the two following situations:

1. For one correct process q, T (q) = T3. For each other correct process p, T (p) =
T2. One Byzantine process b acts like a correct process with T (b) = T2.

2. For each correct process p, T (p) = T2. One Byzantine process b acts like a
correct process with T (b) = T3.



In situation 2, as the algorithm ensures synchronous beeping, all correct pro-
cesses beep at date t0, t0 +T1, t0 + 2T1 . . . Thus, as the two situations are indis-
tinguishable for the correct processes, each correct process p such that T (p) = T2
beeps at the same times. However, there exists a time t′ such that all correct
processes but q beep. As the behavior of q at a given time t only depends of
the time interval ]t − T ′, t[, the same situation repeats each T ′ time units, and
q never beeps synchronously with other correct processes. Thus, we do not have
synchronous beeping: contradiction.

6.2 Preliminaries

Our algorithm uses the following function g as well as several predicates.
Let T and T ′ be two time periods. Let k ∈ Z be the largest rational integer

such that T (1 + ε)k ≤ T ′. Then, let g(T, T ′) = T (1 + ε)k.

Let t be any time, let t1 < t, and let t2 < t1. We define the following
predicates:

– C1(t, t1, t2) ≡ (m(t1) > f) ∧ (m(t2) > f) ∧ (∀t′ ∈]t2, t1[∪]t1, t[,m(t′) ≤
f) ∧ (∃t′ < t2,m(t′)

– C2(t, t1, t2) ≡ (m(t1) > f) ∧ (m(t2) 6= 0) ∧ (∀t′ ∈]t2, t1[,m(t′) = 0) ∧ (∀t′ ∈
]t1, t[,m(t′) ≤ f)

– C3(t, t1, t2) ≡ (m(t1) 6= 0) ∧ (m(t2) 6= 0)

Then, for any time t and ∀i ∈ {1, 3}, we consider the following predicates:

– nowi(t): there exists t1 < t and t2 < t1 such that Ci(t, t1, t2) is true and
t− t1 = t1 − t2

– waiti(t): there exists t1 < t and t2 < t1 such that Ci(t, t1, t2) is true and
t− t1 < t1 − t2

At last, we add the two following predicates:

– now(t, T ): there exists t1 < t and t2 < t1 such that C2(t, t1, t2) is true and
t− t1 = g(t1 − t2, T ).

– wait(t, T ): there exists t1 < t and t2 < t1 such that C2(t, t1, t2) is true and
t− t1 < g(t1 − t2, T ).

6.3 Algorithm (Average Period Synchronous Beeping - APSB)

A correct process p beeps if one of the following conditions is satisfied:

1. now′
1(t)

2. ¬wait′1(t) ∧ now(t, T (p))
3. ¬wait′1(t) ∧ ¬wait(t, T (p)) ∧ now3(t)
4. ¬wait′1(t) ∧ ¬wait(t, T (p)) ∧ ¬wait3(t) ∧ (∀t′ ∈]t− T (p), t[,m(t′) = 0)



6.4 Informal description

The main difficulty is that the correct processes are disorganized. For instance,
if each process p beeps T (p) time units after a given beep, the correct processes
may never beep at the same time.

To overcome this difficulty, we use a function g(T, T ′) that uses any time
measure T to split the periods T (p) in two groups (see Lemma 5). The two
possible output periods are in the interval [(1− ε)T0, (1 + ε)T0] (see Lemma 6).
Thus, as n > 3f , a majority of correct processes beep with the same period,
which is in the desired interval.

The formalism is similar to the previous algorithm. The principle is as follows:

– Condition 4 of the algorithm ensures that a process always eventually beeps.
– Condition 3 ensures that all correct processes eventually beep at the same

time.
– Condition 2 computes the aforementioned principle.
– Condition 1 reproduces the same time period and ensures synchronous beep-

ing.

6.5 Correctness proof

Lemma 5. For a given T > 0, let G(T ) =
⋃
T ′∈[T0,(1+ε)T0]

g(T, T ′). Then,

|G(T )| ≤ 2.

Proof. Let k ∈ Z be the largest relative integer such that T (1 + ε)k ≤ T0. Thus,
g(T, T0) = T (1 + ε)k and T0 < T (1 + ε)k+1. Therefore, (1 + ε)T0 < T (1 + ε)k+2

and g(T, (1 + ε)T0) ≤ T (1 + ε)k+1. Then, either G(T ) = {T (1 + ε)k} or G(T ) =
{T (1 + ε)k, T (1 + ε)k+1)}, and |G(T )| ≤ 2.

Lemma 6. ∀T > 0 and ∀T ′ ∈ [T0, (1 + ε)T0], g(T, T ′) ∈ [(1− ε)T0, (1 + ε)T0].

Proof. Let k be largest relative integer such that T (1 + ε)k ≤ T0. Then, T0 <
T (1 + ε)k+1 = g(T, T0)(1 + ε). As (1− ε)(1 + ε) = 1− ε2 < 1, 1− ε < 1/(1 + ε),
and g(T, T0) > T0/(1 + ε) > (1 − ε)T0. Thus, g(T, T ′) ≥ (1 − ε)T0. Besides, as
g(T, T ′) ≤ T ′, g(T, T ′) ≤ (1 + ε)T0. Thus, the result.

Lemma 7. There exists t ≥ t0 such that m(t) 6= 0.

Proof. Suppose the opposite: ∀t ≥ t0, m(t) = 0. Let p be a correct process.
Then, according to condition 4 of the algorithm, p beeps at time t0 + T (p):
contradiction. Thus, the result.

Lemma 8. There exists t ≥ t0 and t′ < t such that m(t) > f and m(t′) 6= 0.

Proof. Suppose the opposite: there exists no such t and t′. According to Lemma 7,
there exists a time t1 such that m(t1) 6= 0. Let t1 be the earliest date such that
m(t1) 6= 0. According to Lemma 7, there exists t′ ≥ t0 such that t′ > t1 and
m(t′) 6= 0. Then, according to condition 3 of the algorithm, all correct processes
beep at time 2t′ − t1, and m(2t′ − t1) > f : contradiction. Thus, the result.



Theorem 5. Algorithm APSB ensures synchronous beeping with a period T ∈
[(1− ε)T0, (1 + ε)T0].

Proof. Let t be the earliest time such as described in Lemma 8. Let t′ be the
latest time such that t′ < t and m(t′) 6= 0. According to condition 2 of the
algorithm, each correct process p beeps at time t+ g(t− t′, T (p)).

According to Lemma 5 and Lemma 6, there are only two possible value T1
and T2 of g(t−t′, T (p)), and {T1, T2} ∈ [(1−ε)T0, (1+ε)T0]. Let P1 (resp. P2) be
the set of correct processes beeping at time t+T1(p) (resp. t+T2(p)). As n > 3f ,
then either |P1| > f or |P2| > f . Thus, there exists t1 ∈ {t + T1(p), t + T2(p)}
such that m(t1) > f . Let t1 be the earliest time such that t1 > t and m(t1) > f .

Let us show that T = t1 − t ∈ [(1 − ε)T0, (1 + ε)T0]. Suppose the opposite.
Then, according to condition 2 of the algorithm, no correct process beeps at time
t1. Thus, at least f + 1 Byzantine nodes beep at time t1: contradiction.

Then, according to condition 1 of the algorithm, all correct processes beep
at time t1 + T , and no correct process beeps in the time interval ]t1, t1 + T [.
Therefore, by induction, we have synchronous beeping at time t1 with a period
T ∈ [(1− ε)T0, (1 + ε)T0].

7 Synchronous Lighting

In the previous sections, we assumed that the processes could produce discrete
beeps. In this section, we assume that a process p can continuously increase
and decrease a luminosity variable l(p). We define an alternative but similar
problem (synchronous lighting) and give an algorithm for the case where the
desired period is approximately known. In this section, n > 2f .

Each correct process p knows a time period T (p) ∈ [T0, (1 + ε)T0], and holds
a variable l(p) ∈ [0, 1]. l(p) is a continuous function of time. We assume that the
time to increase (resp. decrease) l(p) from 0 to 1 (resp. 1 to 0) is at most εT0.
Let P be the set of processes. Let L(t) be the value of Σp∈P l(p) at time t.

7.1 Problem

We say that the processes achieve synchronous lighting at time t1 if there exists
t2, t3, t4 . . . such that:

1. Each time ti corresponds to a peak of luminosity: ∀i ∈ {1, 2, 3, . . . }, L(ti) ≥
n− f .

2. The delay between two consecutive times ti is approximately equal to T0:
∀i ∈ {1, 2, 3, . . . }, ti+1 − ti ∈ [T0, (1 + 2ε)T0].

3. The correct processes only produce light around times ti: for a given correct
process p, if l(p) 6= 0 at time t, then there exists i ∈ {1, 2, 3, . . . } such that
|t− ti| ≤ 2εT0.



7.2 Algorithm (Average Period Synchronous Lighting - APSL)

Each correct process p has the following behavior:

– If there exists t′ ∈]t− T (p), t[ such that L(t′) ≥ n− f , decrease l(p).
– Otherwise, increase l(p).

7.3 Correctness Proof

Lemma 9. There exists t ≥ t0 such that L(t) ≥ n− f .

Proof. Suppose the opposite: ∀t ≥ t0, L(t) < n− f . Let p be a correct process.
Then, according to the algorithm, starting from time t0 + T (p), l(p) increases.
Therefore, at time t0 + (1 + 2ε)T0, for each correct process p, l(p) = 1. Thus,
L(t0 + (1 + 2ε)T0) ≥ n− f : contradiction. Thus, the result.

Theorem 6. Algorithm APSL ensures synchronous lighting.

Proof. According to Lemma 9, there exists t ≥ t0 such that L(t) ≥ n − f .
Therefore, according to the algorithm, starting from time t, each correct process
p decreases l(p). Therefore, at time t+ εT0, for each correct process p, l(p) = 0.
Then, as there are at most f Byzantine processes, ∀t′ ∈]t+ εT0, t+ T0[, L(t′) ≤
f ≤ n− f .

Now, let us show that there exists t1 ∈ [t + T0, t + (1 + 2ε)T0] such that
L(t1) ≥ n−f . Suppose the opposite. Let p be a correct process. Then, according
to the algorithm, starting from time t+ T (p), l(p) increases. Therefore, at time
t+(1+2ε)T0, for each correct process p, l(p) = 1. Thus, L(t+(1+2ε)T0) ≥ n−f :
contradiction.

Then, L(t1) ≥ n− f , t1 − t ∈ [T0, (1 + 2ε)T0] and for each correct process p,
if t′ ∈]t + εT0, t + T0[, l(p) = 0 at time t′. Thus, if l(p) 6= 0 at time t′ ∈ [t, t1],
then either |t′ − t| ≤ 2εT0 or |t′ − t1| ≤ 2εT0.

Therefore, by induction, we have synchronous lighting at time t.

8 Conclusion

We considered the problem of synchronous beeping. We assumed the presence
of Byzantine processes that can beep as often as they want. We gave synchro-
nization algorithms for the cases where the period is known, unknown and ap-
proximately known. We also considered an alternative continuous model.

An open question is the tightness of the condition n > 3f for the average
beeping knowledge. Also, many extensions could be made on the communication
graph and the communication delays.
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