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Byzantine Fireflies

This paper addresses the problem of synchronous beeping, as addressed by swarms of fireflies. We present Byzantine-resilient algorithms ensuring that the correct processes eventually beep synchronously despite a subset of nodes beeping asynchronously. We assume that n > 2f (n is the number of processes and f is the number of Byzantine processes) and that the initial state of the processes can be arbitrary (self-stabilization). We distinguish the cases where the beeping period is known, unknown or approximately known. We also consider the situation where the processes can produce light continuously.

Introduction

Biologically inspired algorithms have become increasingly popular in the last decades [START_REF] Yang | Swarm Intelligence and Bio-Inspired Computation, Theory and Applications[END_REF]. This field is motivated by fascinating emerging phenomena in nature: swarms of simple individuals (cells [START_REF] Reid | Cellular decision-making: How an amoeboid organism solves the two-armed bandit problem[END_REF], ants [3], cuckoos [START_REF] Amir Hossein Gandomi | Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems[END_REF], bats [START_REF] Nakamura | BBA: A binary bat algorithm for feature selection[END_REF], . . . ) that seem to achieve a very consistent and regular behavior without centralized control and with very limited communications. It is appealing to design distributed algorithms reproducing their behavior with minimal communication assumptions.

One of these phenomena is the synchronization of fireflies [START_REF] Smith | Synchronous flashing of fireflies[END_REF][START_REF] Steven | Sync: The emerging science of spontaneous order[END_REF]. Fireflies are insect that can produce flashes of light at night. They can do so synchronously and with a regular period. Our interest here is to recreate this phenomena in the field of distributed computing.

At first sight, this problem has similarities with the problem of clock synchronization [START_REF] Lamport | Time, clocks, and the ordering of events in a distributed system[END_REF][START_REF] Cristian | Probabilistic clock synchronization[END_REF][START_REF] Kopetz | Clock synchronization in distributed real-time systems[END_REF], which can also be declined for wireless ad hoc networks [START_REF] Römer | Time synchronization in ad hoc networks[END_REF] and simultaneous-action synchronization problems [START_REF] Weyns | Regional synchronization for simultaneous actions in situated multi-agent systems[END_REF]. These problems are however typically studied in message passing systems: the processes can identify each other and send semantically rich messages with timestamps. Such strong communication assumptions do not seem to be available in a fireflies swarm. In this paper, we therefore consider minimal communication primitives.

The fireflies synchronization problem has first been studied from a mathematical point of view [START_REF] Mirollo | Synchronization of pulse-coupled biological oscillators[END_REF][START_REF] Peskin | Mathematical aspects of heart physiology[END_REF]: the individuals are represented as dynamical oscillators, and the problem is modeled as a system of differential equations. Another model, more related to the field of distributed computing, proposed in [2,[START_REF] Lucarelli | Decentralized synchronization protocols with nearest neighbor communication[END_REF][START_REF] Simeone | Distributed synchronization in wireless networks[END_REF], involves processes that can produce discrete beeps at arbitrary moments, and must eventually beep synchronously.

Solutions to these problems [2,[START_REF] Lucarelli | Decentralized synchronization protocols with nearest neighbor communication[END_REF][START_REF] Simeone | Distributed synchronization in wireless networks[END_REF] use averaging methods to achieve synchronous beeping. These solutions are efficient, but are also very sensitive to incorrect processes, which can easily move forward the mean value. Therefore, if there is no limit on the frequency of malicious beeps, one single incorrect process is sufficient to prevent synchronization.

In this paper, we consider that some fireflies may have an incorrect behavior: they can be broken, dead, ill, or trying to eat each other [1]. Our motivation is the intuition that a biological system should be inherently resilient to such malfunctions. We thus consider the problem of synchronous beeping in the presence of malicious (Byzantine) processes. A first solution relaxes the requirement to "beeping in a bounded interval" [START_REF] Daliot | Self-stabilizing pulse synchronization inspired by biological pacemaker networks[END_REF]. However, we would like to preserve perfect synchronous beeping here. In order to tolerate malicious beeps, our strategy is not based on averaging methods, but on the number of simultaneous beeps and the delay between two groups of beeps.

Our contribution. We consider a system where each process can produce discrete and anonymous beeps (flashes of light). Each process can "see" all beeps, and count the number of beeps produced at a given instant. The processes can however not distinguish the authors of the beeps, and no other communication is allowed between the processes. We consider the most general failure model: Byzantine failures [START_REF] Lamport | The byzantine generals problem[END_REF], where the failing processes have a totally arbitrary behavior. Among the n processes, at most f are Byzantine. We assume that n > 2f (we show that this condition is necessary in Section 3).

We consider the context of self-stabilization [START_REF] Dolev | Self-Stabilization[END_REF]: the initial state is arbitrary -that is, each process has initially memorized an arbitrary sequence of beeps. This assumption encompasses any chaotic sequence of events occurring before the synchronization (for instance, some processes can join and leave the system, which is usually the case in swarms of insects). Then, we show how to achieve synchronous beeping: all correct processes beep simultaneously and with the same period, whatever the behavior of Byzantine processes may be.

We present the model and the problem in Section 2, and show that the condition n > 2f is necessary in Section 3. Then, we present four algorithms for this problem:

-We first give two algorithms for the cases where the desired beeping period is known (Section 4) and unknown (Section 5). -Then, we give an algorithm for the case where each process has an approximate knowledge of the desired period (Section 6), which may be the case of insects. Thus, the correct processes must agree on a same period, and this period must be in the range of the desired one. This problem is more difficult, as correct processes are disorganized while Byzantine processes are perfectly coordinated. In this part, we relax the self-stabilization property (we give an impossibility result) and assume that n > 3f . -Finally, we consider an alternative model where processes can produce light continuously. We give an algorithm with approximate period knowledge that does not relax the two aforementioned properties (Section 7).

These solutions show that synchronous beeping is feasible even in the presence of adversaries with an unbounded power. They could be adapted for clock synchronization with minimal communication assumptions.

Model and Problem

In this section, we state the distributed system model and the problem.

Communication model. We consider a distributed system of n processes and a continuous time domain. A process can beep at any time t. A beep is discrete, and is entirely described by its time position t (we will revisit this assumption in Section 7) 

(t) = {t -t 1 , t -t 2 , t -t 3 , . . . }.
For any time t, each process knows the set S (t). In other words, each process only knows the position of the previous beeps relatively to the current time: there is no common time origin (otherwise, the problem would be trivial and would not correspond to swarms of fireflies). The processes can count the beeps at a given instant, but cannot distinguish the authors of the beeps. We do not consider any memory restriction that would prevent the processes from knowing S (t) entirely. No other form of memory (such as internal variables) is available.

We denote by m(t) the number of processes beeping at time t. The beeps are strictly discrete: there exists no time interval [t 1 , t 2 ] with t 1 < t 2 such that, ∀t ∈ [t 1 , t 2 ], m(t) = 0. Therefore, there must always be a time interval between two successive and non-simultaneous beeps.

Correct and Byzantine processes. At most f processes are Byzantine, and may exhibit an arbitrary behavior. The other processes are correct, and follow the algorithm assigned to them. We assume that n > 2f . All correct processes follow the same algorithm.

Self-stabilization. Our objective is to achieve synchronization despite any arbitrary initial state. Therefore, we assume the previous model encompasses such an arbitrary initial state.

Let t 0 be a given time, unkown to the correct processes. We assume that, before t 0 , each correct process has memorized an arbitrary sequence of beeps (which may be different for each process). Then, starting from t 0 , all correct processes register the same beeps.

More precisely, for any process p, let A(p) = {t 1 , t 2 , t 3 , . . . } be an arbitrary set with repetition such that, ∀t ∈ A(p), t < t 0 . A(p) represents the arbitrary sequence of beeps memorized by p before t 0 . For any time t, let A (p, t) = {t -t 1 , t -t 2 , t -t 3 , . . . }. Then, we now assume that for any time t, p knows S (t) ∪ A (p, t).

An algorithm ensuring a given property in such a context (the initial state is arbitrary) is self-stabilizing [START_REF] Dolev | Self-Stabilization[END_REF]. In particular, it can represent the fact that some processes join and leave the system arbitrarily before t 0 .

Problem. Let T be any time period. We say that the processes achieve synchronous beeping at time t if, starting from time t, all correct processes beep and only beep at time t, t + T , t + 2T , t + 3T , . . .

Lower bound

Is this section, we show that it is necessary to have a strict majority of correct processes (n > 2f ) to solve the problem.

Theorem 1. An algorithm can only ensure synchronous beeping if n > 2f .

Proof. Suppose the opposite: there exists an algorithm ensuring synchronous beeping with n ≤ 2f . In particular, let us suppose that n = 2f .

We first show that for any initial state, there exists a time period T and a time t 1 such that, ∀t ≥ t 1 , the behavior of the correct processes at time t (that is, their decision to beep or not) only depends of the time interval ]t -T , t[. Suppose the opposite. Then, there exists an initial state such that ∀t ≥ t 0 , there exists t ≥ t such that two correct processes do not have the same behavior at time t . Therefore, at time t , at least one correct process beeps and at least one correct process does not beep. Thus, as synchronous beeping requires all correct processes to have the same behavior after a time t ≥ t 0 , we do not have synchronous beeping: contradiction. Thus, there exists such a time t 1 and such a time period T .

Let t, t + T, t + 2T . . . be the times of synchronous beeping. Let us suppose that the Byzantine processes beep at times t+T /2, t+3T /2, t+5T /2 . . . Let i be an integer such that iT > T and t + iT ≥ t 1 . As we have synchronous beeping, all correct processes must beep at time t + (i + 1)T . As f processes beep a time t, t + T /2, t + T, t + 3T /2 . . . , the interval ]t -T , t [ contains exactly the same beeps for t = t + (i + 1)T and for t = t + (i + 1)T + T /2. Thus, all correct processes also beep at time t + (i + 1)T + T /2, and we do not have synchronous beeping: contradiction.

Known Beeping Period

In this section, we assume that all correct processes know the same time period T . We give an algorithm ensuring synchronous beeping in this setting.

Algorithm (Known Period Synchronous Beeping -KPSB)

A correct process beeps at time t if at least one of the two following conditions is true:

1. ∀t ∈]t -T, t[, m(t ) = 0 2. (m(t -T ) = 0) ∧ (∀t ∈]t -T, t[, m(t ) ≤ f )

Informal description

The KPSB algorithm performs in three steps:

-If no process beeps, then eventually, some correct process beeps (condition 1 of the algorithm). -Then, T time units after a beep, all correct processes beep (condition 2 of the algorithm). -Finally, when at least f + 1 processes beep at the same time, the correct processes wait T time units and beep (condition 2 of the algorithm). Then, we have synchronous beeping.

Correctness proof

Lemma 1. There exists t ≥ t 0 such that m(t) = 0.

Proof. Suppose the opposite: ∀t ≥ t 0 , m(t) = 0. Then, according to condition 1 of the algorithm, a correct process eventually beeps: contradiction.

Lemma 2. There exists t ≥ t 0 such that m(t) > f .

Proof. Suppose the opposite: ∀t ≥ t 0 , m(t) ≤ f . According to Lemma 1, there exists a time t ≥ t 0 such that m(t ) = 0. Then, according to condition 2 of the algorithm, all correct processes beep at time t + T , and m(t + T ) > f : contradiction. Thus, the result.

Theorem 2. Algorithm KPSB ensures synchronous beeping.

Proof. According to Lemma 2, there exists a time t such that m(t) > f . Then, according to condition 2 of the algorithm, no correct process can beep in ]t + T [. Suppose that a correct process p does not beep at time t + T . Consider the point of view of p. Then, according to condition 2 of the algorithm, there exists t ∈]t, t + T [ such that m(t ) > f . Thus, as no correct process beeps in ]t + T [, at least f + 1 Byzantine processes beep at time t : contradiction. Thus, all correct processes beep a time t + T , and m(t + T ) > f . Therefore, by induction, we achieve synchronous beeping at time t + T .

We now assume that no common time period is initially known to the processes. We thus give an algorithm where the correct processes achieve synchronous beeping after agreeing on a same period. Note that, as the processes do no have any common time metric, this can represent the case where the processes have a different perception of time.

Preliminaries

The algorithm makes use of the following predicates.

Let t be any time, let t 1 < t, and let t 2 < t 1 . We define the following predicates:

-C 1 (t, t 1 , t 2 ) ≡ (m(t 1 ) > f ) ∧ (m(t 2 ) > f ) ∧ (∀t ∈]t 2 , t 1 [∪]t 1 , t[, m(t ) ≤ f ) -C 2 (t, t 1 , t 2 ) ≡ (m(t 1 ) = 0) ∧ (m(t 2 ) = 0)
For any time t and ∀i ∈ {1, 2}, we also define the following predicates:

now i (t): there exists t 1 < t and t 2 < t 1 such that C i (t, t 1 , t 2 ) is true and t -t 1 = t 1 -t 2 wait i (t): there exists t 1 < t and t 2 < t 1 such that C i (t, t 1 , t 2 ) is true and t -t 1 < t 1 -t 2

Algorithm (Unknown Period Synchronous Beeping -UPSB)

Let p be a correct process. Let T (p) be a totally arbitrary time period known by p.

Process p beeps if one of the following conditions is satisfied:

1. now 1 (t) 2. ¬wait 1 (t) ∧ now 2 (t) 3. ¬wait 1 (t) ∧ ¬wait 2 (t) ∧ (∀t ∈]t -T (p), t[, m(t ) = 0)

Informal description

The UPSB algorithm performs in three steps:

-If no process beeps, then eventually, some correct process beeps (condition 3 of the algorithm).

-If two processes beep with a time interval T , then all correct processes beep T time units after the second beep (condition 2 of the algorithm). This ensures that at least f + 1 processes beep at the same time. -If at least f + 1 processes beep at two different times, then all correct processes beep with the same time interval (condition 1 of the algorithm). Thus, we have synchronous beeping.

To avoid collisions between the conditions, we define the algorithm such that condition 1 has priority over condition 2, and condition 2 has priority over condition 3. This is ensured by the conditions wait i and now i .

Correctness proof

Lemma 3. Let t ≥ t 0 . There exists t ≥ t such that m(t) = 0.

Proof. Suppose the opposite: ∀t > t, m(t) = 0.

Consider the point of view of a given process p.

- Therefore, in all cases, p beeps at a time t ≥ t: contradiction. Thus, the result.

If
Lemma 4. Let t ≥ t 0 . There exists t ≥ t such that m(t) > f . Proof. Suppose the opposite: ∀t ≥ t, m(t) ≤ f . Consider the point of view of a given correct process p. If there exists t 1 < t and t 2 < t 1 such that C 1 (t, t 1 , t 2 ) is true, then ∀t > 2t 1 -t 2 , now 1 (t ) is false. Otherwise, ∀t ≥ t, now 1 (t ) is false. Thus, there exists a date t 3 (p) ≥ t such that, ∀t ≥ t 3 (p), now 1 (t ) and now 2 (t ) are false. Let t 3 be such that, for any correct process p, t 3 ≥ t 3 (p).

According to Lemma 3, there exists t 4 ≥ t 3 and t 5 > t 4 such that m(t 4 ) = 0 and m(t 5 ) = 0. Thus, at time t = 2t 5 -t 4 , now 3 (t ) is true. As t 5 > t 4 ≥ t 0 , for all correct processes, condition 2 of the algorithm is satisfied at time t . Thus, all correct processes beep at time t , and m(t ) > f : contradiction. Thus, the result. Theorem 3. Algorithm UPSB ensures synchronous beeping.

Proof. According to Lemma 4, there exists t ≥ t 0 and t 1 > t such that m(t) > f and m(t 1 ) > f . Let t 2 be the earliest time such that t 2 > t and m(t 2 ) > f . Let T = t 2 -t.

According to the algorithm, no correct process can beep a time t ∈]t, t + T [. Thus, as there is at most f Byzantine processes, ∀t ∈]t, t + T [, m(t) ≤ f . Thus, as t ≥ 0, for all correct processes, condition 1 of the algorithm is satisfied at time t + T . Thus, all correct process beep at time t, and m(t) > f . Therefore, by induction, we achieve synchronous beeping at date t, with a period T .

In the two previous sections, we gave an algorithm for the case where a same period T is initially known to all correct processes, and then one for the case where this period is unknown, and where the correct processes must agree on the same period. However, this can be any period.

We now consider the case where the correct processes have an approximate knowledge of a desired period T 0 , and must agree on a period close to T 0 . This is a more difficult problem, as correct processes are disorganized while Byzantine processes keep their perfect coordination capabilities.

For these reasons, we consider a more restrictive setting than the previous section. We now assume that n > 3f , and that no process beeps before a time t 0 . This second assumption is justified in Section 6.1.

We assume that each correct process knows a time period T (p) which is in a certain interval around T 0 : T (p) ∈ [T 0 , (1 + )T 0 ], with ∈]0, 1[. The parameter can be as small as we want, and represents the precision of the knowledge of the period. We give an algorithm that ensures synchronous beeping with a period T ∈ [(1 -)T 0 , (1 + )T 0 ].

Lower bound

First, let us justify the removal of the self-stabilizing property for this part. We show that, if we require self-stabilization, no algorithm can ensure that the beeping period is in the desired interval. Proof. Suppose the opposite. Then, for a given initial state, there exists T and t 1 such as described in Theorem 1.

Let t be a time where we have synchronous beeping with a period T . Let i be such that iT ≥ T . Then, all correct processes beep at time t 2 = t + (i + 1)T . Let p be a correct process and let T 1 = T (p). Now, let q be a correct process, and suppose that the content of the interval ]t 2 -T , t 2 [ is the initial state for q. Then, if T (q) = T 1 , q beeps at times t 0 ,

t 0 + T 1 , t 0 + 2T 1 . . .
Let us show that there exists T 2 > T 1 such that, if T (q) = T 2 , q does not beep at all times t 0 , t 0 + T 1 , t 0 + 2T 1 . . . Suppose the opposite. Then, the beeping period T 1 is independent of T (q), and it is impossible to ensure that T 1 ∈ [(1 -)T 0 , (1+ )T 0 ]: contradiction. Let T 2 be the smallest period having this property, and let

T 3 = T 2 /(1 + ).
Now, let us consider the two following situations:

1. For one correct process q, T (q) = T 3 . For each other correct process p, T (p) = T 2 . One Byzantine process b acts like a correct process with T (b) = T 2 . 2. For each correct process p, T (p) = T 2 . One Byzantine process b acts like a correct process with T (b) = T 3 .

In situation 2, as the algorithm ensures synchronous beeping, all correct processes beep at date t 0 , t 0 + T 1 , t 0 + 2T 1 . . . Thus, as the two situations are indistinguishable for the correct processes, each correct process p such that T (p) = T 2 beeps at the same times. However, there exists a time t such that all correct processes but q beep. As the behavior of q at a given time t only depends of the time interval ]t -T , t[, the same situation repeats each T time units, and q never beeps synchronously with other correct processes. Thus, we do not have synchronous beeping: contradiction.

Preliminaries

Our algorithm uses the following function g as well as several predicates.

Let T and T be two time periods. Let k ∈ Z be the largest rational integer such that T (1 + ) k ≤ T . Then, let g(T, T ) = T (1 + ) k .

Let t be any time, let t 1 < t, and let t 2 < t 1 . We define the following predicates:

-C 1 (t, t 1 , t 2 ) ≡ (m(t 1 ) > f ) ∧ (m(t 2 ) > f ) ∧ (∀t ∈]t 2 , t 1 [∪]t 1 , t[, m(t ) ≤ f ) ∧ (∃t < t 2 , m(t ) -C 2 (t, t 1 , t 2 ) ≡ (m(t 1 ) > f ) ∧ (m(t 2 ) = 0) ∧ (∀t ∈]t 2 , t 1 [, m(t ) = 0) ∧ (∀t ∈ ]t 1 , t[, m(t ) ≤ f ) -C 3 (t, t 1 , t 2 ) ≡ (m(t 1 ) = 0) ∧ (m(t 2 ) = 0)
Then, for any time t and ∀i ∈ {1, 3}, we consider the following predicates:

now i (t): there exists t 1 < t and t 2 < t 1 such that C i (t, t 1 , t 2 ) is true and t -t 1 = t 1 -t 2 wait i (t): there exists t 1 < t and t 2 < t 1 such that C i (t, t 1 , t 2 ) is true and

t -t 1 < t 1 -t 2
At last, we add the two following predicates:

now(t, T ): there exists t 1 < t and t 2 < t 1 such that C 2 (t, t 1 , t 2 ) is true and t -t 1 = g(t 1 -t 2 , T ). wait(t, T ): there exists t 1 < t and t 2 < t 1 such that C 2 (t, t 1 , t 2 ) is true and t -t 1 < g(t 1 -t 2 , T ).

Algorithm (Average Period Synchronous Beeping -APSB)

A correct process p beeps if one of the following conditions is satisfied: 

Informal description

The main difficulty is that the correct processes are disorganized. For instance, if each process p beeps T (p) time units after a given beep, the correct processes may never beep at the same time.

To overcome this difficulty, we use a function g(T, T ) that uses any time measure T to split the periods T (p) in two groups (see Lemma 5). The two possible output periods are in the interval [(1 -)T 0 , (1 + )T 0 ] (see Lemma 6). Thus, as n > 3f , a majority of correct processes beep with the same period, which is in the desired interval.

The formalism is similar to the previous algorithm. The principle is as follows:

-Condition 4 of the algorithm ensures that a process always eventually beeps.

-Condition 3 ensures that all correct processes eventually beep at the same time.

-Condition 2 computes the aforementioned principle.

-Condition 1 reproduces the same time period and ensures synchronous beeping. Proof. Let k be largest relative integer such that T

(1 + ) k ≤ T 0 . Then, T 0 < T (1 + ) k+1 = g(T, T 0 )(1 + ). As (1 -)(1 + ) = 1 -2 < 1, 1 -< 1/(1 + ),
and g(T, T 0 ) > T 0 /(1 + ) > (1 -)T 0 . Thus, g(T, T ) ≥ (1 -)T 0 . Besides, as g(T, T ) ≤ T , g(T, T ) ≤ (1 + )T 0 . Thus, the result.

Lemma 7. There exists t ≥ t 0 such that m(t) = 0.

Proof. Suppose the opposite: ∀t ≥ t 0 , m(t) = 0. Let p be a correct process. Then, according to condition 4 of the algorithm, p beeps at time t 0 + T (p): contradiction. Thus, the result.

Lemma 8. There exists t ≥ t 0 and t < t such that m(t) > f and m(t ) = 0.

Proof. Suppose the opposite: there exists no such t and t . According to Lemma 7, there exists a time t 1 such that m(t 1 ) = 0. Let t 1 be the earliest date such that m(t 1 ) = 0. According to Lemma 7, there exists t ≥ t 0 such that t > t 1 and m(t ) = 0. Then, according to condition 3 of the algorithm, all correct processes beep at time 2t -t 1 , and m(2t -t 1 ) > f : contradiction. Thus, the result.

Theorem 5. Algorithm APSB ensures synchronous beeping with a period T ∈ [(1 -)T 0 , (1 + )T 0 ].

Proof. Let t be the earliest time such as described in Lemma 8. Let t be the latest time such that t < t and m(t ) = 0. According to condition 2 of the algorithm, each correct process p beeps at time t + g(t -t , T (p)).

According to Lemma 5 and Lemma 6, there are only two possible value T 1 and T 2 of g(t -t , T (p)), and {T 1 , T 2 } ∈ [(1 -)T 0 , (1 + )T 0 ]. Let P 1 (resp. P 2 ) be the set of correct processes beeping at time t+T 1 (p) (resp. t+T 2 (p)). As n > 3f , then either |P 1 | > f or |P 2 | > f . Thus, there exists t 1 ∈ {t + T 1 (p), t + T 2 (p)} such that m(t 1 ) > f . Let t 1 be the earliest time such that t 1 > t and m(t 1 ) > f .

Let us show that T = t 1 -t ∈ [(1 -)T 0 , (1 + )T 0 ]. Suppose the opposite. Then, according to condition 2 of the algorithm, no correct process beeps at time t 1 . Thus, at least f + 1 Byzantine nodes beep at time t 1 : contradiction.

Then, according to condition 1 of the algorithm, all correct processes beep at time t 1 + T , and no correct process beeps in the time interval ]t 1 , t 1 + T [. Therefore, by induction, we have synchronous beeping at time t 1 with a period T ∈ [(1 -)T 0 , (1 + )T 0 ].

Synchronous Lighting

In the previous sections, we assumed that the processes could produce discrete beeps. In this section, we assume that a process p can continuously increase and decrease a luminosity variable l(p). We define an alternative but similar problem (synchronous lighting) and give an algorithm for the case where the desired period is approximately known. In this section, n > 2f .

Each correct process p knows a time period T (p) ∈ [T 0 , (1 + )T 0 ], and holds a variable l(p) ∈ [0, 1]. l(p) is a continuous function of time. We assume that the time to increase (resp. decrease) l(p) from 0 to 1 (resp. 1 to 0) is at most T 0 . Let P be the set of processes. Let L(t) be the value of Σ p∈P l(p) at time t.

Problem

We say that the processes achieve synchronous lighting at time t 1 if there exists t 2 , t 3 , t 4 . . . such that:

Theorem 4 .

 4 There is no self-stabilizing algorithm ensuring synchronous beeping with a period T ∈ [(1 -)T 0 , (1 + )T 0 ].

6. 5 5 . 2 . 6 .

 5526 Correctness proofLemma For a givenT > 0, let G(T ) = T ∈[T0,(1+ )T0] g(T, T ). Then, |G(T )| ≤ 2.Proof. Let k ∈ Z be the largest relative integer such that T (1 + ) k ≤ T 0 . Thus, g(T, T 0 ) = T (1 + ) k and T 0 < T (1 + ) k+1 . Therefore, (1 + )T 0 < T (1 + ) k+2 and g(T, (1+ )T 0 ) ≤ T (1 + ) k+1 . Then, either G(T ) = {T (1 + ) k } or G(T ) = {T (1 + ) k , T (1 + ) k+1)}, and |G(T )| ≤ Lemma ∀T > 0 and ∀T ∈ [T 0 , (1 + )T 0 ], g(T, T ) ∈ [(1 -)T 0 , (1 + )T 0 ].

  . No other communication than beeping is available, and the beeps are anonymous. For any time t, let S(t) be a multiset containing the time of each previous beep (∀t ∈ S(t), t < t). If m processes beep simultaneously at time t , then t appears m times in S(t) (for instance, if S(t) = {t 1 , t 2 , t 2 , t 2 , t 3 } with t 1 < t 2 < t 3 , 3 processes beep simultaneously at time t 2 ). For S(t) = {t 1 , t 2 , t 3 , . . . }, let S

  there exists t 1 < t and t 2 < t 1 such that C 1 (t, t 1 , t 2 ) is true and t -t 1 ≤ t 1 -t 2 , then according to condition 1 of the algorithm, p beeps at time t = 2t 1 -t 2 ≥ t. -Otherwise, if there exists t 1 < t and t 2 < t 1 such that C 2 (t, t 1 , t 2 ) is true and t -t 1 ≤ t 1 -t 2 , then according to condition 2 of the algorithm, p beeps at time t = 2t 1 -t 2 ≥ t. -Otherwise, according to condition 3 of the algorithm, p beeps at time t ∈

[t, t + T (p)].
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Algorithm (Average Period Synchronous Lighting -APSL)

Each correct process p has the following behavior:

-If there exists t ∈]t -T (p), t[ such that L(t ) ≥ n -f , decrease l(p).

-Otherwise, increase l(p).

Correctness Proof

Lemma 9. There exists t ≥ t 0 such that L(t) ≥ n -f . Proof. Suppose the opposite: ∀t ≥ t 0 , L(t) < n -f . Let p be a correct process. Then, according to the algorithm, starting from time t 0 + T (p), l(p) increases. Therefore, at time t 0 + (1 + 2 )T 0 , for each correct process p, l(p) = 1. Thus, L(t 0 + (1 + 2 )T 0 ) ≥ n -f : contradiction. Thus, the result. Theorem 6. Algorithm APSL ensures synchronous lighting.

Proof. According to Lemma 9, there exists t ≥ t 0 such that L(t) ≥ n -f . Therefore, according to the algorithm, starting from time t, each correct process p decreases l(p). Therefore, at time t + T 0 , for each correct process p, l(p) = 0. Then, as there are at most f Byzantine processes, ∀t ∈]t + T 0 , t

Now, let us show that there exists t 1 ∈ [t + T 0 , t + (1 + 2 )T 0 ] such that L(t 1 ) ≥ n -f . Suppose the opposite. Let p be a correct process. Then, according to the algorithm, starting from time t + T (p), l(p) increases. Therefore, at time t+(1+2 )T 0 , for each correct process p, l(p) = 1. Thus, L(t+(1+2 )T 0 ) ≥ n-f : contradiction.

Then, L(t 1 ) ≥ n -f , t 1 -t ∈ [T 0 , (1 + 2 )T 0 ] and for each correct process p,

Therefore, by induction, we have synchronous lighting at time t.

Conclusion

We considered the problem of synchronous beeping. We assumed the presence of Byzantine processes that can beep as often as they want. We gave synchronization algorithms for the cases where the period is known, unknown and approximately known. We also considered an alternative continuous model. An open question is the tightness of the condition n > 3f for the average beeping knowledge. Also, many extensions could be made on the communication graph and the communication delays.