
HAL Id: hal-01199811
https://hal.science/hal-01199811

Submitted on 16 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Computational Power of Beeps
Seth Gilbert, Calvin Newport

To cite this version:
Seth Gilbert, Calvin Newport. The Computational Power of Beeps. DISC 2015, Toshimitsu Ma-
suzawa; Koichi Wada, Oct 2015, Tokyo, Japan. �10.1007/978-3-662-48653-5_3�. �hal-01199811�

https://hal.science/hal-01199811
https://hal.archives-ouvertes.fr

The Computational Power of Beeps

Seth Gilbert1,? and Calvin Newport2,??

1 National University of Singapore. seth.gilbert@comp.nus.edu.sg
2 Georgetown University. cnewport@cs.georgetown.edu

Abstract. We study the quantity of computational resources (state ma-
chine states and/or probabilistic transition precision) needed to solve
specific problems in a single hop network where nodes communicate us-
ing only beeps. We begin by focusing on randomized leader election. We
prove a lower bound on the states required to solve this problem with
a given error bound, probability precision, and (when relevant) network
size lower bound. We then show the bound tight with a matching upper
bound. Noting that our optimal upper bound is slow, we describe two
faster algorithms that trade some state optimality to gain efficiency. We
then turn our attention to more general classes of problems by proving
that once you have enough states to solve leader election with a given
error bound, you have (within constant factors) enough states to simu-
late correctly, with this same error bound, a logspace TM with a constant
number of unary input tapes: allowing you to solve a large and expressive
set of problems. These results identify a key simplicity threshold beyond
which useful distributed computation is possible in the beeping model.

1 Introduction

The beeping model of network communication [1–3, 10, 14, 20] assumes a collec-
tion of computational nodes, connected in a network, that interact by beeping
in synchronous rounds. If a node decides to beep in a given round, it receives
no feedback from the channel. On the other hand, if a node decides to listen, it
is able to differentiate between the following two cases: (1) no neighbor in the
network topology beeped in this round, and (2) one or more neighbors beeped.

Existing work on this model provide two motivations. The first concerns dig-
ital communication networks (e.g., [10, 12]). Standard network communication
(in which nodes interact using error-corrected packets containing many bits of
information) requires substantial time, energy, and computational overhead (at
multiple stack layers) to handle the necessary packet encoding, modulation, de-
modulation, and decoding. Beeps, on the other hand, provide an abstraction
capturing the simplest possible communication primitive: a detectable burst of
energy. In theory, beep layers could be implemented using a fraction of the com-
plexity required by standard packet communication, establishing the possibility
of micro-network stacks for settings where high speed and low cost are crucial.

? Supported in part by NUS FRC T1-251RES1404
?? Supported in part by NSF grant CCF 1320279

The second motivation for the beeping model concerns a connection to biolog-
ical systems (e.g., [3, 19, 20]). Network communication in nature is often quite
simple; e.g., noticing a flash of light from nearby fireflies or detecting a chemical
marker diffused by nearby cells. Therefore, understanding how to achieve dis-
tributed coordination using such basic primitives can provide insight into how
such coordination arises in nature (see [19] for a recent survey of this approach).

A Key Question. As detailed below, existing work on the beeping model seeks
to solve useful problems as efficiently as possible in this primitive network set-
ting. In this paper, by contrast, we focus on solving useful problems as simply
as possible (e.g., as measured by factors such as the size of the algorithm’s
state machine representation), asking the key question: is it possible to solve
problems with both simple communication and simple algorithms? Notice, the
answer is not a priori obvious. It might be the case, for example, that complexity
is conserved, so that simplifying the communication model requires more com-
plex algorithms. Or it might be the case that simple algorithms coordinating
with beeps are sufficient for even complex tasks. Given the above motivations
for studying beeps, answering this question is crucial, as it will help us probe
the feasibility of useful networked systems—whether constructed by engineers
or evolution—that are truly simple in both their communication methods and
control logic.

Our Answers. Consider a collection of n nodes connected in a single hop topology
(i.e., the network graph is a clique). We model the randomized process executing
on each node as a probabilistic state machine. The two parameters describing the
complexity of these algorithms are: (1) an upper bound on the number of states
(indicated by integer s ≥ 1); and (2) an upper bound on the precision of the
probabilistic transitions (indicated by integer q ≥ 2, where we allow probabilistic
transitions to be labeled with probability 0, 1, or any value in the interval [1q , 1−
1
q]). We ask how large these values must grow to solve specific problems. Our

motivating premise is that smaller values imply simpler algorithms. (Notice, by
considering both s and q, we can capture the trade-off between memory and
probabilistic precision, a question of standalone interest; c.f., [16]).

We begin by considering leader election, a fundamental primitive in dis-
tributed systems. We prove that for a given error bound ε ∈ [0, 1/2] and prob-
abilistic precision q, any algorithm that solves leader election with probability
1− ε requires s = Ω(logq (1/ε)) states. Given a lower bound Ñ on the size of the

network, this lower bound reduces to s = Ω(logq (1/ε)/Ñ) states. Thus, the more
nodes in the network, the fewer states each node needs to solve the problem.

This lower bound leverages a reduction argument. We begin by defining and
lower bounding a helper problem called (1, k)-loneliness detection, which requires
an algorithm to differentiate between n = 1 and n ≥ k (but has no requirements
for intermediate network sizes). This bound uses an indistinguishability argu-
ment regarding how nodes move through a specified state sequence. We then
show how to transform a solution to leader election for size lower bound Ñ , to

solve (1, Ñ)-loneliness detection—allowing our loneliness bound to carry over to
leader election.

We then turn our attention to leader election upper bounds. We begin by
proving our lower bound tight by showing, for every network size lower bound
Ñ ≥ 1, how to solve leader election with s = O(logq (1/ε)/Ñ) states. The key
idea behind this algorithm is to have nodes work together to implement a dis-
tributed timer. The more nodes in the network, the longer the distributed timer
runs, and the longer the distributed timer runs, the higher the probability that
we succeed at leader election. In this way, increasing the network size reduces
the states required to hit a specific error bound. A shortcoming of this new algo-
rithm, however, is that its expected running time is exponential in the network
size. With this mind, we then describe two faster algorithms (their time is poly-
logarithmic in the relevant parameters) that require only the minimum precision
of q = 2. The cost for their efficiency, however, is a loss of state optimality in
some circumstances.

The first algorithm requires s = O(log (1/ε)) states and solves leader elec-
tion with probability at least 1 − ε, for any network size n. It terminates in
O(log (n+ 1/ε) log (1/ε)) rounds, with probability at least 1 − ε. The key idea
behind this algorithm is to test a potentially successful election by having the
potential leader(s) broadcast with probability 1/2 for log (1/ε) rounds, looking
for evidence of company. It is straightforward to see that a single such test fails
with probability no more than (1/2)log (1/ε) = ε. The problem, however, is that
as the network size grows, the number of such tests performed also increases,
making it more likely that one fails. We neutralize this problem in our analysis
by showing that the test failure probabilities fall away as a geometric series in
the test count—bounding the cumulative error sum as the network grows.

The second algorithm requires only s = O(1) states, and yet, for every net-
work size n, it solves leader election with high probability in n when run in
a network of that size. It requires only O(log2 n) rounds, with high probability.
The key idea driving this algorithm is to harness the large amount of total states
in the network to implement a distributed timer that requires Θ(log n) time to
countdown to 0, when executed among n nodes. This duration is sufficient for
the nodes to safely reduce contention down to a single leader.

After studying leader election, we turn our attention to more general classes
of distributed decision problems. Leveraging our leader election algorithms as
a key primitive, we show how to simulate a logspace decider Turing Machine
(TM) with a constant number of unary inputs (all defined with respect to the
network size n). Perhaps surprisingly, this algorithm requires only O(log (1/ε))
states to complete the simulation with probability 1− ε, and only O(1) states to
achieve high probability in n. (Notice that this is not enough states for an indi-
vidual node to store even a single pointer to the tape of the simulated machine.)
Our simulation uses the same general strategy first highlighted in the study of
population protocols [4]: simulate a counter machine with a constant number
of counters that hold values from 0 to O(n), and then apply a transformation
due to Minsky [17] to simulate a logspace TM with this machine. Due to the

differences between the beeping and population protocol models, however, our
counter machine simulation strategies are distinct from [4].

Implications. The results summarized above establish that the log (1/ε) state
threshold for leader election with bounded error is (in some sense) a fundamental
simplicity threshold for solving useful problems with beeps. It is striking that if
you have slightly less than this much memory, even the basic symmetry breaking
task of leader election is impossible, but if you instead have slightly more, then
suddenly you can solve large classes of complicated problems (i.e., everything
solvable by a logspace TM). If you are satisfied with high probability solutions
(which is often the case), then this treshhold reduces even more all the way down
to O(1). Given these results, we tentatively claim a positive answer to the key
question posed above: complexity is not destiny; you can solve hard problems
simply in simple network models.

Before proceeding into the technical details of our paper, we will first take the
time to place both our model and our results in the context of the several different
areas of relevant related work. Among other questions, we want to understand
the relationship of our bounds to existing beep results, and how the beeping
model compares and contrasts to similar settings.

Comparison to Existing Beep Results. The algorithmic study of beeping net-
works began with Degesys et al. [12], who introduced a continuous variant of
the beeping model, inspired by the pulse-coupled oscillator framework. They
studied biologically inspired strategies for solving a desynchronization problem.
Follow-up work generalized the results to multihop networks [11, 18]. Cornejo
and Kuhn [10] introduced the discrete (i.e., round-based) beeping model stud-
ied in this paper. They motivated this model by noting the continuous model
in [11, 12, 18] was unrealistic and yielded trivial solutions to desynchronization,
they then demonstrated how to solve desynchronization without these assump-
tions. Around this same time, Afek et al. [3] described a maximal independent set
(MIS) algorithm in a strong version of the discrete beeping model. They argued
that something like this algorithm might play a role in the proper distribution of
sensory organ precursor cells in fruit fly nervous system development. Follow-up
work [1, 2, 20] removed some of the stronger assumptions of [3] and improved
the time complexity. In recent work, Förster et al. [14] considered deterministic
leader election in a multihop beeping network.

To place this paper in this context of the existing work on the beeping model,
it is important to note that the above-cited papers focus primarily on two goals:
minimizing time complexity and minimizing information provided to nodes (e.g.,
network size, max degree, global round counter). They do not, however, place
restrictions on the amount of states used by their algorithms. Accordingly, these
existing results require either: the ability to store values as large as Θ(n) [1–3,
10,20], or uniques ids [14] (which in our framework would require a machine with
n different initial states, or equivalently, n different machines). In this paper, we
prove that the algorithmic complexity threshold for solving many useful problems

is actually much lower: O(1) states are sufficient for high probability results
and O(log (1/ε)) states are sufficient for fixed error bound results.3 We argue
the direction pursued in this paper (how complex must algorithms become to
solve useful problems with beeps) complements the direction pursued in existing
papers (how fast can algorithms solve useful problems with beeps). Answers to
both types of queries is necessary to continue to understand the important topic
of coordination in constrained network environments.

Comparison to the Radio Network Model. The standard radio network model
allows nodes to send large messages, but assumes concurrent transmissions lead
to message loss (that may or may not be detectable). The key difference between
the radio network model and the beeping model is that in the former you can
recognize the case where exactly one node broadcast (e.g., because you receive
a message). This capability, which the beeping model does not offer (a single
beeper looks like multiple beepers), is powerful. It allows, for example, algorithms
that can solve leader election with deterministic safety using only a constant
amount of state, when run in network of size at least 2. If you assume receiver
collision detection, these solutions require only polylogarithmic expected time.4

These results violate our lower bounds for leader election with beeps (where
the state size grows toward infinity as you drive the error bound toward 0)—
indicating that the communication limitations in the beeping model matter from
a computability perspective.

Comparison to the Stone Age Computing Model. It is also important to place our
results in the context of other simplified communication/computation models.
Consider, for example, the stone age distributed computing model introduced
by Emek and Wattenhofer [13]. This model assumes state machines of constant
size connected in a network and executing asynchronously. The machines com-
municate with a constant-size message alphabet and when transitioning can
distinguish between having received 0, 1, or ≥ b messages of each type, for some
constant parameter b ≥ 1. For b = 1, this model is essentially an asynchronous
version of the beeping model. To this end, nodes in our model can simulate nodes
in the stone age model with b = 1 indefinitely using a constant number of states.
For b > 1, however, any such simulation likely becomes impossible in the beeping
model with a constant number of states. As noted in our discussion of the radio

3 Notice, direct comparisons between many of these results is complicated by the vari-
ety of possible assumptions; e.g., synchronous versus asynchronous starts, multihop
versus single hop, small versus large probability precision.

4 For example: divide rounds into pairs of even and odd rounds. In even rounds, nodes
broadcast a simple message with constant probability. If a node ever succeeds in
broadcasting alone, all other nodes become heralds. They stop competing in even
rounds and begin competing in odd rounds. When the winner (who is now the only
non-herald in the network) eventually hears a message in an odd round, it elects
itself leader. If we assume collision detection, we can reduce contention fast in the
even rounds with basic knockout protocols; e.g., if you choose to listen and detect a
collision you are knocked out and just wait to become a herald.

network model, the ability to safely recognize the case of exactly one message
being sent provides extra power beyond what is achievable (without error) using
only beeps.

Comparison to the Population Protocol Model. Another relevant simplified com-
munication/computation setting is the well-studied population protocol model [4–
9] . This model describes nodes as state machines of constant size that interact in
a pairwise manner—transforming both states asymmetrically. In the basic ver-
sion of the model, a fair scheduler chooses pairs to interact. A version in which
the scheduler is randomized adds more power. There are similarities in the goals
pursued by the beeping and population protocol models: both seek (among other
things) to understand the limits of limited state in distributed computation. The
core difference between the two settings is the role of the algorithm in commu-
nication scheduling. In the beeping model, algorithms must reduce contention
and schedule communication on their own. In the population protocol model the
scheduler ensures fair and reliable interactions. Imagine, for example, a continu-
ous leader election problem where every node has a leader bit, and the problem
requires in an infinite execution that: (1) every node sets leader to 1 an infinite
number of times; and (2) there is never a time at which two nodes both have
leader set to 1. This problem is trivial in the population protocol: simply pass a
leader token around the network. In the beeping model, by contrast, it is impos-
sible as it essentially requires nodes to solve leader election correctly an infinite
number of times—a feat which would require an unachievable error bound of
0. It follows that in some respects these two models are studying the impact of
limited state on different aspects of distributed computation.

2 Model

We model a collection of n probabilistic computational agents (i.e., “nodes”) that
are connected in a single hop network and communicate using a unary primitive;
i.e., beeps. They execute in synchronous rounds in which each node can either
beep or receive. Receiving nodes can distinguish between the following two cases:
(1) no node beeped; (2) one or more nodes beeped. We characterize these agents
by s (a bound on the number of states in their state machine), and q (a bound
on the precision allowed in probabilistic transitions, with larger values enabling
more accurate transition probabilities). In more detail:

Node Definition. We specify the algorithm executing on each node as a proba-
bilistic state machine M = (Qr, Qb, qs, δ⊥, δ>), where: Qr and Qb are two dis-
joint sets of states corresponding to receiving and beeping, respectively; qs is
the start state; and δ⊥ and δ> are the probabilistic transition functions5 for the
cases where the node detects silence and where the node beeps/detects a beep,
respectively. Some problems have all nodes execute the same state machine,
while others include multiple machine types, each corresponding to a different
initial value.
5 Transition functions map the current state to a distribution over states to enter next.

Executions. Executions proceed in synchronous rounds with all nodes in their
machine’s start state. At the beginning of round r, for a node u running a
machine (Qr, Qb, qs, δ⊥, δ>), if its current state qu is in Qb, then u emits a beep,
otherwise it receives. If at least one node beeps in r, then all nodes either beep or
detect a beep in this round. Therefore, each node u applies the transition function
δ> to its current state qu and selects its next state according to the distribution
δ>(qu). If no node beeps in r, then each node u applies the transition function
δ⊥, selecting its next state from the distribution, δ⊥(qu).

Parameters. We parameterize state machines with two values. The first, in-
dicated by s ≥ 1, is an upper bound on the number of states allowed (i.e.,
|Qr| + |Qb| ≤ s). The second, indicated by q ≥ 2, bounds the precision of the
probabilistic transitions allowed by the δ functions. In more detail, for a given q,
the probabilities assigned to states by distributions in the range of δ must either
be 0, 1, or in the interval, [1q , 1 −

1
q]. For the minimum value of q = 2, proba-

bilistic transitions can occur only with probability 1/2. As q increases, smaller
probabilities, as well as probabilities closer to 1, become possible. Finally, we
parameterize an execution with n—the number of nodes in the network.

3 Leader Election

The first computational task we consider is leader election: eventually, one node
designates itself leader. An algorithm state machine that solves leader election
must include a final leader state q` that is terminal (once a node enters the state,
it never leaves). Entering this state indicates a node has elected itself leader. For
a given error bound ε ∈ [0, 1/2], we say an algorithm solves leader election with
respect to ε if when executed in a network of any size, it satisfies the following two
properties: (1) liveness: with probability 1, at least one node eventually enters
the leader state; and (2) safety: with probability at least 1 − ε, there is never
more than 1 node in the leader state. We also consider algorithms for leader
election that are designed for networks of some minimal size Ñ . In this case, the
algorithm must guarantee liveness in every execution, but it needs to guarantee
safety only if the network size n is at least Ñ . Our goal is to develop algorithms
that use a minimum number of states to solve leader election for a given error
bound ε, probability precision q, and, when relevant, network size minimum Ñ .

Roadmap. In Section 3.1, we present a lower bound for leader election. In Sec-
tion 3.2, we present a universal algorithm template, followed by three specific
instantiations in Sections 3.3, 3.4, and 3.5. Due to space constraints, proofs are
deferred to the full version of this extended abstract [15].

3.1 Leader Election Lower Bound

Here we analyze the number of states required to solve leader election given a
fixed ε, q, and network size lower bound Ñ . Our main result establishes that the

number of states, s, must be in Ω(d logq (1/ε)

Ñ
e).

To prove this result, we begin by defining and bounding a helper problem
called (1, k)-loneliness detection, which requires an algorithm to safely distin-
guish between n = 1 and n ≥ k. The bound leverages a probabilistic indistin-
guishability argument concerning a short execution of the state machine in both
the n = 1 and n = k cases. We then show that loneliness detection captures a core
challenge of leader election by demonstrating how to transform a leader election
algorithm that works for n ≥ Ñ into a solution to (1, Ñ)-loneliness detection.
The bound for the latter then carries over to leader election by reduction.

(1, k)-Loneliness Detection. The (1, k)-loneliness detection problem is defined
for some integer k > 1 and error bound ε. It assumes all nodes run the same
state machine with two special terminal final states that we label qa (indicating
“I am alone”) and qc (indicating “I am in a crowd”). The liveness property of
this problem requires that with probability 1, every node eventually enters a
final state. The safety property requires that with probability at least 1− ε, the
following holds: if n = 1, then the single node in the system eventually enters qa;
and if n ≥ k then all nodes eventually enter qc. Crucial to this problem definition
is that we do not place any restrictions on the final states nodes enter for the
case where 1 < n < k.

The following bound shows that it becomes easier to break symmetry, i.e.,
easier to solve loneliness detection, as the threshold for detecting a crowd grows.
Put another way: a big crowd is easier to detect than a small crowd.

Lemma 1. Fix some integer k > 1. Let L be an algorithm that solves (1, k)-
loneliness detection with error bound ε and probability precision q using s states.

It follows that s = Ω(
logq (1/ε)

k).

Reducing Loneliness Detection to Leader Election. We now leverage the above
result on (1, k)-loneliness detection to prove a lower bound for leader election

under the guarantee that the network size n ≥ Ñ . The proof proceeds by reduc-
tion: we show how to transform such a leader election solution into a loneliness
detection algorithm of similar state size.

Theorem 2. Fix some network size lower bound Ñ ≥ 1. Let A be an algorithm
that solves leader election with error bound ε and probability precision q using s

states in any network where n ≥ Ñ . It follows that s ∈ Ω(
logq (1/ε)

Ñ
).

3.2 The Universal Leader Election Algorithm

We now turn our attention to leader election upper bounds. The three results
that follow adopt a template/subroutine approach. In more detail, Figure 3.1 de-
scribes what we call the universal leader election algorithm. This algorithm, in
turn, makes calls to a “termination subroutine.” Different versions of this subrou-
tine can be plugged into the universal algorithm, yielding different guarantees.
Notice, this universal algorithm is parameterized with probability precision q and
error bound ε, which it uses to define the useful parameter q̂ = min{q, (1/ε)}.

This algorithm (as well as one of our termination subroutines) uses 1/q̂, not
1/q, as its smallest transition probability (intuitively, there is little advantage in
using a probability too much smaller than the bound ε).

Algorithm 1 Universal Leader Election
1: active← 1
2: ko← 1
3: q̂ ← min{q, (1/ε)}
4: done← [Term. Subroutine](active, ko)
5: ko← 0
6:
7: while (not done) do
8:

. Returns 0 with prob 1/q̂, else 1
9: participate← random bit(1/q̂)

10: chan← >
11:

. Knock Out Logic
12: if active ∧ participate then
13: beep()
14: else
15: chan← recv()
16: end if
17: if active ∧ not participate then
18: if chan = > then
19: active← 0
20: ko← 1
21: end if
22: end if
23:

. Termination Detection Logic
24: if chan = ⊥ then
25: done← [Term. Subroutine](active, ko)
26: ko← 0
27: end if
28: end while
29:

. Become Leader if Still Active
30: if active then
31: leader ← 1
32: else
33: leader ← 0
34: end if
35: return(leader)

The basic operation of the al-
gorithm is simple. Every node is
initially active. Until the termina-
tion subroutine determines that it is
time to stop, nodes repeatedly ex-
ecute the knockout loop (lines 7–
25). In each iteration of the loop,
each active node beeps with prob-
ability 1−1/q̂ and listens otherwise.
If a node ever hears a beep, it is
knocked out, setting ko = true and
active = false. In any silent itera-
tion where no node beeps, they ex-
ecute the termination subroutine to
decide whether to stop. Once termi-
nation is reached, any node that re-
mains active becomes the leader.

Termination Subroutines. The goal
of the termination subroutine is to
decide whether leader election has
been solved: it returns true if there
is a leader and false otherwise. The
termination subroutine is called si-
multaneously by all the nodes in the
system, and it is passed two pa-
rameters: the value of active, which
indicates whether or not the call-
ing node is still contending to be-
come leader, and ko, which indi-
cates whether or not it has been
knocked out in the main loop since
the last call to the subroutine. We fix
R = 4 logq̂(max(n, 1/ε)): a parame-
ter, which as we will later elaborate,
captures a bound on the calls to the subroutine needed before likely termination.
We consider the following properties of a termination detection routine, defined
with respect to ε and R:

1. Agreement : Every node always returns the same value.
2. Safety : Over the first R invocations, the probability that it returns true in

any invocation with more than 1 active node is at most ε/2.
3. Eventual Termination: If it is called infinitely often with only one active

node, then eventually (with probability 1), it returns true.

4. Fast Termination: If it is called with only one active node, and with at least
one node where ko = true, then it returns true.

Universal Leader Election Analysis. We now observe that the universal leader
election algorithm is correct when combined with a termination subroutine that
satisfies the relevant properties from above. To do so, we first determine how
many rounds it takes until there is only one active node, and hence one possible
leader. We say that an iteration of the knockout loop (lines 7–25) is silent if
no node beeps during it. (Notice that the termination routine is only executed
in silent iterations of the knockout loop.) We first bound how long it takes to
reduce the number of active nodes:

Lemma 3. Given probability ε ≤ 1/2 and parameter R = 4 logq̂(max(n, 1/ε)):
after R silent iterations of the knockout loop (lines 7–25), there remains exactly
one active node, with probability at least 1− ε/2.

Let T be a termination subroutine that satisfies Agreement and Eventual
Termination. In addition, assume that T satisfies safety in networks of size at
least Ñ . We can now show that the universal leader election algorithm is correct
with termination subroutine T :

Theorem 4. If termination subroutine T uses s states and precision q, then
the universal algorithm solves leader election with error ε, s + O(1) states, and

q precision (guaranteeing safety only in networks of size n ≥ Ñ).

While the preceding theorem can be used to show the feasibility of solving
leader election, it does not bound the performance. For that, we rely on termi-
nation subroutines that ensure fast termination:

Theorem 5. If termination subroutine T satisfies Fast Termination instead of
Eventual Termination, and if it uses s states and q precision, and if it runs
in time t, then the universal algorithm solves leader election with error ε with
s + O(1) states and q precision (guaranteeing safety only in networks of size

≥ Ñ). Furthermore, it terminates in O(t logq̂(n+ 1/ε)) rounds, with probability
at least 1− ε.

3.3 Optimal Leader Election

Here we define a termination subroutine that, when combined with the universal
leader election algorithm, matches our lower bound from Theorem 2. In more
detail, fix an error bound ε and probability precision q. Fix some lower bound
Ñ ≥ 1 on the network size. We describe a termination detection subroutine

that we call StateOptimal(Ñ) that requires O(d logq (1/ε)

Ñ
e) states, and guarantees

Agreement, Termination, and Safety in any network of size n ≥ Ñ .
There are two important points relevant to this leader election strategy. First,

for Ñ = 1, it provides a general solution that works in every size network.
Second, the state requirements for this algorithm are asymptotically optimal

according to Theorem 2. As will be clear from its definition below, the cost of
this optimality is inefficiency (its expected time increases exponentially with n).
We will subsequently identify a pair of more efficient solutions that gain efficiency
at the cost of some optimality under some conditions.

The StateOptimal(Ñ) Termination Detection Subroutine. The StateOptimal(Ñ)
subroutine, unlike the other subroutines we will consider, ignores the active
and ko parameters. Instead, it runs simple distributed coin flip logic among all
nodes. In more detail, recall from the definition of the universal algorithm that

q̂ = min{q, (1/ε)}. The subroutine consists of δ = d c logq̂ (1/ε)

Ñ
e rounds, defined

for some constant c ≥ 1 we will bound in the analysis. In each round, each node
beeps with probability 1− 1/q̂. At the end of the δ rounds, each node returns 1
if all δ rounds were silent, otherwise it returns 0.

Analysis. It is straightforward to determine that all nodes return the same value
from this subroutine (i.e., if any node beeps or detects a beep, all nodes will
return 0). It is also straightforward to verify that implementing this subroutine

for a given δ requires Θ(δ) = Θ(d logq̂ (1/ε)

Ñ
e) = Θ(d logq (1/ε)

Ñ
e) states (we can

replace the q̂ with q in the final step because once q gets beyond size 1/ε, the
function stabilizes at 1). Eventual termination is also easy to verify, as every call
to the subroutine has a probability strictly greater than 0 of terminating.

To show safety, we observe that the routine returns true only if all n nodes
are silent for all δ rounds. The probability of this happening is exponentially
small in (δn) and hence it is not hard to show that every R invocations, the
probability that the subroutine returns true in any invocation with more than
one active node is at most ε/2.

Lemma 6 (Safety). Over the first R invocations, the probability that the sub-
routine returns true in any invocation with more than 1 active node is at most ε/2.

Combined with Theorem 4, this yields the following conclusion:

Theorem 7. For any network size lower bound Ñ , error parameter ε and preci-
sion q, the universal leader election algorithm combined with the StateOptimal(Ñ)
subroutine, solves leader election with respect to these parameters when run in a

network of size n ≥ Ñ , and requires only s = Θ(d logq (1/ε)

Ñ
e) states.

3.4 Fast Leader Election with Sub-Optimal State

The leader election algorithm from Section 3.3 can solve the problem with the
optimal number of states for any combination of system parameters. It achieves
this feat, however, at the expense of time: it is straightforward to determine
that this algorithm requires time exponential in the network size. Here we con-
sider a termination subroutine that trades state optimality for a solution that
is fast (polylogarthmic in 1/ε rounds) and simple to define (it uses the minimal
probabilistic precision of q = 2). Furthermore, its definition is independent of

the network size n, yet it still works for every possible n. For the purpose of
this section, we assume that q = q̂ = 2. As we show below, this subroutine
uses Θ(log (1/ε)) states. This is suboptimal when high precision (i.e., larger q)

is available, and when there is a lower bound Ñ on the size of the network.

The Fixed Error Termination Detection Subroutine. This termination subrou-
tine consists of a fixed schedule of dlog (2/ε)e+ 2 rounds. During the first round,
any node that calls the subroutine with parameter ko equal to 1 beeps while
all other nodes receive. If no node beeps, then the subroutine is aborted and all
nodes return false.

Assume this does not occur, i.e., at least one node beeps in the first round. For
each of the dlog (2/ε)e rounds that follow, every node with parameter active = 1,
will flip a fair two-sided coin. If it comes up heads, it will beep, otherwise it
will receive. Each node with active = 1 will start these rounds with a flag solo
initialized to 1. If such a node ever detects a beep during a round that it receives,
it will reset solo to 0 (as it just gained evidence that it is not alone).

The final round is used to determine if anyone detected a non-solo execution.
To do so, every node with active = 1 and solo = 0 beeps. If no node beeps in
this final round, then all nodes return true. Otherwise, all nodes return false.

Analysis. We proceed as before, observing that all nodes return the same value
from this subroutine since all observe the same channel activity in the first and
last rounds. It is also straightforward to verify that implementing this subroutine
requires O(log (1/ε)) states to count the rounds and record solo. Fast termination
follows directly from a case analysis of the algorithm.

Lemma 8 (Fast Termination). If the Fixed Error subroutine is called with
only 1 active node and with at least 1 node where ko = true, then it returns true.

Safety requires a little more care, showing that the failure probabilities over R
invocations can be bounded by ε/2, since the error probability depends on the
number of active nodes.

Lemma 9 (Safety). Over the first R invocations of the subroutine, the proba-
bility that it returns true in any invocation with more than one active node is at
most ε/2.

Combined with Theorem 5, these properties yield the following conclusion:

Theorem 10. For error parameter ε, the universal leader election algorithm
combined with the Fixed Error subroutine, solves leader election with respect to
ε in every size network, using only s = Θ(log (1/ε)) states and q = 2. With
probability at least 1− ε, it terminates in O(log (n+ 1/ε) log (1/ε)) rounds.

3.5 Fast Leader Election with O(1) States and High Probability

The final termination detection subroutine we consider requires only a constant
number of states, and when executed in a network of size n, for any n > 1, it

solves leader election with high probability in n. At first glance, this result may
seem to violate the lower bound from Section 3.1, which notes that the state
requirement grows with a log (1/ε) factor as ε decreases. The question is why a
constant number of states is sufficient here even though this term grows with n.
The answer lies in the fact that ε is here a function of n, such that for any fixed
n, it is true that Ñ ≥ n, and therefore the Ñ factor in the denominator of our
lower bound swamps the growth of the log n factor in the numerator.

The Constant State Termination Detection Subroutine. The subroutine here is
identical to the Fixed Error subroutine, except the length of subroutine is not
fixed in advance (no node has enough states to count beyond a constant num-
ber of rounds—which is not enough for our purposes). Instead, we dynamically
adapt the length of the subroutine to a sufficiently large function of n using a
distributed counting strategy.

In more detail, during the first round, any node that called the subroutine
with parameter ko equal to 1 beeps while all other nodes receive. If no node
beeps, then subroutine is aborted and all nodes will return value false (as is
true for Fixed Error). Assuming the subroutine has not aborted, the nodes then
proceed as follows: We partition rounds into even and odd pairs. During the
odd numbered rounds, we proceed as in Fixed Error: every node with parameter
active = 1, flips a fair coin; if it comes up heads, it will beep, otherwise it
will receive; each node with active = 1 will start these rounds with a flag solo
initialized to 1; if such a node ever detects a beep during a round that it receives,
it will reset solo to 0 (as it just gained evidence that it is not alone).

During the even rounds, the nodes run a repeated knockout protocol for
O(1) iterations, for some fixed constant bounded in the analysis. In more detail,
each node (regardless of whether or not it has active equal to true) begins the
subroutine with a flag attack = 1 and a counter count = 0. In each even round,
each node with attack = 1 flips a fair coin and beeps if it comes up heads;
otherwise it listens. Any node that listens in an even round and hears a beep
sets attack = 0. If there is an even round in which no node beeps, then all nodes
increment count and reset attack = 1. This continues until count grows larger
than the fixed constant mentioned above, When this occurs, all nodes move to
the final round, which is identical to the final round in Fixed Error. That is:
every node with active = 1 and solo = 0 beeps. If no node beeps in this final
round, then all nodes return true. Otherwise, all nodes return false.

Analysis. The Liveness and Fast Termination properties follow from the same
arguments used in our analysis of Fixed Error. The main difficulty in analyz-
ing this subroutine is proving Safety. To do so, we first bound how long the
subroutine is likely to run on any given invocation:

Lemma 11. For any constant c, there exists a c′ > c and a constant bound for
count, such that the main body of the subroutine runs for at least c log(n) rounds
but no more than c′ log n rounds, with high probability.

Lemma 12 (Safety). Over the first R invocations of the subroutine, the prob-
ability that it returns true in any invocation with more than one active node is
at most 1/nc, for a constant c we can grow with our constant bound on count.

We can then show that the subroutine guarantees safety. Combined with the
Theorem 5, these properties yields the following conclusion:

Theorem 13. For any network size n, the universal leader election algorithm
combined with the Constant State termination detection subroutine, solves leader
election with high probability in n using s = O(1) states and q = 2. Also with
high probability in n, it terminates in O(log2 n) rounds.

4 Solving General Distributed Decision Problems

In this section, we use a combination of our fast leader election algorithms as
a key primitive in constructing an algorithm that simulates a logspace (in n)
decider Turing Machine (TM) with a constant number of unary input tapes (of
size O(n) each). The simulation has error probability at most ε, requires only
the minimum probabilistic precision (q = 2), and uses s = O(log (1/ε)) states. If
high probability in n is sufficient, then the state size can be reduced to s = O(1).
In other words, once you have enough states to solve leader election, you can
also solve a large class of expressive problems. Formally:

Theorem 14. For any problem solvable by a logspace TM with a constant num-
ber of unary input tapes, there exist constants c, d ≥ 1, such that for any error
probability ε ∈ [0, 1/2] and network size n ≥ 1, we can solve the problem in
the beeping model in a network of size n with probability at least 1 − ε us-
ing s = c log (1/ε) states, precision q = 2, and an expected running time of
O(nd log2 (n+ 1/ε)) rounds. For high probability correctness, s = O(1) states
are sufficient.

Our strategy follows the outline originally identified in [4], where it was used to
simulate a TM using a population protocol in the randomized interaction model.
We first simulate a simple counter machine with a constant number of counters
that can take values of size O(n). We then apply a classical computability result
due to Minsky [17] which shows how to simulate a logspace TM (with unary input
tapes) using a counter machine of this type. The counter machine simulation
in the beeping model, combined with Minsky’s TM simulation, yields a TM
simulation in the beeping model. See the full version of this extended abstract [15]
for the details of our simulation, its analysis, and a discussion of its implications.

References

[1] Afek, Y., Alon, N., Bar-Joseph, Z., Cornejo, A., Haeupler, B., Kuhn, F.: Beeping
a maximal independent set. In: Proceedings of the Symposium on Distributed
Computing (DISC) (2011)

[2] Afek, Y., Alon, N., Bar-Joseph, Z., Cornejo, A., Haeupler, B., Kuhn, F.: Beeping
a maximal independent set. Distributed Computing 26(4), 195–208 (2013)

[3] Afek, Y., Alon, N., Barad, O., Hornstein, E., Barkai, N., Bar-Joseph, Z.: A biolog-
ical solution to a fundamental distributed computing problem. Science 331(6014),
183–185 (2011)

[4] Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
networks of passively mobile finite-state sensors. Distributed Computing 18(4),
235–253 (2006)

[5] Angluin, D., Aspnes, J., Eisenstat, D.: Stably computable predicates are semilin-
ear. In: Proceedings of the Symposium on Principles of Distributed Computing
(PODC). pp. 292–299 (2006)

[6] Angluin, D., Aspnes, J., Eisenstat, D.: Fast computation by population protocols
with a leader. Distributed Computing 21(3), 183–199 (2008)

[7] Angluin, D., Aspnes, J., Eisenstat, D.: A simple population protocol for fast robust
approximate majority. Distributed Computing 21(2), 87–102 (2008)

[8] Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational power of
population protocols. Distributed Computing 20(4), 279–304 (2007)

[9] Chatzigiannakis, I., Spirakis, P.G.: The dynamics of probabilistic population pro-
tocols. In: Proceedings of the Symposium on Distributed Computing (DISC)
(2008)

[10] Cornejo, A., Kuhn, F.: Deploying wireless networks with beeps. In: Proceedings
of the Symposium on Distributed Computing (DISC) (2010)

[11] Degesys, J., Nagpal, R.: Towards desynchronization of multi-hop topologies. In:
Proceedings of the International Conference on Self-Adaptive and Self-Organizing
Systems, 2008 (SASO) (2008)

[12] Degesys, J., Rose, I., Patel, A., Nagpal, R.: Desync: self-organizing desynchroniza-
tion and tdma on wireless sensor networks. In: Proceedings of the International
Conference on Information Processing in Sensor Networks (2007)

[13] Emek, Y., Wattenhofer, R.: Stone age distributed computing. In: Proceedings of
the Symposium on Principles of Distributed Computing (PODC) (2013)

[14] Förster, K., Seidel, J., Wattenhofer, R.: Deterministic leader election in multi-
hop beeping networks - (extended abstract). In: Proceedings of the Symposium
on Distributed Computing (DISC) (2014)

[15] Gilbert, S., Newport, C.: The computational power of beeps. Full version avail-
able online at: http://people.cs.georgetown.edu/∼cnewport/pubs/Beeps-Full.pdf.
Also available on arXiv.

[16] Lenzen, C., Lynch, N., Newport, C., Radeva, T.: Trade-offs between selection
complexity and performance when searching the plane without communication. In:
Proceedings of the Symposium on Principles of Distributed Computing (PODC)
(2014)

[17] Minsky, M.L.: Computation: finite and infinite machines. Prentice-Hall (1967)
[18] Motskin, A., Roughgarden, T., Skraba, P., Guibas, L.J.: Lightweight coloring

and desynchronization for networks. In: Proceedings of the of the Conference on
Computer Communication (INFOCOM) (2009)

[19] Navlakha, S., Bar-Joseph, Z.: Distributed information processing in biological and
computational systems. Communications of the ACM 58(1), 94–102 (2014)

[20] Scott, A., Jeavons, P., Xu, L.: Feedback from nature: an optimal distributed algo-
rithm for maximal independent set selection. In: Proceedings of the Symposium
on Principles of Distributed Computing (PODC) (2013)

