
HAL Id: hal-01199803
https://hal.science/hal-01199803v1

Submitted on 16 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient counting with optimal resilience
Christoph Lenzen, Joel Rybicki

To cite this version:
Christoph Lenzen, Joel Rybicki. Efficient counting with optimal resilience. DISC 2015, Toshimitsu
Masuzawa; Koichi Wada, Oct 2015, Tokyo, Japan. �10.1007/978-3-662-48653-5_2�. �hal-01199803�

https://hal.science/hal-01199803v1
https://hal.archives-ouvertes.fr

Efficient counting with optimal resilience

Christoph Lenzen1 and Joel Rybicki1,2

1 Max Planck Institute for Informatics
2 Helsinki Institute for Information Technology HIIT,

Department of Computer Science, Aalto University

Abstract. In the synchronous c-counting problem, we are given a syn-
chronous system of n nodes, where up to f of the nodes may be Byzantine,
that is, have arbitrary faulty behaviour. The task is to have all of the
correct nodes count modulo c in unison in a self-stabilising manner: re-
gardless of the initial state of the system and the faulty nodes’ behavior,
eventually rounds are consistently labelled by a counter modulo c at all
correct nodes.
We provide a deterministic solution with resilience f < n/3 that stabilises
in O(f) rounds and every correct node broadcasts O(log2 f) bits per
round. We build and improve on a recent result offering stabilisation
time O(f) and communication complexity O(log2 f/ log log f) but with
sub-optimal resilience f = n1−o(1) (PODC 2015). Our new algorithm
has optimal resilience, asymptotically optimal stabilisation time, and low
communication complexity.
Finally, we modify the algorithm to guarantee that after stabilisation
very little communication occurs. In particular, for optimal resilience and
polynomial counter size c = nO(1), the algorithm broadcasts only O(1)
bits per node every Θ(n) rounds without affecting the other properties
of the algorithm; communication-wise this is asymptotically optimal.

1 Introduction

In this work, we seek to minimize the amount of communication required for fast
self-stabilising, Byzantine fault-tolerant solutions to the synchronous counting
problem. We are given a complete communication network on n nodes with
arbitrary initial states. There are up to f faulty nodes that may behave in an
arbitrary manner. The task is to synchronise the correct nodes so that they will
count rounds modulo c in agreement. For example, the following is a possible
execution for n = 4 nodes, f = 1 faulty node, and counting modulo c = 4; the
execution stabilises after T = 4 rounds:

3

*

0

2

1

*

2

0

1

*

0

2

3

*

0

2

2

*

2

2

3

*

3

3

0

*

0

0

1

*

1

1

Counting

Node 1

Node 2

Node 3

(faulty)

Stabilisation

Node 4

In the severe fault-model considered in this work, synchronous counting is an
important service for establishing the classic synchronous abstraction: even if a
common clock signal is available, local counters may become inconsistent due to
transient faults; these in turn induce arbitrary states, which is addressed by the
self-stabilisation paradigm. Many, if not most, synchronous algorithms require
synchronous round counters to operate correctly.

Synchronous counting is a coordination primitive that can be used e.g. in
large integrated circuits to synchronise subsystems to easily implement mutual
exclusion and time division multiple access in a fault-tolerant manner. Note
that in this context, it is natural to assume that a synchronous clock signal
is available, but the clocking system usually does not provide explicit round
numbers. Solving synchronous counting thus yields highly dependable round
counters for subcircuits.

If we neglect communication, counting and consensus are essentially equiv-
alent [4,5,3]. In particular, many lower bounds on (binary) consensus directly
apply to the counting problem [6,13,9]. However, the known generic reduction
of counting to consensus incurs a factor-f overhead in space and message size.
In recent work [12], we presented an approach that reduces the number of bits
nodes broadcast in each round to O(log2 f/ log log f + log c) at the expense of
reduced resilience of f = n1−o(1). In this paper, we improve on the technique to
achieve optimal resilience with O(log2 f + log c) bits broadcast by each node per
round.

1.1 Contributions

In this work, we take the following approach. In order to devise communication-
efficient algorithms, we first design space-efficient algorithms, that is, algorithms
in which each node stores only a few bits between consecutive rounds. This comes
with additional advantages:

– Local computations will (typically) be simple.
– Communication becomes simple, as one can afford to broadcast the entire

state.
– This reduces the complexity of implementations.
– In turn, it becomes easier to use reliable components for an implementation,

increasing the overall reliability of the system.

The key challenge that needs to be overcome in constructing space-efficient
(and fast) solutions to counting appears to be a chicken-and-egg problem: given
that the correct nodes agree on a counter, they can jointly run a (single) instance
of synchronous consensus; given that they can run consensus, they can agree
on a counter. In [12], this obstacle is navigated by making the statement more
precise: given that the correct nodes agree on a counter for a while, they can run
consensus. This is used to facilitate agreement on the output counter, in a way
which maintains agreement even if the unreliable counters used for stabilisation
fail later on.

The task of constructing counters that “work” only once in a while is easier;
in particular, it does not require to solve consensus in the process. The drawback
of the recursive solution in [12] is that, in order to be time-efficient, it sacrifices
resilience. Our main contribution is to provide an improved construction that
preserves optimal resilience.

Theorem 1. For any integers c, n > 1 and f < n/3, there exists an f -resilient
synchronous c-counter that runs on n nodes, stabilises in O(f) rounds, and
requires O(log2 f + log c) bits to encode the state of a node.

The main hurdle that needs to be taken in order to arrive at this result when
building on the techniques of [12] is the following. In both approaches, the nodes
are partitioned into blocks, each of which runs a counter of smaller resilience; the
construction proceeds inductively on increasing values of f , so such a counter
exists by the induction hypothesis. In [12], it is assumed that a majority of these
blocks contains sufficiently few faulty nodes for the counter to be operational,
causing the relative resilience to deteriorate with each level of recursion in the
construction. To achieve optimal resilience, we must drop this assumption, in
turn necessitating novel ideas on how to establish a joint counter that is once in
a while counting correctly at all non-faulty nodes. We show how to obtain such a
counter based on simple local consistency checks, timeouts, and threshold voting.

Last but not least, we show how to reduce the number of bits broadcast after
stabilisation to log c/ log κ+O(1) per node and κ rounds for an essentially uncon-
strained choice of κ, at the expense of additively increasing the stabilisation time
by O(κ). In particular, for the special case of optimal resilience and polynomial
counter size, we obtain the following result.

Corollary 1. For any n > 1 and c = nO(1) that is an integer multiple of n,
there exists a synchronous c-counter that runs on n nodes, has optimal resilience
f = b(n − 1)/3c, stabilises in O(n) rounds, requires O(log2 n) bits to encode
the state of a node, and for which after stabilisation correct nodes broadcast
(asymptotically optimal) O(1) bits every Θ(n) rounds.

1.2 Prior work

In terms of lower bounds, several impossibility results for consensus directly yield
bounds for the counting problem as well [3]: counting cannot be solved in the
presence of at least n/3 Byzantine failures [13] and any deterministic algorithm
needs to run for at least f rounds [9] and communicate Ω(nf) bits to stabilise [6].

In contrast, there exist several algorithms to the synchronous counting prob-
lem, albeit these solutions exhibit different trade-offs in terms of resilience,
stabilisation time, space and/or communication complexity, or whether a source
of random bits is required. For a brief summary, see Table 1.

Designing space-efficient randomised algorithms for synchronous counting is
fairly straightforward [7,8,3]: for example, the nodes can simply choose random
states until a clear majority of nodes has the same state, after which they start
to follow the majority. Likewise, given a shared coin, one can quickly reach

resilience stabilisation time state bits deterministic ref.

f < n/3 (*) O(1) nO(1) (*) no [1]
f < n/3 O(f) O(f log f) yes [4]

f < n/3 22(n−f) 2 no [7,8]

f < n/3 min{22f+2 + 1, 2O(f2/n)} 1 no [3]
f = 1, n ≥ 4 7 2 yes [3]

f = n1−o(1) O(f) O(log2 f/ log log f) yes [12]

f < n/3 O(f) O(log2 f) yes here

Table 1. Summary of counting algorithms for the case c = 2. For randomised algorithms,
we list the expected stabilisation time. The solution from [10] relies on a shared coin.
“(*)” indicates that details vary, but all known shared coins with large resilience require
large states and messages.

agreement by defaulting to the coin whenever no clear majority is observed [1];
alas, existing shared coins are highly inefficient in terms of communication.
Designing quickly stabilising algorithms that are both communication- and space-
efficient has turned out to be a challenging task [4,5,3], and it remains open to
what extent randomisation can help in designing such algorithms.

In the case of deterministic algorithms, algorithm synthesis has been used
for computer-aided design of optimal algorithms with resilience f = 1, but the
approach does not scale due to the extremely fast-growing space of possible
algorithms [3]. In general, many fast-stabilising algorithms build on a connection
between Byzantine consensus and synchronous counting, but require a large
number of states per node [4] due to, e.g., running a large number of consensus
instances in parallel. In [12], the approach outlined earlier was leveraged to ensure
that each node participates in only O(log f/ log log f) instances of consensus,
resulting in small state and communication complexity, but reducing resilience
to f = n1−o(1).

As a side note, the recursive construction presented in this work bears similar-
ity to the recursive variant of the phase king algorithm [2], for which the goal of
the recursion was also to control the communication complexity (reducing it from
Θ(n3) to Θ(n2) for optimal resilience). In retrospect, the structural similarity is
striking; one may think of our algorithm as a generalization of the approach to
the case where there is no initial agreement on round numbers. The initial lack of
consistent round labels is what causes a roughly factor n larger communication
complexity in our case, which then can be removed after stabilisation leveraging
consistent counters.

1.3 Structure of the article

In the next section, we provide formal descriptions of the model and the problem,
and introduce some notation. In Section 3, we prove the main technical result on
optimal resilience boosting and infer Theorem 1. In Section 4, we describe how to

reduce the amount of bits communicated after stabilisation. Finally, in Section 5,
we discuss how randomisation can help in further reducing the communication
complexity and conclude the paper.

2 Preliminaries

In this section, we define the model of computation and the counting problem.

Model of computation. We consider a fully-connected synchronous message-
passing network. That is, our distributed system consists of a network of n
nodes, where each node is a state machine and has communication links to all
other nodes in the network. All nodes have a unique identifier from the set
[n] = {0, 1, . . . , n− 1}. The computation proceeds in synchronous communication
rounds. In each round, all processors perform the following in a lock-step fashion:
(1) broadcast their current state to all nodes, (2) receive messages from all nodes,
and (3) update their local state. We assume that the initial state of each node is
arbitrary and there are up to f Byzantine nodes. A Byzantine node may have
arbitrary behaviour, that is, it can deviate from the protocol in any manner. In
particular, the Byzantine nodes can collude together in an adversarial manner
and a single Byzantine node can send different messages to different correct
nodes.

Algorithms and executions. Formally, we define an algorithm as a tuple A =
〈X, g, p〉, where X is the set of all states any node can have, g : [n]×Xn → X is
the state transition function, and p : [n]×X → [c] is the output function. That
is, at each round when node v receives a vector x = 〈x0, . . . , xn−1〉 of messages,
node v updates it state to g(v,x) and outputs p(v, xv). As we consider c-counting
algorithms, the set of output values is the set set [c] of counter values. Note that
the tuples passed to g are ordered according to the node identifiers, i.e., nodes
can identify the sender of a message (this is frequently referred to as source
authentication).

For any set of F ⊆ [n] of faulty nodes, we define a projection πF that maps
any state vector x ∈ Xn to a configuration πF (x) = e, where ev = ∗ if v ∈ F and
ev = xv otherwise. That is, the values given by Byzantine nodes are ignored and
a configuration consists of only the states of correct nodes. A configuration d is
reachable from configuration e if for every correct node v /∈ F there exists some
x ∈ Xn satisfying πF (x) = e and g(v,x) = dv. Essentially, this means that when
the system is in configuration e, the Byzantine nodes can send node v messages
so that it decides to switch to state dv. An execution of an algorithm A is an
infinite sequence of configurations ξ = 〈e0, e1 . . . , 〉 where configuration er+1 is
reachable from configuration er.

Synchronous counters. We say that an execution ξ = 〈e0, e1 . . . , 〉 of algorithm
A stabilises in time T if there is some x ∈ [c] such that for every correct node
v /∈ F it holds that

p(v, eT+r,v) = r − x mod c for all r ≥ 0,

where eT+r,v is the state of node v on round T + r.
An algorithm A is said to be a synchronous c-counter with resilience f that

stabilises in time T , if for every F ⊆ [n], |F| ≤ f , all executions of algorithm A
stabilise within T rounds. In this case, we say that the stabilisation time T (A)
of A is the minimal such T that all executions of A stabilise in T rounds. The
state complexity of A is S(A) = dlog |X|e, that is, the number of bits required
to encode the state of a node between subsequent rounds. For brevity, we will
often refer to A(n, f, c) as the family of synchronous c-counters over n nodes
with resilience f . For example, A ∈ A(4, 1, 2) denotes a synchronous 2-counter
over 4 nodes tolerating one failure.

3 Optimal resilience boosting

In this section, we show how to use existing synchronous counters to construct
new counters in larger networks with higher resilience. The construction is similar
in spirit to the one given in [12], but somewhat simpler and allows for optimal
resilience boosting. We first state the boosting theorem together with a general
overview of the approach, then provide our novel construction, and subsequently
discuss how to stabilise the output counters using the unreliable “helper” counters.
Finally, we prove the main result.

3.1 The road map

The high-level idea of the resilience boosting method is as follows. We first start
with counters that have a low resilience and use these to construct a new “weaker”
counter that has a higher resilience but only needs to behave correctly once in
a while for sufficiently long. Once such a weak counter exists, it can be used to
provide consistent round numbers for long enough to execute a single instance
of a high-resilience consensus protocol. This can be used to reach agreement on
the output counter. Once we can boost resilience in the above manner, we can
recursively apply this approach to get the desired resilience.

We now focus on a single recursion step of the resilience boosting. As in [12],
the basic idea is to use multiple counters that run in parallel to perform a leader
election process that is guaranteed to consider each of the counters as leader
eventually. Eventually, a stabilised and correctly behaving counter is elected as a
leader for some time and can be used to clock the consensus protocol.

The approach in [12] is inefficient in the sense that using many parallel
counters scales poorly in terms of how fast the process operates, which in turn
results in large stabilisation times. On the other hand, using only a small number
of parallel counters yields poor resilience. Here, we introduce an approach that
can—and in fact, must—operate with two counters only, resulting in optimal
resilience and fast stabilisation. The key idea is that by running only two counters
in parallel, we can utilise all the nodes for filtering out “bad counter values” for
both counters and have the nodes carefully choose which counter to follow (and
for how long).

In each application of the resilience boosting, each of the two counters is run
by roughly half of the nodes. For f = 0, these counters are trivial: all nodes simply
reproduce a local counter of a designated leader node. For f > 0, we assume that
reliable counters for all f ′ < f already exist, and combine an f0-resilient and an
f1-resilient counter with f0, f1 < f so that f0 + f1 + 1 = f . This implies that, no
matter which nodes are faulty, one of the two counters will eventually stabilise.

Our first goal is to construct a τ -counter that counts correctly only once in a
while; τ will roughly be the running time of the consensus protocol we will execute
later on. In order to do this, we take two counting algorithms Ai, i ∈ {0, 1} with
different counter ranges. We will have these two counters alternatively point to
a “leader counter” for τ = Θ(f) rounds, simply by dividing the counters by τ ,
rounding down, and taking the result modulo 2. However, to ensure that each
Ai is eventually considered the leader for τ rounds by both counters, we let the
pointer generated by A1 switch between leaders by factor 2 slower than the one
of A0.

Obviously, employing this approach naively is not good enough: since f >
max{f1, f2}, it may happen that either A0 or A1 never stabilises. However, we
are satisfied if nodes behave as if following an operational counter for τ rounds.
To this end, we apply for each node v executing Ai the trivial consistency check
whether the local output variable of Ai increases by 1 in each round. If not, it
will switch to using A1−i as reference for a sufficient number, in this case Θ(τ),
of rounds to ensure that both v and the nodes executing A1−i will consider A1−i
as the leader for sufficiently long.

This almost cuts it—except that two nodes w 6= v executing Ai may have a
different opinion on the output variable for Ai, as there are more than fi faulty
nodes executing Ai. This final hurdle is passed by enlisting the help of all nodes
for a majority vote on what the current output of Ai actually is. Essentially,
here we use threshold voting, which in each round r at each node yields either
a globally unique counter value ci(r) for Ai or ⊥, indicating that Ai is not
operating correctly. This entails that, eventually,

– There are unique values ci(r) that increase by 1 in each round and are
considered to be the current counter value of Ai by all nodes executing Ai

that are not currently relying on the counter of A1−i.
– If a node executing Ai defaults to the counter of A1−i, there are fewer than
f1−i faulty nodes executing A1−i.

– Hence, all correct nodes consider Ai with fewer than fi faults for τ rounds
as the leader.

We leverage this last property to execute the phase king algorithm [2] in the same
way as in [12] to stabilise the output counters.

We remark that the stabilisation time on each level is the maximum of that
for the used counters plus O(f); by choosing f1 ≈ f2 ≈ f/2, we can thus ensure
an overall stabilisation time of O(f), irrespectively of the number of recursion
levels. Formally, we prove the following theorem:

Theorem 2. Let c, n > 1 and f < n/3. Define n0 = bn/2c, n1 = dn/2e,
f0 = b(f − 1)/2c, f1 = d(f − 1)/2e, and τ = 3(f + 2). If for i ∈ {0, 1} there exist
synchronous counters Ai ∈ A(ni, fi, ci) such that ci = 3i · 2τ , then there exists a
synchronous c-counter B ∈ (n, f, c) such that

– T (B) = max{T (A0), T (A1)}+O(f), and
– S(B) = max{S(A0), S(A1)}+O(log f + log c).

We fix the notation of this theorem for the remainder of this section, as it
is dedicated to its proof. Moreover, for notational convenience we abbreviate
T = max{T (A0), T (A1)} and S = max{S(A0), S(A1)}.

3.2 Agreeing on a common counter (once in a while)

In this part, we construct a counter that will eventually count consistently at
all nodes for τ rounds. The τ -counter then will be used as a common clock for
executing the phase king algorithm.

First, we partition V = V0∪V1 such that V0∩V1 = ∅, |V0| = n0 and |V1| = n1.
We often refer to the set Vi as block i. For both i ∈ {0, 1}, the nodes in set Vi
execute the algorithm Ai. In case block i has more than fi faults, we call the
block i faulty. Otherwise, we say that block i is correct. By construction, at
least one of the blocks is correct. Hence, there is a correct block i for which Ai

stabilises within T rounds, i.e., nodes in block i output a consistent ci-counter in
rounds r ≥ T .

Lemma 1. For some i ∈ {0, 1}, block i is correct.

Proof. By choice of fi, we have f = f0 + f1 + 1. Hence, at least one of the sets
Vi will contain at most fi faults.

Next, we apply the typical threshold voting mechanism employed by most
Byzantine tolerant algorithms in order to filter out differing views of counter values
that are believed to be consistent. This is achieved by broadcasting candidate
counter values and applying a threshold of n− f as a consistency check, which
guarantees that only one candidate value (besides the fallback value ⊥ indicating
an inconsistency) can remain. This is applied for each block concurrently, and all
nodes participate in the process, so we can be certain that fewer than one third
of the voters are faulty.

In addition to passing this voting step, we require that the counters also have
behaved consistently over a sufficient number of rounds; this is verified by the
obvious mechanism of testing whether the counter increases by 1 each round and
counting the number of rounds since the last inconsistency was detected.

In the following, nodes frequently examine a set of values, one broadcast
by each node, and determine majority values. Note that Byzantine nodes may
send different values to different nodes, that is it may happen that correct nodes
output different values from such a vote. We refer to a strong majority as at
least n− f nodes supporting the same value, which is then called the majority

…

* *

!!!

m0(v, r + 1) m1(v, r + 1)

c0(v, r)

v

M1(v, r + 2)

(1) Majority votes on
 both counters

(2) Threshold votes and
 consistency checks

(3) Choose a consistent
 counter

Block 0 Block 1

… w

Fig. 1. Forming an opinion. The white block depicts nodes in the set V0 running the
c0-counter, and the gray block the set V1 running the c1-counter. The white and gray
filled arrows indicate the messages output by the white or gray block, respectively. The
crosses denote Byzantine nodes with arbitrary output. In the above scenario, the white
block is faulty and node v observes that the c0-counter behaves inconsistently, hence it
chooses to use the majority output of block 1; node w in the same block still relies on
the c0-counter, as it appears consistent from the perspective of node w.

value. If a node does not see a strong majority, it outputs the symbol ⊥ instead.
Clearly, this procedure is well-defined for f < n/2.

We will refer to this procedure as a majority vote, and slightly abuse notation
by saying “majority vote” when, precisely, we should talk of “the output of the
majority vote at node v”. Since we require that f < n/3, the following standard
argument shows that for each vote, there is a unique value such that each node
either outputs this value or ⊥.

Lemma 2. If v, w ∈ V \ F both observe a strong majority, they output the same
majority value.

Proof. Fix any set A of n − f correct nodes. As correct nodes broadcast the
same value to each node, v and w observing strong majorities for different values
would require that for each value A contains n− 2f supporting it. However, this
is impossible since 2(n− 2f) = n− f + (n− 3f) > n− f = |A|.

We now put this principle to use. We introduce the following local variables
for each node v ∈ V , block i ∈ {0, 1}, and round r:

– mi(v, r) stores the most frequent counter value in block i in round r, which
is determined from the broadcasted output variables of Ai with ties broken
arbitrarily,

– Mi(v, r) stores the majority vote on mi(v, r − 1),
– wi(v, r) is a cooldown counter which is reset to 2c1 whenever the node

perceives “the” counter of block i behaving inconsistently, that is, Mi(v, r) 6=
Mi(v, r−1)+1 mod ci. Note that this test will automatically fail if either value
is ⊥. Otherwise, if the counter behaves consistently, wi(v, r) = max{wi(v, r−
1)− 1, 0}.

Figure 1 illustrates how the values of the mi and Mi are determined. Clearly,
these variables can be updated based on the local values from the previous round

and the states broadcasted at the beginning of the current round. This requires
nodes to store O(log ci) = O(log f) bits.

Furthermore, we define the following derived variables for each v ∈ V , i ∈
{0, 1}, and round r:

– di(v, r) = Mi(v, r) if wi(v, r) = 0, otherwise di(v, r) = ⊥,
– `i(v, r) = bdi(v, r)/(3iτ)c if di(v, r) 6= ⊥, otherwise `i(v, r) = ⊥,
– for v ∈ Vi, `(v, r) = `i(v, r) if `i(v, r) 6= ⊥, otherwise `(v, r) = `1−i(v, r), and
– d(v, r) = d`(v,r)(v, r) mod τ if `(v, r) 6= ⊥, otherwise d(v, r) = 0.

These can be computed locally, without storing or communicating additional
values. The variable `(v, r) indicates the block that node v currently considers
leader.

We now verify that `i(v, r) has the desired properties. To this end, we analyse
di(v, r). We start with a lemma showing that eventually a correct block’s counter
will be consistently observed by all correct nodes.

Lemma 3. Suppose block i ∈ {0, 1} is correct. Then for all v, w ∈ V \ F ,
and rounds r ≥ R = T + O(f) it holds that di(v, r) = di(w, r) and di(v, r) =
di(v, r − 1) + 1 mod ci.

Proof. Within T (Ai) rounds, Ai stabilises. Moreover, any Byzantine tolerant
counter must satisfy that fi < ni/3, implying that mi(v, r + 1) = mi(v, r) +
1 mod ci for all r ≥ T (Ai). Consequently, Mi(v, r + 1) = Mi(v, r) + 1 mod ci for
all r ≥ T (Ai) + 1. Therefore, wi(v, r) cannot be reset in rounds r ≥ T (Ai) + 2,
yielding that wi(v, r) = 0 for all r ≥ T (Ai) + 2 + 2c1 = T + O(f). The claim
follows from the definition of variable di(v, r).

The following lemma states that if a correct node v does not detect an error
in a block’s counter, then this means that any other correct node considering the
block’s counter correct in any of the last 2c1 rounds computed a counter value
for that block consistent with the one of v.

Lemma 4. Suppose for i ∈ {0, 1}, v ∈ V \ F , and r ≥ 2c1 = O(f) it holds that
di(v, r) 6= ⊥. Then for each w ∈ V \ F and each r′ ∈ {r − 2c1 + 1, . . . , r} either
di(w, r

′) = di(v, r)− (r − r′) mod ci or di(w, r
′) = ⊥.

Proof. Suppose di(w, r
′) 6= ⊥. Thus, di(w, r

′) = Mi(w, r
′) 6= ⊥. By Lemma 2,

either Mi(v, r
′) = ⊥ or Mi(v, r

′) = Mi(w, r
′). However, Mi(v, r

′) = ⊥ would
imply that wi(v, r

′) = 2c1 and thus

wi(v, r) ≥ wi(v, r
′) + r − r′ = 2c1 + r − r′ > 0,

contradicting the assumption that di(v, r) 6= ⊥. Thus, Mi(v, r
′) = Mi(w, r

′) =
di(w, r

′). More generally, we get from r−r′ < 2c1 and wi(v, r) = 0 that wi(v, r
′′) 6=

2c1 for all r′′ ∈ {r′, . . . , r}. Therefore, we have that Mi(v, r
′′ + 1) = Mi(v, r

′′) +
1 mod c for all r′′ ∈ {r′, . . . , r − 1}, implying

di(v, r) = Mi(v, r) = Mi(v, r
′) + r − r′ = di(w, r

′) + r − r′,

proving the claim of the lemma.

The above properties allow us to prove a key lemma: within T +O(f) rounds,
there will be τ consecutive rounds during which the variable `i(v, r) points to
the same correct block for all correct nodes.

Lemma 5. Let R be as in Lemma 3. There is a round r ≤ R+O(f) = T +O(f)
and a correct block i so that for all v ∈ V \ F and r′ ∈ {r, . . . , r + τ − 1} it holds
that `(v, r′) = i.

Proof. By Lemma 1, there exists a correct block i. Thus by Lemma 3, variable
di(v, r) counts correctly during rounds r ≥ R. If there is no round r ∈ {R, . . . , R+
ci− 1} such that some v ∈ V \F has `1−i(v, r) 6= ⊥, then `(v, r) = `i(v, r) for all
such v and r and the claim of the lemma holds true by the definition of `i(v, r)
and the fact that di(v, r) counts correctly and consistently.

Hence, assume that r0 ∈ {R, . . . , R + ci − 1} is minimal with the property
that there is some v ∈ V \ F so that `1−i(v, r0) 6= ⊥. Therefore, d1−i(v, r0) 6= ⊥
and, by Lemma 4, this implies for all w ∈ V \F and all r ∈ {r0, . . . , r0 + 2c1− 1}
that either d1−i(w, r) = ⊥ or d1−i(w, r) = d1−i(v, r0) + r − r0. In other words,
there is a “virtual counter” that equals d1−i(v, r0) in round r0 so that during
{r0, . . . , r0 + 2c1− 1} correct nodes’ d1−i variable either equals this counter or ⊥.

Consequently, it remains to show that both `i and the variable `1−i derived
from this virtual counter equal i for τ consecutive rounds during the interval
{r0, . . . , r0+2c1−1}, as then `(v, r) = i for v ∈ V \F and such a round r. Clearly,
the c1-counter consecutively counts from 0 to c1 − 1 at least once during rounds
{r0, . . . , r0 + 2c1 − 1}. Recalling that c1 = 6τ , we see that `1(v, r) = i for all
v ∈ V \F with `1(v, r) 6= ⊥ for 3τ consecutive rounds during {r0, . . . , r0+2c1−1}.
As c0 = 2τ , we have that `0(v, r) = i for all v ∈ V \ F with `0(v, r) 6= ⊥ for
τ consecutive rounds during this subinterval. As argued earlier, `0(v, r) 6= ⊥
or `1(v, r) 6= ⊥ and hence `(v, r) = i for each such node and round. Because
r0 + 2c1 − 1 < R+ 3c1 = T +O(f), this completes the proof.

Using the above lemma, we get a counter where all nodes eventually count
correctly and consistently modulo τ for at least τ rounds.

Corollary 2. There is a round r = T +O(f) so that (1) for all v, w ∈ V \ F it
holds that d(v, r) = d(w, r) and (2) for all v ∈ V \F and r′ ∈ {r+1, . . . , r+τ−1}
we have d(v, r′) = d(v, r′ − 1) + 1 mod τ .

Proof. By Lemma 5, there is a round r = T + O(f) and a correct block i
such that for all v ∈ V \ F we have `(v, r′) = i for all r′ ∈ {r, . . . , r + τ − 1}.
Moreover, r is sufficiently large to apply Lemma 3 to di(v, r

′) = d(v, r′) for
r′ ∈ {r + 1, . . . , r + τ − 1}, yielding the claim.

3.3 Reaching consensus

For every node v ∈ V , let a(v, r) denote the output variable of the synchronous
c-counting algorithm B we are constructing. Similarly as in a prior work [12], we
now apply the phase king consensus algorithm [2] to get all nodes in the network
agree on the output value of the c-counter. The phase king algorithm has the
following properties:

– the algorithm tolerates f < n/3 Byzantine failures,
– the running time of the algorithm is O(f) rounds and it uses O(log c) bits of

state,
– if node v is correct, then agreement is reached if all correct nodes execute

rounds 3v, 3v + 1, and 3v + 2 consecutively,
– once agreement is reached, then agreement persists even when nodes execute

different rounds.

More formally, we have the following lemma:

Lemma 6 (adapted from [12]). Let v ∈ [f + 2] be a correct node and r ≥ 0.
– If all correct nodes execute the instructions 3v+k of the phase king algorithm

during round r + k for all k ∈ {0, 1, 2}, then for any r′ > r + 2, we have
a(u, r′) = a(w, r′) and a(u, r′ + 1) = a(u, r′) + 1 mod c for all u,w ∈ V \ F .

– If a(u, r′) = a(w, r′) for all u,w ∈ V \ F , then a(u, r′ + 1) = a(w, r′ + 1) =
a(w, r′) + 1 mod c no matter which (even if different) instructions nodes u
and w execute on round r′.

3.4 Proofs of Theorems 1 and 2

We are now ready to prove our main results of this section.

Theorem 2. Let c, n > 1 and f < n/3. Define n0 = bn/2c, n1 = dn/2e,
f0 = b(f − 1)/2c, f1 = d(f − 1)/2e, and τ = 3(f + 2). If for i ∈ {0, 1} there exist
synchronous counters Ai ∈ A(ni, fi, ci) such that ci = 3i · 2τ , then there exists a
synchronous c-counter B ∈ (n, f, c) such that

– T (B) = max{T (A0), T (A1)}+O(f), and
– S(B) = max{S(A0), S(A1)}+O(log f + log c).

Proof. First, we apply the construction underlying Corollary 2. Then we have
every node v ∈ V in each round r execute the instructions for round d(v, r) of
the phase king algorithm discussed in the previous paragraph. It remains to show
that this yields a correct algorithm B with stabilisation time T (B) = T +O(f)
and space complexity S(B) = S +O(log f + log c), where T = max{T (Ai)} and
S = max{S(Ai)}.

By Corollary 2, there exists a round r = T + O(f) so that the variables
d(v, r) behave as a consistent τ -counter during rounds {r, . . . , r + τ − 1} for all
v ∈ V \ F . As there are at most f faulty nodes, there exist at least two correct
nodes v ∈ [f + 2]. Since τ = 3(f + 2), for at least one correct node v ∈ [f + 2] \F ,
there is a round r ≤ rv ≤ r + τ − 3 such that d(w, rv + k) = 3v + k for all
w ∈ V \ F and k ∈ {0, 1, 2}. By Lemma 6, it follows that the output variables
a(w, r′) count correctly and consistently for all r′ ≥ rv + 3 and w ∈ V \ F . Thus,
the algorithm stabilises in rv + 3 ≤ r + τ = r +O(f) = T +O(f) rounds.

The bound for the space complexity follows from the facts that, at each node,
we need (a) at most S bits to store the state of Ai, (b) O(log τ) = O(log f) bits
to store the auxilary variables underlying Corollary 2, (c) O(log τ) = O(log f)
bits for the helper variables underlying Lemma 6 [12], and (d) dlog ce bits to
store the output variable a(v, r).

Theorem 1. For any integers c, n > 1 and f < n/3, there exists an f -resilient
synchronous c-counter that runs on n nodes, stabilises in O(f) rounds, and
requires O(log2 f + log c) bits to encode the state of a node.

Proof. We show the claim by induction on f . The induction hypothesis is that
for all f > f ′ ≥ 0, c > 1, and n > 3f ′, we can construct B ∈ A(f ′, n, c) with

T (B) = 1 + αf ′
dlog f ′e∑
k=0

(1/2)k and S(B) = β(log2 f ′ + log c),

where α and β are sufficienlty large constants and for f ′ = 0 the sum is empty,
that is, T (B) = 1. As

∑∞
k=0(1/2)k = 2, this will prove the theorem. Note that

for f ≥ 0 it is sufficient to show the claim for n(f) = 3f + 1, as we can easily
generalise to any n > n(f) by running B on the first n(f) nodes and letting
the remaining nodes follow the majority counter value among the n(f) nodes
executing the algorithm; this increases the stabilisation time by one round and
induces no memory overhead.

For the base case, observe that a 0-tolerant c-counter of n(0) = 1 node
is trivially given by the node having a local counter. It stabilises in 0 rounds
and requires dlog ce state bits. As pointed out above, this implies a 0-tolerant
c-counter for any n with stabilisation time 1 and dlog ce bits of state.

For the inductive step to f , we apply Theorem 2. For i ∈ {0, 1}, we have that
fi ≤ f/2, ni > 3fi, and ci = O(f). This implies by the induction hypothesis that
there are Ai(ni, fi, ci) with

T (Ai) = 1 +
αf

2

dlog f/2e∑
k=0

(
1

2

)k

+O(f) = 1 + αf

dlog fe∑
k=0

(
1

2

)k

,

where in the last step we use that α is sufficiently large, and

S(B) = β

(
log2 f

2
+ log

f

2

)
+O(log f + log c) = β

(
log2 f + log c

)
,

where we exploit that β is sufficiently large. Hence, the induction step succeeds.

4 Less communication after stabilisation

We now sketch how to reduce the number of bits broadcast by a node after
stabilisation; see [11] for the complete construction. The techniques we use are
very similar to the ones we used for deriving Theorem 1. Essentially, we devise a
“silencing wrapper” for algorithms given by Theorem 1. Let A be such a counting
algorithm. The high-level idea and the key ingredients are the following:

– The goal is that nodes eventually become happy : they assume stabilisation
has occured and check for counter consistency only every κ rounds (as
self-stabilising algorithms always need to verify their output).

– Happy nodes do not execute the underlying algorithm A to avoid the involved
communication. This necessitates a fall-back stabilisation mechanism covering
the case that a subset of the correct nodes is happy, but does not detect a
problem.

– Using a cooldown counter with similar effects as shown in Lemma 4, we
enforce that all happy nodes output consistent counters.

– We override the phase king instruction of A if at least n− 2f ≥ f + 1 nodes
(claim to be) happy and propose a counter value x. Instead nodes adjust
their counter output accordingly to match x. If there is no strong majority
of happy nodes a supporting counter value, either all nodes become unhappy
or all correct nodes reach agreement and start counting correctly.

– If all correct nodes are unhappy, they execute A “as is” reaching agreement
eventually.

– The agreed-upon counters are used to make all nodes concurrently switch
their state to being happy (once the cooldown counters have expired), in a
way that does not interfere with the above stabilisation process.

The final observation is that happy nodes can communicate their counter
values very efficiently in a manner that self-stabilises within κ rounds. As their
counter increases by 1 modulo c in every round (or they become unhappy), they
can use κ rounds to encode a counter value; the recipient simply counts locally
in the meantime.

5 Discussion

We presented a deterministic counting algorithm that has low state and commu-
nication complexity, optimal resilience, and asymptotically optimal stabilisation
time. In addition, we gave a variant of the algorithm that communicates extremely
little once stabilisation is achieved. In [12], we consider the so-called pulling model,
in which nodes request messages from others instead of broadcasting a message
to everyone, and use randomisation to reduce the amount of bits communicated
(in contrast to broadcasting) by each correct node to logO(1) n per round. We
remark that this approach can also applied to the solution given in this work.

From our point of view, the most thrilling open question is whether similar
ideas can be applied to randomised consensus routines in order to achieve sublinear
stabilisation time with high resilience and small communication overhead. Another
point of note is that this general type of recursion, which we essentially extended
from its use for synchronous consensus [2] (where the clock is implicitly given
by the synchronous start), might also prove useful for deriving improved pulse
synchronisation [4] algorithms. Interestingly, no reduction from consensus to pulse
synchronisation is known, so there is hope for efficient deterministic algorithms
that stabilise in sublinear time.

Acknowledgements. We thank anonymous reviewers for helpful feedback and
Jukka Suomela for discussions and comments.

References

1. Ben-Or, M., Dolev, D., Hoch, E.N.: Fast self-stabilizing Byzantine tolerant digital
clock synchronization. In: Proc. 27th Annual ACM Symposium on Principles
of Distributed Computing (PODC 2008). pp. 385–394. ACM Press (2008), doi:
10.1145/1400751.1400802.

2. Berman, P., Garay, J.A., Perry, K.J.: Towards optimal distributed consensus. In:
Proc. 30th Annual Symposium on Foundations of Computer Science (FOCS 1989).
pp. 410–415. IEEE (1989), doi:10.1109/SFCS.1989.63511.

3. Dolev, D., Heljanko, K., Järvisalo, M., Korhonen, J.H., Lenzen, C., Rybicki, J.,
Suomela, J., Wieringa, S.: Synchronous counting and computational algorithm
design (2015), arXiv:1304.5719v2.

4. Dolev, D., Hoch, E.N.: On self-stabilizing synchronous actions despite Byzantine
attacks. In: Proc. 21st International Symposium on Distributed Computing (DISC
2007). Lecture Notes in Computer Science, vol. 4731, pp. 193–207. Springer (2007),
doi:10.1007/978-3-540-75142-7_17.

5. Dolev, D., Korhonen, J.H., Lenzen, C., Rybicki, J., Suomela, J.: Synchronous
counting and computational algorithm design. In: Proc. 15th International Sympo-
sium on Stabilization, Safety, and Security of Distributed Systems (SSS 2013).
Lecture Notes in Computer Science, vol. 8255, pp. 237–250. Springer (2013),
doi:10.1007/978-3-319-03089-0_17.

6. Dolev, D., Reischuk, R.: Bounds on information exchange for Byzantine agreement.
Journal of the ACM 32(1), 191–204 (1985), doi:10.1145/2455.214112.

7. Dolev, S.: Self-Stabilization. The MIT Press, Cambridge, MA (2000)
8. Dolev, S., Welch, J.L.: Self-stabilizing clock synchronization in the presence of

Byzantine faults. Journal of the ACM 51(5), 780–799 (2004), doi:10.1145/1017460.
1017463.

9. Fischer, M.J., Lynch, N.A.: A lower bound for the time to assure interactive
consistency. Information Processing Letters 14(4), 183–186 (1982), doi:10.1016/
0020-0190(82)90033-3.

10. Hoch, E., Dolev, D., Daliot, A.: Self-stabilizing Byzantine digital clock synchroniza-
tion. In: Proc. 8th International Symposium on Stabilization, Safety, and Security
of Distributed Systems (SSS 2006). vol. 4280, pp. 350–362 (2006)

11. Lenzen, C., Rybicki, J.: Efficient counting with optimal resilience (2015), arXiv:
1508.02535.

12. Lenzen, C., Rybicki, J., Suomela, J.: Towards optimal synchronous counting. In:
Proc. 34th Annual ACM Symposium on Principles of Distributed Computing
(PODC 2015). pp. 441–450. ACM Press (2015), doi:10.1145/2767386.2767423.

13. Pease, M.C., Shostak, R.E., Lamport, L.: Reaching agreement in the presence of
faults. Journal of the ACM 27(2), 228–234 (1980), doi:10.1145/322186.322188.

http://dx.doi.org/10.1145/1400751.1400802
http://dx.doi.org/10.1145/1400751.1400802
http://dx.doi.org/10.1109/SFCS.1989.63511
http://arxiv.org/abs/1304.5719v2
http://dx.doi.org/10.1007/978-3-540-75142-7_17
http://dx.doi.org/10.1007/978-3-319-03089-0_17
http://dx.doi.org/10.1145/2455.214112
http://dx.doi.org/10.1145/1017460.1017463
http://dx.doi.org/10.1145/1017460.1017463
http://dx.doi.org/10.1016/0020-0190(82)90033-3
http://dx.doi.org/10.1016/0020-0190(82)90033-3
http://arxiv.org/abs/1508.02535
http://arxiv.org/abs/1508.02535
http://dx.doi.org/10.1145/2767386.2767423
http://dx.doi.org/10.1145/322186.322188

	Efficient counting with optimal resilience

