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In the synchronous c-counting problem, we are given a synchronous system of n nodes, where up to f of the nodes may be Byzantine, that is, have arbitrary faulty behaviour. The task is to have all of the correct nodes count modulo c in unison in a self-stabilising manner: regardless of the initial state of the system and the faulty nodes' behavior, eventually rounds are consistently labelled by a counter modulo c at all correct nodes. We provide a deterministic solution with resilience f < n/3 that stabilises in O(f ) rounds and every correct node broadcasts O(log 2 f ) bits per round. We build and improve on a recent result offering stabilisation time O(f ) and communication complexity O(log 2 f / log log f ) but with sub-optimal resilience f = n 1-o(1) (PODC 2015). Our new algorithm has optimal resilience, asymptotically optimal stabilisation time, and low communication complexity. Finally, we modify the algorithm to guarantee that after stabilisation very little communication occurs. In particular, for optimal resilience and polynomial counter size c = n O(1) , the algorithm broadcasts only O(1) bits per node every Θ(n) rounds without affecting the other properties of the algorithm; communication-wise this is asymptotically optimal.

Introduction

In this work, we seek to minimize the amount of communication required for fast self-stabilising, Byzantine fault-tolerant solutions to the synchronous counting problem. We are given a complete communication network on n nodes with arbitrary initial states. There are up to f faulty nodes that may behave in an arbitrary manner. The task is to synchronise the correct nodes so that they will count rounds modulo c in agreement. For example, the following is a possible execution for n = 4 nodes, f = 1 faulty node, and counting modulo c = 4; the execution stabilises after T = 4 rounds:
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In the severe fault-model considered in this work, synchronous counting is an important service for establishing the classic synchronous abstraction: even if a common clock signal is available, local counters may become inconsistent due to transient faults; these in turn induce arbitrary states, which is addressed by the self-stabilisation paradigm. Many, if not most, synchronous algorithms require synchronous round counters to operate correctly.

Synchronous counting is a coordination primitive that can be used e.g. in large integrated circuits to synchronise subsystems to easily implement mutual exclusion and time division multiple access in a fault-tolerant manner. Note that in this context, it is natural to assume that a synchronous clock signal is available, but the clocking system usually does not provide explicit round numbers. Solving synchronous counting thus yields highly dependable round counters for subcircuits.

If we neglect communication, counting and consensus are essentially equivalent [START_REF] Dolev | On self-stabilizing synchronous actions despite Byzantine attacks[END_REF][START_REF] Dolev | Synchronous counting and computational algorithm design[END_REF][START_REF] Dolev | Synchronous counting and computational algorithm design[END_REF]. In particular, many lower bounds on (binary) consensus directly apply to the counting problem [START_REF] Dolev | Bounds on information exchange for Byzantine agreement[END_REF][START_REF] Pease | Reaching agreement in the presence of faults[END_REF][START_REF] Fischer | A lower bound for the time to assure interactive consistency[END_REF]. However, the known generic reduction of counting to consensus incurs a factor-f overhead in space and message size. In recent work [START_REF] Lenzen | Towards optimal synchronous counting[END_REF], we presented an approach that reduces the number of bits nodes broadcast in each round to O(log 2 f / log log f + log c) at the expense of reduced resilience of f = n 1-o (1) . In this paper, we improve on the technique to achieve optimal resilience with O(log 2 f + log c) bits broadcast by each node per round.

Contributions

In this work, we take the following approach. In order to devise communicationefficient algorithms, we first design space-efficient algorithms, that is, algorithms in which each node stores only a few bits between consecutive rounds. This comes with additional advantages:

-Local computations will (typically) be simple.

-Communication becomes simple, as one can afford to broadcast the entire state. -This reduces the complexity of implementations.

-In turn, it becomes easier to use reliable components for an implementation, increasing the overall reliability of the system.

The key challenge that needs to be overcome in constructing space-efficient (and fast) solutions to counting appears to be a chicken-and-egg problem: given that the correct nodes agree on a counter, they can jointly run a (single) instance of synchronous consensus; given that they can run consensus, they can agree on a counter. In [START_REF] Lenzen | Towards optimal synchronous counting[END_REF], this obstacle is navigated by making the statement more precise: given that the correct nodes agree on a counter for a while, they can run consensus. This is used to facilitate agreement on the output counter, in a way which maintains agreement even if the unreliable counters used for stabilisation fail later on.

The task of constructing counters that "work" only once in a while is easier; in particular, it does not require to solve consensus in the process. The drawback of the recursive solution in [START_REF] Lenzen | Towards optimal synchronous counting[END_REF] is that, in order to be time-efficient, it sacrifices resilience. Our main contribution is to provide an improved construction that preserves optimal resilience. Theorem 1. For any integers c, n > 1 and f < n/3, there exists an f -resilient synchronous c-counter that runs on n nodes, stabilises in O(f ) rounds, and requires O(log 2 f + log c) bits to encode the state of a node.

The main hurdle that needs to be taken in order to arrive at this result when building on the techniques of [START_REF] Lenzen | Towards optimal synchronous counting[END_REF] is the following. In both approaches, the nodes are partitioned into blocks, each of which runs a counter of smaller resilience; the construction proceeds inductively on increasing values of f , so such a counter exists by the induction hypothesis. In [START_REF] Lenzen | Towards optimal synchronous counting[END_REF], it is assumed that a majority of these blocks contains sufficiently few faulty nodes for the counter to be operational, causing the relative resilience to deteriorate with each level of recursion in the construction. To achieve optimal resilience, we must drop this assumption, in turn necessitating novel ideas on how to establish a joint counter that is once in a while counting correctly at all non-faulty nodes. We show how to obtain such a counter based on simple local consistency checks, timeouts, and threshold voting.

Last but not least, we show how to reduce the number of bits broadcast after stabilisation to log c/ log κ + O(1) per node and κ rounds for an essentially unconstrained choice of κ, at the expense of additively increasing the stabilisation time by O(κ). In particular, for the special case of optimal resilience and polynomial counter size, we obtain the following result.

Corollary 1. For any n > 1 and c = n O (1) that is an integer multiple of n, there exists a synchronous c-counter that runs on n nodes, has optimal resilience f = (n -1)/3 , stabilises in O(n) rounds, requires O(log 2 n) bits to encode the state of a node, and for which after stabilisation correct nodes broadcast (asymptotically optimal) O(1) bits every Θ(n) rounds.

Prior work

In terms of lower bounds, several impossibility results for consensus directly yield bounds for the counting problem as well [START_REF] Dolev | Synchronous counting and computational algorithm design[END_REF]: counting cannot be solved in the presence of at least n/3 Byzantine failures [START_REF] Pease | Reaching agreement in the presence of faults[END_REF] and any deterministic algorithm needs to run for at least f rounds [START_REF] Fischer | A lower bound for the time to assure interactive consistency[END_REF] and communicate Ω(nf ) bits to stabilise [START_REF] Dolev | Bounds on information exchange for Byzantine agreement[END_REF].

In contrast, there exist several algorithms to the synchronous counting problem, albeit these solutions exhibit different trade-offs in terms of resilience, stabilisation time, space and/or communication complexity, or whether a source of random bits is required. For a brief summary, see Table 1.

Designing space-efficient randomised algorithms for synchronous counting is fairly straightforward [START_REF] Dolev | Self-Stabilization[END_REF][START_REF] Dolev | Self-stabilizing clock synchronization in the presence of Byzantine faults[END_REF][START_REF] Dolev | Synchronous counting and computational algorithm design[END_REF]: for example, the nodes can simply choose random states until a clear majority of nodes has the same state, after which they start to follow the majority. Likewise, given a shared coin, one can quickly reach resilience stabilisation time state bits deterministic ref. agreement by defaulting to the coin whenever no clear majority is observed [START_REF] Ben-Or | Fast self-stabilizing Byzantine tolerant digital clock synchronization[END_REF]; alas, existing shared coins are highly inefficient in terms of communication.
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Designing quickly stabilising algorithms that are both communication-and spaceefficient has turned out to be a challenging task [START_REF] Dolev | On self-stabilizing synchronous actions despite Byzantine attacks[END_REF][START_REF] Dolev | Synchronous counting and computational algorithm design[END_REF][START_REF] Dolev | Synchronous counting and computational algorithm design[END_REF], and it remains open to what extent randomisation can help in designing such algorithms.

In the case of deterministic algorithms, algorithm synthesis has been used for computer-aided design of optimal algorithms with resilience f = 1, but the approach does not scale due to the extremely fast-growing space of possible algorithms [START_REF] Dolev | Synchronous counting and computational algorithm design[END_REF]. In general, many fast-stabilising algorithms build on a connection between Byzantine consensus and synchronous counting, but require a large number of states per node [START_REF] Dolev | On self-stabilizing synchronous actions despite Byzantine attacks[END_REF] due to, e.g., running a large number of consensus instances in parallel. In [START_REF] Lenzen | Towards optimal synchronous counting[END_REF], the approach outlined earlier was leveraged to ensure that each node participates in only O(log f / log log f ) instances of consensus, resulting in small state and communication complexity, but reducing resilience to f = n 1-o (1) .

As a side note, the recursive construction presented in this work bears similarity to the recursive variant of the phase king algorithm [START_REF] Berman | Towards optimal distributed consensus[END_REF], for which the goal of the recursion was also to control the communication complexity (reducing it from Θ(n 3 ) to Θ(n 2 ) for optimal resilience). In retrospect, the structural similarity is striking; one may think of our algorithm as a generalization of the approach to the case where there is no initial agreement on round numbers. The initial lack of consistent round labels is what causes a roughly factor n larger communication complexity in our case, which then can be removed after stabilisation leveraging consistent counters.

Structure of the article

In the next section, we provide formal descriptions of the model and the problem, and introduce some notation. In Section 3, we prove the main technical result on optimal resilience boosting and infer Theorem 1. In Section 4, we describe how to reduce the amount of bits communicated after stabilisation. Finally, in Section 5, we discuss how randomisation can help in further reducing the communication complexity and conclude the paper.

Preliminaries

In this section, we define the model of computation and the counting problem.

Model of computation.

We consider a fully-connected synchronous messagepassing network. That is, our distributed system consists of a network of n nodes, where each node is a state machine and has communication links to all other nodes in the network. All nodes have a unique identifier from the set [n] = {0, 1, . . . , n -1}. The computation proceeds in synchronous communication rounds. In each round, all processors perform the following in a lock-step fashion:

(1) broadcast their current state to all nodes, (2) receive messages from all nodes, and (3) update their local state. We assume that the initial state of each node is arbitrary and there are up to f Byzantine nodes. A Byzantine node may have arbitrary behaviour, that is, it can deviate from the protocol in any manner. In particular, the Byzantine nodes can collude together in an adversarial manner and a single Byzantine node can send different messages to different correct nodes.

Algorithms and executions. Formally, we define an algorithm as a tuple A = X, g, p , where X is the set of all states any node can have, g : [n] × X n → X is the state transition function, and p : [n] × X → [c] is the output function. That is, at each round when node v receives a vector x = x 0 , . . . , x n-1 of messages, node v updates it state to g(v, x) and outputs p(v, x v ). As we consider c-counting algorithms, the set of output values is the set set [c] of counter values. Note that the tuples passed to g are ordered according to the node identifiers, i.e., nodes can identify the sender of a message (this is frequently referred to as source authentication).

For any set of F ⊆ [n] of faulty nodes, we define a projection π F that maps any state vector x ∈ X n to a configuration π F (x) = e, where e v = * if v ∈ F and e v = x v otherwise. That is, the values given by Byzantine nodes are ignored and a configuration consists of only the states of correct nodes. A configuration d is reachable from configuration e if for every correct node v / ∈ F there exists some x ∈ X n satisfying π F (x) = e and g(v, x) = d v . Essentially, this means that when the system is in configuration e, the Byzantine nodes can send node v messages so that it decides to switch to state d v . An execution of an algorithm A is an infinite sequence of configurations ξ = e 0 , e 1 . . . , where configuration e r+1 is reachable from configuration e r .

Synchronous counters. We say that an execution ξ = e 0 , e 1 . . . , of algorithm A stabilises in time T if there is some x ∈ [c] such that for every correct node v / ∈ F it holds that p(v, e T +r,v ) = rx mod c for all r ≥ 0, where e T +r,v is the state of node v on round T + r.

An algorithm A is said to be a synchronous c-counter with resilience f that stabilises in time T , if for every F ⊆ [n], |F| ≤ f , all executions of algorithm A stabilise within T rounds. In this case, we say that the stabilisation time T (A) of A is the minimal such T that all executions of A stabilise in T rounds. The state complexity of A is S(A) = log |X| , that is, the number of bits required to encode the state of a node between subsequent rounds. For brevity, we will often refer to A(n, f, c) as the family of synchronous c-counters over n nodes with resilience f . For example, A ∈ A(4, 1, 2) denotes a synchronous 2-counter over 4 nodes tolerating one failure.

Optimal resilience boosting

In this section, we show how to use existing synchronous counters to construct new counters in larger networks with higher resilience. The construction is similar in spirit to the one given in [START_REF] Lenzen | Towards optimal synchronous counting[END_REF], but somewhat simpler and allows for optimal resilience boosting. We first state the boosting theorem together with a general overview of the approach, then provide our novel construction, and subsequently discuss how to stabilise the output counters using the unreliable "helper" counters. Finally, we prove the main result.

The road map

The high-level idea of the resilience boosting method is as follows. We first start with counters that have a low resilience and use these to construct a new "weaker" counter that has a higher resilience but only needs to behave correctly once in a while for sufficiently long. Once such a weak counter exists, it can be used to provide consistent round numbers for long enough to execute a single instance of a high-resilience consensus protocol. This can be used to reach agreement on the output counter. Once we can boost resilience in the above manner, we can recursively apply this approach to get the desired resilience.

We now focus on a single recursion step of the resilience boosting. As in [START_REF] Lenzen | Towards optimal synchronous counting[END_REF], the basic idea is to use multiple counters that run in parallel to perform a leader election process that is guaranteed to consider each of the counters as leader eventually. Eventually, a stabilised and correctly behaving counter is elected as a leader for some time and can be used to clock the consensus protocol.

The approach in [START_REF] Lenzen | Towards optimal synchronous counting[END_REF] is inefficient in the sense that using many parallel counters scales poorly in terms of how fast the process operates, which in turn results in large stabilisation times. On the other hand, using only a small number of parallel counters yields poor resilience. Here, we introduce an approach that can-and in fact, must-operate with two counters only, resulting in optimal resilience and fast stabilisation. The key idea is that by running only two counters in parallel, we can utilise all the nodes for filtering out "bad counter values" for both counters and have the nodes carefully choose which counter to follow (and for how long).

In each application of the resilience boosting, each of the two counters is run by roughly half of the nodes. For f = 0, these counters are trivial: all nodes simply reproduce a local counter of a designated leader node. For f > 0, we assume that reliable counters for all f < f already exist, and combine an f 0 -resilient and an f 1 -resilient counter with f 0 , f 1 < f so that f 0 + f 1 + 1 = f . This implies that, no matter which nodes are faulty, one of the two counters will eventually stabilise.

Our first goal is to construct a τ -counter that counts correctly only once in a while; τ will roughly be the running time of the consensus protocol we will execute later on. In order to do this, we take two counting algorithms A i , i ∈ {0, 1} with different counter ranges. We will have these two counters alternatively point to a "leader counter" for τ = Θ(f ) rounds, simply by dividing the counters by τ , rounding down, and taking the result modulo 2. However, to ensure that each A i is eventually considered the leader for τ rounds by both counters, we let the pointer generated by A 1 switch between leaders by factor 2 slower than the one of A 0 .

Obviously, employing this approach naively is not good enough: since f > max{f 1 , f 2 }, it may happen that either A 0 or A 1 never stabilises. However, we are satisfied if nodes behave as if following an operational counter for τ rounds. To this end, we apply for each node v executing A i the trivial consistency check whether the local output variable of A i increases by 1 in each round. If not, it will switch to using A 1-i as reference for a sufficient number, in this case Θ(τ ), of rounds to ensure that both v and the nodes executing A 1-i will consider A 1-i as the leader for sufficiently long.

This almost cuts it-except that two nodes w = v executing A i may have a different opinion on the output variable for A i , as there are more than f i faulty nodes executing A i . This final hurdle is passed by enlisting the help of all nodes for a majority vote on what the current output of A i actually is. Essentially, here we use threshold voting, which in each round r at each node yields either a globally unique counter value c i (r) for A i or ⊥, indicating that A i is not operating correctly. This entails that, eventually, -There are unique values c i (r) that increase by 1 in each round and are considered to be the current counter value of A i by all nodes executing A i that are not currently relying on the counter of A 1-i . -If a node executing A i defaults to the counter of A 1-i , there are fewer than f 1-i faulty nodes executing A 1-i . -Hence, all correct nodes consider A i with fewer than f i faults for τ rounds as the leader.

We leverage this last property to execute the phase king algorithm [START_REF] Berman | Towards optimal distributed consensus[END_REF] in the same way as in [START_REF] Lenzen | Towards optimal synchronous counting[END_REF] to stabilise the output counters. We remark that the stabilisation time on each level is the maximum of that for the used counters plus O(f ); by choosing f 1 ≈ f 2 ≈ f /2, we can thus ensure an overall stabilisation time of O(f ), irrespectively of the number of recursion levels. Formally, we prove the following theorem:

Theorem 2. Let c, n > 1 and f < n/3. Define n 0 = n/2 , n 1 = n/2 , f 0 = (f -1)/2 , f 1 = (f -1)/2 , and τ = 3(f + 2). If for i ∈ {0, 1} there exist synchronous counters A i ∈ A(n i , f i , c i ) such that c i = 3 i • 2τ , then there exists a synchronous c-counter B ∈ (n, f, c) such that -T (B) = max{T (A 0 ), T (A 1 )} + O(f ), and -S(B) = max{S(A 0 ), S(A 1 )} + O(log f + log c).
We fix the notation of this theorem for the remainder of this section, as it is dedicated to its proof. Moreover, for notational convenience we abbreviate T = max{T (A 0 ), T (A 1 )} and S = max{S(A 0 ), S(A 1 )}.

Agreeing on a common counter (once in a while)

In this part, we construct a counter that will eventually count consistently at all nodes for τ rounds. The τ -counter then will be used as a common clock for executing the phase king algorithm.

First, we partition

V = V 0 ∪ V 1 such that V 0 ∩ V 1 = ∅, |V 0 | = n 0 and |V 1 | = n 1 .
We often refer to the set V i as block i. For both i ∈ {0, 1}, the nodes in set V i execute the algorithm A i . In case block i has more than f i faults, we call the block i faulty. Otherwise, we say that block i is correct. By construction, at least one of the blocks is correct. Hence, there is a correct block i for which A i stabilises within T rounds, i.e., nodes in block i output a consistent c i -counter in rounds r ≥ T . Lemma 1. For some i ∈ {0, 1}, block i is correct.

Proof. By choice of f i , we have f = f 0 + f 1 + 1. Hence, at least one of the sets V i will contain at most f i faults.

Next, we apply the typical threshold voting mechanism employed by most Byzantine tolerant algorithms in order to filter out differing views of counter values that are believed to be consistent. This is achieved by broadcasting candidate counter values and applying a threshold of nf as a consistency check, which guarantees that only one candidate value (besides the fallback value ⊥ indicating an inconsistency) can remain. This is applied for each block concurrently, and all nodes participate in the process, so we can be certain that fewer than one third of the voters are faulty.

In addition to passing this voting step, we require that the counters also have behaved consistently over a sufficient number of rounds; this is verified by the obvious mechanism of testing whether the counter increases by 1 each round and counting the number of rounds since the last inconsistency was detected.

In the following, nodes frequently examine a set of values, one broadcast by each node, and determine majority values. Note that Byzantine nodes may send different values to different nodes, that is it may happen that correct nodes output different values from such a vote. We refer to a strong majority as at least nf nodes supporting the same value, which is then called the majority
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Fig. 1. Forming an opinion. The white block depicts nodes in the set V0 running the c0-counter, and the gray block the set V1 running the c1-counter. The white and gray filled arrows indicate the messages output by the white or gray block, respectively. The crosses denote Byzantine nodes with arbitrary output. In the above scenario, the white block is faulty and node v observes that the c0-counter behaves inconsistently, hence it chooses to use the majority output of block 1; node w in the same block still relies on the c0-counter, as it appears consistent from the perspective of node w.

value. If a node does not see a strong majority, it outputs the symbol ⊥ instead.

Clearly, this procedure is well-defined for f < n/2. We will refer to this procedure as a majority vote, and slightly abuse notation by saying "majority vote" when, precisely, we should talk of "the output of the majority vote at node v". Since we require that f < n/3, the following standard argument shows that for each vote, there is a unique value such that each node either outputs this value or ⊥. Lemma 2. If v, w ∈ V \ F both observe a strong majority, they output the same majority value.

Proof. Fix any set A of nf correct nodes. As correct nodes broadcast the same value to each node, v and w observing strong majorities for different values would require that for each value A contains n -2f supporting it. However, this is impossible since 2

(n -2f ) = n -f + (n -3f ) > n -f = |A|.
We now put this principle to use. We introduce the following local variables for each node v ∈ V , block i ∈ {0, 1}, and round r:

-m i (v, r) stores the most frequent counter value in block i in round r, which is determined from the broadcasted output variables of A i with ties broken arbitrarily, -M i (v, r) stores the majority vote on m i (v, r -1), -w i (v, r) is a cooldown counter which is reset to 2c 1 whenever the node perceives "the" counter of block i behaving inconsistently, that is, M i (v, r) = M i (v, r-1)+1 mod c i . Note that this test will automatically fail if either value is ⊥. Otherwise, if the counter behaves consistently, w i (v, r) = max{w i (v, r -1) -1, 0}.

Figure 1 illustrates how the values of the m i and M i are determined. Clearly, these variables can be updated based on the local values from the previous round and the states broadcasted at the beginning of the current round. This requires nodes to store O(log c i ) = O(log f ) bits. Furthermore, we define the following derived variables for each v ∈ V , i ∈ {0, 1}, and round r:

-d i (v, r) = M i (v, r) if w i (v, r) = 0, otherwise d i (v, r) = ⊥, -i (v, r) = d i (v, r)/(3 i τ ) if d i (v, r) = ⊥, otherwise i (v, r) = ⊥, -for v ∈ V i , (v, r) = i (v, r) if i (v, r) = ⊥, otherwise (v, r) = 1-i (v, r), and -d(v, r) = d (v,r) (v, r) mod τ if (v, r) = ⊥, otherwise d(v, r) = 0.
These can be computed locally, without storing or communicating additional values. The variable (v, r) indicates the block that node v currently considers leader.

We now verify that i (v, r) has the desired properties. To this end, we analyse d i (v, r). We start with a lemma showing that eventually a correct block's counter will be consistently observed by all correct nodes. Lemma 3. Suppose block i ∈ {0, 1} is correct. Then for all v, w ∈ V \ F, and rounds

r ≥ R = T + O(f ) it holds that d i (v, r) = d i (w, r) and d i (v, r) = d i (v, r -1) + 1 mod c i .
Proof. Within T (A i ) rounds, A i stabilises. Moreover, any Byzantine tolerant counter must satisfy that

f i < n i /3, implying that m i (v, r + 1) = m i (v, r) + 1 mod c i for all r ≥ T (A i ). Consequently, M i (v, r + 1) = M i (v, r) + 1 mod c i for all r ≥ T (A i ) + 1. Therefore, w i (v, r) cannot be reset in rounds r ≥ T (A i ) + 2, yielding that w i (v, r) = 0 for all r ≥ T (A i ) + 2 + 2c 1 = T + O(f ).
The claim follows from the definition of variable d i (v, r).

The following lemma states that if a correct node v does not detect an error in a block's counter, then this means that any other correct node considering the block's counter correct in any of the last 2c 1 rounds computed a counter value for that block consistent with the one of v.

Lemma 4. Suppose for i ∈ {0, 1}, v ∈ V \ F, and r ≥ 2c 1 = O(f ) it holds that d i (v, r) = ⊥. Then for each w ∈ V \ F and each r ∈ {r -2c 1 + 1, . . . , r} either d i (w, r ) = d i (v, r) -(r -r ) mod c i or d i (w, r ) = ⊥. Proof. Suppose d i (w, r ) = ⊥. Thus, d i (w, r ) = M i (w, r ) = ⊥. By Lemma 2, either M i (v, r ) = ⊥ or M i (v, r ) = M i (w, r ). However, M i (v, r ) = ⊥ would imply that w i (v, r ) = 2c 1 and thus w i (v, r) ≥ w i (v, r ) + r -r = 2c 1 + r -r > 0, contradicting the assumption that d i (v, r) = ⊥. Thus, M i (v, r ) = M i (w, r ) = d i (w, r ).
More generally, we get from r-r < 2c 1 and w i (v, r) = 0 that w i (v, r ) = 2c 1 for all r ∈ {r , . . . , r}. Therefore, we have that M i (v, r + 1) = M i (v, r ) + 1 mod c for all r ∈ {r , . . . , r -1}, implying

d i (v, r) = M i (v, r) = M i (v, r ) + r -r = d i (w, r ) + r -r ,
proving the claim of the lemma.

The above properties allow us to prove a key lemma: within T + O(f ) rounds, there will be τ consecutive rounds during which the variable i (v, r) points to the same correct block for all correct nodes. Lemma 5. Let R be as in Lemma 3. There is a round r ≤ R + O(f ) = T + O(f ) and a correct block i so that for all v ∈ V \ F and r ∈ {r, . . . , r + τ -1} it holds that (v, r ) = i.

Proof. By Lemma 1, there exists a correct block i. Thus by Lemma 3, variable r) for all such v and r and the claim of the lemma holds true by the definition of i (v, r) and the fact that d i (v, r) counts correctly and consistently.

d i (v, r) counts correctly during rounds r ≥ R. If there is no round r ∈ {R, . . . , R + c i -1} such that some v ∈ V \ F has 1-i (v, r) = ⊥, then (v, r) = i (v,
Hence, assume that r 0 ∈ {R, . . . , R + c i -1} is minimal with the property that there is some v ∈ V \ F so that 1-i (v, r 0 ) = ⊥. Therefore, d 1-i (v, r 0 ) = ⊥ and, by Lemma 4, this implies for all w ∈ V \ F and all r ∈ {r 0 , . . . , r 0 + 2c 1 -1} that either

d 1-i (w, r) = ⊥ or d 1-i (w, r) = d 1-i (v, r 0 ) + r -r 0 .
In other words, there is a "virtual counter" that equals d 1-i (v, r 0 ) in round r 0 so that during {r 0 , . . . , r 0 + 2c 1 -1} correct nodes' d 1-i variable either equals this counter or ⊥.

Consequently, it remains to show that both i and the variable 1-i derived from this virtual counter equal i for τ consecutive rounds during the interval {r 0 , . . . , r 0 +2c 1 -1}, as then (v, r) = i for v ∈ V \F and such a round r. Clearly, the c 1 -counter consecutively counts from 0 to c 1 -1 at least once during rounds {r 0 , . . . , r 0 + 2c 1 -1}. Recalling that c 1 = 6τ , we see that 1 (v, r) = i for all v ∈ V \F with 1 (v, r) = ⊥ for 3τ consecutive rounds during {r 0 , . . . , r 0 +2c 1 -1}. As c 0 = 2τ , we have that 0 (v, r) = i for all v ∈ V \ F with 0 (v, r) = ⊥ for τ consecutive rounds during this subinterval. As argued earlier, 0 (v, r) = ⊥ or 1 (v, r) = ⊥ and hence (v, r) = i for each such node and round. Because r 0 + 2c 1 -1 < R + 3c 1 = T + O(f ), this completes the proof.

Using the above lemma, we get a counter where all nodes eventually count correctly and consistently modulo τ for at least τ rounds.

Corollary 2. There is a round r = T + O(f ) so that (1) for all v, w ∈ V \ F it holds that d(v, r) = d(w, r) and ( 2) for all v ∈ V \F and r ∈ {r +1, . . . , r +τ -1} we have d(v, r ) = d(v, r -1) + 1 mod τ . Proof. By Lemma 5, there is a round r = T + O(f ) and a correct block i such that for all v ∈ V \ F we have (v, r ) = i for all r ∈ {r, . . . , r + τ -1}. Moreover, r is sufficiently large to apply Lemma 3 to d i (v, r ) = d(v, r ) for r ∈ {r + 1, . . . , r + τ -1}, yielding the claim.

Reaching consensus

For every node v ∈ V , let a(v, r) denote the output variable of the synchronous c-counting algorithm B we are constructing. Similarly as in a prior work [START_REF] Lenzen | Towards optimal synchronous counting[END_REF], we now apply the phase king consensus algorithm [START_REF] Berman | Towards optimal distributed consensus[END_REF] to get all nodes in the network agree on the output value of the c-counter. The phase king algorithm has the following properties:

-the algorithm tolerates f < n/3 Byzantine failures, -the running time of the algorithm is O(f ) rounds and it uses O(log c) bits of state, -if node v is correct, then agreement is reached if all correct nodes execute rounds 3v, 3v + 1, and 3v + 2 consecutively, -once agreement is reached, then agreement persists even when nodes execute different rounds.

More formally, we have the following lemma:

Lemma 6 (adapted from [START_REF] Lenzen | Towards optimal synchronous counting[END_REF]). Let v ∈ [f + 2] be a correct node and r ≥ 0.

-If all correct nodes execute the instructions 3v + k of the phase king algorithm during round r + k for all k ∈ {0, 1, 2}, then for any r > r + 2, we have a(u, r ) = a(w, r ) and a(u, r + 1) = a(u, r ) + 1 mod c for all u, w ∈ V \ F. -If a(u, r ) = a(w, r ) for all u, w ∈ V \ F, then a(u, r + 1) = a(w, r + 1) = a(w, r ) + 1 mod c no matter which (even if different) instructions nodes u and w execute on round r .

Proofs of Theorems 1 and 2

We are now ready to prove our main results of this section. By Corollary 2, there exists a round r = T + O(f ) so that the variables d(v, r) behave as a consistent τ -counter during rounds {r, . . . , r + τ -1} for all v ∈ V \ F. As there are at most f faulty nodes, there exist at least two correct nodes

Theorem 2. Let c, n > 1 and f < n/3. Define n 0 = n/2 , n 1 = n/2 , f 0 = (f -1)/2 , f 1 = (f -1)/2 , and τ = 3(f + 2). If for i ∈ {0, 1} there exist synchronous counters A i ∈ A(n i , f i , c i ) such that c i = 3 i • 2τ ,
v ∈ [f + 2]. Since τ = 3(f + 2), for at least one correct node v ∈ [f + 2] \ F, there is a round r ≤ r v ≤ r + τ -3 such that d(w, r v + k) = 3v + k for all w ∈ V \ F and k ∈ {0, 1, 2}
. By Lemma 6, it follows that the output variables a(w, r ) count correctly and consistently for all r ≥ r v + 3 and w ∈ V \ F. Thus, the algorithm stabilises in

r v + 3 ≤ r + τ = r + O(f ) = T + O(f ) rounds.
The bound for the space complexity follows from the facts that, at each node, we need (a) at most S bits to store the state of A i , (b) O(log τ ) = O(log f ) bits to store the auxilary variables underlying Corollary 2, (c) O(log τ ) = O(log f ) bits for the helper variables underlying Lemma 6 [START_REF] Lenzen | Towards optimal synchronous counting[END_REF], and (d) log c bits to store the output variable a(v, r).

Theorem 1. For any integers c, n > 1 and f < n/3, there exists an f -resilient synchronous c-counter that runs on n nodes, stabilises in O(f ) rounds, and requires O(log 2 f + log c) bits to encode the state of a node.

Proof. We show the claim by induction on f . The induction hypothesis is that for all f > f ≥ 0, c > 1, and n > 3f , we can construct B ∈ A(f , n, c) with

T (B) = 1 + αf log f k=0 (1/2) k and S(B) = β(log 2 f + log c),
where α and β are sufficienlty large constants and for f = 0 the sum is empty, that is, T (B) = 1. As ∞ k=0 (1/2) k = 2, this will prove the theorem. Note that for f ≥ 0 it is sufficient to show the claim for n(f ) = 3f + 1, as we can easily generalise to any n > n(f ) by running B on the first n(f ) nodes and letting the remaining nodes follow the majority counter value among the n(f ) nodes executing the algorithm; this increases the stabilisation time by one round and induces no memory overhead.

For the base case, observe that a 0-tolerant c-counter of n(0) = 1 node is trivially given by the node having a local counter. It stabilises in 0 rounds and requires log c state bits. As pointed out above, this implies a 0-tolerant c-counter for any n with stabilisation time 1 and log c bits of state.

For the inductive step to f , we apply Theorem 2. For i ∈ {0, 1}, we have that f i ≤ f /2, n i > 3f i , and c i = O(f ). This implies by the induction hypothesis that there are A i (n i , f i , c i ) with

T (A i ) = 1 + αf 2 log f /2 k=0 1 2 k + O(f ) = 1 + αf log f k=0 1 2 k ,
where in the last step we use that α is sufficiently large, and

S(B) = β log 2 f 2 + log f 2 + O(log f + log c) = β log 2 f + log c ,
where we exploit that β is sufficiently large. Hence, the induction step succeeds.

Less communication after stabilisation

We now sketch how to reduce the number of bits broadcast by a node after stabilisation; see [START_REF] Lenzen | Efficient counting with optimal resilience[END_REF] for the complete construction. The techniques we use are very similar to the ones we used for deriving Theorem 1. Essentially, we devise a "silencing wrapper" for algorithms given by Theorem 1. Let A be such a counting algorithm. The high-level idea and the key ingredients are the following:

-The goal is that nodes eventually become happy: they assume stabilisation has occured and check for counter consistency only every κ rounds (as self-stabilising algorithms always need to verify their output).

-Happy nodes do not execute the underlying algorithm A to avoid the involved communication. This necessitates a fall-back stabilisation mechanism covering the case that a subset of the correct nodes is happy, but does not detect a problem. -Using a cooldown counter with similar effects as shown in Lemma 4, we enforce that all happy nodes output consistent counters. -We override the phase king instruction of A if at least n -2f ≥ f + 1 nodes (claim to be) happy and propose a counter value x. Instead nodes adjust their counter output accordingly to match x. If there is no strong majority of happy nodes a supporting counter value, either all nodes become unhappy or all correct nodes reach agreement and start counting correctly. -If all correct nodes are unhappy, they execute A "as is" reaching agreement eventually. -The agreed-upon counters are used to make all nodes concurrently switch their state to being happy (once the cooldown counters have expired), in a way that does not interfere with the above stabilisation process.

The final observation is that happy nodes can communicate their counter values very efficiently in a manner that self-stabilises within κ rounds. As their counter increases by 1 modulo c in every round (or they become unhappy), they can use κ rounds to encode a counter value; the recipient simply counts locally in the meantime.

Discussion

We presented a deterministic counting algorithm that has low state and communication complexity, optimal resilience, and asymptotically optimal stabilisation time. In addition, we gave a variant of the algorithm that communicates extremely little once stabilisation is achieved. In [START_REF] Lenzen | Towards optimal synchronous counting[END_REF], we consider the so-called pulling model, in which nodes request messages from others instead of broadcasting a message to everyone, and use randomisation to reduce the amount of bits communicated (in contrast to broadcasting) by each correct node to log O(1) n per round. We remark that this approach can also applied to the solution given in this work.

From our point of view, the most thrilling open question is whether similar ideas can be applied to randomised consensus routines in order to achieve sublinear stabilisation time with high resilience and small communication overhead. Another point of note is that this general type of recursion, which we essentially extended from its use for synchronous consensus [START_REF] Berman | Towards optimal distributed consensus[END_REF] (where the clock is implicitly given by the synchronous start), might also prove useful for deriving improved pulse synchronisation [START_REF] Dolev | On self-stabilizing synchronous actions despite Byzantine attacks[END_REF] algorithms. Interestingly, no reduction from consensus to pulse synchronisation is known, so there is hope for efficient deterministic algorithms that stabilise in sublinear time.
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