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Extension of the single-matrix formulation of the vocal
tract: consideration of bilateral channels and

connection of self-oscillating models of vocal folds with
glottal chink

Benjamin Elie1,∗, Yves Laprie
LORIA, INRIA / CNRS / Université de Lorraine, Vandoeuvre-les-Nancy, France

Abstract

The paper presents extensions of the single-matrix formulation (Mokhtari et

al., 2008, Speech Comm. 50(3) 179 – 190) that enable self-oscillation models

of vocal folds, including glottal chinks, to be connected to the vocal tract. It

also integrates the case of a local division of the main air path into two lat-

eral channels, as it may occur during the production of lateral approximants.

Extensions are detailed by a reformulation of the acoustic conditions at the

glottis, and at the upstream connection of bilateral channels. Numerical

simulations are provided to validate the simulation framework. The intro-

duction of a zero due to the presence of bilateral channels is confirmed by the

simulations. The position of the zero agrees with the theoretical predictions.

Simulations of static vowels reveal that the behavior of the vocal folds is

qualitatively similar whether they are connected to the single-matrix formu-

lation or to the classic reflection type line analog model. Finally, the acoustic
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effect of the glottal chink on the production of vowels is highlighted by the

simulations: the shortening of the vibrating part of the vocal folds lowers the

amplitude of the glottal flow, and therefore lowers the global acoustic level

radiated at the lips. It also introduces an offset in the glottal flow waveform.

Keywords:

Speech synthesis, Vocal folds, Glottal chink, Lateral consonants

1. Introduction

Time-domain continuous speech synthesizers are commonly based on sim-

plified physical models to compute the acoustic propagation along the vocal

tract [1–4] and/or the self-sustaining oscillations of the vocal folds [5–7].

In comparison with finite element based methods [8], which require a huge

amount of time, their low computation time make them interesting for con-

tinuous speech synthesis.

The acoustic models use the assumption of a one-dimensional wave prop-

agation, generally planar wave, along a set of acoustic tubes. The dimensions

of the elementary tubes (or tubelets) approximate the geometry of the vocal

tract. In regards with the typical dimensions of the human vocal tract, these

models are valid up to frequencies around 5 kHz. This limit is acceptable for

the simulation of speech production, for which most of the information lies

under 5 kHz.

Articulatory synthesis bridges the gap between the articulatory and acous-

tic domains of speech. This is thus an invaluable tool to apprehend the acous-

tic impact of the speech articulator gestures and their temporal coordination,

that of the anatomic characteristics of the human vocal tract, and of the in-
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teractions between the vocal folds and the vocal tract. In order to enable

studying speech production via articulatory synthesis, several aspects should

be covered by the numerical simulations of the speech aerodynamic/acoustic

phenomena. First, the complexity of the vocal tract should be accurately

modeled so that the various cavities (nasal tract, paranasal sinuses, sublin-

gual cavities. . . ) can be taken into account during the simulation. Then, the

simulation framework should be able to deal with time-varying geometries

of the vocal tract in order to simulate word-level or phrase-level utterances.

This constrains the time trajectory of each articulator to be accurately mod-

eled. Finally, the acoustic coupling between the glottal source, i.e. the vocal

folds, and the vocal tract needs to be realistically modeled.

So far, there is no known time-domain continuous speech synthesizer that

can deal with all these constraints. The scientific literature about speech

synthesis based on simplified physical models brings out two main techniques:

the reflection type line analog method [1], which is called RTLA in this paper,

and the transmission line circuit analog [2] method, called TLCA.

RTLA computes the forward and backward pressure waves using the

impedance discontinuities at the tube junctions. It has the advantage of

accurately modeling the acoustic losses and the acoustic radiation by apply-

ing discrete filters to the scattering equations, and thus accounting for their

frequency dependence. However, there are constraints on the dimensions of

the tubelets that model the vocal tract in regards with the chosen simula-

tion frequency Fs: the latter must be set so that the acoustic wave travels

a distance equal to the length of each tubelet, say l. This yields the con-

straint Fs = cs/l, where cs is the sound celerity. As a consequence, the total
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length of the vocal tract cannot be modified during the simulation. This is

an important issue for continuous speech synthesis since the length of the

vocal tract varies during natural speech production. RTLA is widely used to

study the self-sustained motion of the vocal folds [9–11] coupled with simpli-

fied acoustic resonators, but the aforementioned limitation makes its use in

continuous speech synthesis difficult when dealing with realistic geometries

of the vocal tract [4]. Note that using RTLA with time-varying length of

the vocal tract may be possible by changing the sampling frequency at each

time step, and by accurately resampling the simulated utterance, as proposed

in [12]. However, this technique does still not overcome the limitation of an

evenly sampled vocal tract, which may be problematic when dealing with

complex geometries of the vocal system, e.g. when numerous side cavities

are connected considered.

On the other hand, many continuous speech synthesizers use TLCA [2, 5,

13, 14]. It is based on the electric-acoustic analogy: the vocal tract acoustics

is seen as a lumped electric circuit. The acoustic and aerodynamic elements

of each tubelet are modeled by circuit elements. Unlike RTLA, it can easily

deal with length variations since the dimensions of the acoustic tubelets are

independent. However, this analogy does not allow the frequency dependence

of the acoustic losses and the acoustic radiation to be accurately taken into

account. Another difficulty, originally encountered by TLCA users, was the

connection with more than one side branch. Indeed, the simulation method

by Maeda [2] cannot include the simultaneous connection of several side

branches. This issue has been overcome recently by Mokhtari et al. [3] via

the reformulation of the equations governing the acoustic propagation into a
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system matrix. This formulation, called Single-Matrix Formulation (SMF),

supports the connection of any number of side branches. Consequently, it

is a useful tool to study the acoustic effects of the numerous side cavities

(piriform fossae, sublingual cavity, paranasal sinuses. . . ) in the context of

continuous speech synthesis. Yet, SMF, as presented in [3], presents some

limitations: it does not offer the possibility to connect a self-oscillating model

of the vocal folds, and the configuration of anastomozing waveguides, i.e. the

local division of the main oral tract into two lateral channels, as it may occur

during the production of lateral approximants, is not discussed.

Starting from the single-matrix formulation presented in [3], this paper

details the theory and the methodology for extending the SMF by overcoming

the aforementioned limitations. The aim is then to propose a complete sim-

ulation framework for speech synthesis that can account for the complexity

of the vocal tract geometry and its numerous cavities taken simultaneously,

that can deal with a time-varying realistic model of the vocal tract, including

length variation, and that realistically models the acoustic coupling between

the glottal source and the vocal tract, including a model enabling a partial

glottal closure.

The main aspects of the simulation framework, called Extended Single-

Matrix Formulation (ESMF), are outlined by the organization of the paper.

The transmission line circuit analog and the original single matrix formula-

tion are detailed in Sec. 2. It also includes the required acoustic conditions at

the glottis for integrating self-oscillating models of vocal folds. Then, Sec. 3

details the mathematical formulations for introducing the case of anasto-

mozing waveguides into the single-matrix formulation, as well as the math-
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ematical formulations to connect self-oscillating models of vocal folds and a

glottal chink to the single-matrix formulation. Finally, numerical simulations

present, in Sec. 4, the accuracy of the extended single-matrix formulation to

deal with the new features.

2. Theoretical background

This section describes the single-matrix formulation of the vocal tract

by Mokhtari [3], which is itself derived from the transmission line circuit

analog model by Maeda [2]. The present paper provides modifications in

the formulation, taking into account the internal resistance of a noise source

pressure, enabling the simulation of the frication noise. This reformulation

is motivated by the fact that many quantities introduced in this section are

used to demonstrate the contributions detailed in the next section. Yet, for

the sake of brevity, not all computation details are provided, and one may

refer to the original papers [2, 3] for more details.

2.1. Transmission line circuit analog model

The vocal tract is modeled as a concatenation of cylindrical tubes (or

tubelets) for computing the acoustic propagation inside it. The length and

the cross-sectional areas of the tubelets are such that they approximate the

vocal tract geometry. The single-matrix formulation [3] uses the transmission

line circuit analog approach, which is preferred to the reflection type line

analog model. This is motivated by the fact that the latter does not include

the possibility to easily deal with length variations of the vocal tract. It is

consequently hardly suitable for continuous speech synthesis with realistic

dynamic vocal tract geometries. In transmission line circuit analog models,
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each tubelet is modeled by lumped circuit elements. Fig. 1 shows the chosen

lumped circuit elements of a single tube section and Tab. 1 lists the lumped

circuit elements of the acoustic-electric analogy.

Figure 1: Lumped circuit element of an acoustic tube. The acoustic-electric

analogy is detailed in Tab. 1.

The termsWR, WC , andWL are constant terms denoting respectively the

resistance, the stiffness, and the mass of the vocal tract walls per area unit.

Chosen values for this study are those provided in [13], namely WR = 8000

kg.m-2.s-1, WC = 8.45× 106 kg.m-2.s-2, and WL = 21 kg.m-2. By convention,

indexes follow the air flow direction. For instance, considering the vocal tract,

index 1 denotes the tubelet connected to the glottis, and index N denotes

the tubelet corresponding to the lip termination.

The lumped circuit elements include a frication noise source. It is made

up of a pressure source Pni
, with an internal resistance Rni

[15–17], that is

active when the air flow is considered as turbulent, namely when the Reynolds

number Re is above a certain threshold Rec.

This paper follows the formula provided in [15] to compute the internal
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Table 1: Acoustic-electric analogy

Electric Acoustic

Current Volume velocity u

Voltage Acoustic pressure p

Ri Energy loss (Ri = 4πµli
ai

)

Ci Air compliance (Ci = aili
(ρcs)2

)

Li Air inertance (Li = ρli
2ai

)

Rwi
Wall resistance (Rwi

= WR

2li
√
πai

)

Cwi
Wall compliance (Cwi

=
2li
√
πai

WC
)

Lwi
Wall inertance (Lwi

= WL

2li
√
πai

)

Udi Flow source (− ∂
∂t
liai)

Pni
Fricative noise source

resistance Rni
:

Rni
= κρ

UDC
a2
i−1

+ 8πµ
li−1

a2
i−1

, (1)

where the term κ denotes a scaling coefficient set to 1.42, as used in [5, 15],

and UDC is the low frequency component of the air flow [15]. Finally, the

noise level Pni
is

Pni
= max

{
0, ξw

U3
DC

a
3/2
i−1

(
Re2 −Re2

c

)}
, (2)

where ξ is an arbitrarily adjustable real constant used to control the noise

level, and w is a Gaussian white noise to which a first-order lowpass and

third-order highpass filters have been applied [15]. The choice of the thresh-

olds Rec for the study is 2700, and ξ = 10−6, as suggested by Sondhi and
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Schroeter [16]. The frication noise source is usually located at the next point

downstream the supraglottal constriction [15–17], hence the spatial lag i− 1

in Eqs. (1) and (2).

2.2. Equations

Considering the lumped circuit elements displayed in Fig. 1, the time-

domain simulation consists in solving the following equations at each time

point t

Pi−1 − Pi =
∂

∂t
[(Li−1 + Li)Ui] +

(
Ri−1 +Ri +Rni−1

)
Ui + Pni−1

Ui − Ui+1 = u1 + u2 + u3,

(3)

where

u1 =
∂

∂t
[CiPi] , (4)

u3 = −Udi , (5)

Pi =
∂

∂t
[Lwi

u2] +Rwi
u2 +

∫ t

0

u2

Cwi

dt. (6)

The paper follows the discrete representation of Eq. (3) introduced by

Maeda [2]. The derivative and integrative terms are defined in Appendix A.

The discretization of the above equations yields to the following set of

linear equations at a discrete instant n:


F1(n) = Z1(n)U1(n) + b1(n)U2(n)

Fi(n) = bi−1(n)Ui−1(n) + Zi(n)Ui(n) + bi(n)Ui+1(n) for 2 ≤ i ≤ N

FN+1(n) = bN(n)UN(n) + ZN+1(n)UN+1(n)

,

(7)
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where, N is the number of tubelets modeling the considered tract,

Fi = −bi−1S(Υ,Ud)i−1
+ biS(Υ,Ud)i + Pni

− Φi, (8a)

Zi = −bi−1 − bi −
2

T
(Li−1 + Li)−Ri−1 −Ri −Rni−1

, (8b)

bi = [2Ci/T +Gwi
]−1 , (8c)

Gwi
= [2Lwi

/T +Rwi
+ Cwi

(T/2]−1 , (8d)

S(Υ,Ud)i = Υi + Udi , (8e)

and where T is the sampling time period, Φi and Υi are terms included

for time derivation and time integration respectively. Their expressions are

detailed in Appendix A. One may refer to [2] for detailed steps leading to

Eq. (7). For the sake of clarity, the term (n), denoting the temporal step, is

not displayed for the rest of the paper. Similarly, Υ(n− 1) and Φ(n− 1) are

replaced by Υ and Φ.

Finally, the pressure Pi in a tubelet is

Pi = bi
[
Ui − Ui+1 + S(Υ,Ud)i

]
. (9)

Boundary conditions should be defined for i = 1 and i = N + 1.

Boundary conditions at the glottis

The original single-matrix formulation of the vocal tract [3] follows the

paper from Maeda [2] and defines the boundary conditions as follows

Psub − P1 =
2

T
[Lg + L1]U1 + [Rv +R1]U1 − Φ1, (10)

where, according to Eq. (9),

P1 = b1

[
U1 − U2 + S(Υ,Ud)1

]
, (11)
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and where U1 is the volume velocity of the air flow passing through the glottis.

The substitution of Eq. (11) into Eq. (10) yields

F1 = Z1U1 + b1U2, (12a)

where

Z1 = −b1 −
2

T
L1 −R1, (12b)

F1 = b1S(Υ,Ud)1 − Φ1. (12c)

Boundary condition at the lips

The other boundary condition describes the radiation at the lips. The

network is then terminated by a radiation impedance, which has been cho-

sen similar to the one described by Flanagan [18]. It consists of a parallel

circuit approximation, where a conductance GRad and a susceptance SRad

are branched in parallel. The boundary condition at an open termination,

namely the lips or the nostrils, writes

u(xN , t) =

∫ t

0

SRad(t)p(xN , t)dt+GRad(t)p(xN , t), (13a)

where

SRad =
3π
√
πa(xN , t)

8ρ
, (13b)

GRad =
9πa(xN , t)

128ρc
. (13c)

Following the discrete representation by Maeda [2], the discretization

of Eqs. (13) and their integration into the system of equations defined by

Eqs. (7), yields

FN+1 = bNUN + ZN+1UN+1, (14a)
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where

ZN+1 = −bN − bN+1 −
2

T
LN −RN , (14b)

bN+1 = [SRad +GRad]
−1 . (14c)

The acoustic propagation is computed by estimating the values of the

volume velocity Ui inside each tubelet i = 1, . . . , N +1. The previous system

of equations form a well-determined system, the N + 1 unknown volume

velocities are governed by a set of N +1 linear equations. It can be rewritten

into the following matrix form

f = Zu, (15)

where f ∈ R(N+1) = [F1, . . . , FN+1]T , Z ∈ R(N+1)×(N+1) is a tridiagonal ma-

trix containing impedance and loss terms associated to each tubelet, and

u ∈ RN+1 = [U1, . . . , UN+1]T is the vector containing the volume velocities

inside each tubelet.

2.3. Single-matrix formulation of the vocal tract

The single-matrix formulation, as defined by Mokhtari et al. [3], is a

reformulation of the transmission line circuit analog model of the vocal tract

seen as a waveguide network into a single matrix. Each waveguide represents

a side cavity, modeled by a parallel side branch in the analog lumped circuit.

In a waveguide network, the main oropharyngeal tract, from the glottis

to the lips, is called the root node. Quantities derived from the root node

are denoted by the symbol (1) as exponent. Each waveguide connected to

the oral tract is one of its children, and children of the root nodes may also

have children themselves. The whole vocal tract can then be seen as a tree
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structure, where the root node is the oral tract. In the particular case where

several waveguides are connected to the same parent at the same location,

these waveguides are called twins. This is the case for the piriform fossae,

for instance.

Figure 2: Junctions between twin waveguides and their parent.

Fig. 2 shows the waveguide configuration in the case of 2 twin waveguides,

denoted by the symbols m and n as exponent, connected to the root node.

Let

UC = U
(1)
K+1 + U

(m)
1 + U

(n)
1

be the volume velocity upstream the connection, located at the Kth tubelet

of the parent. Then, introducing UC in Eq. (9) at the junction K yields

P
(1)
K = b

(1)
K

[
U

(1)
K − U

(1)
K+1 − U

(m)
1 − U (n)

1 + S
(1)
(Υ,Ud)K

]
. (16)

Applying Eq. (3) at the junction between the upstream part and each of

the 3 downstream parts yields
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P
(1)
K − P

(1)
K+1 =

∂

∂t

[(
L

(1)
K + L

(1)
K+1

)
U

(1)
K+1

]
+ P (1)

nK
+
[
R

(1)
K +R

(1)
K+1 +R(1)

nK

]
U

(1)
K+1

+
∂

∂t

[
L

(1)
K

(
U

(m)
1 + U

(n)
1

)]
+
(
R(1)
nK

+R
(1)
K

)(
U

(m)
1 + U

(n)
1

)
,

P
(1)
K − P

(m)
1 =

∂

∂t

[(
L

(1)
K + L

(m)
1

)
U

(1)
K+1 + L

(m)
1 U

(m)
1

]
+ P (1)

nK
+
[
R

(1)
K +R

(m)
1 +R(1)

nK

]
U

(m)
1

+
[
R(1)
nK

+R
(1)
K

]
U

(1)
K+1,

P
(1)
K − P

(n)
1 =

∂

∂t

[(
L

(1)
K + L

(n)
1

)
U

(1)
K+1 + L

(n)
1 U

(n)
1

]
+ P (1)

nK
+
[
R

(1)
K +R

(n)
1 +R(1)

nK

]
U

(n)
1

+
[
R(1)
nK

+R
(1)
K

]
U

(1)
K+1.

(17)

After discretization, introduction of Eq. (16) into Eq. (17), and reorga-

nization, so that constant terms are at the left side, the junction conditions

write

F
(1)
K = b

(1)
K−1U

(1)
K−1 + Z

(1)
K U

(1)
K + b

(1)
K U

(1)
K+1 + b

(1)
K U

(m)
1 + b

(1)
K U

(n)
1 ,

F
(1)
K+1 = b

(1)
K U

(1)
K + Z

(1)
K+1U

(1)
K+1 + b

(1)
K+1U

(1)
K+2 + Z

(1,m)
C U

(m)
1 + Z

(1,n)
C U

(n)
1 ,

F
(m)
1 = Z

(m)
1 U

(m)
1 + b

(m)
1 U

(m)
2 + b

(1)
K U

(1)
K + Z

(1,m)
C U

(1)
K+1 + Z

(1,m)
C U

(n)
1 ,

F
(n)
1 = Z

(n)
1 U

(n)
1 + b

(n)
1 U

(n)
2 + b

(1)
K U

(1)
K + Z

(1,n)
C U

(1)
K+1 + Z

(1,n)
C U

(m)
1 ,

(18)

where

F
(1)
K+1 = −b(1)

K S
(1)
(Υ,Ud)K

+ b
(1)
K+1S

(1)
(Υ,Ud)K+1

+ P (1)
nK+1

− Φ
(1)
K+1,

F
(m)
1 = b

(m)
1 S

(m)
(Υ,Ud)1

− b(1)
K S

(1)
(Υ,Ud)K

+ P (m)
n1
− Φ

(m)
1 ,

F
(n)
1 = b

(n)
1 S

(n)
(Υ,Ud)1

− b(1)
K S

(1)
(Υ,Ud)K

+ P (n)
n1
− Φ

(n)
1 ,

Z
(1,m)
C = −

[
b

(1)
K +R

(1)
K +R(1)

nK
+

2

T
L

(1)
K

]
= Z

(1,n)
C .

(19)
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Note that, since Z(1,m)
C depends only on terms derived from the oropha-

ryngeal tract, Z(1,m)
C = Z

(1,n)
C .

As shown by Mokhtari et al. [3], the simultaneous resolution of the equa-

tions driving the acoustic propagation along the different waveguides can be

performed via the concatenation of all systems, hence


f (1)

f (m)

f (n)

 =


Z(1) C

(m)T
1 C

(n)T
1

C(m)
1 Z(m) C

(n)T
m

C(n)
1 C

(n)
m Z(n)

 .


u(1)

u(m)

u(n)

 , (20)

where

u(m) =
[
U

(m)
1 , U

(m)
2 , . . . , U

(m)
N+1

]T
,

Z(m) =


Z

(m)
1 b

(m)
1 0

b
(m)
1 Z

(m)
2 b

(m)
2 0

0
. . . . . . . . .

0 b
(m)
N Z

(m)
N+1

 .

The matrix C
(m)
1 and C

(n)
1 are coupling matrices accounting for the junc-

tion between the parent, (1) in this case, and its child, (m) or (n). They

are sparse matrices: after Eq. (18), the non-zero elements are c1,K = b
(1)
K and

c1,K+1 = Z
(1,m)
C . The coupling matrix C

(n)
m is a sparse matrix whose the sole

non-zero element is c1,1 = Z
(1,m)
C . The symbol T as an exponent denotes the

transpose matrix, it should not be confused with the sampling time period.

In the case of the connection of a single side branch, e.g. the nasal tract,

the system in Eq. (20) is modified by deleting the last raw of submatrices

and the last column of submatrices in the block matrix containing the linear

coefficients.
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2.4. Two-mass model and aeroacoustic considerations at the glottis

The method presented in this paper is intended to support any kind of

self-oscillating model of vocal folds. For the sake of brevity, only one will be

used for the simulations as an example. We arbitrarily chose the 2× 2-mass

model with smooth contours [6, 10], but other models could be considered,

like one mass model [19], three mass model [20], or even models dealing with

more masses [21]. It is based on two spring-mass systems, representing the

rear and front ends of the vocal folds. It stems from the basic two-mass model

by Ishizaka and Flanagan [5]. The model presented in this section considers

recent improvements : contours are smooth, allowing a mobile separation

point [6, 10], and it adds corrective terms to take into account the viscous

losses and the unsteady flow effects [11, 22].

The geometry of the glottal constriction used in this paper is illustrated

in Fig. 3.

Figure 3: Geometry of the glottal constriction, as introduced by Lous et

al. [10]. Indexes u and d stand for upper and down respectively.
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The Bernoulli equation for unsteady flow, with an additive Poiseuille

corrective term gives the pressure P (x, t) along the glottal constriction:

P (x, t) = Psub +Be(x, t) + Po(x, t) + In(x, t) x < xs

P (x, t) = Psup x > xs,
(21)

where xs is the flow separation point, and Be(x, t), Po(x, t), and In(x, t)

are respectively the steady term of the Bernoulli equation, the Poiseuille

corrective term and the unsteady term of the Bernoulli equation. They are

defined as:

Be(x, t) = −
ρU2

g (t)

2l2g

[
1

h2(x, t)
− 1

h2(x0, t)

]
,

Po(x, t) = −12µUg(t)

lg

∫ x

x0

dx

h3(x, t)
,

In(x, t) = − ρ
lg

∂

∂t

[
Ug(t)

∫ x

x0

dx

h(x, t)

]
,

(22)

where h(x) is the glottal opening along the x coordinates, lg is the length

of the vocal folds, ρ and µ are respectively the mass density and the shear

viscosity of the air. The position of the flow separation point xs varies with

the glottal constriction geometry:

• if 1.2h1 > h2, xs = x2

• if 1.2h1 < h2, xs is such that hs = h(xs) = 1.2h1

The value 1.2 is an ad-hoc criterion, as used in [6, 10]. At the flow

separation point x = xs, the pressure drop between the upstream and the

downstream parts of the glottis is given by Eq. (23)
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Psub(t)− Psup(t) = Rb(t)U
2
g (t) +Rv(t)Ug(t) +

∂

∂t
[Lg(t)Ug(t)] , (23)

where

Rb(t) =
ρ

2l2g

[
1

h2(xs, t)
− 1

h2(x0, t)

]
,

Rv(t) =
12µ

lg

∫ xs

x0

dx

h3(x, t)
,

Lg(t) =
ρ

lg

[∫ xs

x0

dx

h(x, t)

]
,

(24)

From the determination of the glottal flow Ug, Eq. (21) gives the pressure

distribution P (x) along the glottal constriction. The pressure forces are then

used to derive the mass positions at each simulation step following the classic

system of differential equations

Mÿ + Rẏ + Ky = F, (25)

whereM ∈ R4×4
+ = diag (m1u,m2u,m1d,m2d),R ∈ R4×4

+ = diag (r1u, r2u, r1d, r2d),

and F ∈ R4×4 = diag (F1u, F2u, F1d, F2d) are diagonal matrices containing the

values of respectively the mass, the damping and the pressure forces applied

to each mass, y ∈ R4 = [y1u, y2u, y1d, y2d]
T is the vector containing the dis-

placement of each mass from its rest position, and K ∈ R4×4 is a matrix

containing stiffness coefficients. Due to the presence of a coupling spring kc,

K writes
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K =


k1u + kcu −kcu 0 0

−kcu k2u + kcu 0 0

0 0 k1d + kcd −kcd
0 0 −kcd k2d + kcd


Pressure forces Fi,j(t), with j = {u, d}, are derived from the pressure

applied to the mass at instant t:

F1,j = lg

∫ x1

x0

x− x0

x1 − x0

P (x)dx+ lg

∫ x2

x1

x− x2

x1 − x2

P (x)dx

F2,j = lg

∫ x2

x1

x− x1

x2 − x1

P (x)dx+ lg

∫ x3

x2

x− x3

x2 − x3

P (x)dx

3. Extended Single-Matrix Formulation of the Vocal Tract

General remark:

In this paper, the subglottal pressure is imposed as an input parame-

ter. Although it could be a phonatory articulator that should be considered

for time-domain continuous speech synthesis, especially in order to simulate

natural prosody, it is not taken into account in this paper since the compat-

ibility with the single-matrix formulation has already been proven, even for

complex geometries, by Ho et al. [23].

3.1. Anastomozing waveguides: bilateral consonants

In some cases, the air path inside the vocal tract may be locally divided

into two lateral channels. For instance, this is observed in some lateral ap-

proximants [24–26]. The acoustic effect is not fully apprehended, mainly

because of the lack of acoustic models, and also because of the lack of rele-

vant articulatory data. Indeed, lateral consonants are usually modeled by a

19



single lateral channel, and additionally a supralingual cavity [27, 28]. Zhang

et al. [25, 26] studied the effect of bilateralization with a frequency based

method to compute the transfer function of bilateral vocal tracts. However,

at the best of our knowledge, there is still no existing model of bilateral vocal

tract to be used in the context of time-domain continuous speech synthesis.

The original single-matrix formulation of the vocal tract [3] does not discuss

the case, but this section shows that it can be integrated to it.

Fig. 4 shows the waveguide connections in the case of bilateralization. It

includes a secondary waveguide that is connected to the oral branch at two

points.

Figure 4: Equivalent diagram of anastomozing waveguides.

Following the medical and the hydrography terminology, this relation is

called anastomosis in this paper. This relationship distinguishes a main anas-

tomozing waveguide and a secondary one, called anabranch. For instance,

the main anastomozing waveguide in Fig. 4 is waveguide (1), while (n) is its

anabranch.

Equations describing the conditions at the upstream connection Ku are

similar to a general parent-child relationship, described in Eqs. (16) to (19).
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In that case, since there is no waveguide (m), U (m)
1 = 0 and equations refer-

ring to (m) at the left side should not be considered. Hence

F
(1)
Ku

= b
(1)
Ku−1U

(1)
Ku−1 + Z

(1)
Ku
U

(1)
Ku

+ b
(1)
Ku
U

(1)
Ku+1 + b

(1)
Ku
U

(n)
1 ,

F
(1)
Ku+1 = b

(1)
Ku
U

(1)
Ku

+ Z
(1)
Ku+1U

(1)
Ku+1 + b

(1)
Ku+1U

(1)
Ku+2 + Z

(1,n)
C U

(n)
1 ,

F
(n)
1 = Z

(n)
1 U

(n)
1 + b

(n)
1 U

(n)
2 + b

(1)
Ku
U

(1)
Ku

+ Z
(1,n)
C U

(1)
Ku+1.

(26)

At the downstream connection Kd, the merged volume velocity Ucd =

U
(n)
N+1 + U

(1)
Kd+1, is introduced into Eq. (9)

P
(1)
Kd+1 = b

(1)
Kd+1

[
U

(1)
Kd+1 + U

(n)
N+1 − U

(1)
Kd+2 + S

(1)
(Υ,Ud)Kd+1

]
. (27)

Applying Eq. (3) at the downstream junction yields

P
(1)
Kd
− P (1)

Kd+1 =
∂

∂t

[(
L

(1)
Kd

+ L
(1)
Kd+1

)
U

(1)
Kd+1 + L

(1)
Kd+1U

(n)
N+1

]
+ P (1)

nKd
+
[
R

(1)
Kd

+R
(1)
Kd+1 +R(1)

nKd

]
U

(1)
Kd+1

+R
(1)
Kd+1U

(n)
N+1,

P
(n)
N − P (1)

Kd+1 =
∂

∂t

[(
L

(n)
N + L

(1)
Kd+1

)
U

(n)
N+1 + L

(1)
Kd+1U

(1)
Kd+1

]
+ P (n)

nN
+
[
R

(n)
N +R

(1)
Kd+1 +R(n)

nN

]
U

(n)
N+1

+R
(1)
Kd+1U

(1)
Kd+1.

(28)

The substitution of Eq. (27) into Eqs. (28) yields

F
(1)
Kd+1 = b

(1)
Kd
U

(1)
Kd

+ Z
(1)
Kd+1U

(1)
Kd+1 + b

(1)
Kd+1U

(1)
Kd+2 + Z

(1,n)
C+1U

(n)
N+1,

F
(1)
Kd+2 = b

(1)
Kd+1U

(1)
Kd+1 + Z

(1)
Kd+2U

(1)
Kd+2 + b

(1)
Kd+2U

(1)
Kd+3 + b

(1)
Kd+1U

(n)
N+1,

F
(n)
N+1 = b

(n)
N UN(n) + Z

(n)
N+1U

(n)
N+1 + b

(1)
Kd+1U

(1)
Kd+2 + Z

(1,n)
C+1U

(1)
Kd+1,

(29)
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where

F
(n)
N+1 = −b(n)

N S
(n)
(Υ,Ud)N

+ b
(1)
K+1S

(1)
(Υ,Ud)K+1

+ P (n)
nN
− Φ

(n)
N+1,

Z
(1,n)
C+1 = −

[
b

(1)
K+1 +R

(1)
K+1 +

2

T
L

(1)
K+1

]
,

Z
(n)
N+1 = −b(n)

N − b
(1)
K+1 −

2

T

(
L

(n)
N + L

(1)
K+1

)
−R(n)

N −R
(1)
K+1 −R

(n)
nN
.

(30)

Note that in that case, since the end of the waveguide (n) is directly

connected to the main oral tract, there is no radiation at the end, hence the

particular formula in Eq. (30) for computing Z(n)
N+1.

The matrix formulation is then

 f (1)

f (n)

 =

 Z(1) C
(n)T
1

C
(n)
1 Z(n)

 .
 u(1)

u(n)

 , (31)

where C(n)
1 is the matrix accounting for the coupling between the anastomoz-

ing waveguides. It is a sparse matrix with 4 non-zero elements c1,Ku = b
(1)
Ku

,

c1,Ku+1 = Z
(1,n)
C , cN+1,Kd+2 = b

(1)
Kd+1, and cN+1,Kd+1 = Z

(1,n)
C+1 , where N is the

generic number of tubelets that model the anabranch (n), and Ku and Kd

are the upstream and downstream locations on the main oral tract where (n)

is connected.

3.2. Integration of the self-oscillating model of vocal folds

In the original papers [2, 3], the glottal source is generated by an imposed

oscillating glottal input area. This may be sufficient to simulate utterance

with good quality, but it cannot be used to study the acoustic coupling

between the vocal folds and the vocal tract. In [23], the authors connect the

original two-mass model by Ishazaka and Flanagan [5] to the single-matrix

formulation, in order to simulate the self-oscillating motion of the vocal folds.
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However, the quadratic term in Eq. (23) is not taken into account in [23].

The present section details the mathematical considerations to account for

a more realistic aeroacoustic model at the glottis when the single-matrix

formulation is used in the context of time-domain speech synthesis.

To connect the self-oscillating model of the vocal folds, the pressure dis-

tribution along the glottal constriction should be known at each simulation

step. Thus, Eq. (23) should be integrated to the single-matrix formulation.

Once Ug is known, pressure forces are derived from Eq. (21), and the mass

positions are computed following Eq. (25).

Introducing Eq. (23) into the single-matrix formulation of Eq. (41) re-

quires the first line of the system to be modified into a quadratic equation

F1 = Z1U1 + b1U2 +RbU
2
1 . (32)

The matrix form is then

f = ZuZ + QuQ, (33)

where Q is a square matrix the same size as Z having only one non-zero

element, that is Q(1,1) = Rb, and uQ ∈ R(N+1) = [U2
1 , U

2
2 , . . . , U

2
N ]T is the

vector containing the square power of the volume velocities. Eq. (33) is also

valid in the case of a waveguide network, since it does not directly modify

the coupling equations between the different side cavities modeling the VT.

The system is almost entirely linear: only the first line is a quadratic

equation. To solve the system, one should first solve the quadratic equation

separately. It could be straightforward if the first line of Z contained only

one non-zero element. Unfortunately it is not the case since Z(1,1) 6= 0 and
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Z(1,2) 6= 0. A practical solution consists in finding an equivalent system in

which the matrix of linear coefficients is a diagonal matrix. Left-multiplying

both sides of Eq. (33) by Z−1 yields

Z−1f = IuZ + Z−1QuQ, (34)

where I is the identity matrix. In this formulation, the first line of the

system depends only on U1. The quadratic equation can then be solved, and

the value U1 that is accepted is the largest positive solution. If both roots

are negative, U1 is set to 0. Once the glottal volume velocity U1 is known,

Eq. (33) can be rearranged

f̃ = Z̃ũZ , (35)

where f̃ ∈ RN = [f2 − b1U1, f3, . . . , fn, . . . , fN+1]T , Z̃ ∈ RN×N is the matrix

Z to which the first line and first column have been withdrawn, and ũZ ∈

RN = [U2, U3, . . . , Un, . . . , UN+1]T .

Eq. (35) is then a well-determined tridiagonal linear system. Any classical

method to solve such systems gives the solutions Ui with i = 2, . . . , N + 1.

3.3. A glottal chink model

The self-sustaining model of vocal folds presented in the previous section

considers the latter to vibrate uniformly along their length. Consequently,

at this stage, it is not possible to account for a partial closure of the glottis.

This may be an issue for the synthesis of several types of phonation, includ-

ing breathy voice and voiced fricatives. In these cases, the glottis is never
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completely closed, and an offset occurs in the glottal flow waveform. The

latter is thus never null.

Parametric models of the glottal chink have been proposed by Cranen and

Schroeter [29, 30]. Two models of glottal leakage are proposed: firstly, the

glottal chink is caused by a partial abduction of the vocal folds, i.e. only a

portion of the vocal folds vibrates, the other part is abducted and forms a tri-

angular glottal chink (see Fig. 5 a), and secondly, the glottal chink is formed

in the inter-arytenoid portion of the glottis. In the second case, the vocal

folds vibrate along their whole length. More recently, Wilhelms-Tricarico [31]

proposed a modification of the classic two-mass model by Ishizaka and Flana-

gan [5] to include the glottal chink by connecting an electric branch in parallel

to the vocal fold model. The glottal system is then connected to the first

resonance of the vocal tract.

The electric analogy and the parallel branch make this model interesting

for the extended single-matrix formulation. Hence the equivalent electric

circuit represented in Fig. 5. Unlike in [31] Ug and Uch separate upstream

the glottal contraction, and mix downstream the glottal expansion. These

assumptions follow the model detailed in [30]. Our formulation assumes that

the glottis partial closure is due to a partial abduction of the vocal folds and

the chink is linked to the mobile part of the glottis, as shown in Fig. 5. Since

the vocal fold oscillation is assumed to be small in relation to the partial

abduction, the parallel branch assumption can be considered as valid, i.e.

the geometry of the glottal chink should not be disturbed by the vocal folds

oscillations.

The glottal chink area is ach = lchhab, where lch is the length of the glottal
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Figure 5: a) View of the partially closed glottis, extracted from Cranen and

Schroeter [29]. In this model, the partial closure is due to a partial abduction

of the vocal folds. lg is the length of the vibrating part of the vocal folds, lch

is the length of the glottal chink and lt = lg + lch is the total length of the

vocal folds. The abduction of the vocal folds is assumed to be constant and is

denoted by hab. b) Electric-circuit analogy of the partially closed glottis. Uch,

Rch, and Lch are the volume velocity through the glottal chink, the energy

loss, and the air inertance inside the glottal chink, respectively.

chink and hab is the abduction of the vocal folds. Note that in the original

model in [30], the glottal chink may be extended with a constant opening

area, due to the inter-arytenoid portion of the glottis. It is not taken into

account in the presented model, but its implementation is straightforward:

the glottal chink area is then ach = lchhab + aia, where aia is the opening

area of the inter-arytenoid portion of the glottis. When the glottal chink is

considered, U1 is no longer associated to Ug. Indeed, as seen in Fig. 5 b),

U1 is the merged flow downstream the glottal expansion, and is therefore the

sum of the volume velocities through the chink and through the vibrating

part of the vocal folds (U1 = Ug + Uch).

The presence of the glottal chink modifies the first line of the system
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defined in Eq. (34). Indeed, applying Eq. (10) to both glottal branches yields

P1 − Psub = RbU
2
g + [Rv +R1]Ug +

∂

∂t
[Lg + L1]Ug

+R1Uch +
∂

∂t
L1Uch (36)

P1 − Psub = [Rch +R1]Uch +
∂

∂t
[Lch + L1]Uch

+R1Ug +
∂

∂t
L1Ug (37)

P1 = b1

[
Ug + Uch − U2 + S(Υ,Ud)1

]
. (38)

This yields to the following boundary conditions at the glottis

F1 = RbU
2
g + Z1Ug + b1U2 + Z

(1,ch)
C Uch,

F2 = b1Ug + Z2U2 + b2U3 + b1Uch,

Fch = ZchUch + Z
(1,ch)
C Ug + b1U2,

(39)

where

Z(1,ch) = b1 +R1 +
2

T
L1,

and

Zch = b1 +Rch +R1 +
2

T
(Lch + L1).

Introducing Eqs. (39) in the single matrix formulation yields f (1)

Fch

 =

 Z(1) C
(ch)T
1

C
(ch)
1 Zch

 .
 u(1)

Uch

+RbU
2
g , (40)

where C
(ch)
1 is the matrix accounting for the coupling the glottal chink and

the vocal tract. It is a sparse raw vector with two non-zero elements,

C
(ch)
1 = [Z(1,ch), b1, 0, . . . , 0].
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3.4. General form of the extended single-matrix formulation of the vocal tract

Finally, the general form of the extended single-matrix formulation of the

vocal tract writes



f (1)

f (2)

...

f (N )

Fch


=



Z(1) C
(2)T
1 . . . C

(N )T
1 C

(ch)T
1

C(2)
1 Z(2) C

(N )T
2 0

... . . . ...

C
(N )
1 C

(N )
2 Z(N ) 0

C
(ch)
1 0 . . . 0 Zch


.



u(1)

u(2)

...

u(N )

Uch


+ QuQ (41)

where N is the number of waveguides modeling the whole vocal tract, and

where C
(n)
m is a matrix accounting for the relationship between the mth and

the nth waveguide. There are several possibilities:

1. the branches are not directly connected, hence C
(n)
m = 0,

2. (n) is a child of (m), connected at the Kth tubelet of (m). Then

C
(n)
m is a sparse matrix whose non-zero elements are c1,K = b

(m)
K and

c1,K+1 = Z
(m,n)
C ,

3. (m) and (n) are twins, both connected to waveguide (p). Then C
(n)
m is

a sparse matrix whose the sole non-zero element is c1,1 = Z
(p,n)
C ,

4. (n) is an anabranch of (m), i.e. it is connected to (m) at two different

points, the upstream connection Ku and the downstream connection

Kd. Then C
(n)
m is a sparse matrix whose non-zero elements are c1,Ku =

b
(m)
Ku

, c1,Ku+1 = Z
(m,n)
C , cN+1,Kd+2 = b

(m)
Kd+1, and cN+1,Kd+1 = Z

(m,n)
C+1 , and

where N is the generic number of tubelets that model (n).

5. (n) is the glottal chink. In that case, it is connected to (1) and C
(ch)
1 =

[Z(1,ch), b1, 0, . . . , 0].
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Finally, the steps to use the extended singe-matrix formulation for speech

synthesis are:

I Initialize the parameters of the vocal tract and the vocal folds

• area functions of each waveguide

• coupling relationships between the waveguides

• initial values of the vocal folds model and dimension of the glottal

chink

II Update the system

• compute Z and f for each waveguide using Eqs. (7), (8), (12),

and (14). Compute Rb from Eq. (24)

• compute C for each relationship

III Solve the system at each temporal step

• find Ug by solving the first line of Eq. (34). If the vocal folds

collide, Ug = 0

• solve the remaining system from Eq. (35)

• compute POut as the time first difference of the sum of the volume

velocities radiated by the waveguides with an open termination

• compute pressure forces via Eq. (21) and motion of the vocal folds

by Eq. (25)

IV Repeat steps 2 and 3 until the end of the simulation
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4. Numerical simulations

In order to validate the simulation framework presented in the previous

sections, this section provides examples of synthesized speech in static con-

figurations. Area functions are derived from X-ray films comprising short

French sentences [32]. They are obtained by dividing the vocal tract shape

in tubelets perpendicular to the vocal tract centerline, determined via a spec-

ified algorithm [33], and then applying α β transformations to recover the

area [34]. Chosen parameters for the vocal folds model are typical values

found in the literature (see Tab. 2).

In the following numerical simulations, the vocal folds are supposed sym-

metric, that is the upper vocal fold has the same mechanical parameters than

the lower vocal fold.

Note that when a waveguide is closed at its end, e.g. the piriform fossae,

a termination area set to 0 may make the numerical computation to break

because of infinite or NaN values. Setting the termination area to a very

small value, e.g. the order of magnitude of the unit roundoff, is sufficient to

efficiently approximate a closed termination. A similar technique can be used

in the case when sudden modifications of the global structure of the network

occur, e.g. sudden occurrence of nasalization or bilateralization: setting the

input area function of a certain waveguide to very small values makes it

temporally shunted from the network. Doing so prevents discontinuities that

may cause undesired artifacts.
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Table 2: Input parameters for the vocal folds model

Parameter Unit Value

Subglottal pressure Psub Pa 800

Position of mass 1 x1 mm 0.2

Position of mass 2 x2 mm 3.2

Vocal fold thickness dg mm 3

Vocal fold length lg mm 10

Opening at point 0 h0 mm 40

Vocal folds abduction hab mm 2.5

Nominal mass m1 g 0.1

Nominal stiffness k1 N/m 80

Nominal mass m2 g 0.125

Nominal stiffness k2 N/m 80

Nominal damping coefficient ri kg.rad.s-1 0.2
√
kimi/2

Coupling spring kc N/m k/2

4.1. Anastomozing waveguides

The acoustics of lateral consonants has been previously studied mainly

by using single lateral channel models [27, 28]. Consequently, only a few

previous works focused on the acoustic effect of bilateralization. To validate

the bilateral model presented in this paper, it is compared to results provided

by Zhang et al. [25, 26], using the same area functions. Fig. 6 shows the single-

tube model used in the simulation in [26]. The area functions of the different

parts are derived from MRI [25], and are averaged over the length of each
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Figure 6: Single-tube model used for the simulation of bilaterals. Figure

adapted from [26].

section of the single-tube model (see Fig. 6). Dimensions can be found in the

original paper [25]. When the supralingual cavity is taken into account, the

latter is connected to the main oral tract at the same location as the lateral

channel. Consequently, the supralingual cavity is a twin waveguide of the

lateral channel.

From the area functions provided by the original paper, transfer functions

of the vocal tract are computed thanks to the method used in [2, 3], which

consists in simulating a sudden glottal closure and computing the Fourier

transform of the acoustic response to the step-down glottal excitation. The

vocal tract acoustic response functions are computed for different configura-

tions of bilateralization. They are defined by an asymmetric factor

γ =
lc2
lc1
,

where lc2 and lc1 denote the length of both lateral channels. Simulations

include two main configurations: with and without the consideration of the

supralingual cavity.

Fig. 7 shows transfer functions for several configurations obtained with
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Figure 7: Transfer functions of the vocal tract in several configurations us-

ing the extended single-matrix formulation, with (right) and without (left)

consideration of a supralingual cavity. The bottom curve (thick line) is the

transfer function of the vocal tract where both lateral channels are merged

into a single channel and without the supralingual cavity. From bottom to

top are plotted the transfer functions of the vocal tract with bilateralization,

where the asymmetric length factor varies from 1 (bottom) to 1.37 (top).

The increment step of the length asymmetry factor between two successive

curves is 0.01. Theoretical position of zeros introduced by the bilateralization

are denoted by circle marks.
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ESMF. The asymmetric factor γ varies from 1 (bottom curve), corresponding

to the symmetric configuration, to 1.37 (top curve). The increment step of

γ between two successive curves is 0.01. The thick line at the bottom is the

transfer function of the vocal tract where both lateral channels are merged

into a single channel, and without the consideration of the supralingual cav-

ity. The computed transfer functions agree with those obtained in [26] with

an independent frequency based method. For instance, in both configurations

(with and without the suparalingual cavity), the bilateralization introduces

a pole/zero around 4 kHz. The frequency of the pole/zero pair drops as the

length of the anabranch increases. This is in agreement with the theory,

which relates the frequency of the pole/zero introduced by the bilateraliza-

tion with the resonance frequency of an equivalent tube having a length equal

to the sum of the lateral channels [35], hence a drop of the frequency as the

length increases. The theoretical zero frequencies are represented in Fig. 7

by circle marks: they match the zero frequencies of the simulated vocal tract

acoustic response functions.

The length asymmetry of the bilateral channels slightly impacts the for-

mant frequencies. F5 is the formant for which the effect is the most pre-

dominant. It seems to be due to its proximity with the introduced pole/zero

pair.

Finally, the introduction of the supralingual cavity in the model gives rise

to another pole/zero pair slightly above 2.7 kHz. As observed in [26], this

corresponds to the first quarter-wavelength resonance of a 3.1 cm-long tube,

around 2700 Hz. The supralingual cavity lowers the formant frequencies,

and especially F3 and F4, which are close to the zero introduced by the
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supralingual cavity.

The agreement between the global effects of bilateralization and the supralin-

gual cavity on the vocal tract acoustic response functions obtained with the

extended single-matrix and those obtained with the independent frequency

based technique used in [26] proves the efficiency of the method to deal with

bilateralization. Since it is suitable for time-domain continuous speech syn-

thesis, the method could be useful to thoroughly investigate the acoustic

effect of the tongue movement during the production of bilateral approxi-

mants.

4.2. Effect of the acoustic model on the motion of the vocal folds

In this section, numerical simulations are used to study the validity of

the extended single-matrix formulation of the vocal tract to be connected

with a self-sustaining model of vocal folds. The method is compared with

the concurrent approach using reflection type line analog models [1, 36]. This

approach is widely used and validated when connected with self-oscillating

models of vocal folds, including the 2× 2-mass model with smooth contours

used in this paper [10, 11, 22]. Thus, simulations consist in computing the

vocal folds motion via the model described in Sec. 2.4 connected to several

configurations of the vocal tract, using two models of acoustic propagation:

the extended single-matrix formulation (ESMF), and the reflection type line

analog model (RTLA). The configurations of the vocal tract are area func-

tions corresponding to 6 French vowels: /a/, /e/, /ø/, /i/, /o/, and /u/.

Fig. 8 shows the spectrum and the spectral envelope of the synthesized

output pressure (POut) radiated at the lips, as well as the glottal flow and

the glottal opening at the location of mass 1 and mass 2, both by RTLA
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Figure 8: Results of the simulations for 2 French vowels, /a/ and /e/. From

top to bottom, the left column shows the spectrum and spectral envelope of

the synthesized vowel via the reflection type line analog (RTLA) model, as

well as the output pressure (POut) radiated at the lips, the glottal flow Ug and

the glottal opening at the location of mass 1 (solid line), and mass 2 (dashed

line). The right columns displays the same quantities computed thanks to

the extended single-matrix formulation (ESMF). The spectral envelope is

computed by a 10-order LPC (Linear Predictive Coding) [37]
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and ESMF, for 2 French vowels (/a/ and /e/). For each vowel, the peaks of

the spectral envelopes, i.e. the formants, obtained from both methods are

similar. One can also observe similarities in the global shape of the other

waveforms, namely POut, Ug, and the motion of the vocal folds.

However, the comparison also highlights the differences between both

approaches. For instance, the obtained fundamental frequency is lower with

the ESMF, than with RTLA. The amplitude of the vocal folds motion, and

the phase shift between both masses are also lower with ESMF (see Fig. 9).

This yields to a lower amplitude of the glottal flow. Such differences are

somewhat expected since the coupling with the acoustic propagation may be

modified, due to the different models of acoustic losses. It is accepted that

the RTLA method has the advantage to better accounting for the frequency

dependance of the acoustic losses and the acoustic radiation. This may also

explain the different formant bandwidth between those obtained with the

RTLA method and those obtained with the ESMF method.

It is worth noting that slight modifications of the input parameters of the

vocal folds suffice to recover similar behaviors of the vocal folds. It consists

in multiplying the values of the stiffness by a factor, say Q, such that the

obtained fundamental frequency matches that obtained with RTLA. This

is highlighted by Fig. 9, which compares several physical quantities derived

from the motion of the vocal folds, obtained with RTLA and ESMF, both

with and without modifications of the input parameters, for all 6 vowels.

The quantities Am1 and Am2 are the mean absolute values of the amplitude

of oscillation of mass 1 and mass 2, respectively. ESMF* corresponds to the

values obtained using the ESMF method with modified input parameters of
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Figure 9: Comparison of quantities derived from the motion of the vocal folds

obtained with the different methods. ESMF* corresponds to the quantities

obtained with modified mass and stiffness of the vocal folds model.

the vocal folds model.

Fig. 9 shows that, although both methods simulate qualitatively simi-

lar oscillations of the vocal folds and glottal flow, they are quantitatively

different. Main differences lie in the phase shift and in the open quotient:

when connected to RTLA, the phase shift between the rear and front part

of the vocal folds is larger than when they are connected to ESMF. There is

no significant variation when the values of the mass and stiffness are mod-

ified. The open quotient is also significantly different when the vocal folds

are connected to RTLA. However, in this case, the modification of the input
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Figure 10: Formant frequency of the first 4 formants obtained with the differ-

ent methods for 6 French vowels. Results are compared with values obtained

with the chain-matrix paradigm (CMP) [16] for the corresponding area func-

tions.

parameters modifies the open quotient. Also, for both techniques, the am-

plitude ratio of the vocal folds oscillations decreases for close vowels (/i/ and

/u/). Since Am1 does not significantly change, it is mainly due to the rise

of the amplitude of mass 2, namely the rear part of the vocal folds, which is

directly connected to the vocal tract. Consequently, the presence of a supra-

glottal constriction seems to have a strong effect on the downstream part of

the vocal folds.
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Fig. 10 shows the effect of the methods on the formant frequencies. The

values obtained with the different methods are compared with values ob-

tained from the transfer function of the corresponding vocal tracts using the

chain-matrix paradigm (CMP) [16]. The formant frequency obtained with

RTLA are globally lower than those obtained with ESMF. In comparison

with the resonance frequencies of the vocal tract derived with CMP, EMSF

method gives closer formant frequencies than RTLA.

To summarize, the presented ESMF has shown its accuracy to compute

the acoustic propagation and to account for the coupling between the vocal

tract and the glottal source when the latter is modeled by self-sustaining

models, such as classic two-mass models. The comparison of the method

with the classic reflection type line analog model (RTLA) shows qualita-

tively similar oscillations of the vocal folds. However, they are quantitatively

slightly different: both methods give different fundamental frequencies, am-

plitudes of oscillations, phase shifts, and open quotients. Such quantitative

differences have been previously observed for the two-mass model between

predictions of RTLA and mechanical models [11, 38]. Some of these quanti-

ties may be modified by adjusting the values of the mass and stiffness of the

two-mass model by a factor Q. Besides, the formant frequencies computed

from the vowels simulated with ESMF are closer to the resonance frequencies

of the vocal tract obtained with the frequency domain based chain-matrix

paradigm [16]. Consequently, since ESMF presents the advantage of easily

deal with dynamic geometries of the vocal tract, including length variations

and the connecting of numerous side cavities, it is a complete simulation

framework useful to either synthesize natural continuous speech or to qual-
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itatively study the coupling between the vocal tract and the vocal folds in

the context of continuous speech.

4.3. Effect of the glottal chink

This section presents a short study about the effect of the glottal chink

on the acoustic parameters. It consists in computing the glottal flow and

the motion of the vocal folds coupled with a static configuration of the vocal

tract and a linearly increasing length of the glottal chink. We chose to

represent the effect of the glottal chink on /a/ and /i/. To modify the size

of the glottal chink, we modify the length lch via a ratio α ∈ [0,1] such that

lch = αlt (see Fig. 5). The quantities lt and hab are kept constant, and by

deduction, lg = (1− α)lt.

Fig. 11 shows the simulation results. It displays the narrow-band spectro-

gram, the output pressure radiated at the lips POut, the total volume velocity

through the glottis Ut, the motion of the vocal folds, the fundamental fre-

quency, and the length of the glottal chink lch. The effect of the glottal chink

on these physical quantities are clearly seen in both configurations (/a/ for

the left column, and /i/ for the right column). For instance, as expected,

the presence of the glottal chink refrains Ut to be null, since the glottis is

never totally closed. The waveform of Ut is then the superimposition of the

glottal flow Ug inside the vibrating part of the vocal folds and an offset corre-

sponding to Uch. The Ug component behaves similarly to the case of a totally

closed chink, and Uch increases as lch increases, i.e. when the glottal chink

opens up.

Due to a smaller length of the vibrating part of the vocal folds when

the chink appears, the amplitude of Ug vanishes. As a consequence, the
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Figure 11: Results of the simulation for two French vowels /a/ (left column),

and /i/ (right column). From top bottom, the left column represents the

narrow-band spectrogram, the output pressure, radiated at the lips, the vol-

ume velocity inside the glottis (Ut = Ug + Uch), the glottal opening at the

location of mass 1 (solid line) and mass 2 (dashed line), the fundamental

frequency, and the length lch of the glottal chink, computed for the /a/. The

right column represents these quantities computed for /i/.
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amplitude of motion of the vocal folds decreases. This finally results in a

fading POut. When the length of the chink lch is larger than lg, which occurs

for t > 0.75 s, the Ug component is very weak in relation to the DC component

imposed by Uch. For /a/, which is an open vowel, it results in a very weak

output signal. On the other hand, for the close vowel /i/, this results in the

generation of frication noise, due to an important air flow passing through

the supraglottal constriction. In that case, POut contains more energy, in the

mid and high frequency range, from the frication noise source than from the

glottal source. This can be seen in the spectrogram of the simulated /i/ for

t > 0.75.

Since the length of the vibrating vocal folds drops due to the presence

of the glottal chink, this raises the fundamental frequency of the produced

utterance. This is evidenced by the trajectory of harmonics in the narrow-

band spectrograms of both vowels. The formant pattern seems to be barely

modified by the presence of the chink.

The presented simulation clearly shows the effect of the glottal chink on

some acoustic parameters. This confirms the interest of such models for thor-

oughly investigate the acoustic or phonatory phenomena involved in speech

production. Modeling the partially closed glottis is also important for syn-

thesis of breathy and/or pathological voices, and for the realistic synthesis

of voiced fricatives. If used together with a realistic glottis-vocal tract coor-

dination model, it may also be useful to investigate the transition between

voiced/voiceless sounds.
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5. Conclusions

This paper has presented the theoretical aspects for extending the single-

matrix formulation [3] of the vocal tract to a more general and complete

tool. The presented framework allows the connection of self-oscillating mod-

els of the vocal folds, or the connection of a glottal system made up of

self-oscillating vocal folds and a glottal chink. It can also account for anas-

tomozing waveguides to study the acoustic effect of bilateralization.

The accuracy of the simulation framework to account for bilateral chan-

nels have been studied by computing transfer functions of vocal tract models

derived from a previous study [26]. The effects of the bilateralization on the

vocal tract acoustic response functions are in agreement with those observed

with an independent frequency based technique. Indeed, the bilateralization

with asymmetric lateral channels introduces a pole/zero pair at frequencies

around 4 kHz. This frequency drops as the total length of the lateral chan-

nels increases. This agrees with theoretical predictions [26, 35] which relate

the pole/zero frequencies to the first resonance frequency of a tube having a

length equal to the sum of the lengths of both lateral channels. The consider-

ation of the supralingual cavity connected to the lateral channels at the same

point to the main oral tract introduces a zero around 2.7 kHz, which corre-

sponds to the resonance of the first quarter-wavelength of the supralingual

cavity.

The connection of the self-oscillating model of the vocal folds has been

tested with a 2 × 2 mass model with smooth contours. In comparison with

the widely accepted reflection type line analog model of acoustic propagation,

the connection of the vocal folds to the single-matrix formulation yields to
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qualitatively similar behaviors of the vocal folds. Though, it may quantita-

tively modify their oscillations. For instance, the amplitude of oscillation is

smaller when the vocal folds are connected to the single-matrix formulation.

These modifications are potentially correctable by modifying the mass and

stiffness of the two-mass model of the vocal folds with a linear factor. Since

these values are arbitrary and do not directly correspond to physiological

data, this is sufficient for continuous speech synthesis. Besides, the reflection

type line analog model is known to accurately predict the behavior of the vo-

cal folds qualitatively but fails to predict it quantitatively. Therefore, at this

stage, it is not possible to conclude whether these differences are important

for quantitative studies. The simulations also revealed that the formant fre-

quencies of the vowels simulated by the extended single-matrix formulation

are closer to the resonance frequencies of the vocal tract than those of the

vowels simulated by the reflection type line analog model.

The paper also provides simulations with various lengths of the glottal

chink. They clearly show its acoustic effect: the simultaneous shortening of

the vibrating part of the vocal folds together with the partial closure of the

glottis leads to a drop of the glottal flow amplitude and to the amplitude

of the vocal folds motion, and consequently to a drop of the acoustic level

radiated at lips. The partial closure of the glottis also leads to glottal leakage,

i.e. the total glottal flow is never null. As the glottal chink becomes large,

this generates a large DC component UDC inside the vocal tract, which may

lead to the generation of a frication noise, in addition to the voiced glottal

source if there is a supraglottal constriction in the vocal tract, even for vowels,

as shown by the simulation of /i/. A realistic model of the glottal partial
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closure is therefore important for the synthesis of voiced fricatives.

The simulation framework is also intended to be used for the synthesis of

natural continuous speech, i.e. natural phrase-level utterances. For instance,

it has been used to validate a two-dimensional model of the velum for the

copy synthesis of utterance containing nasal phonemes [39]. The transmission

line circuit analog model enables the dynamic variations of the vocal tract

geometry and its complexity to be accurately taken into account. Conse-

quently, it can easily support realistic geometries and dynamic deformations

of the vocal tract, which constitutes its main advantage. Thanks to the con-

tributions of the paper, it is now possible to account for a realistic coupling

between the vocal folds and the vocal tract, as well as the possibility to in-

clude glottal leakage. This last point allows the different types of phonation

to be realistically simulated.

This constitutes a useful tool to study the phenomena involved in speech

production. This paper constitutes a basis to make such investigations. More

specifically, it may be used to relate acoustic cues of the produced speech sig-

nal to their articulatory or phonatory origins, thanks to analysis by synthesis

techniques. This could be a great benefit for phonetic sciences, and/or lan-

guage training.
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Appendix A. Discrete representation of the vocal tract

This appendix clarifies the derivative and integrative terms that are present

in the acoustic propagation equations. They are defined as in [2].

In this section, unless specified, the terms included in the following equa-

tions are expressed at instant n − 1, except for Φ, Υ, and I, which are

expressed at instant n − 2, if they are at the right side. In Eq. (8a), the

terms Φ
(m)
i of the mth waveguide are defined by
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(A.1)

where .(1) denotes the main oral tract, and .(n) denotes the parent waveguide,

namely the waveguide to which the mth waveguide (m > 1) is connected.

K is the position of the T-junction on the parent waveguide, U (j)
1 , with

j = 1, . . . ,J , are the input volume velocities of the J twin children of m,

that are connected to (m) at the same point, and U (l)
1 , with l = 1, . . . ,L, are

the input volume velocities of the L twin waveguides of m.
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The terms Υi of Eq. (8a) are defined byΥi(n− 1) = ΦCi
(n− 1)−Gwi

(n− 1)[ΦLwi
(n− 1)− ICwi

(n− 1)], i ≤M

ΥM+1(n− 1) = −2Srad(n− 1)
√
aM+1(n− 1)PM+1(n− 1) + ΥM+1(n− 2),

(A.2)

where

ΦCi
=

4

T
CiUi − ΦCi

, (A.3)

ΦLwi
=

4

T
Lwi

u2 − ΦLwi
, (A.4)

ICwi
= TCwi

u2 + ICwi
(A.5)

Eq; (A.2) to Eq. (A.5) are similar for every waveguide of the network.

References

[1] J. L. Kelly, C. C. Lochbaum, Speech synthesis, in: Proceedings of the

Fourth International Congress on Acoustics, 1962, pp. 1–4.

[2] S. Maeda, A digital simulation method of the vocal-tract system, Speech

Communication 1 (1982) 199–229.

[3] P. Mokhtari, H. Takemoto, T. Kitamura, Single-matrix formulation of

a time domain acoustic model of the vocal tract with side branches,

Speech Communication 50(3) (2008) 179 – 190.

[4] B. H. Story, Phrase-level speech simulation with an airway modulation

model of speech production, Computer Speech & Language 27(4) (2013)

989–1010.

48



[5] K. Ishizaka, J. L. Flanagan, Synthesis of voiced sounds from a two-mass

model of the vocal cords, Bell Syst. Tech. J. 51(6) (1972) 1233–1268.

[6] X. Pelorson, A. Hirschberg, R. R. van Hassel, A. P. J. Wijnands, Y. Au-

regan, Theoretical and experimental study of quasisteady-flow separa-

tion within the glottis during phonation. Application to a modified two-

mass model, J. Acoust. Soc. Am. 96(6) (1994) 3416–3431.

[7] B. D. Erath, S. D. Peterson, M. Zañartu, G. R. Wodicka, M. W. Ples-

niak, A theoretical model of the pressure field arising from asymmetric

intraglottal flows applied to a two-mass model of the vocal folds, J.

Acoust. Soc. Am. 130(1) (2011) 389–403.

[8] F. Alipour, D. A. Berry, I. R. Titze, A finite-element model of vocal-fold

vibration, J. Acoust. Soc. Am. 108(6) (2000) 3003–3012.

[9] B. H. Story, I. R. Titze, Voice simulation with a body-cover model of

the vocal folds, J. Acoust. Soc. Am. 97(2) (1995) 1249–1260.

[10] N. J. C. Lous, G. C. J. Hofmans, R. N. J. Veldhuis, A. Hirschberg, A

symetrical two-mass vocal-fold model coupled to vocal tract and trachea,

with application to prothesis design, Acta Acustica 84 (1998) 1135–1150.

[11] L. Bailly, X. Pelorson, N. Henrich, N. Ruty, Influence of a constriction

in the near field of the vocal folds: Physical modeling and experimental

validation, J. Acoust. Soc. Am. 124(5) (2008) 3296–3308.

[12] H. Y. Wu, P. Badin, Y. M. Cheng, B. Guérin, Simulation du conduit

vocal : réalisation de la variation continue de longueur dans un modèle

49



Kelly-Lochbaum . Effet de l’échantillonnage spatial de la fonction d’aire

(Simulation of the vocal tract: Realization of the continuous variation

of length in a Kelly-Lochbaum model. Effect of the area function spa-

tial sampling), in: Bulletin du laboratoire de la Communication Parlée,

1987, pp. 1–27.

[13] P. Birkholz, D. Jackèl, Influence of temporal discretization schemes on

formant frequencies and bandwidths in the time-domain simulation of

the vocal tract system., in: Proc. of the Interspeech 2004-ICSLP, 2004,

pp. 1125–1128.

[14] Y. Laprie, R. Sock, B. Vaxelaire, B. Elie, Comment faire parler les

images aux rayons X du conduit vocal (How to make X-ray images

speak), in: SHS Web of Conferences, EDP Sciences, 2014, pp. 1285–

1298.

[15] S. Maeda, Phoneme as concatenable units: VCV synthesis using a vocal

tract synthesizer, in: Sound Patterns of Connected Speech: Descrip-

tion, Models and Explanation, Proceedings of the symposium held at

Kiel University, Arbeitsberichte des Institut für Phonetik und digitale

Spachverarbeitung der Universitaet Kiel:31, 1996, pp. 145–164.

[16] M. M. Sondhi, J. Schroeter, A hybrid time-frequency domain articula-

tory speech synthesizer, IEEE Trans. Acoust. Speech Sig. Process. 35(7)

(1987) 955–967.

[17] P. Birkholz, Enhanced area functions for noise source modeling in the vo-

50



cal tract, in: 10th International Seminar on Speech Production, Cologne,

2014, pp. 1–4.

[18] J. L. Flanagan, Speech Analysis, Synthesis and Perception, 2nd Edition,

Springer-Verlag, berlin, 1972.

[19] M. Zañartu, L. Mongeau, G. R. Wodicka, Influence of acoustic loading

on an effective single mass model of the vocal folds, J. Acoust. Soc. Am.

121(2) (2007) 1119–1129.

[20] I. T. Tokuda, J. Horáček, J. G. Švec, H. Herzel, Comparison of biome-

chanical modeling of register transitions and voice instabilities with ex-

cised larynx experiments, J. Acoust. Soc. Am. 122(1) (2007) 519–531.

[21] R. Schwarz, M. Döllinger, T. Wurzbacher, U. Eysholdt, J. Lohscheller,

Spatio-temporal quantification of vocal fold vibrations using high-speed

videoendoscopy and a biomechanical model, J. Acoust. Soc. Am. 123(5)

(2008) 2717–2732.

[22] C. Vilain, X. Pelorson, C. Fraysse, M. Deverge, A. Hirschberg,

J. Willems, Experimental validation of a quasi-steady theory for the

flow through the glottis, J. of Sound and Vibration 276(3–5) (2004) 475

– 490.

[23] J. C. Ho, M. Zañartu, G. R. Wodicka, An anatomically based, time-

domain acoustic model of the subglottal system for speech production,

J. Acoust. Soc. Am. 129(3) (2011) 1531–1547.

[24] S. S. Narayanan, A. A. Alwan, K. Haker, Toward articulatory-acoustic

51



models for liquid approximants based on mri and epg data. part i. the

laterals, J. Acoust. Soc. Am. 101(2) (1997) 1064–1077.

[25] Z. Zhang, C. Y. Espy-Wilson, M. Tiede, Acoustic modeling of American

English lateral approximants, in: Proceedings of the Eighth English

Eurospeech Conference, 2003.

[26] Z. Zhang, C. Y. Espy-Wilson, A vocal-tract model of american english

/l/, J. Acoust. Soc. Am. 115(3) (2004) 1274–1280.

[27] K. Stevens, Acoustic Phonetics, MIT Press, Cambrige, MA, 1998.

[28] S. Narayanan, D. Byrd, A. Kaun, Geometry, kinematics, and acoustics

of tamil liquid consonants, J. Acoust. Soc. Am. 106(4) (1999) 1993–2007.

[29] B. Cranen, J. Schroeter, Modeling a leaky glottis, Journal of Phonetics

23 (1–2) (1995) 165 – 177.

[30] B. Cranen, J. Schroeter, Physiologically motivated modelling of the voice

source in articulatory analysis/synthesis, Speech Communication 19(1)

(1996) 1–19.

[31] R. Wilhelms-Tricarico, A modified two-mass model of the vocal folds

with a chink and gradual closure, speech Communication Group Work-

ing Papers (1994).

[32] R. Sock, F. Hirsch, Y. Laprie, P. Perrier, B. Vaxelaire, G. Brock,

F. Bouarourou, C. Fauth, V. Hecker, L. Ma, J. Busset, J. Sturm, DOC-

VACIM an X-ray database and tools for the study of coarticulation, in-

version and evaluation of physical models, in: The Ninth International

52



Seminar on Speech Production - ISSP’11, Canada, Montreal, 2011, pp.

41–48.

[33] Y. Laprie, M. Loosvelt, S. Maeda, E. Sock, F. Hirsch, Articulatory copy

synthesis from cine X-ray films, in: Interspeech 2013 (14th Annual Con-

ference of the International Speech Communication Association), Lyon,

France, 2013, pp. 1–5.

[34] A. Soquet, V. Lecuit, T. Metens, D. Demolin, Mid-sagittal cut to area

function transformations: Direct measurements of mid-sagittal distance

and area with MRI, Speech Communication 36(3) (2002) 169–180.

[35] A. Prahler, Analysis and synthesis of the American English lateral con-

sonant, Ph.D. thesis, MIT, Cambridge, Massachussets (1998).

[36] P. Meyer, R. Wilhelms, H. W. Strube, A quasiarticulatory speech syn-

thesizer for german language running in real time, J. Acoust. Soc. Am.

86(2) (1989) 523–539.

[37] S. McCandless, An algorithm for automatic formant extraction using

linear prediction spectra, IEEE Trans 22 (1974) 135–141.

[38] N. Ruty, X. Pelorson, A. Van Hirtum, I. Lopez-Arteaga, A. Hirschberg,

An in vitro setup to test the relevance and the accuracy of low-order

vocal folds models, J. Acoust. Soc. Am. 121(1) (2007) 479–490.

[39] Y. Laprie, B. Elie, A. Tsukanova, 2D articulatory velum modeling ap-

plied to copy synthesis of sentences containing nasal phonemes, in: Pro-

ceedings of the International Congress of Phonetic Science (ICPhS),

2015.

53


