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EXPRESSING AN OBSERVER IN PREFERRED COORDINATES BY

TRANSFORMING AN INJECTIVE IMMERSION INTO A

SURJECTIVE DIFFEOMORPHISM

PAULINE BERNARD, VINCENT ANDRIEU AND LAURENT PRALY ∗

Abstract. When designing observers for nonlinear systems, the dynamics of the given system
and of the designed observer are usually not expressed in the same coordinates or even have states
evolving in different spaces. In general, the function, denoted τ (or its inverse, denoted τ∗) giving
one state in terms of the other is not explicitly known and this creates implementation issues.

We propose to round this problem by expressing the observer dynamics in the the same coor-
dinates as the given system. But this may impose to add extra coordinates, problem that we call
augmentation. This may also impose to modify the domain or the range of the “augmented” τ or
τ∗, problem that we call extension.

We show that the augmentation problem can be solved partly by a continuous completion of a
free family of vectors and that the extension problem can be solved by a function extension making
the image of the extended function the whole space. We also show how augmentation and extension
can be done without modifying the observer dynamics and therefore with maintaining convergence.

Several examples illustrate our results.

1. Introduction.

1.1. Context. In many applications, estimating the state of a dynamical system
is crucial either to build a controller or simply to obtain real time information on the
system. Satisfactory solutions are known for systems the dynamics of which are
linear in the preferred coordinates. But when they are nonlinear, we are aware of
only two “general purpose” observer design methodologies guaranteeing “non local”
convergence under merely some basic observability properties: the high gain observers
([17, 24, 12, 13, 16, 7], . . . ) and the nonlinear Luenberger observers ([23, 15, 2]). For
both, the observer state is living in a space different from the system state one and the
system state estimate is obtained typically by solving on-line a nonlinear equation.

As an illustration, consider an harmonic oscillator with unknown frequency with
dynamics

ẋ1 = x2 , ẋ2 = −x1x3 , ẋ3 = 0 , y = x1 (1.1)

with state x = (x1, x2, x3) in
(

R
2 \ {(0, 0)}

)

× R>0 and measurement y. We are
interested in estimating the state x from the only knowledge of y and the fact that x
evolves in some known set A. By following in a very orthodox way (see [1] for details)
the high gain observer design we get a “raw” observer with dynamics

˙̂
ξ = ϕ(ξ̂, x̂, y) =









0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0









ξ̂ +









0
0
0

sat(x̂1x̂
2
3)









+









ℓk1
ℓ2k2
ℓ3k3
ℓ4k4









[y − ξ̂1] , (1.2)

with state ξ̂ in R
4, where sat is a saturation function (see (1.12)), and from which

the system state estimate x̂ is given as x̂ = τ(ξ̂) where τ is any continuous function
which satisfies

τ(x1, x2,−x1x3,−x2x3) = (x1, x2, x3) ∀x = (x1, x2, x3) ∈ A . (1.3)
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The construction of the mapping τ relies on the inversion to the mapping τ∗(x) =
(x1, x2,−x1x3,−x2x3) which in general has no explicit solution and is not uniquely
defined outside of τ∗(A). The commonly used implicit solution is given as the solution
to an optimization problem which may be

x̂ = τ(ξ̂) = Argmin
x̂

∣

∣

∣ξ̂ − τ∗(x̂)
∣

∣

∣

2

.

Note however that some other forms are possible. For instance in [22], the authors
propose to build another implicit solution based on an optimization procedure which
yields a global Lipschitz function τ . The drawback of all these optimization based
approaches being that they may be costly to solve in practice. Another path is to
rely on the Rank theorem, as in [19] and take advantage of the local existence of
diffeomorphism φx and φξ such that

φξ ◦ τ
∗ ◦ φx = (x, 0, . . . , 0) .

In this case, one can pick x̂ = φ−1
x (π(φξ(ξ̂)) where π is the projection on the set of

the first n components. In our example, φx could be the identity and

φξ(ξ) =

(

ξ1, ξ2,−
ξ1ξ3 + ξ2ξ4

ξ21 + ξ22
, (ξ1ξ4 − ξ2ξ3)

)

.

But, besides the local nature of this technique, finding expressions for φ−1
x and φξ

may be a very difficult task in practice (see [18] for instance). And unfortunately x̂ is
needed to evaluate the term sat(x̂1x̂

2
3) in (1.2) since the observer dynamics depend

on τ .
Instead of a high gain observer design as above, we may use a Luenberger non

linear observer design (see [23, 15, 2]). It leads to :

˙̂
ξ = ϕ(ξ̂, y) = A ξ̂ + B y (1.4)

with ξ̂ in R
4, A a Hurwitz matrix and (A,B) a controllable pair. The state estimate x̂

is again given as x̂ = τ(ξ̂) where τ is any continuous function which satisfies τ(τ∗(x)) =
x for all x in A where this time,

τ∗(x) = −(A2 + x3I)
−1[ABx1 +Bx2] . (1.5)

A difference with the high gain observer is that x̂ is not involved in (1.4), i.e. the
observer dynamics do not depend on τ .

In the following, instead of constructing the (implicit) function τ by a minimiza-
tion of a criterion introduced as a design tool, we explicitly construct a diffeomorphism
τe allowing us to express the dynamics of the observer in the x-coordinates1. This has
been suggested by several researchers [9, 20, 3] in the case where the observer state ξ̂

and the state estimate x̂ are related by a diffeomorphism. We remove this restriction
and complete the preliminary results presented in [1].

In the example above, pulling the observer dynamics in the ξ-coordinates back
in the x-coordinates is seemingly impossible since x has dimension 3 whereas ξ̂ has
dimension 4. To overcome this difficulty, one could think of using again some kind

1We will refer to the x-coordinates as the “preferred coordinates” or “given coordinates” because
they are chosen by the user to describe the model dynamics.
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of projection/restriction. Our proposition is actually of a completely different kind.

Instead of considering ξ̂ as the estimation of the image by an immersion τ∗ of the state
x, we see it as the estimation of the image by a diffeomorphism τ∗e of an augmented
state (x,w). Fortunately with such a diffeomorphism τ∗e , we can use all what has been
proposed for expressing the observer dynamics in the preferred coordinates in that
case. So with this augmentation of x into (x,w), the design of the commonly used
projection/restriction is replaced by the construction of the diffeomorphism τ∗e . We
show in Section 2 that τ∗e can be obtained by “augmenting” the function x 7→ τ∗(x)
given in (1.3) or (1.5). For this, it turns out that it is sufficient to complement a full
column rank Jacobian into an invertible matrix.

The drawback of this approach however is that, because it is linked to particular
coordinate systems, the obtained diffeomorphism may not be defined everywhere.
Also, its image could be only a subset of the observer accessibility set (for ξ̂), namely

the trajectories of ξ̂ may leave the image of the diffeomorphism or equivalently the
trajectories of (x̂, ŵ) may leave the domain of definition of the diffeomorphism. We
show in Section 3 how this new problem can be overcome via an extension of the
image of the diffeomorphism. The key point here is that the given observer dynamics
(1.2) remain unchanged. Hence we deal with constraints on the observer state without
any kind of projection/restriction as commonly proposed (see [20, 3] for example). A
benefit of this is that, to preserve the convergence property, we do not require extra
assumptions such as convexity .

To illustrate our results, we continue the example of the harmonic oscillator with
unknown frequency and add one based on the bioreactor presented in [12]. We use a
high-gain observer as starting point. But, as shown in [5], the same tools can be used
with a nonlinear Luenberger observer.

Our contribution relies on, or is inspired by ideas of some known analysis results
such as continuously completing an independent set of vectors to a basis [25, 11],
diffeotopies [14] or h-cobordism [21]. We rephrase part of them when it is construc-
tive and therefore useful for observer design. Similarly, the constructive part of our
proofs are in the main body of our text, those which are not constructive and never
used/commented in remarks or examples are in appendix or omitted to save space.
A more complete version with all the proofs is in [6].

1.2. Problem statement. We consider the given system with dynamics :

ẋ = f(x) , y = h(x) , (1.6)

with x in R
n and y in R

q. Its solution at time t, with initial condition x0 at time
0 is denoted X(x0, t) and the corresponding output yx0

(t). The observation problem
is to construct a dynamical system with input y and output x̂, supposed to be an
estimate of the system state x as long as the latter is in a specific set of interest
denoted A ⊆ R

n. As starting point, we assume this problem is (formally) already
solved but with maybe some implementation issues such as finding an expression of
τ . More precisely,

Assumption A (Converging observer) : There exist an open subset O of Rn con-

taining A, a C1 injective immersion τ∗ : O → R
m, and a set2 ϕT of pairs (ϕ, τ) of

locally Lipschitz functions such that we have

τ(τ∗(x)) = x ∀x ∈ A (1.7)

2The symbol ϕT is pronounced phitau.
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and, for any solution X(x0, t) of (1.6) which is defined and remains in A for t in

[0,+∞), the solution (X(x0, t), Ξ̂(ξ̂0, t; yx0
)) of the cascade system :

ẋ = f(x) , y = h(x) ,
˙̂
ξ = ϕ(ξ̂, x̂, y) , x̂ = τ(ξ̂) , (1.8)

with initial condition (x0, ξ̂0) in A × R
m at time 0, is also defined on [0,+∞) and

satisfies :

lim
t→+∞

∣

∣

∣Ξ̂(ξ̂0, t; yx0
)− τ∗(X(x0, t))

∣

∣

∣ = 0 . (1.9)

Remark 1.

1. The convergence property given by (1.9) is in the observer state space only. Prop-
erty (1.7) is a necessary condition for this convergence to be transferred from the
observer state space to the system state space.

2. The need for pairing ϕ and τ comes from the dependence on x̂ = τ(ξ̂) of ϕ in (1.8).
This may imply to change ϕ whenever we change τ . In the high-gain approach, as
in (1.2), when A is bounded, thanks to the gain ℓ which can be chosen arbitrarily
large, ϕ can be paired with any locally Lipschitz function τ provided its values are
saturated whenever they are used as arguments of ϕ. On another hand, if, as in
(1.4), ϕ does not depend on x̂, then it can be paired with any τ .

Example 1. For System (1.1), for any solution with initial condition x1 = x2 = 0,
we have no information on x3 from the only knowledge of (1.1) and the function
t 7→ y(t) = X1(x, t). This explains the restriction of our attention to the set

A =

{

x ∈ R
3 : x2

1 + x2
2 ∈

]

1

r
, r

[

, x3 ∈]0, r[

}

, (1.10)

where r is some arbitrary strictly positive real number. This set is invariant by (1.1),
and the function (1.3) being an injective immersion on

(

R
2 \ {(0, 0)}

)

× R>0, the
system is strongly differentially observable3 of order 4 on this set. Let O be any open
subset such that cl(A) ⊂ O ⊆

(

R
2 × R>0

)

\ ({(0, 0)} × R>0), with cl denoting the
set closure. Then, cl(A) being a compact set, a set ϕT satisfying Assumption A is
made of pairs of a locally Lipschitz function τ satisfying (see [16] for example)

x = τ(x1, x2,−x1x3,−x2x3) ∀x ∈ A (1.11)

and the function ϕ defined in (1.2) where

sat(s) = min
{

r3,max
{

s,−r3
}}

(1.12)

with the gain ℓ in (1.2) adapted to the properties of τ . △

Although the problem of observer design seems already solved under Assumption
A, it can be difficult to find a left-inverse τ of τ∗. In the following, we consider that
the function τ∗ and the set ϕT are given and we aim at avoiding the left-inversion of
τ∗ by expressing the observer for x in the, maybe augmented, x-coordinates. More
precisely we aim at solving the following problem.

3The system is said to be strongly differentially observable of order m if the function x 7→

(h(x), Lfh(x), ..., L
m−1

f
h(x)) is an injective immersion.
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Our problem (Observer in the x-coordinates) : Assume that Assumption A is
satisfied, we wish to find an open set Oa ⊆ R

m and two mappings k and ℓ such that
the system defined in R

m

˙̂x = k(x̂, ŵ, y) , ˙̂w = ℓ(x̂, ŵ, y) , (1.13)

defines an observer in A. In other words, for any initial condition x0 in A such that
the solution X(x0, t) of (1.6) is defined and remains in A for t in [0,+∞), the solution

(X(x0, t), X̂(x̂0, ŵ0, t; yx0
), Ŵ (x̂0, ŵ0, t; yx0

)), with initial condition (x̂0, ŵ0) in Oa, of
the cascade of system (1.6) with the observer (1.13) is also defined on [0,+∞) and
satisfies :

lim
t→+∞

∣

∣

∣X(x0, t)− X̂(x̂0, ŵ0, t; yx0
)
∣

∣

∣ = 0 . (1.14)

1.3. A sufficient condition allowing us to express the observer in the

given x-coordinates. For the simpler case where the raw observer state ξ̂ has the
same dimension as the system state x, i.e. m = n, τ∗, in Assumption A, is a diffeo-
morphism on O and we can express the observer in the given x-coordinates as :

˙̂x =

(

∂τ∗

∂x
(x̂)

)−1

ϕ(τ∗(x̂), x̂, y) (1.15)

which requires a Jacobian inversion only. However, although, by assumption, the
system trajectories remain in O where the Jacobian is invertible, we have no guarantee
the ones of the observer do. Therefore, to obtain convergence and completeness of
solutions, we must find means to ensure the estimate x̂ does not leave the set O, or
equivalently that τ∗(x̂) remains in the image set τ∗(O). We address this point by
modifying τ∗ “marginally” in order to get τ∗(O) = R

m.
In the more complex situation where m > n, τ∗ is only an injective immersion.

In [1], it is proposed to augment the given x-coordinates in R
n with extra ones, say

w, in R
m−n and correspondingly to augment the given injective immersion τ∗ into a

diffeomorphism τ∗e : Oa → R
m, where Oa is an open subset of Rm, considered as an

augmentation of O, i.e. its Cartesian projection on R
n is contained in O and contains

cl(A).
To help us find such an appropriate augmentation, we have the following sufficient

condition.
Proposition 1.1. Assume Assumption A holds and A is bounded. Assume also

the existence of an open subset Oa of Rm containing cl(A×{0}) and of a diffeomor-
phism τ∗e : Oa → R

m satisfying

τ∗e (x, 0) = τ∗(x) ∀x ∈ A (1.16)

and

τ∗e (Oa) = R
m . (1.17)

and such that, with letting τex denote the x-component of the inverse of τ∗e , there
exists a function ϕ such that the pair (ϕ, τex) is in the set ϕT given by Assumption
A. Under these conditions, for any initial condition x0 in A such that the solu-
tion X(x0, t) of (1.6) is defined and remains in A for t in [0,+∞), the solution

(X(x0, t), X̂(x̂0, ŵ0, t; yx0
), Ŵ (x̂0, ŵ0, t; yx0

)), with initial condition (x̂0, ŵ0) in Oa, of
the cascade of system (1.6) with the observer :

˙︷ ︷
[

x̂

ŵ

]

=

(

∂τ∗e
∂(x̂, ŵ)

(x̂, ŵ)

)−1

ϕ(τ∗e (x̂, ŵ), x̂, y) (1.18)
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is also defined on [0,+∞) and satisfies :

lim
t→+∞

∣

∣

∣Ŵ (x̂0, ŵ0, t; yx0
)
∣

∣

∣+
∣

∣

∣X(x0, t)− X̂(x̂0, ŵ0, t; yx0
)
∣

∣

∣ = 0 . (1.19)

The key point in the observer (1.18) is that, instead of left-inverting the function τ∗

via τ as in (1.7), we invert only a matrix.
Proof. See Appendix A.
With Proposition 1.1, we are left with finding a diffeomorphism τ∗e satisfying the

conditions listed in the statement :

• Equation (1.16) is about the fact that τ∗e is an augmentation, with adding coordi-
nates, of the given injective immersion τ∗. It motivates the following problem.
Problem 1 (Immersion augmentation into a diffeomorphism). Given a set A,
an open subset O of Rn containing cl(A), and an injective immersion τ∗ : O →
τ∗(O) ⊂ R

m, the pair (τ∗a ,Oa) is said to solve the problem of immersion augmen-
tation into a diffeomorphism if Oa is an open subset of Rm containing cl(A×{0})
and τ∗a : Oa → τ∗a (Oa) ⊂ R

m is a diffeomorphism satisfying

τ∗a (x, 0) = τ∗(x) ∀x ∈ A .

We will present in Section 2 conditions under which Problem 1 can be solved via
complementing a full column rank Jacobian of τ∗ into an invertible matrix, i.e. via
what we call Jacobian complementation.

• The condition expressed in (1.17), is about the fact that τ∗e is surjective onto R
m.

This motivates us to introduce the surjective diffeomorphism extension problem
Problem 2 (Surjective diffeomorphism extension). Given an open subset Oa of
R

m, a compact subset K of Oa, and a diffeomorphism τ∗a : Oa → R
m, the diffeo-

morphism τ∗e : Oa → R
m is said to solve the surjective diffeomorphism extension

problem if it satisfies

τ∗e (Oa) = R
m , τ∗e (z) = τ∗a (z) ∀z ∈ K.

This Problem 2 will be addressed in Section 3.

When Assumption A holds and A is bounded, by successively solving Problem 1
and Problem 2 with cl(A× {0}) ⊂ K ⊂ Oa, we get a diffeomorphism τ∗e guaranteed
to satisfy all the conditions of Proposition 1.1 except maybe the fact that the pair
(ϕ, τex) is in ϕT. How this last condition can be satisfied will be discussed in Section
4 mainly via a list of remarks.

Throughout Sections 2-3, we will show how, step by step, we can express a high
gain observer in the x-coordinates for the harmonic oscillator with unknown frequency.
We will also show that our approach enables to ensure completeness of solutions of
the observer presented in [12] for the bioreactor. The various difficulties we shall
encounter on this road will be discussed in Section 5. In particular, we shall see how
they can be overcome thanks to a better choice of τ∗ and of the pair (ϕ, τ) given by
Assumption A.

2. About Problem 1 : Augmentation of an immersion into a diffeomor-

phism. In [1], we find the following sufficient condition for the augmentation of an
immersion into a diffeomorphism.

Lemma 2.1 ([1]). Let A be a bounded set, O be an open subset of Rn containing
cl(A), and τ∗ : O → τ∗(O) ⊂ R

m be an injective immersion. If there exists a bounded
open set Õ satisfying cl(A) ⊂ Õ ⊂ cl(Õ) ⊂ O and a C1 function γ : O → R

m×(m−n)

6



the values of which are m× (m− n) matrices satisfying :

det

(

∂τ∗

∂x
(x) γ(x)

)

6= 0 ∀x ∈ cl(Õ) , (2.1)

then there exists a strictly positive real number ε such that the following pair4 (τ∗a ,Oa)
solves Problem 1

τ∗a (x,w) = τ∗(x) + γ(x)w , Oa = Õ × Bε(0) . (2.2)

In other words, an injective immersion τ∗ can be augmented into a diffeomor-
phism τ∗a if we are able to find m − n columns γ which are C1 in x and which
complement the full column rank Jacobian ∂τ∗

∂x
(x) into an invertible matrix.

Proof. See Appendix B.
Remark 2. Complementing a m × n full-rank matrix into an invertible one is

equivalent to finding m− n independent vectors orthogonal to that matrix. Precisely
the existence of γ satisfying (2.1) is equivalent to the existence of a C1 function
γ̃ : cl(Õ) → R

m×(m−n) the values of which are full rank matrices satisfying :

γ̃(x)⊤
∂τ∗

∂x
(x) = 0 ∀x ∈ cl(Õ) . (2.3)

Indeed, γ̃ satisfying (2.3) satisfies also (2.1) since the following matrices are invertible

(

∂τ∗

∂x
(x)⊤

γ̃(x)⊤

)(

∂τ∗

∂x
(x) γ̃(x)

)

=

(

∂τ∗

∂x
(x)⊤ ∂τ∗

∂x
(x) 0

0 γ̃(x)⊤γ̃(x)

)

.

Conversely, given γ satisfying (2.1), γ̃ defined by the identity below satisfies (2.3) and
has full column rank

(

∂τ∗

∂x
(x) γ̃(x)

)

=

(

∂τ∗

∂x
(x) γ(x)

)

(

I −
[

∂τ∗

∂x
(x)⊤ ∂τ∗

∂x
(x)
]−1

∂τ∗

∂x
(x)⊤γ(x)

0 I

)

.

2.1. Submersion case.

Proposition 2.2 (Completion when τ∗(cl(Õ)) is a level set of a submersion).
Let A be a bounded set, Õ be a bounded open set and O be an open set satisfying

cl(A) ⊂ Õ ⊂ cl(Õ) ⊂ O .

Let also τ∗ : O → τ∗(O) ⊂ R
m be an injective immersion. Assume there exists a C2

function F : Rm → R
m−n which is a submersion at least on a neighborhood of τ∗(Õ)

satisfying:

F (τ∗(x)) = 0 ∀x ∈ Õ , (2.4)

then, with the C1 function x 7→ γ(x) = ∂F
∂ξ

T
(τ∗(x)), the matrix in (2.1) is invertible

for all x in Õ and the pair (τ∗a ,Oa) defined in (2.2) solves Problem 1.

Proof. For all x in cl(Õ), ∂τ∗

∂x
(x) is right invertible and we have ∂F

∂ξ
(τ∗(x))∂τ

∗

∂x
(x) =

0. Thus, the rows of ∂F
∂ξ

(τ∗(x)) are orthogonal to the column vectors of ∂τ∗

∂x
(x) and are

4For a positive real number ε and z0 in R
p, Bε(z0) is the open ball centered at z0 and with radius

ε.
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independent since F is a submersion. The Jacobian of τ∗ can therefore be completed

with ∂F
∂ξ

T
(τ∗(x)). The proof is completed with Lemma 2.1.

Remark 3. Since ∂τ∗

∂x
is of constant rank n on O, the existence of such a function

F is guaranteed at least locally by the constant rank Theorem.

Example 2 (Continuation of Example 1). Elimination of the x̂i in the 4 equations
given by the injective immersion τ∗ defined in (1.3) leads to the function F (ξ) =
ξ2ξ3 − ξ1ξ4 satisfying (2.4). It follows that a candidate for complementing:

∂τ∗

∂x
(x) =









1 0 0
0 1 0

−x3 0 −x1

0 −x3 −x2









(2.5)

is γ(x) =
∂F

∂ξ
(τ∗(x))T = (x2x3,−x1x3, x2,−x1)

T .

This vector is nothing but the column of the minors of the matrix (2.5). It gives as
determinant (x2x3)

2 + (x1x3)
2 + x2

2 + x2
1 which is never zero on O.

Then, it follows from Lemma 2.1, that, for any bounded open set Õ such that
A ⊂ cl(Õ) ⊂ O the following function is a diffeomorphism on Õ × Bǫ(0) for ε

sufficiently small

τ∗a (x,w) = (x1 + x2x3w, x2 − x1x3w,−x1x3 + x2w,−x2x3 − x1w) .

With picking τ∗e = τ∗a , (1.18) gives us the following observer written in the given
x-coordinates augmented with w :

˙︷ ︷








x̂1

x̂3

x̂2

ŵ









=









1 x̂3ŵ x̂2ŵ x̂2x̂3

−x̂3ŵ 1 −x̂1ŵ −x̂1x̂3

−x̂3 ŵ −x̂1 x̂2

−ŵ −x̂3 −x̂2 −x̂1









−1 















x̂2 − x̂1x̂3ŵ

−x̂1x̂3 + x̂2ŵ

−x̂2x̂3 − x̂1ŵ

sat(x̂1x̂
2
3)









+









ℓk1
ℓ2k2
ℓ3k3
ℓ4k4









[y − x̂1]









Unfortunately the matrix to be inverted is non singular for (x̂, ŵ) in Õ × Bε(0) only
and we have no guarantee that the trajectories of this observer remain in this set.
This shows that a further modification transforming τ∗a into τ∗e is needed to make

sure that τ∗e
−1(ξ̂) belongs to this set whatever ξ̂ in R

4. This is Problem 2. △

The drawback of this Jacobian complementation method is that it asks for the
knowledge of the function F . It would be better to simply have a universal formula
relating the entries of the columns to be added to those of ∂τ∗

∂x
.

2.2. The P̃ [m,n] problem. Finding a universal formula for the Jacobian com-
plementation problem amounts to solving the following problem.

Definition 2.3. (P̃ [m,n] problem) For a pair of integers (m,n) such that 0 <

n < m, a C1 matrix function γ̃ : Rm×n → R
m×(m−n) solves the P̃ [m,n] problem

if for any m × n matrix T = (Tij) of rank n, the matrix
(

T γ̃(T)
)

is invertible, or

equivalently, the matrix γ̃(T) has rank m− n and satisfies γ̃(T)⊤T = 0 .

As a consequence of a theorem due to Eckmann [11, §1.7 p. 126] and Lemma 2.1,
we have

Theorem 2.4. The P̃ [m,n] problem is solvable by a C1 function γ̃ if and only
if the pair (m,n) is one of the following 3 pairs

(> 2,m− 1) or (4, 1) or (8, 1) . (2.6)
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Moreover, for each of these pairs and for any bounded set A, bounded open set Õ and
open set O satisfying

cl(A) ⊂ Õ ⊂ cl(Õ) ⊂ O ,

and any injective immersion τ∗ : O → τ∗(O) ⊂ R
m, the pair (τ∗a ,Oa) defined in (2.2)

with γ(x) = γ̃
(

∂τ∗

a

∂x
(x)
)

solves Problem 1.

Proof only if. This is a direct consequence of Remark 2, of the facts that if P̃ [m,n]
has a solution, P̃ [m−1, n−1] must have one, and that the only parallelizable spheres
are S

1, S3 and S
7 (see [8]) and of

Theorem 2.5 ([11, §1.7 p. 126]). For m > n, there exists a continuous function
T ∈ R

m×n 7→ γ̃1(T) ∈ R
m with non zero values and satisfying

γ̃1(T)
T
T = 0 ∀T ∈ R

m×n : Rank(T) = n

if and only if (m,n) is in one of the following 4 pairs

(≥ 2,m− 1) or (even, 1) or (7, 2) or (8, 3)
A detailed version of the proof can be found in [6].

Proof if. For (m,n) equal to (4, 1) or (8, 1) respectively, possible solutions are

γ̃(T) =









−T2 T3 T4

T1 −T4 T3

−T4 −T1 −T2

T3 T2 −T1









, γ̃(T) =























T2 T3 T4 T5 T6 T7 T8

−T1 T4 −T3 T6 −T5 −T8 T7

−T4 −T1 T2 T7 T8 −T5 −T6

T3 −T2 −T1 T8 −T7 T6 −T5

−T6 −T7 −T8 −T1 T2 T3 T4

T5 −T8 T7 −T2 −T1 −T4 T3

T8 T5 −T6 −T3 T4 −T1 −T2

−T7 T6 T5 −T4 −T3 T2 −T1























where Tj is the jth component of the vector T. For n = m− 1, we have the identity

det (T γ̃(T)) =

m
∑

j=1

γ̃j(Tij)Mj,m(Tij)

where γ̃j is the jth component of the vector-valued function γ̃ and the Mj,m, being
the cofactors of (T γ̃(T)) computed along the last column, are polynomials in the given
components Tij . At least one of the Mj,m is non-zero (because they are minors of
dimension n of T which is full-rank). So it is sufficient to take γ̃j(Tij) = Mj,m(Tij).

In the following example we show how by exploiting some structure we can reduce
the problem to one of these 3 pairs.

Example 3 (Continuation of Example 2). In Example 2, we have complemented
the Jacobian (2.5) with the gradient of a submersion and observed that the compo-
nents of this gradient are actually cofactors. We now know that this is consistent with
the case n = m−1. But we can also take advantage from the upper triangularity of the
Jacobian (2.5) and complement only the vector (−x1,−x2) by for instance (x2,−x1).
The corresponding vector γ is γ(x) = (0, 0, x2,−x1). Here again, with Lemma 2.1,
we know that, for any bounded open set Õ such that cl(A) ⊂ Õ ⊂ cl(Õ) ⊂ O the
function

τ∗a (x,w) = (x1 , x2 , −x1x3 + x2w , −x2x3 − x1w)

is a diffeomorphism on Õ × Bǫ(0). In fact, in this particular case ε can be arbitrary,
no need for it to be small. However, the singularity at x̂1 = x̂2 = 0 remains and
equation (1.17) is still not satisfied. △
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Given the very small number of cases where a universal formula exists, we now
look for a more general solution to the Jacobian complementation problem.

2.3. Wazewski theorem. Historically, the Jacobian complementation problem
was first addressed by Wazewski (see [25]). His formulation was :
Given mn continuous functions Tij : O ⊂ R

n → R, look for m(m − n) continuous
functions γkl : O → R such that the following matrix is invertible for all x in O :

P (x) =
(

T(x) γ(x)
)

. (2.7)

The difference with the previous section, is that here, we look for continuous functions
γ of x in R

n instead of continuous functions γ of T in R
m×n.

Wazewski established that this other version of the problem admits a far more
general solution :

Theorem 2.6 ([25, Theorems 1 and 3] and [11, page 127]). If O, equipped with
the subspace topology of Rn, is a contractible space, then there exists a C∞ function
γ making the matrix P (x) in (2.7) invertible for all x in O.

The reader is referred to [11, page 127] or [10, pages 406-407] and to [25, Theorems
1 and 3] for the complete proof of existence of a continuous function γ. It can be made
smoother by using a partition of unity (see [6]). We give the main constructive points
of this proof below. But before this, let us give the following corollary obtained as a
consequence of Lemma 2.1.

Corollary 2.7. Let A be a bounded set, O be an open subset of Rn containing
cl(A) and which, equipped with the subspace topology of Rn, is a contractible space.
Let also τ∗ : O → τ∗(O) ⊂ R

m be an injective immersion. There exists a C1 function
γ such that, for any bounded open set Õ satisfying

cl(A) ⊂ Õ ⊂ cl(Õ) ⊂ O

we can find a strictly positive real number ε such that the pair (τ∗a ,Oa) defined in
(2.2) solves Problem 1.

About the construction of γ: The proof of Theorem 2.6 given by Wazevski is based
on Remark 2, noting that, if we have the decomposition

T(x) =

(

A(x)
B(x)

)

with A(x) invertible on some given subset ℜ of O, then

γ(x) =

(

C(x)
D(x)

)

satisfies (2.3) on ℜ if and only if D(x) is invertible on ℜ and we have

C(x) = −(AT (x))−1B(x)TD(x) ∀x ∈ ℜ . (2.8)

Thus, C is imposed by the choice of D and choosing D invertible is enough to build
γ on ℜ.

Also, if we already have a candidate

P (x) =

(

A(x) C0(x)
B(x) D0(x)

)

on a boundary ∂ℜ of ℜ, then, necessarily, if A(x) is invertible for all x in ∂ℜ, then
D0(x) is invertible and C0(x) = −(AT (x))−1B(x)TD0(x) all x in ∂ℜ. Thus, to
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