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NONLINEAR OBSERVER IN THE ORIGINAL COORDINATES WITH
DIFFEOMORPHISM EXTENSION AND JACOBIAN COMPLETION

PAULINE BERNARD, VINCENT ANDRIEU AND LAURENT PRALY ∗

Abstract. Typical difficulties we face in implementing observers in applications are:
– because of physical constraints or observability singularities, the estimated state should remain in some restricted

region of the system state manifold ;
– observability may also impose the observer dynamics to live in an observer state manifold with higher dimension

than the system state. In such a case, the observer implementation needs a left inverse of an injective immersion.
In the approach we propose to round these difficulties, we do not modify the given converging dynamics of the
observer, assumed to be globally defined. Instead we select carefully the coordinates to express them. This is done
via appropriate diffeomorphisms:
– one diffeomorphism sending the restricted region to the whole space. This is done by an image extension.
– one function extending the injective immersion into a diffeomorphism and making the observer state coordinates

equivalent to the system state coordinates complemented with extra ones introduced to fill the dimension gap.
This is done via a Jacobian completion.

Such a design makes possible the expression of the observer dynamics in the, maybe complemented, original coordi-
nates.
Several examples illustrate our results.

1. Introduction.

1.1. Context. In many applications, estimating the state of a dynamical system is crucial
either to build a controller or simply to obtain real time information on the system. A lot of efforts
have thus been made in the scientific community to find universal methods for the construction
of observers. Although very satisfactory solutions are known for linear systems ([17]), nonlinear
observer designs still suffer from a significant lack of generality.

For nonlinear systems, we are aware of two ”general purpose” observer design methodologies
with guaranteed ”non local” convergence: the high gain observers ([16, 21, 8, 9] etc) and the non-
linear Luenberger observers ([20, 14, 2]). Those observers do not demand any particular structure
and only require some basic observability properties. However, in both cases, the observer state is
in general living in a space different from the system state one and the state estimate is obtained
typically by solving on-line a nonlinear equation, which may be very complicated.

As an illustration, consider an harmonic oscillator with unknown frequency with dynamics

ẋ1 = x2 , ẋ2 = −x1x3 , ẋ3 = 0 , y = x1 (1.1)

with state x = (x1, x2, x3) in R2 × R>0 and measurement y. We are interested in estimating as x̂
the state x from the only knowledge of y and maybe the fact that x evolves in some known set. We
can solve this observer problem by following in a very orthodox way the high gain observer design
(see [15] for example for the general theory and [1] for details). This leads to an answer with a
dynamical system, with dynamics

˙̂
ξ = ϕ(ξ̂, x̂, y) =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 ξ̂ +


0
0
0

sat(x̂1x̂
2
3)

+


`k1
`2k2
`3k3
`4k4

 [y − ξ̂1] , (1.2)
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with observer state ξ̂ in R4 and where sat is a saturation function. With this, the system state
estimate x̂ is obtained as

x̂ = τ(ξ̂)

where the function τ is obtained from solving in x̂

ξ̂ =
(
ξ̂1, ξ̂2, ξ̂3, ξ̂4

)
= τ∗(x̂) = (x̂1, x̂2,−x̂1x̂3,−x̂2x̂3) . (1.3)

This is a system of 4 equations in 3 unknown which in general has no exact solution. To get an
approximate solution, we may have to solve an optimization problem such as

x̂ = τ(ξ̂) = Argmin
x̂

∣∣∣ξ̂ − τ∗(x̂)
∣∣∣2 .

We are aware that, for the particular expression of τ∗ in (1.3), an expression for τ(ξ̂), solution of
the above problem, can be obtained1. But this is not the case in general and we go on in this paper
ignoring the data of τ to get x̂ from ξ̂. Actually we cannot fully ignore τ since the values of ϕ in
(1.2) depend on x̂. This subtlety will be addressed in Assumption A.C below with dealing with
pairs (ϕ, τ).

To eliminate the minimization step above, we may want to write the observer dynamics directly
in the x coordinates. This is not straightforward since x has dimension 3 whereas ξ̂ has dimension
4. We round this difficulty by adding one component, say w to x. With this, we are left with
writing the dynamics of (x̂, ŵ). This can be done by moving, in the (x̂, ŵ) coordinates, the ξ̂
dynamics known to solve the observer problem. For this, we need a diffeomorphism from (x̂, ŵ)

to ξ̂ which should “extend” the function x 7→ τ∗(x) given in (1.3) We show in Section 2 that this
can be done by a Jacobian completion. Unfortunately, in doing so, the obtained diffeomorphism is
rarely defined everywhere. Thus, we are facing the new problem of having no guarantee that the
trajectory in (x̂, ŵ) of the observer remains in the domain of definition of the diffeomorphism. We
show in Section 3 how this difficulty can be rounded via a diffeomorphism extension.

In the following, as in the example above, we assume we are given a preliminary, say raw,
observer with state ξ̂ of dimension possibly different from the one of x and we look for a more
satisfactory one written in the, may be complemented, x components.

Writing the observer in the original coordinates has been suggested by several researchers
[5, 18, 3] in the case where the dimension of the raw observer state and the system state are
the same. Our contribution is to relax this latter condition via Jacobian completion for which
preliminary results have already been presented in [1].

As mentioned above in the example, the route via Jacobian completion may suffer problems
with the domain of validity of the diffeomorphism. Actually, we may have such a validity problem
already with the raw observer (see Section 5). This makes necessary the study of diffeomorphism
extension which in the context of observer designs has not been studied yet, as far as we know. Its
objective is to force the observer state to remain in a specific set without modifying the given raw
observer dynamics. Another path, which has been proposed in [18, 3], is to modify the dynamics.
But then, extra assumptions such as convexity are needed to preserve the convergence property.

1Another possible expression is τ(ξ̂) =

(
ξ̂1 , ξ̂2 , − ξ̂1ξ̂3+ξ̂4ξ̂2

max{ξ̂21+ξ̂
2
2,

1
r2
}

)
.
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We motivate and illustrate our results with continuing the example of the harmonic oscillator
with unknown frequency and with the bioreactor presented in [8]. These are done with using a
high-gain observer as raw observer only, due to space limitations. But, as shown in [4], exactly the
same tools apply to nonlinear Luenberger observers à la [20, 14, 2].

1.2. Problem statement. We consider the given system with dynamics :

ẋ = f(x) , y = h(x) , (1.4)

with x in Rn and y in Rq. The observation problem is to construct an algorithm which, from the
knowledge of y, estimates the system state x as long as it is in a specific set of interest denoted
A ⊆ Rn. In this paper, our starting point is to assume that this problem is (formally) already
solved but with maybe some implementation issues. More precisely, we assume :

A.II=Injective immersion : There exists an open subset O of Rn which contains A and a C1

injective immersion τ∗ : O → Rm.

Actually this injective immersion should be such that the image Lfτ
∗ by τ∗ of the vector field f ,

is in a form such that an observer can be designed. We write the corresponding observer as :

˙̂
ξ = ϕ(ξ̂, x̂, y) , x̂ = τ(ξ̂) , (1.5)

where the functions ϕ : Rm×Rn×Rq → Rn and τ : Rm → Rn are locally Lipschitz. For the image
by τ∗ of a solution of (1.4) to be a solution of (1.5), at least as long as the former is in A, we must
have :

Lfτ
∗(x) = ϕ(τ∗(x), x, h(x)) , τ(τ∗(x)) = x ∀x ∈ A (1.6)

In the following we do not impose explicitly these identities are satisfied. They are imposed implic-
itly via the convergence requirement made precise below.

As already noticed with (1.2), we need the function τ to reconstruct x̂, argument of ϕ in (1.5).
This dependence of ϕ on τ may imply to change ϕ whenever we change τ . This leads us to consider
a set2 ϕT of pairs (ϕ, τ). With this, we can now phrase our assumption concerning the convergence
property mentioned above.

A.C=Convergence : We know a set ϕT of locally Lipschitz functions (ϕ, τ) such that, for any solution

X(x, t) of (1.4) which is defined and remains in A for t in [0,+∞), the solution (X(x, t), Ξ̂((ξ̂, x), t))
of the cascade system :

ẋ = f(x) ,
˙̂
ξ = ϕ(ξ̂, τ(ξ̂), h(x)) , (1.7)

issued from (x, ξ̂) in A× Rm at time 0, is also defined on [0,+∞) and satisfies :

lim
t→+∞

∣∣∣τ∗(X(x, t))− Ξ̂((ξ̂, x), t)
∣∣∣ = 0 .

Very trivially, ϕ can be paired with any function τ in the particular case in which ϕ does not
depend on τ , i.e. it is in the form ϕ(ξ̂, τ(x), y) = ϕ(ξ̂, y) as in the case of the nonlinear Luenberger

2The symbol ϕT is pronounced phitau.
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observer for instance (see [4]). In the high-gain approach, when A is bounded, thanks to the gain `
which can be chosen arbitrarily large, ϕ can be paired with any locally Lipschitz function τ provided
its values are saturated whenever they are used as arguments of ϕ.

In the following, we consider that the function τ∗ and the set ϕT are given and we aim at
designing an observer for x in the, maybe complemented, x-coordinates. However, in trying to
meet this objective, we shall encounter some difficulties which will lead us at the end to reconsider
the data of τ∗ and ϕT.

Example 1. For the harmonic oscillator with unknown frequency (1.1), since, for any solution
with initial condition x1 = x2 = 0, we cannot get any information on x3 from the only knowledge
of its dynamics and the function t 7→ y(t) = X1(x, t), we define the set A in which we want the
estimation as

A =

{
x ∈ R3 : x21 + x22 ∈

]
1

r
, r

[
, x3 ∈]0, r[

}
, (1.8)

where r is some arbitrary strictly positive real number. This set is invariant and, the system is
strongly differentially observable of order 4 on this set. Indeed, it can be checked that the function
(1.3) is an injective immersion on

(
R2 × R>0

)
\ ({(0, 0)} × R>0). This implies that Assumption

A.II is satisfied for any open subset O such that cl(A) ⊂ O ⊆
(
R2 × R>0

)
\ ({(0, 0)} × R>0), with

cl denoting the set closure. Then, relying on what is known on high gain observers (see [15] for
example), we can claim that, in the present case where A is compact, a set ϕT satisfying Assumption
A.C is made of pairs of a locally Lipschitz function τ satisfying

x = τ(x1, x2,−x1x3,−x2, x3) ∀x ∈ A

and the function ϕ defined in (1.2) where

sat(s) = min
{
r3,max

{
s,−r3

}}
(1.9)

and the gain is adjusted to the properties of τ .
We do not need to know an expression for τ , in what follows knowing its existence is sufficient.4

1.3. A sufficient condition allowing us to express the observer in the original coordi-
nates. To motivate the technicalities we shall use to write the observer in the original coordinates,
we start with the simpler case where the raw observer state ξ̂ has the same dimension as the system
state x, i.e. m = n. The example of the bioreactor from [8] detailed in Section 5 falls into this
category. In this case, τ∗ is a diffeomorphism on O, i-e it is simply a change of coordinates. We
can implement the observer in the original coordinates :

˙̂x =

(
∂τ∗

∂x
(x̂)

)−1
ϕ(τ∗(x̂), x̂, y) . (1.10)

which only relies on a Jacobian inversion. However, although we know by assumption that the
system trajectories remain in O where the Jacobian is invertible, we have no guarantee the ones of
the observer do. Therefore, we must find means to ensure the estimate x̂ does not leave this set
in order to obtain convergence and completeness of solutions. To achieve this, we will see that a
possible approach is the extension of the image set τ∗(O) to Rm.

With this in mind, we now look at the more complicated situation where m > n, i-e τ∗ is only an
injective immersion. The example of the harmonic oscillator with unknown frequency corresponds
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to this case. In [1], it is proposed to augment the given injective immersion τ∗ into a diffeomorphism
τ∗e : Oe = O×Sw → Rm, thus adding m− n dimensions to the state through a new variable w. To
help us in finding such an appropriate augmentation, we have the following sufficient condition.

Proposition 1.1. Assume A.II and A.C hold and A is bounded. Assume also

P1: Completion to a diffeomorphism. There exists an open subset Oe of Rm and a C1 diffeomor-
phism τ∗e : Oe → Rm such that Oe contains A× {0} and we have

τ∗e (x, 0) = τ∗(x) ∀x ∈ A . (1.11)

P2: Surjectivity.3 The function τ∗e is surjective. In other words, τ∗e (Oe) = Rm.

P3: Couple (x̂, ϕ) admissible. With denoting τex the x-component of τe, the inverse of τ∗e , there
exists a function ϕ such that the pair (τex, ϕ) is in the set ϕT given by assumption A.C.

Under these conditions, for any solution X(x, t) of (1.4) which is defined and remains in A for
t in [0,+∞) the solution (X(x, t), X̂(x, x̂, ŵ, t), Ŵ (x, x̂, ŵ, t)), with initial condition (x̂, ŵ) in Oe,
of the cascade of system (1.4) with the observer :

˙︷ ︷[
x̂
ŵ

]
=

(
∂τ∗e

∂(x̂, ŵ)
(x̂, ŵ)

)−1
ϕ(τ∗e (x̂, ŵ), x̂, y) (1.12)

is also defined on [0,+∞) and satisfies :

lim
t→+∞

∣∣∣Ŵ (x, x̂, ŵ, t)
∣∣∣+
∣∣∣X(x, t)− X̂(x, x̂, ŵ, t)

∣∣∣ = 0 . (1.13)

The key point in the observer (1.12) is that, instead of left-inverting the function τ∗ via τ as
in (1.5), we invert only a matrix.

Proof. For any compact set C containing A × {0} and contained in Oe, there exists a class K
function α : R≥0 → R≥0 such that we have

|w| + |xa − xb| ≤ α (|τ∗(xa)− τ∗e (xb, w)|) ∀xa ∈ A , ∀(xb, w) ∈ C . (1.14)

Indeed, let:

α0(s) = max
((xb, wb), (xc, wc)) ∈ C2

|τ∗e (xb, wb)− τ∗e (xc, wc)| ≤ s

|xb − xc|+ |wb − wc|

This defines properly a non decreasing function satisfying :

|xb − xc|+ |wb − wc| ≤ α0(|τ∗e (xb, wb)− τ∗e (xc, wc)||) ∀((xb, wb), (xc, wc)) ∈ C2 .

If α0(0) is not zero, then there exists ((xb, wb), (xc, wc)) in C2 satisfying :

|τ∗e (xb, wb)− τ∗e (xc, wc)| = 0 , |xb − xc|+ |wb − wc| > 0 .

3 In the particular case where a subset S of Rm is known to be invariant by the dynamics
˙̂
ξ = ϕ(ξ̂, τ(ξ̂), y), it is

enough to have S ⊂ τ∗e (Oe) in P2. But dealing with this case is difficult when S depends on τ .
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But this contradicts the injectivity of τ∗e (i.e. P1). Then let sk be a sequence converging to 0. For
each k and l in N>0, we can find ((xb,kl, wb,kl), (xc,kl, wc,kl)) in C2 which satisfies

α0(sk) ≥ |xb,kl − xc,kl|+ |wb,kl − wc,kl| ≥ α0(sk) − 1

l
,

|τ∗e (xb,kl, wb,kl)− τ∗e (xc,kl, wc,kl)| ≤ sk .

The “diagonal” sequence ((xb,kk, wb,kk), (xc,kk, wc,kk)) being in a compact set admits an accumu-
lation point (xb,∗, wb,∗), (xc,∗, wc,∗) which, because of the continuity and the injectivity of τ∗e must
satisfy (xb,∗, wb,∗) = (xc,∗, wc,∗). This implies that α0(sk) tends to 0 and thus α0 is continuous at
0. Now, consider the function defined by the following Riemann integral

α(s) =
1

s

∫ 2s

s

α0(ν)dν + s .

It is continuous, strictly increasing and zero at zero and we have :

|xb − xc|+ |wb − wc| ≤ α(|τ∗e (xb, wb)− τ∗e (xc, wc)||) ∀((xb, wb), (xc, wc)) ∈ C2 .

So in particular for xc = xa and wc = 0, with xa in A and (1.11), we obtain (1.14).
Let (x, (x̂, ŵ)) be arbitrary in A × Oe but such that X(x, t) solution of (1.4) is defined and

remains in A for t in [0,+∞). Let [0, T [ be the right maximal interval of definition of the so-
lution (X(x, t), X̂(x, x̂, ŵ, t), Ŵ (x, x̂, ŵ, t)) when considered with values in A × Oe. With aim-
ing at showing that T is infinite by contradiction, assume it is finite. Then, when t goes to
T , either (X̂(x, x̂, ŵ, t), Ŵ (x, x̂, ŵ, t)) goes to infinity or to the boundary of Oe. By construction

t 7→ Ξ̂(t) := τ∗e

(
X̂(x̂, ŵ, t), Ŵ (x̂, ŵ, t)

)
is a solution of (1.7) on [0, T [. From P3 and assumption A.C

it can be extended as a solution defined on [0,+∞[ when considered with values in Rm = τ∗e (Oe).
This implies that Ξ̂(T ) is well defined in Rm. Since, with P2, the inverse τe of τ∗e is a diffeomorphism

defined on Rm, we obtain limt→T

(
X̂(x̂, ŵ, t), Ŵ (x̂, ŵ, t)

)
= τe(Ξ̂(T )), which is an interior point

of τe(Rm) = Oe. This point being neither a boundary point nor at infinity, we have a contradiction.
It follows that T is infinite.

Finally, with assumption A.C, we have :

lim
t→+∞

∣∣∣τ∗(X(x, t))− τ∗e
(
X̂(x̂, ŵ, t), Ŵ (x̂, ŵ, t)

)∣∣∣ = 0 .

Since τ∗(X(x, t)) remains in the compact set τ∗(A), there exists a compact subset C of Rm and a

time tC such that τ∗e

(
X̂(x̂, ŵ, t), Ŵ (x̂, ŵ, t)

)
is in C for all t > tC. Applying (1.14) to C = τe(C)

which is a compact subset of Oe, we obtain (1.13).
Remark 1. It follows from this proof that the assumptions of boundedness of A and (1.11)

can be replaced by: For any compact subset C of Oe, there exists a class K function α : R≥0 → R≥0
such that, (1.14) holds. Also conversely, if (1.14) and P2 hold, then (1.11) holds.

Addressing problems P1 and P2 which have their own interest outside the observer context is
the main topic of this paper. We will present in Section 2 conditions under which the extension of
an immersion into a diffeomorphism in the sense of P1 can be done via a Jacobian completion. We
will address problem P2 in Section 3 with giving conditions under which we can extend the image
of the diffeomorphism τ∗e to Rm.
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Throughout Sections 2-3, we will show how, step by step, we can express a high gain observer in
the original coordinates for the harmonic oscillator with unknown frequency. The various difficulties
we shall encounter on this road will be discussed in Section 4. In particular, we shall see how they
can be rounded thanks to a better choice of τ∗ in Assumption A.II and the pair (τ, ϕ) given by
Assumption A.C. Finally, we will show in Section 5 that our approach enables to ensure completeness
of solutions of the observer presented in [8] for the bioreactor.

2. About P1 : Jacobian completion.

2.1. A way to satisfy P1. In [1], we have the following sufficient condition for having P1
satisfied.

Proposition 2.1 ([1]). Assume A is bounded and A.II holds. Let Sx be a bounded open set
such that A ⊂ cl(Sx) ⊂ O. If there exists a C1 function γ : cl(Sx)→ Rm∗(m−n) whose values are
m ∗ (m− n) matrices satisfying :

det

(
∂τ∗

∂x
(x) γ(x)

)
6= 0 ∀x ∈ cl(Sx) , (2.1)

then there exists a strictly positive real number ε� such that, for any ε in (0, ε�], a function τ∗e
satisfying condition P1 of Proposition 1.1 with4 Oe = Sx × Bε(0) is :

τ∗e (x,w) = τ∗(x) + γ(x)w . (2.2)

Proof. The fact that τ∗e is an immersion for ε small enough is established in [1]. We now prove
it is injective. Let ε0 be a strictly positive real number such that the Jacobian of τ∗e (x,w) in (2.2) is
invertible for any (x,w) in cl(Sx×Bε0(0)). Since cl(Sx×Bε0(0)) is compact, not to contradict the
Implicit function Theorem, there exists a strictly positive real number δ such that any two pairs
(xa, wa) and (xb, wb) in cl(Sx × Bε0(0)) which satisfy

τ∗e (xa, wa) = τ∗e (xb, wb) , (xa, wa) 6= (xb, wb) (2.3)

satisfies also

|xa − xb| + |wa − wb| ≥ δ .

On another hand, since τ∗ is continuous and injective on cl(Sx) ⊂ O, by following the same
arguments as those for establishing (1.14), we can prove the existence of a class K function β such
that we have

|xa − xb| ≤ β(|τ∗(xa)− τ∗(xb)|) ∀(xa, xb) ∈ cl(Sx)2 .

It follows that, if (2.3) holds with wa and wb in Bε(0) with ε ≤ ε0, we have

δ − 2ε ≤ |xa − xb| ≤ β(|τ∗(xa)− τ∗(xb)|) = β(|γ(xa)wa − γ(xb)wb|) ≤ β

(
2ε sup

x∈cl(Sx)
|γ(x)|

)

4For a positive real number ε and z0 in Rp, Bε(z0) is the open ball centered at z0 and with radius ε.
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But there exists a strictly positive real number ε� ≤ ε0 such that, for any ε in (0, ε�], we have

δ − 2ε > β

(
2ε sup

x∈cl(Sx)
|γ(x)|

)
.

So, for all such ε, (2.3) is impossible. This proves that τ∗e is injective on Sx × Bε(0) for any ε in
(0, ε�].

With this proposition, condition P1 is related to the existence of a C1 function γ such that the
matrix (2.1) is invertible.

2.2. Submersion case. We can solve the Jacobian completion problem when τ∗(cl(Sx)) is
a level set of a submersion.

Proposition 2.2 (Completion from a submersion). Assume A.II holds. Let Sx be a bounded
open set such that cl(Sx) ⊂ O. Assume there exists a C2 function F : Rm → Rm−n which is a
submersion at least on a neighborhood of τ∗(Sx) satisfying:

F (τ∗(x)) = 0 ∀x ∈ Sx , (2.4)

then with the C1 function x 7→ γ(x) = ∂F
∂ξ

T
(τ∗(x)), the matrix in (2.1) is invertible for all x in

Sx.
Proof. For all x in cl(Sx), ∂τ∗

∂x (x) is right invertible and we have ∂F
∂ξ (τ∗(x))∂τ

∗

∂x (x) = 0.

Thus, the rows of ∂F
∂ξ (τ∗(x)) are orthogonal to the column vectors of ∂τ∗

∂x (x). Moreover, they are
independent due to the fact that it is a submersion. The Jacobian of τ∗ can therefore be completed

with ∂F
∂ξ

T
(τ∗(x)).

Remark 2. Since ∂τ∗

∂x is of constant rank n on O, the existence of such a function F is
guaranteed at least locally by the constant rank Theorem.

Example 2 (Continuation of Example 1). Elimination of the x̂i in the 4 equations given by
the injective immersion τ∗ defined in (1.3) leads to the function F (ξ) = ξ2ξ3− ξ1ξ4 satisfying (2.4).
It follows that a candidate for completing:

∂τ∗

∂x
(x) =


1 0 0
0 1 0
−x3 0 −x1

0 −x3 −x2

 (2.5)

is

∂F

∂ξ
(τ∗(x))T = (x2x3,−x1x3, x2,−x1)T .

Notice that this vector is nothing but the column of the minors of the Jacobian (2.5). It gives as
determinant

(x2x3)2 + (x1x3)2 + x22 + x21

which is never zero on O.
With Proposition 2.1, we know that, for any bounded open set Sx such that A ⊂ cl(Sx) ⊂ O

the function

τ∗e (x,w) = (x1 + x2x3w, x2 − x1x3w,−x1x3 + x2w,−x2x3 − x1w)

8



is a diffeomorphism on Sx × Bε(0) for ε in ]0, ε�].
With this τ∗e , (1.12) gives us the following observer written in the original x-coordinates com-

plemented with w :

˙︷ ︷
x̂1
x̂3
x̂2
ŵ

=


1 x̂3ŵ x̂2ŵ x̂2x̂3

−x̂3ŵ 1 −x̂1ŵ −x̂1x̂3
−x̂3 ŵ −x̂1 x̂2
−ŵ −x̂3 −x̂2 −x̂1


−1

×




x̂2 − x̂1x̂3ŵ
−x̂1x̂3 + x̂2ŵ
−x̂2x̂3 − x̂1ŵ

0

+


0
0
0

sat(x̂1x̂
2
3)

+


`k1
`2k2
`3k3
`4k4

 [y − x̂1]


Unfortunately the matrix to be inverted is non singular for (x̂, ŵ) in Sx × Bε(0) only and we have
no guarantee that the solutions of this observer remain in this set. This shows that another modi-
fication of τ∗e is needed to make sure that τ∗e

−1(ξ̂) belongs to this set whatever ξ̂ in R4 is, namely
to satisfy P2. 4

The drawback of this Jacobian completion method is that it asks for the knowledge of the
function F . It would be nicer to have simply a universal formula relating the entries of the columns
to be added to those of ∂τ∗

∂x .

2.3. The P̃ [m,n] problem. Finding a universal formula for the Jacobian completion comes
back to solving the following problem, which we will call P̃ [m,n] :
For a continuous m × n matrix ϕ = (ϕij) of rank n (with n < m), can we find m− n continuous
vector functions γk(ϕ11, ..., ϕmn) of the coefficients of ϕ, such that, with γ(ϕ) = (γ1, ..., γm−n), the
matrix : (

ϕ γ(ϕ)
)
, (2.6)

is invertible ?
It turns out that the existence of a solution to the P̃ [m,n] problem is related to the simpler P [m,n]
problem studied by Eckmann (among others). This problem is:
For a continuous m × n matrix ϕ = (ϕij) of rank n (with n < m), can we find a continuous vector
function γ1 of the coefficients of ϕ which is orthogonal to each column of ϕ ?

Theorem 2.3. [[7] Eckmann theorem] The P [m,n] problem is solvable if and only if the pair
(m,n) is in the following table.

m = even ≥ 2 7 8

n = 1 m− 1 2 3
(2.7)

The two most ”common” cases are :
• m = n+ 1 : a solution is to add the vector of the corresponding minors (see Example 2)
• n = 1, m even : a solution is to take permutations of the elements from the given vector.

According to Theorem 2.3, the pairs for which the P [m,n] problem admits solutions are rather
rare. This means that the existence of solutions to our P̃ [m,n] problem is even rarer. Indeed, the
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P [m,n] problem consists in adding only one column to a full-rank matrix, while we need m− n to
solve the P̃ [m,n] problem. Thus, only the case m = n+ 1 solves our problem yet.

In fact, when n = 1, i-e we need to find m − 1 vectors to complete the given one into an
invertible matrix, looking for a universal formula comes back to answering the following question :
For m ≥ 3, do there exist m − 1 continuous vector functions γ1,...,γm−1 defined on Rm such that
the matrix (z, γ1(z), ..., γm−1(z)) is invertible for all z in Rm \ {0} ?
Restricting z to the unit sphere and projecting all the vectors γi(z) onto the orthogonal complement
of z, this is equivalent to asking whether the sphere Sm−1 is parallelizable (since the γi(z) will be a
basis for the tangent space at z for each z ∈ Sm−1). It turns out that this problem admits solutions
only in dimension m = 4 or m = 8 (see [12]). For instance, for m = 4, the matrix

z1 −z2 z3 z4
z2 z1 −z4 z3
z3 −z4 −z1 −z2
z4 z3 z2 −z1


is orthogonal for any (z1, z2, z3, z4) in R4 \ {0}.

Noticing that the existence of solutions for P̃ [m,n] implies the existence of solutions for P̃ [m−
1, n− 1], we deduce that neither P̃ [7, 2] nor P̃ [8, 3] admits any solution. We finally conclude that :

Theorem 2.4. The P̃ [m,n] problem is solvable if and only if the pair (m,n) is in the following
table.

m = 4 8 ≥ 2

n = 1 1 m− 1
(2.8)

Fortunately, as illustrated in the following example, we can sometimes ”modify” m and n in
a way to get one of these good pairs even when it is not directly the case. Besides, we will see
in Section 4 how to change the initial immersion τ∗ to have a universal explicit solution to the
Jacobian completion problem.

Example 3 (Continuation of Example 2). In Example 2, we have completed the Jacobian
(2.5) with the gradient of a submersion and observed that the components of this gradient are
actually minors. We now know that this is consistent with the case m = n + 1. But we can also
take advantage from the upper triangularity of the Jacobian (2.5) and complete only the vector
(−x1,−x2) by for instance (x2,−x1). Actually in doing so, we move to the case with n = 1 and
m even. The corresponding vector γ is γ(x) = (0, 0, x2,−x1). Here again, with Proposition 2.1, we
know that, for any bounded open set Sx such that A ⊂ cl(Sx) ⊂ O the function the function

τ∗e (x,w) = (x1 , x2 , −x1x3 + x2w , −x2x3 − x1w)

is a diffeomorphism on Sx × Bε(0), where in this particular case ε can be arbitrary, no need for it
to be small. However, the singularity at x̂1 = x̂2 = 0 remains and P2 is still not satisfied. 4

2.4. Wazewski theorem. Historically, the problem of Jacobian completion was first ad-
dressed by Wazewski (see [22]). His formulation was :
Given mn continuous functions ϕij : O ⊂ Rn → R, look for m(m − n) continuous functions
γkl : O → R such that the following matrix is invertible for all x in O :

P (x) =
(
ϕ(x) γ(x)

)
. (2.9)
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The difference with the previous section, is that here, we look for continuous functions of x instead
of continuous functions of the components of ϕ(x). This other version of the problem admits a far
more general solution :

Theorem 2.5 ([22, Theorems 1 and 3] and [7, page 127]). If O, equipped with the subspace
topology of Rn, is a contractible space, then there exists a C∞ function γ making invertible the
matrix P (x) in (2.9) for all x in O.

Remark 3. A key assumption in Theorem 2.5 is that the set O, on which the immersion τ∗ is
defined, is contractible. This is a strong requirement which for instance does not apply to any open
set O contained in R3 \ ({(0, 0)} × R) containing the closure of A defined in (1.8) of Example 2.
We will see in Section 4 how we can change the immersion τ∗ given by Assumptions A.II to satisfy
this constraint.

Proof. The reader is referred to [7, page 127] or [6, pages 406-407] and to [22, Theorems 1 and
3] for the complete proof of existence of a continuous function γ. Here are some sketches.

The proof given by Eckmann in [7] can be summarized as follows. Let Vm,n be the space
of orthogonal matrices of m rows and n columns, and let p be the projection which removes the
m − n last columns of an orthogonal matrix of dimension m. It is known that (SO(m), p, Vm,n)
is a Hurewicz fibration and thus we can ”lift” the application ϕ : X → Vm,n to an application
P : X → SO(m) since X is contractible. Unfortunately, we have not been able to extract a
“formula” from this proof.

The proof given by Wazewski in [22] for spaces homeomorphic to a parallelepiped is more
“workable”. It is based on the fact that, if ϕ(x) is a full rank m × n matrix, then the completed
matrix (ϕ(x) γ(x)) is invertible whenever γ(x) is a full-rank m× (m− n) matrix satisfying

ϕ(x)T γ(x) = 0 . (2.10)

To exploit this remark, we note that, if we have the decomposition

ϕ(x) =

(
A(x)
B(x)

)
with A(x) invertible on some given subset < of O, then

γ(x) =

(
C(x)
D(x)

)
satisfies the above properties on < if and only if D(x) is invertible on < and we have

C(x) = −(AT (x))−1B(x)TD(x) ∀x ∈ < .

Thus, C is imposed by the choice of D and choosing D invertible is enough to build γ on <.
Also, if we already have a candidate

P (x) =

(
A(x) C0(x)
B(x) D0(x)

)
on a boundary ∂< of <, then, necessarily, if A(x) is invertible for all x in ∂<, then D0(x) is invertible
and C0(x) = −(AT (x))−1B(x)TD0(x) all x in ∂<. Thus, to extend the construction of a continuous
function γ inside < from its knowledge on the boundary ∂<, it suffices to ensure D = D0 on ∂<.
Because we can propagate continuously γ from one boundary to the other, Wazewski deduces from

11



these two observations that, it is sufficient to partition the set O into adjacent sets <i where a given
n×n minor Ai is invertible. This is possible since ϕ is full-rank on O. When O is a parallelepiped, he
shows that there exists an ordering of the <i such that the continuity of each Di can be successively
ensured. We illustrate this proof in Example 4 below.

It remains to complete the proof of Eckmann or Wazewski by showing how the continuous
function γ making P invertible can be modified into a smoother one giving the same invertibility
property. Let γi denote the ith column of γ.

We start with modifying γ1 into γ̃1. Since ϕ, γ and the determinant are continuous, for any x
in O, there exists a strictly positive real number rx, such that

det (ϕ(y) γ1(x) γ2:m−n(y)) > 0 , ∀y ∈ Brx(x) , (2.11)

where γi:j denotes the matrix composed of the ith to jth columns of γ. The family of sets
(Brx(x))x∈O is an open cover of O. Therefore, by [13, Theorem 2.1], there exists a subordinate C∞

partition of unity, i.e. there exist a family of C∞ functions ψx : O → R≥0 such that

Supp (ψx) ⊂ Brx(x) ∀x ∈ O , (2.12)

{Supp (ψx)}x∈O is locally finite , (2.13)∑
x∈O

ψx(y) = 1 ∀y ∈ O . (2.14)

With this, we define the function γ̃1 on O by

γ̃1(y) =
∑
x∈O

ψx(y)γ1(x) .

This function is well-defined and C∞ on O because the sum is finite at each point according to
(2.13). Using multi-linearity of the determinant, we have, for all y in O,

det (ϕ(y) γ̃1(y) γ2:m−n(y)) =
∑
x∈Sx

ψx(y) det (ϕ(y) γ1(x) γ2:m−n(y)) .

Thanks to (2.13), at each point y in Sx, there is a finite number of ψx(y) which are not zero.
Moreover, according to (2.14), there is at least one ψx(y) strictly positive. On the other hand, with
(2.12) and (2.11), we know the determinant corresponding to any non zero ψx(y) is strictly positive.
Therefore, we can replace the continuous function γ1 by the C∞ function γ̃1 as a first column of γ.
Then we follow exactly the same procedure for γ2 with this modified γ. By proceeding this way,
one column after the other, we get our result.

Example 4. Consider the function

ϕ(x) =


1 0 0
0 1 0
−x3 0 −x1

0 −x3 −x2
∂℘
∂x1

[x3 − ς] ∂℘
∂x2

[x3 − ς] ℘

 ,

where ς is a real number and ℘(x1, x2) = max
{

0, 1− (x21 + x22)
}2

. ϕ(x) has full rank 3 for any
x in R3, since ℘(x1, x2) 6= 0 when x1 = x2 = 0. Hence a continuous function exists to augment ϕ
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into an invertible matrix. To follow Wazewski construction, let δ be a strictly positive real number
and consider the following 5 regions of R3

<1 = ]−∞,−δ]× R2 , <2 = [−δ, δ]× [δ,+∞]× R,
<3 = [−δ, δ]2 × R , <4 = [−δ, δ]× [−∞,−δ]× R,

<5 = [δ,+∞[×R2.

We select δ sufficiently small in such a way that ℘ is not 0 in <3.

We start Wazewski’s algorithm in <3. There the matrix A is given by rows 1, 2 and 5 of ϕ and
B by rows 3 and 4. With picking D as the identity, C is (AT )−1B. D gives rows 3 and 4 of γ and
C gives rows 1, 2 and 5.
Then we move to the region <2. There the matrix A is given by rows 1, 2 and 4 of ϕ, B by rows
3 and 5. Also D, along the boundary between <3 and <2, is given by rows 3 and 5 of γ obtained
in the previous step. We extrapolate this inside <2 by kipping D constant in planes x1 =constant.
An expression for C and therefore for γ follows.
We do exactly the same thing for <4.
Then we move to the region <1. There the matrix A is given by rows 1, 2 and 3 of ϕ, B by rows 4
and 5. Also D, along the boundary between <1 and <2, between <1 and <3 and between <1 and
<4, is given by rows 4 and 5 of γ obtained in the previous steps. We extrapolate this inside <1 by
kipping D constant in planes x2 =constant. An expression for C and therefore for γ follows.
We do exactly the same thing for <5.

Note that this construction produces a continuous γ, but we could have extrapolated D in a
smoother way to obtain γ as smooth as necessary. 4

3. About P2 : Image extension of a diffeomorphism.

3.1. Problem definition and result. To satisfy condition P2 of Proposition 1.1 we may
need to extend a given diffeomorphism τ∗e , satisfying condition P1 with some set Oe, in such a way
that the image of the extended diffeomorphism covers the entire Rm. In order to keep P1, this new
diffeomorphism must still be an extension of τ∗ in the sense of (1.11).

There is a rich literature reporting very advanced results on diffeomorphism extension problem.
In the following some of the techniques are inspired from [13, Chapter 8] and [19, pages 2, 7 to 14
and 16 to 18](among others). Note however that we are interested in a weak version of this problem
since we allow a small deformation of the set on which the given diffeomorphism is to be matched.
In the following, we give a solution to this problem when the following property is satisfied.

Definition 3.1 (Conditions B). An open subset E of Rm is said to verify condition B if there
exist a C1 function κ : Rm → R, a bounded5 C1 vector field χ, and a closed set K0 contained in E
such that:

1. E = {z ∈ Rn, κ(z) < 0}
2. K0 is globally attractive for χ
3. we have the following transversality assumption:

∂κ

∂z
(z)χ(z) < 0 ∀z ∈ Rm : κ(z) = 0.

5If not replace χ by χ√
1+|χ|2

.
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Theorem 3.2 (Image extension). Let ψ: D ⊂ Rm → ψ(D) ⊂ Rm be a diffeomorphism. If
ψ(D) verifies condition B or D is C2-diffeomorphic to Rm and ψ is C2, then for any compact set
K in D there exists a diffeomorphism ψe : D → Rm satisfying :

ψe(D) = Rm , ψe(z) = ψ(z) ∀z ∈ K.

From this theorem, we deduce the following corollary :
Corollary 3.3. Let A be a bounded subset of Rn, Oe an open subset of Rm containing A×{0}

and τ∗e : Oe → τ∗e (Oe) be a diffeomorphism satisfying (1.11) and such that either τ∗e (Oe) verifies
condition B or Oe is C2-diffeomorphic to Rm and τ∗e is C2. Then, there exists τ∗e : Oe → Rm, such
that τ∗e satisfies Properties P1 and P2.

Remark 4. For Oe to be diffeomorphic to Rm, Oe must be contractible.

3.2. Proof of Theorem 3.2. The proof of Theorem 3.2 uses the following two technical
lemmas :

Lemma 3.4 (simplified). Let E be an open strict subset of Rm verifying B. Then, for any
compact set K in E, there exists a diffeomorphism φ: Rm → E, such that φ is the identity function
on K.

See Appendix A for a proof with a more precise statement. In particular, the set K where φ is
to be the identity function may not be compact. Besides, φ can be made as smooth as the vector
field χ in condition B. This proof is partly constructive as illustrated in the following example. See
also Section 5.

Example 5. Let M be an m×m matrix. Consider the function F : Rm → R F (ξ) = 1
2ξ
TMξ

and let the sets E and K be

E =
{
ξ ∈ Rm, F (ξ)2 < δ

}
, K =

{
ξ ∈ Rm, F (ξ)2 = 0

}
where δ is some strictly positive real number. E verifies condition B with

κ(ξ) =

(
1

2
ξTMξ

)2

− δ , χ(ξ) = −ξ .

Indeed, the origin is in E and is asymptotically stable for χ. Moreover, on the boundary of E,
where (

1

2
ξTMξ

)2

= δ,

the transversality assumption is verified since we have

∂κ

∂ξ
(ξ)χ(ξ) = −δ < 0.

To get a diffeomorphism, first, we define a ”layer” close to the boundary of E as{
ξ ∈ R4, e−4ε δ <

(
1

2
ξTMξ

)2

< δ

}
.

It is the set of all the points reached at some time t in (0, ε) by a solution of

ξ̇ = χ(ξ) (3.1)

14



issued from a point in the boundary of E. It is contained in E. We want the diffeomorphism to be
the identity function on K. For this we consider the complementary set within E of the “layer”

Eε =

{
ξ ∈ Rm,

(
1

2
ξTMξ

)2

≤ e−4ε δ

}

It contains K. To construct the diffeomorphism, we associate to any point ξ in Rm \ Eε

tξ =
1

4
ln

(
1
2ξ
TMξ

)2
δ

.

tx is the time a solution of (3.1) issued from ξ needs to reach the boundary of E. With this we
define the diffeomorphism φ : Rm → E as :

φ(ξ) =

{
ξ , if

(
1
2ξ
TMξ

)2 ≤ e−4εδ,
e−tξ−ν(tξ)ξ , otherwise,

(3.2)

where ν : R→ R is any C1, strictly decreasing function satisfying :

ν(t) = −t ∀t ≤ −ε , lim
t→∞

ν(t) = 0 .

For example it can be

ν(t) =
ε2

2ε+ t
∀t ≥ −ε . (3.3)

4

Eε

x1

φ(x1)

x2 = φ(x2)

x3

φ(x3)

E

Fig. 3.1. Construction of the diffeomorphism in Example 5.

Lemma 3.5. Consider a C2 diffeomorphism ψ : BR(0) → ψ(BR(0)) ⊂ Rm. For any ε strictly
positive, there exists a diffeomorphism ψe : Rm → Rm satisfying

ψe(z) = ψ(z) ∀z ∈ cl(BR−ε(0)) .
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A shown in Appendix B, this result is a direct consequence of [13, Theorem 8.1.4]. Unfortunately
its proof is less constructive than for the previous case.

Proof. of Theorem 3.2.
First case: ψ(D) satisfies B: ψ being a diffeomorphism on an open set D, the image of any compact
subset K of D is a compact subset of ψ(D). According to Lemma 3.4, there exists a diffeomorphism
φ from Rm to ψ(D) which is the identity on ψ(K). Thus, the extension ψe = φ−1 ◦ψ satisfies the
required properties.

Second case: D is C2-diffeomorphic to Rm and ψ is C2: Let φ1 : D → Rm denote the corresponding
diffeomorphism. Let R1 be a strictly positive real number such that the open ball BR1

(0) contains
φ1(K). Let R2 be a real number strictly larger than R1. With Lemma 3.4 again, and since BR2

(0)
verifies condition B, there exists of C2-diffeomorphism φ2 : BR2(0)→ Rm satisfying

φ2(z) = z ∀z ∈ BR1
(0) .

At this point, we have obtained a C2-diffeomorphism φ = φ−12 ◦ φ1 : D → BR2(0). Consider
λ = ψ ◦ φ−1 : BR2

(0) → ψ(D). According to Lemma 3.5, we can extend λ to λe : Rm → Rm such
that λe = ψ ◦ φ−1 on BR1

(0). Finally, consider ψe = λe ◦ φ1 : D → Rm. Since, by construction of
φ2, φ = φ1 on φ−11 (BR1

(0)) which contains K, we have ψe = ψ on K.

3.3. Relaxing condition B. The representation of E in terms of the C1 function κ in con-
dition B for Lemma 3.4 can be replaced by the following weaker condition Brel.

Definition 3.6 (Relaxed condition Brel). An open bounded subset E of Rm is said to verify
the relaxed condition Brel if there exist a bounded C1 vector field χ, and a compact set K0 contained
in E such that:

1. K0 is globally asymptotically stable for χ
2. E is forward invariant by χ.

The following lemma shows that the relaxed condition Brel implies the condition B up to a
small deformation of E :

Lemma 3.7. Let E be an open bounded subset of Rm verifying the relaxed condition Brel. For
any strictly positive real number d, there exists a bounded set E such that

cl(E) ⊂ E ⊂ {z ∈ Rm, d(z, E) ∈ [0, d]}

and E verifies condition B.

Proof. The compact K0 being globally asymptotically attractive and interior to E which is
forward invariant, E is globally attractive. It is also stable due to the continuity of solutions with
respect to initial conditions uniformly on compact time subsets of the domain of definition. So it
is globally asymptotically stable. It follows from [23, Theorem 3.2] that there exist C∞ functions
VK : Rm → R≥0 and VE : Rm → R≥0 which are proper on Rm and a class K∞ function α satisfying

α(d(z,K0)) ≤ VK(z) , VK(z) = 0 ∀ z ∈ K0 ,

α(d(z, E)) ≤ VE(z) , VE(z) = 0 ∀ z ∈ E ,

∂VK
∂z

(z)χ(z) ≤ −VK(z) ∀ z ∈ Rm

∂VE
∂z

(z)χ(z) ≤ −VE(z) ∀ z ∈ Rm .
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With the notations vE = supz∈Rm: d(z,E)≤d VK(z) and µ = α(d)
2vE

, and since α is of class K∞, we
obtain the implications

VE(z)+µVK(z)=α(d) ⇒ α(d(z, E))≤VE(z)≤α(d) ,

⇒ d(z, E) ≤ d ,
⇒ VK(z) ≤ vE .

With our definition of µ, this yields also

α(d)− µVK(z) = VE(z) ⇒ 0 < α(d)
2 ≤ VE(z) ,

⇒ 0 < d(z, E) ≤ d .

On the other hand, with the compact notation V(z) = VE(z)+µVK(z), we have ∂V
∂z (z)χ(z) ≤ −V(z),

for all z ∈ Rm. All this implies that the sublevel set E = {z ∈ Rm : V(z) < α(d)} is contained in
{z ∈ Rm : d(z, E) ∈ [0, d]} and that cl(E) is contained in E . Besides, E verifies condition B with
the vector field χ and the function κ = V− α(d).

Suppose we have a diffeomorphism τ∗e : Oe → τ∗e (Oe) where τ∗e (Oe) is a strict subset of Rm. To
satisfy property P2, we need to modify this diffeomorphism. With Corollary 3.3, Lemma 3.4 and
Lemma 3.7, this is possible if τ∗e (Oe) verifies condition B or Oe is C2-diffeomorphic to Rm and τ∗e
is C2. But for this, the given diffeomorphism τ∗e needs to be defined on an outer approximation of
Oe. If this is not the case, we can take advantage of the following lemma :

Lemma 3.8. Let a diffeomorphism ψ be defined on an open set E in Rp. Consider a bounded
open set E′ such that cl(E′) ⊂ E. There exists a strictly positive real number d0 such that for all
x in E′,

d (ψ(x),Rm \ ψ(E)) > d0 .

Proof. Suppose that, for each integer k, there exists xk in E′ such that

d (ψ(xk),Rm\ψ(E)) ≤ 1

k
.

By compactness, there exists x∗ in cl(E′) ⊂ E such that d (ψ(x∗),Rm\ψ(E)) = 0. Thus, ψ(x∗) is
in cl(Rm\ψ(E))∩ψ(E). But since E is open, ψ(E) is also open by Brouwer’s invariance theorem.
Thus, cl(Rm\ψ(E)) ∩ ψ(E) is the empty set and we have a contradiction.

To round the difficulty mentioned before this Lemma, we consider a bounded open set O′e
satisfying A× {0} ⊂ cl(O′e) ⊂ Oe. According to Lemma 3.8, there exists d0 such that,

d ((x,w),Rm\(Oe)) > d0 , ∀(x,w) ∈ O′e ,

d (τ∗e (x,w), (τ∗e (Rm\(Oe))) > d0 , ∀(x,w) ∈ O′e .

Thus, if τ∗e (Oe) verifies condition B or Oe is C2-diffeomorphic to Rm and τ∗e is C2, by applying
Lemma 3.7 with d̄ ≤ d0 to τ∗e (Oe) or to Oe, we get the existence of an open bounded set O1

e verifying
A×{0} ⊂ cl(O′e) ⊂ O1

e ⊂ Oe and such that τ∗e (O1
e) verifies condition B or O1

e is C2-diffeomorphic
to Rm. We are now able to apply Corollary 3.3, and obtain a diffeomorphism τ∗e : O1

e → Rm the
image of which is Rm.
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3.4. Diffeomorphism extension from a submersion. As in Section 2.4, we consider now
the particular case where there exits a full-rank C1 function F : Rm → Rm−n such that

F (τ∗(x)) = 0 ∀x ∈ Sx .

Thanks to Propositions 2.1 and 2.2, for ε sufficiently small, the function

(x,w) 7→ τ∗e (x,w) = τ∗(x) +
∂F

∂ξ
(τ∗(x))Tw (3.4)

is a diffeomorphism on Sx×Bε(0) but the set τ∗e (Sx×Bε(0)) may not be the entire Rm as required
for P2 to hold.

Proposition 3.9. Assume the existence of a full-rank C1 function F : Rm → Rm−n such that
the set

{ξ ∈ Rm : |F (ξ)| ∈ [0, 1]} (3.5)

is compact and we have

τ∗(Sx) = {ξ ∈ Rm, F (ξ) = 0} . (3.6)

Let also ε be such that the function defined in (3.4) is a diffeomorphism on Sx×Bε(0). Under these
conditions, there exists a strictly positive real number δ such that the set

Eδ = {ξ ∈ Rm, |F (ξ)| < δ}

satisfies

τ∗(Sx) ⊆ Eδ ⊆ τ∗e (Sx × Bε(0)). (3.7)

Moreover if F is C2 on Rm, then Eδ verifies condition B.
Proof. We start by showing the existence of a strictly positive real number r such that

{ξ ∈ Rm : d(ξ, τ∗(Sx)) ≤ r} ⊂ τ∗e (Sx × Bε(0)) . (3.8)

We know that for all ξ0 in τ∗(Sx), there exists x0 in Sx satisfying ξ0 = τ∗e (x0, 0). Moreover, the
Jacobian of τ∗e at (x0, 0) is invertible. It follows from the Implicit function Theorem that, for each
ξ0 in τ∗(Sx), there exists a strictly positive real number rξ such that, for all ξ in τ∗(Sx), satisfying
|ξ − ξ0| ≤ rξ, there exists (x,w) in Sx ×Bε(0) satisfying τ∗e (x,w) = ξ. Existence of r follows from
compactness of cl(Sx) and therefore of cl(τ∗(Sx)).

Secondly, there exists δ > 0 such that Eδ is contained in {ξ ∈ Rm : d(ξ, τ∗(Sx)) ≤ r}. Indeed,
assume this is not the case. Then, for each integer k, there exists ξk satisfying

|F (ξk)| ≤ 1

k
, d(ξk, τ

∗(Sx)) > r.

The sequence being in the compact set defined in (3.5), there is a subsequence which converges to
ξ∗ satisfying

F (ξ∗) = 0 , d(ξ∗, τ∗(Sx)) ≥ r.
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This contradicts (3.6). Then (3.7) follows from (3.6) and (3.8).

Finally, for the last point, we note that, with χ the C1 vector field defined by

χ(ξ) = −∂F
∂ξ

(ξ)T
(
∂F

∂ξ
(ξ)

∂F

∂ξ
(ξ)T

)−1
F (ξ),

we have, for all ξ in Rm, Lχ
(
F>F

)
(ξ) = −F (ξ)>F (ξ). This implies that the closed set τ∗(Sx) is

globally attractive for χ and that the transversality assumption is verified. Thus, Eδ satisfies B.

The example below illustrates the fact that, if we have a submersion F giving an (outer)
approximation only of τ∗e (Sx×Sw) we can still apply the diffeomorphism image extension of Theorem
3.2.

Example 6 (Continuation of Example 2). In Example 2, we have introduced the function

F (ξ) = ξ2ξ3 − ξ1ξ4 ,
1

2
ξTMξ

as a submersion on R4\{0} satisfying

F (τ∗(x)) = 0. (3.9)

With it we have “augmented” the injective immersion τ∗ given in (1.3) as

τ∗e (x,w) = τ∗(x) +
∂F

∂ξ

T

(τ∗(x))w = τ∗(x) +Mτ∗(x)w

which is a diffeomorphism on Oe = Sx×]− ε�,−ε�[ for some strictly positive real number −ε�. To
satisfy P2 we need an image extension.

It is difficult to obtain an exact representation of the image τ∗e (Oe), but we can use F to
obtain an approximation. Indeed, with (3.9), we obtain F (τ∗e (x,w)) = |τ∗(x)|2 w or equivalently

w =
F (τ∗e (x,w))
|τ∗(x)|2 , for |τ∗(x)| non zero, i.e. away from the observability singularity x1 = x2 = 0.

Hence ensuring that ξ = τ∗e (x,w) remains in

Eδ =
{
ξ ∈ Rm, F (ξ)2 < δ

}
ensures that w remains small unless x is close to the observability singularity.

In Example 5, we have obtained in (3.2) an expression of a diffeomorphism φ : R4 → Eδ which
is the identity on

Eδε =

{
ξ ∈ R4,

(
1

2
ξTMξ

)2

≤ e−4ε δ

}
.

With it, we can replace τ∗e : Oe → τ∗e (Oe) by φ−1 ◦ τ∗e , ensuring that, for any (x̂, ŵ) in R4, τ∗e (x̂, ŵ)
is in Eδ for δ sufficiently small. In doing so, the domain of non invertibility of the Jacobian has
been reduced. But we still have a problem for (x̂1, x̂2) close to the origin where the observability
singularity occurs. 4
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4. Modifying A.II and A.C to allow P1 and P2 to be satisfied. Throughout Sections
2 and 3, we have studied tools which enable us to fulfill conditions P1 and P2 of Proposition 1.1.
However, they need conditions on the dimensions or on the domain of injectivity O which are
not always satisfied : contractibility for Jacobian extension and diffeomorphism extension, limited
number of pairs (m,n) for the P̃ [m,n] problem, etc. Expressed in terms of our initial problem,
these conditions are limitations on the data f , h and τ∗ we considered. In the following, we show by
means of examples that, in some cases, these data can me modified in such a way that our various
tools apply and give a satisfactory solution. Such modifications are possible since we restrict our
attention to system solutions which remain in A. Therefore we can modify arbitrarily the data f , h
and τ∗ outside this set. For example we can add arbitrary “fictitious” components to the measured
output y as long as they are constant on A.

4.1. For contractibility. It may happen that the set O attached to τ∗ is not contractible, for
example due to an observability singularity. We have seen Jacobian completion and diffeomorphism
image extension may be prevented by this. A possible approach to round this problem when we
know the system solutions stay away from singularities is to add a fictitious output and to modify
Assumptions A.II and A.C.

Example 7 (Continuation of Example 3). The observer we have obtained at the end of
Example 3 for the harmonic oscillator with unknown frequency is not satisfactory in particular
because of the singularity at x̂1 = x̂2 = 0. To round this difficulty we add, to the given measurement
y = x1, the following “fictitious” one :

y2 = h2(x) = ℘(x1, x2) [x3 − ς]

with ς in ]0, r[ and ℘(x1, x2) = max
{

0, 1
r2 − (x21 + x22)

}4
. By construction this measurement is

zero on A meaning that we do not change the data on this set. The interest of y2 is to give us
access to x3 directly. Indeed, consider the new function τ∗ defined as

τ∗(x) = (x1 , x2 , −x1x3 , −x2x3 , ℘(x1, x2) [x3 − ς]) . (4.1)

τ∗ is C1 on R3 and its Jacobian is :

∂τ∗

∂x
(x) =


1 0 0
0 1 0
−x3 0 −x1

0 −x3 −x2
∂℘
∂x1

[x3 − ς] ∂℘
∂x2

[x3 − ς] ℘

 , (4.2)

which has full rank 3 on R3, since ℘(x1, x2) 6= 0 when x1 = x2 = 0. It follows that the singularity
has disappeared and this new τ∗ is an injective immersion on the entire R3 which is contractible.

We have shown in Example 4 how Wazewski’s algorithm allows us to get in this case a C2

function γ : R3 → R4 satisfying :

det

(
∂τ∗

∂x
(x) γ(x)

)
= 0 ∀x ∈ R3 .

This gives us τ∗e (x,w) = τ∗(x) + γ(x)w which is a C2-diffeomorphism on R3 × Bε(0), with ε
sufficiently small.

Furthermore, Oe = R3 ×Bε(0) being diffeomorphic to R5, Corollary 3.3 applies and provides a
modification τ∗e of τ∗e satisfying P1 and P2. 4
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4.2. For a solvable P̃ [m,n] problem. As already seen in Example 3, it is appropriate to
exploit the fact that some rows of ∂τ∗

∂x , say p of them, are independent for all x in A. Indeed this

allows to transform the Jacobian completion problem into a P̃ [m − p, n − p] problem. If the new
pair (m− p, n− p) is not in table (2.8) but (m− p+ k, n− p), we can still add k arbitrary rows to
∂τ∗

∂x .
Example 8 (Continuation of Example 7). In Example 7, by adding the fictitious measured

output y2 = h2(x), we have obtained another function τ∗ for the harmonic oscillator with unknown
frequency which is an injective immersion on R3. In this case, we have n = 3 and m = 5 which
gives a pair not in table (2.8). But, as already exploited in Example 3, the first 2 rows of the
Jacobian ∂τ∗

∂x in (4.2) are independent for all x in R3. It follows that our Jacobian completion
problem reduces to complement the vector

(−x1,−x2, ℘(x1, x2))

This is a P̃ [3, 1] problem which is not in the table (2.8). Instead, the pair (4, 1) is in the table,
meaning that the following vector can be completed via a universal formula

(−x1,−x2, ℘(x1, x2), 0) .

We have added a zero component, without changing the full rank property. Actually this vector is
extracted from the Jacobian of

τ∗(x) = (x1 , x2 , −x1x3 , −x2x3 , ℘(x1, x2) [x3 − ς] , 0) (4.3)

where the added last component at 0 is consistent with the high gain observer paradigm, when we
add another fictitious measured output

y3 = 0 .

A complement is 
x2 −℘ 0
−x1 0 −℘

0 −x1 −x2
℘ x2 −x1


It gives the diffeomorphism

τ∗e (x,w) =
(
x1 , x2 , [−x1x3 + x2w1 − ℘(x1, x2)w2] , [−x2x3 − x1w1 − ℘(x1, x2)w3] ,

[℘(x1, x2)[x3 − ς]− x1w2 − x2w3] , [℘(x1, x2)w1 + x2w2 − x1w3)]
)
.

the Jacobian of which is :

∂τ∗e
∂x

(x,w) =



1 0 0 0 0 0
0 1 0 0 0 0

−x3 − ∂℘
∂x1

w2 w1 − ∂℘
∂x2

w2 −x1 x2 −℘ 0

−w1 − ∂℘
∂x1

w3 −x3 − ∂℘
∂x2

w3 −x2 −x1 0 −℘
∂℘
∂x1

[x3 − ς]− w2
∂℘
∂x2

[x3 − ς]− w3 ℘ 0 −x1 −x2
∂℘
∂x1

w1 − w3
∂℘
∂x2

w1 + w2 0 ℘ x2 −x1


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with determinant

(x21 + x22 + ℘(x1, x2)2)2

which is nowhere 0 on R6. So τ∗e is a diffeomorphism defined on R6 which is also surjective since it
is proper (Hadamard-Levy Theorem) thanks to

x1 = ξ̂1 , x2 = ξ̂2 ,
ξ̂1 ξ̂2 −℘(ξ̂1, ξ̂2) 0

−ξ̂2 −ξ̂1 0 −℘(ξ̂1, ξ̂2)

℘(ξ̂1, ξ̂2) 0 −ξ̂1 −ξ̂2
0 ℘(ξ̂1, ξ̂2) ξ̂2 −ξ̂1




x3
w1

w2

w3

 =


ξ̂3
ξ̂4
ξ̂5
ξ̂6

 .

So, with the addition of the fictitious measured outputs y2 = h2(x) and y3 = 0, we have obtained
the new function τ∗, given in (4.3), to be used, in place of (1.3), as another starting point for the
construction of an observer and in particular for the construction of a function τ∗e satisfying the
properties P1 and P2 of Proposition 1.1. Also to obtain a set ϕT satisfying the property P3, we can
follow the high gain observer paradigm and complete the expression of ϕ in (1.2) taking advantage
of the fact that, for x in A, we have

ẏ2 =
˙︷ ︷

℘(x1, x2)[x3 − ς] = 0 , ẏ3 = 0

This motivates the new function ϕ

ϕ(ξ̂, x̂, y) =



ξ̂2 + `k1(y − x̂1)

ξ̂3 + `2k2(y − x̂1)

ξ̂4 + `3k3(y − x̂1)
sat(x̂1x̂

2
3) + `4k4(y − x̂1)

−a ξ̂5
−b ξ̂6


.

where the function sat is defined in (1.9) and a and b are arbitrary strictly positive real numbers.
With picking ` large enough, it can be paired with any function τ : R6 → R6 which is locally
Lipschitz. With all this, we have obtained the following observer for the harmonic oscillator with
unknown frequency

˙̂x1
˙̂x2
˙̂x3
˙̂w1

˙̂w2

˙̂w3


=



1 0 0 0 0 0
0 1 0 0 0 0

−x̂3 − ∂℘
∂x̂1

ŵ2 ŵ1 − ∂℘
∂x2

ŵ2 −x̂1 x̂2 −℘ 0

−ŵ1 − ∂℘
∂x̂1

ŵ3 −x̂3 − ∂℘
∂x2

ŵ3 −x̂2 −x̂1 0 −℘
∂℘
∂x1

[x̂3 − ς]− ŵ2
∂℘
∂x2

[x̂3 − ς]− ŵ3 ℘ 0 −x̂1 −x̂2
∂℘
∂x1

ŵ1 − ŵ3
∂℘
∂x2

ŵ1 + ŵ2 0 ℘ x̂2 −x̂1



−1

× (4.4)

×


x̂2 + `k1(y − x̂1)

[−x̂1x̂3 + x̂2ŵ1 − ℘(x̂1, x̂2)ŵ2] + `2k2(y − x̂1)
[−x̂2x̂3 − x̂1ŵ1 − ℘(x̂1, x̂2)ŵ3] + `3k3(y − x̂1)

sat(x̂1x̂
2
3) + `4k4(y − x̂1)

−a [℘(x̂1, x̂2)[x̂3 − ς]− x̂1ŵ2 − x̂2ŵ3]
−b [℘(x̂1, x̂2)ŵ1 + x̂2ŵ2 − x̂1ŵ3)]

 .
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It is globally defined and globally convergent for any solution of the oscillator initialized in

A =
{
x ∈ R3 : x21 + x22 ∈

]
1
r , r
[
, x3 ∈]0, r[

}
.

As a final remark, we observe that the manifold ξ̂5 = ξ̂6 = 0 is invariant. This implies the
existence of an observer with order reduced to 4. Unfortunately it cannot be expressed with
coordinates c = (x1, x2, x3, w̄) since the following Jacobian is singular for ξ1 = ξ2 = 0 :

∂c

∂ξ1, ..., ξ4
=


1 0 0 0
0 1 0 0

∗ ∗ − ξ1
ξ21+ξ

2
2+℘(ξ1,ξ2)

2 − ξ2
ξ21+ξ

2
2+℘(ξ1,ξ2)

2

∗ ∗ ∗ ∗


where ∗ denotes an unimportant term.

The observer (4.4) is just an illustration of what can be obtained by using in a very nominal
way our tools. We do not claim any property for it. For example, by using another design, an
observer of dimension 2, globally convergent on A, can be obtained.

4

5. Example of the bioreactor. As another illustration we consider the model of bioreactor
presented in [8] and modeled by the dynamics :

ẋ1 =
a1x1x2
a2x1 + x2

− ux1 , ẋ2 = − a3a1x1x2
a2x1 + x2

− ux2 + ua4 , y = x1

where the ai’s are strictly positive real numbers and the control u verifies : 0 < umin < u(t) <
umax < a1. This system evolves in the set O =

{
x ∈ R2 : x1 > ε1 , x2 > −a2x1

}
which is forward

invariant.
A high gain observer design leads us to consider the function τ∗ : O → R2 defined as :

τ∗(x1, x2) =

(
x1,

a1x1x2
a2x1 + x2

)
.

It is a diffeomorphism onto

τ∗(O) =
{
ξ ∈ R2 : ξ1 > 0 , a1ξ1 > ξ2

}
.

The image by τ∗ of the bioreactor dynamics is of the form

ξ̇1 = ξ2 + g1(ξ1)u

ξ̇2 = ϕm(ξ1, ξ2) + g2(ξ1, ξ2)u

for which the following high gain observer can be built (see [8]):

˙̂
ξ = ϕ(ξ̂, u) + S−1∞ CT (y − Cξ̂) (5.1)

where C = (1, 0)T and S∞ is solution of ATS∞ + S∞A − CTC = −`S∞ for ` sufficiently large.
Since τ∗ is a diffeomorphism, the expression of this observer in the x-coordinates is :

˙̂x =

 a1x̂1x̂2

a2x̂1+x̂2
− ux̂1

−a3a1x̂1x̂2

a2x̂1+x̂2
− ux̂2 + ua4

+

 a1a2x̂
2
1 0

−a1a2x̂21 (a2x̂1 + x̂2)2

 S−1∞ CT (y − x̂1))

a1a2x̂21
. (5.2)
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Unfortunately the right hand side has singularities at x̂1 = 0 and x̂2 = −a1x̂1 and nothing guaran-
tees that O is still invariant for the observer dynamics (5.2). To round this difficulty, we can modify
τ∗ to make its image equal to R2, while keeping it unchanged inside a subset of O, arbitrarily close
to O.

To construct this modification, we view the image τ∗(O) as the intersection τ∗(O) = E1 ∩ E2

with :

E1 =
{

(ξ1, ξ2) ∈ R2, ξ1 > ε1
}

, E2 =
{

(ξ1, ξ2) ∈ R2, a1ξ1 > ξ2
}
.

This exhibits the fact that τ∗(O) does not satisfy the condition B since its boundary is not C1.
We could smoothen this boundary to remove its “corner”. But we prefer to exploit its particular
“shape” and proceed as follows :

• first, we build a diffeomorphism φ1 : R2 → E1 which acts on ξ1 without changing ξ2.
• then, we build a diffeomorphism φ2 : R2 → E2 which acts on ξ2 without changing ξ1.
• finally, we take τ∗ = φ−11 ◦ φ

−1
2 ◦ τ∗ : O → R2.

To build φ1 and φ2, we follow Lemma 3.4 since E1 and E2 satisfy condition B with :

κ1(ξ) = ε1 − ξ1 , κ2(ξ) = ξ2 − a1ξ1 , χ1(ξ) =

(
−(ξ1 − 1)

0

)
, χ2(ξ) =

(
0

−(ξ2 + 1)

)
.

By following the same steps as in Example 6, with ε an arbitrary small strictly positive real number
and ν defined in (3.3), we obtain :

tξ,1 = ln 1−ξ1
1−ε

Eε,1 =
{

(ξ1, ξ2) ∈ R2, ξ1 > 1− (1− ε)e−ε
}

φ1(ξ) =

{
ξ , if ξ ∈ Eε,1
e−tξ,1−ν(tξ,1)(ξ1 − 1) + 1 , otherwise

tξ,2 = ln ξ2+1
a1ξ1+1 ,

Eε,2 =
{

(ξ1, ξ2) ∈ R2, ξ2 ≤ e−ε(a1ξ1 + 1)− 1
}

φ2(ξ) =

{
ξ , if ξ ∈ Eε,2
e−tξ,2−ν(tξ,2)(ξ2 + 1)− 1 , otherwise

(5.3)

We remind the reader that, in the ξ̂-coordinates, the observer dynamics are the same let it be
built with τ∗ or with τ∗. The difference is only in the way x̂ is related to ξ̂. Moreover this “way”
is such that it has no effect on the system solution we have

τ∗(x) = τ∗(x) ∀x ∈ O “− ε” .

As a consequence the difference between τ∗ and τ∗ acts only during the transient, making sure that
x̂ never reaches a singularity of the Jacobian of τ∗.

We present in Figure 5.1 the results in the ξ̂ coordinates (to allow us to see the effects of both
τ∗ and τ∗) of a simulation with (similar to [8]) :

a1 = a2 = a3 = 1 , a4 = 0.1

u(t) = 0.08 for t ≤ 10 , = 0.02 for 10 ≤ t ≤ 20 , = 0.08 for t ≥ 20

x(0) = (0.04, 0.07), x̂(0) = (0.03, 0.09), ` = 5.
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Fig. 5.1. Bioreactor and observers solutions in the ξ̂-coordinates

The solid black curves are the singularities locus. The red (= solid dark) curve represents
the bioreactor solution. The magenta (= light grey dashdot) curve represents the solution of the
observer built with τ∗. It evolves freely in R2 according to the dynamics (5.1), not worried by any
constraints. The blue (= dark dashed) curve represents its image by φ−1 which brings it back inside
the constrained domain where τ = τ∗−1 can be used. This means these two curves represent the
same object but viewed via different coordinates.

The solution of the observer built with τ∗ coincides with the magenta (= light grey dashdot)
curve up to the point it reaches one solid black curve of a singularity locus. At that point it leaves
τ∗(O) and consequently stops to exist in the x̂-coordinates.

As proposed in [18, 3], instead of keeping the raw dynamics (5.1) untouched as above, we can

modify them to force ξ̂ to remain in the set τ∗(O). Taking advantage of the fact that this set is
convex, the modification proposed in [3] consists in adding to (5.1) the term

M(ξ̂) = −γ S−1∞
∂h

∂ξ̂
(ξ̂)T h(ξ̂) (5.4)

where h(ξ̂) =

(
max{κ1(ξ̂) + δ, 0}2
max{κ2(ξ̂) + δ, 0}2

)
with δ an arbitrary small real number and γ a sufficiently

large real number. The solution corresponding to this modified observer dynamics is shown in
Figure 5.1 with the dotted black curve. As expected it stays away from the the singularities locus
in a very efficient way. But for this method to apply we have the restriction that τ∗(O) should be

convex, instead of satisfying the less restrictive condition B. Moreover, to guarantee that ξ̂ is in
τ∗(O), γ has to be large enough and even larger when the measurement noise is larger. On the
contrary, when the observer is built with τ∗, there is no need to tune properly any parameter to
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obtain convergence, at least theoretically. Nevertheless there maybe some numerical problems when
ξ̂ becomes too large or equivalently φ−1(ξ̂) is too close to the boundary of τ∗(O). To round this
problem we can select the ”thickness” of the layer (parameter ε in (5.3)) sufficiently large. Actually
instead of “opposing” the two methods, we suggest to combine them. The modification (5.4) makes

sure ξ̂ does not go too far, and τ∗ makes sure that x̂ stays away from the singularities locus.

6. Conclusion. We have presented a method to express the dynamics of an observer in the
given system original coordinates enlarging its domain of validity and possibly avoiding the difficult
left-inversion of an injective immersion.

It relies on the assumption that we know an injective immersion and a converging observer for
the immersed system. The idea is not to modify this observer dynamics but to map it back to the
original coordinates in a different way. Our construction involves two tools : the extension of an
injective immersion into a diffeomorphism through Jacobian completion and the extension of the
image of the obtained diffeomorphism to enlarge the domain of validity.

For Jacobian completion, we are relying on the results of Wazewski [22] and Eckmann [7]. It
allows us to build a diffeomorphism by complementing the given coordinates with new ones and to
write the given observer dynamics in these augmented coordinates.

For diffeomorphism extension, we have proposed our own method widely inspired from [13,
Chapter 8] and [19, pages 2, 7 to 14 and 16 to 18].

In our presentation we have assumed the system is time-invariant and autonomous. Adding
time-variations is not a problem but dealing with exogenous inputs is more complex. This is in part
due to the fact that, as far as we know, the theory of observers, in presence of such inputs, relying
on immersion into a space of larger dimension, as high gain observers or nonlinear Luenberger
observers, is not available yet. Progress on this topic has to be made before trying to extend our
results.

Appendix A. Construction of a diffeomorphism from an open set to Rm. In this
section we prove a result slightly more general than Lemma 3.4. For this we use the following
notations:
The complementary, closure and boundary of a set S are denoted Sc, cl(S) and ∂S, respectively.
The Hausdorff distance dH between two sets A and B is defined by :

dH(A,B) = max

{
sup
zA∈A

inf
zB∈B

|zA − zB | , sup
z∈A

inf
zB∈B

|zA − zB |
}

With Z(z, t) we denote the (unique) solution, at time t, to ż = χ(z) going trough x at time 0.
Lemma A.1. Let E be an open strict subset of Rm verifying B, with a Cs vector field χ. Then,

for any strictly positive real number ε, there exists a Cs-diffeomorphism φ: Rm → E, such that,
with

Σ =
⋃

t∈[0,ε]

Z(∂E, t) ,

we have φ(z) = z for all z ∈ Eε = E ∩ Σc and dH(∂Eε, ∂E) ≤ ε supz |χ(z)|.
Proof. We start by establishing some properties.

– E is forward invariant by χ. This is a direct consequence of points 1 and 3 of the condition B.
– Σ is closed. Take a sequence (zk) of points in Σ converging to z∗. By definition, there exists a
sequence (tk), such that :

tk ∈ [0, ε] and Z(zk,−tk) ∈ ∂E ∀k ∈ N .
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Since [0, ε] is compact, one can extract a subsequence (tσ(k)) converging to t∗ in [0, ε], and by
continuity of the function (z, t) 7→ Z(z,−t), (Z(zσ(k), tσ(k))) tends to Z(z∗,−t∗) which is in ∂E,
since ∂E is closed. Finally, because t∗ is in [0, ε], z∗ is in Σ by definition.
– Σ is contained in cl(E). Since, E is forward invariant by χ, and so is cl(E) (see [11, Theorem
16.3]). This implies

∂E ⊂ Σ =
⋃

t∈[0,ε]

Z(∂E, t) ⊂ cl(E) = E ∪ ∂E .

At this point, it is useful to note that, because Σ is a closed subset of the open set E, we have
Σ ∩ E = Σ\∂E. This implies :

E\Eε = (Eε)
c ∩ E = (Ec ∪ Σ) ∩ E = Σ ∩ E = Σ\∂E, (A.1)

and E = Eε ∪6= (Σ\∂E).
With all these properties at hand, we define now two functions tz and θz. The assumptions of

global attractiveness of the closed set K0 contained in E open, of transversality of χ to ∂E, and the
property of forward-invariance of E, imply that, for all z in Ec, there exists a unique non negative
real number tz satisfying:

κ (Z(z, tz)) = 0 ⇐⇒ Z(z, tz) ∈ ∂E.

The same arguments in reverse time allow us to see that, for all z in Σ, tz exists, is unique and in
[−ε, 0]. This way, the function z → tz is defined on (Eε)

c
. Next, for all z in (Eε)

c
, we define :

θz = Z(z, tz).

Thanks to the transversality assumption, the Implicit Function Theorem implies the functions
z 7→ tz and z 7→ θz are Cs on (Eε)

c
.

Remark 5. κ having constant rank 1 in a neighborhood of ∂E, this set is a closed, regular
submanifold of Rm. The arguments above show that z 7→ (θz, tz) is a diffeomorphism between Ec

and ∂E × [0,+∞[. Since ∂E is a deformation retract of Ec and the open unit ball is diffeomorphic
to Rm [10], if E were bounded, Ec could be seen as a h-cobordism between ∂E and the unit sphere
Sm−1 and tz as a Morse function with no critical point in Ec. See [19] for instance.

Now we evaluate tz for z in ∂Σ. Let z be arbitrary in ∂Σ and therefore in Σ which is closed.
Assume its corresponding tz is in ] − ε, 0[. The Implicit Function Theorem shows that z 7→ tz
and z 7→ θz are defined and continuous on a neighborhood of z. Therefore, there exists a strictly
positive real number r satisfying

∀y ∈ Br(z) , ∃ty ∈]− ε, 0[ : Z(y, ty) ∈ ∂E .

This implies that the neighborhood Br(z) of z is contained in Σ, in contradiction with the fact that
z is on the boundary of Σ.

This shows that, for all z in ∂Σ, tz is either 0 or −ε. We write this as ∂Σ = ∂E ∪ (∂Σ)i, with

the notation (∂Σ)i =
{
z ∈Σ : tz = −ε

}
.

Now we want to prove ∂Eε ⊂ (∂Σ)i. To obtain this result, we start by showing :

∂Eε ∩ ∂E = ∅ and ∂Eε ⊂ ∂Σ . (A.2)
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Suppose the existence of z in ∂Eε ∩ ∂E. z being in ∂E, its corresponding tz is 0. By the Implicit
Function Theorem, there exists a strictly positive real number r such that,

∀y ∈ Br(z) , ∃ty ∈
]
− ε2 ,

ε
2

[
: Z(y, ty) ∈ ∂E .

But, by definition, any y, for which there exists ty in ]−ε2 , 0], is in Σ. If instead ty is strictly positive,
then necessarily y is in Ec, because E is forward-invariant by χ and a solution starting in E cannot
reach ∂E in positive finite time. We have obtained : Br(z) ⊂ Σ ∪ Ec = (Eε)

c. Br(z) being a
neighborhood of z, this contradicts the fact that z is in the boundary of Eε.

At this point, we have proved that ∂Eε ∩ ∂E = ∅, and, because Eε is contained in E, this
implies ∂Eε ⊂ E. With this, (A.2) will be established by proving that we have ∂Eε ⊂ ∂Σ. Let z
be arbitrary in ∂Eε and therefore in E which is open. There exists a strictly positive real number
r such that we have :

Br(z) ∩ Eε = Br(z) ∩ (E ∩ Σc) 6= ∅ , Br(z) ∩ Ec
ε = Br(z) ∩ (Ec ∪ Σ) 6= ∅ , Br(z) ⊂ E .

This implies Br(z) ∩ Σc 6= ∅ and Br(z) ∩ Σ 6= ∅ and therefore that z is in ∂Σ.
We have established ∂Eε ∩ ∂E = ∅, ∂Eε ⊂ ∂Σ and ∂Σ = ∂E ∪ (∂Σ)i. This does imply :

∂Eε ⊂ (∂Σ)i = {z ∈ E : tz = −ε} . (A.3)

This allows us to extend by continuity the definition of tz to Rm by letting tz = −ε for all z ∈ Eε.
Thanks to all these preparatory steps, we are finally ready to define a function φ : Rm → E as:

φ(z) =

{
Z (z, tz + ν(tz)) , if z ∈ (Eε)

c
,

z, if z ∈ Eε ,
(A.4)

where ν is an arbitrary Cs and strictly decreasing function defined on R satisfying:

ν(t) = −t ∀t ≤ −ε , lim
t→+∞

ν(t) = 0.

The image of φ is contained in E since we have Eε ⊂ E and :

tz + ν(tz) > tz ∀z ∈ Ec
ε ,

Z(z, tz) ∈ ∂E ,

Z(z, t) ∈ E ∀(z, t) ∈ ∂E × R>0 .

The continuity of the functions (z, t) ∈ Rm × R 7→ Z(z, t) ∈ R and z ∈ Ec
ε 7→ tz ∈ [−ε,+∞[

implies that this function φ is continuous at least on Rm\∂Eε. Also, for any z in ∂Eε, tz is defined
and equal to −ε (see (A.3)). So, for any strictly positive real number η, there exists a real number
r such that :

|ty + ε| ≤ η ∀y ∈ Br(z) ,
ν(ty) + ε ≤ η ∀y ∈ Br(z) ,

φ(y) = y ∀y ∈ Br(z) ∩ Eε ,
φ(y) = Z(y, ty + ν(ty)) ∀y ∈ Br(z) ∩ Ec

ε .

Since we have :

φ(z) = Z (z, tz + ν(tz)) = Z (z,−ε+ ν(−ε)) = z ,
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we conclude that φ is also continuous at z.
By differentiating, we obtain :

– at any interior point z of (Eε)
c

∂φ

∂z
(z) =

∂Z

∂z
(z, tz + ν(tz)) + χ(Z(z, tz + ν(tz)))

∂tz
∂z

(z)(1 + ν′(tz)) ;

– at any z in Eε (which is open) ∂φ
∂z (z) = I. Also, for any z in ∂Eε, we have :

∂Z

∂z
(z, tz + ν(tz)) + χ(Z(z, tz + ν(tz)))

∂tz
∂z

(z)(1 + ν′(tz)) =
∂Z

∂z
(z, 0) + χ(Z(z, 0))

∂tz
∂z

(z)(1− 1) ,

= I .

This implies that φ is C1 on Rm.
We now show that φ is invertible. Let y be arbitrary in E ∩ Ec

ε = E ∩ Σ. There exists ty in
[−ε, 0[. The function ν being strictly monotonic, ν−1(ty) exists and is in [−ε,+∞[. This allows us
to define properly φ−1 as :

φ−1(y) =

{
Z
(
y, ty − ν−1(−ty)

)
, if y ∈ E\Eε

y, if y ∈ Eε
(A.5)

This function is an inverse of φ as can be seen be reverting the flow induced by χ when needed.
Also, with the same arguments as before, we can prove that it is C1.

This implies that φ is a diffeomorphism from Rm to E.
Besides, the functions z 7→ Z(z, t) for t > 0, z 7→ tz and ν being Cs, φ is Cs at any interior

point of (Eε)
c. By continuity of ν(r) for r ≤ s, it can be verified that φ is also Cs on the boundary

∂Eε. So, φ is a Cs-diffeomorphism from Rm to E.
Finally, we note that, for any point zε in ∂Eε, there exists a point z in ∂E satisfying :

|zε − z| =

∣∣∣∣∫ ε

0

χ(Z(z, s))ds

∣∣∣∣ ≤ ε sup
ζ
|χ(ζ)| .

And conversely, for any z in ∂E, there exist zε in ∂Eε satisfying :

|zε − z| =

∣∣∣∣∫ ε

0

χ(Z(z, s))ds

∣∣∣∣ ≤ ε sup
ζ
|χ(ζ)| .

It follows that

dH(∂Eε, ∂E) ≤ ε sup
ζ
|χ(ζ)| (A.6)

and ε may be chosen as small as needed.

Appendix B. Diffeomorphism extension from a ball.
Lemma B.1 (3.5). Let R be a strictly positive real number and consider a C2 diffeomorphism

ψ : BR(0) → ψ(BR(0)) ⊂ Rm. For any strictly positive real number ε in ]0, 1[, there exists a
diffeomorphism ψe : Rm → Rm such that ψe(z) = ψ(z) for all z in cl(B R

1+ε
(0)).

Proof. It sufficient to prove that our assumptions imply [13, Theorem 8.1.4] applies.
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We let

U = B R
1+ ε

2

(0) , A = cl(B R
1+ε

(0)) , I =
]
−ε

2
, 1 +

ε

2

[
,

and, without loss of generality we may assume that ψ(0) = 0.
Then, consider the function F : U × I → Rm defined as

F (z, t) =

(
∂ψ

∂z
(0)

)−1
ψ(zt)

t
, ∀t ∈ I \ {0} , ϕ(z, 0) = z .

We start by showing that F is an isotopy of U .
• For any t in I, the function z 7→ Ft(z) = F (z, t) is an embedding from U onto Ft(U) ⊂ Rm.

Indeed, for any pair (za, zb) in U2 satisfying F (za, t) = F (zb, t), we obtain ψ(zat) = ψ(zbt)
where (zat, zbt) is in U2. The function ψ being injective on this set, we have za = zb which
establishes Ft is injective. Moreover, we have:

∂Ft
∂z

(z) =

(
∂ψ

∂z
(0)

)−1
∂ψ

∂z
(zt) ∀t ∈ I \ {0} ,

∂F0

∂z
(z) = Id.

Hence, Ft is full rank on U and therefore an embedding.
• For all z in U , the function t 7→ F (z, t) is C1. This follows directly from the fact that, the

function ψ being C2, and ψ(0) = 0, we have

ψ(zt)

t
=
∂ψ

∂z
(0)z + z′

(
∂2ψ

∂z∂z
(0)

)
z
t

2
+ ◦(t) .

In particular, we obtain ∂F
∂t (z, t) =

(
∂ψ
∂z (0)

)−1
ρ(z, t) where

ρ(z, t) =
1

t2

[
∂ψ

∂z
(zt)zt− ψ(zt)

]
∀t ∈ I \ {0} , ρ(z, 0) =

1

2
z′
(
∂2ψ

∂z∂z
(0)

)
z .

Moreover, for all t in I, the function z 7→ ∂F
∂t (z, t) is locally Lipschitz and therefore gives rise

to an ordinary differential equation with unique solutions.
Also the set

⋃
(z,t)∈U×I{(F (z, t), t)} is open. This follows from Brouwer’s Invariance theorem

since the function (z, t) 7→ (F (z, t), t) is a diffeomorphism on the open set U×I. With [13, Theorem
8.1.4], we know there exists a diffeotopy Fe from Rm×I onto Rm which satisfies Fe = F on A×[0, 1].
Thus, the diffeomorphism ψe = Fe(., 1) defined on Rm onto Rm verifies ψe(z) = Fe(z, 1) = F (z, 1) =
ψ(z) for all z ∈ A.
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