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ABSTRACT
The present work describes the building blocks of a new code for computational magnetohy-
drodynamics based on very high-order finite volume methods on Cartesian meshes. Spatial
high-order accuracy is obtained with a weighted essentially non-oscillatory (WENO) recon-
struction operator up to seventh order, while the time discretization is performed with a fourth
order Strong-Stability Preserving Runge-Kutta method. Based on a shock detection approach,
the reconstruction operator employs a very high-order WENO scheme in smooth flow regions
and a third order WENO scheme in those parts of the flow with discontinuities or shocks. The
Generalized Lagrange multiplier method is employed to enforce the solenoidal constraint on
the magnetic field. Extensive numerical computations in one and two space dimensions are
reported. Convergence rates for smooth flows verify the high-order accuracy of the scheme,
and tests with strong shocks, including the Orszag-Tang vortex, the cylindrical blast wave
problem, the rotor problem, and the Kelvin-Helmholtz instability, confirm the robustness and
stability of the approach.

Key words: methods: numerical – MHD – shock waves.

1 INTRODUCTION

The modeling of astrophysical phenomena has prompted the search
for efficient and accurate numerical formulations for solving the
magnetohydrodynamics (MHD) equations. Many codes have been
developed for solving the MHD equations. Usually, the numerical
methods chosen to be the main building block of these codes are the
second order finite difference method (Ryu & Jones 1995a,b; Ryu
et al. 1998), and the finite volumemethod (Zachary & Colella 1992;
Zachary et al. 1994; Dai & Woodward 1994a,b; Balsara & Spicer
1999a; Tóth 2000; Janhunen 2000;Dedner et al. 2002; Ziegler 2004;
Balsara 2004). Numerical frameworks for solving the magnetohy-
drodynamics equations with applications in astrophysics include the
Zeus Code (Stone & Norman 1992a,b; Stone et al. 1992), the Ram-
ses Code (Teyssier 2002), the Pluto Code (Mignone et al. 2007),
the Athena Code (Stone et al. 2008), and the Enzo Code (Bryan
et al. 2014). They make use of different reconstruction procedures,
as well as adaptive mesh refinement algorithms in order to simu-
late accurately flow problems with complex and highly dynamical
structures (Berger & Oliger 1984; Berger & Colella 1989; Bell
et al. 1994; Balsara 2001; Tang & Tang 2003; Anderson et al. 2006;
Zhang & MacFadyen 2006; Rosenberg et al. 2006; van der Holst
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& Keppens 2007; Li 2010; Miniati & Martin 2011; Keppens et al.
2012; Hu 2013; Dumbser et al. 2013).

High-order numerical methods have gained quite popularity
in the last years due to the need of high fidelity predictions in
the simulations. Low-order methods show a considerable amount
of numerical dissipation, meanwhile for high-order methods, this
dissipation is very low. An advantage of low-order methods over
high-order methods is their robustness in flows with discontinuities
and shocks. Examples of high-order numerical methods for con-
servation laws are the conservative finite difference methods (Shu
& Osher 1988, 1989), and the finite volume methods (Godunov
1959; van Leer 1979; Woodward & Colella 1984; Shu 2009). Both
methods make use of a high-order reconstruction operator in order
to achieve high-order accuracy in regions with smooth flows. The
finite volume method has the advantage of working also on unstruc-
tured meshes, although the structure of the reconstruction operator
is much more complicated as well as the selection of the stencil
(Dumbser & Käser 2007; Dumbser et al. 2007). The conservative
finite difference methods require uniform structured grids for the
same purpose. TheWENO schemes provide one of the most widely
used reconstruction operators applied to solve numerically conser-
vation laws. WENO stands for weighted essentially non-oscillatory
and is based on the ENO schemes from Harten et al. (1987). In Liu
et al. (1994) the WENO schemes were introduced, and in Jiang &
Shu (1996) a general framework to construct arbitrary order accurate
together with new smoothness indicators was provided. In Balsara
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& Shu (2000), smoothness indicators and interpolated values are
reported up to seventh order of accuracy. In Gerolymos et al. (2009)
very high-order WENO schemes are reported, up to 17th order of
accuracy. In Dumbser & Käser (2007); Dumbser et al. (2007) are
discussed WENO reconstruction operators for unstructured meshes
for linear and nonlinear hyperbolic problems. In this work we con-
struct a very high-order finite volume method on structured meshes
for the magnetohydrodynamics equations that is robust and reliable
for flows with very complex structures and for complicated shock
configurations. The reconstruction is carried out with a WENO
scheme.

Conservation laws allow in their solution discontinuities. It is
well known that these discontinuities will produce spurious oscilla-
tions in the solution, the so-called Gibbs phenomenon (Gibbs 1898,
1899). These oscillations can cause unphysical states (negative den-
sity or pressure), making the code to fail. Therefore, a robust and
efficient stabilization mechanism has to be constructed in order to
get a well behaved numerical solution when shocks take place. For
second-order finite volume and finite difference methods, this is
mainly achieved by using slope/flux limiters (Harten et al. 1983;
Harten 1983), and for high-order schemes, by using an adaptive re-
construction operator (like the WENO reconstruction (Jiang & Shu
1996; Shu 2009)). However, for some problems, the reconstruction
can even produce these oscillations, hence it is advisable to perform
the reconstruction on characteristic variables. We have observed
that for systems of conservation laws, this last approach even fails
for problems with strong shocks. For that reason, in this work we
follow a simple, efficient and robust strategy based on the idea of
shock detection, and further order reduction in the reconstruction
step, but only applying this in the vicinity of the shock. This shock
capturing approximation has been successfully employed in the
past, and works very well, still for relativistic flows (Mignone et al.
2007; Tchekhovskoy et al. 2007; Beckwith & Stone 2011; Radice
& Rezzolla 2011, 2012).

In the underlying base numerical scheme, the constraint∇·B =
0 is not satisfied. In fact, the spatial and time discretization produce
errors in ∇ · B, which may grow with time, and may lead also to
unphysical results (Brackbill & Barnes 1980; Powell 1994). For this
reason, every MHD solver has to take into account a procedure to
keep ∇ ·B = 0. There are basically two approaches to overcome this
problem: The divergence cleaning and the constrained transport
algorithms. In the divergence cleaning approach, numerical errors
in ∇ · B are removed. The most popular schemes of this class are
the Hodge projection (Chorin 1967; Brackbill & Barnes 1980), the
8-wave formulation (Powell 1994), and the Generalized Lagrange
Multiplier (GLM) approach (Dedner et al. 2002). In the Hodge pro-
jection, the numerical solution of B is projected onto a subspace
of zero divergence solutions. In spite of maintaining the solenoidal
constraint up to machine accuracy, this scheme requires a time con-
suming solution of a Poisson equation at each time step. In the
8-wave formulation, an additional non-physical wave is introduced
into the MHD system, giving as result the appearance of source
terms proportional to the divergence of the magnetic field. In the
Generalized Lagrange Multiplier approach, a new scalar field ψ is
introduced. This variable couples the divergence constraint with the
evolution equation of the magnetic field. Local divergence errors
are propagated to the boundary of the computational domain by a
wave equation. This approach is very simple and its implementa-
tion is straightforward, and at the same time, conservation of all
physical variables is maintained. From the other side, constrained
transport algorithms exactly preserve the divergence constraint of
the magnetic field, but with the price of introducing a staggered

mesh (Evans & Hawley 1988). The components of the magnetic
field are defined at the cell interfaces and then interpolated to the
cell barycenter. In this work we consider the GLM approach for
controlling the solenoidal constraint of the magnetic field. In our al-
gorithmwe use the mixed hyperbolic/parabolic divergence cleaning
as it is reported in Mignone et al. (2010).

The structure of this paper is as follows:We start by formulating
the MHD equations in conservation form together with the GLM
divergence cleaning for the preserving of the solenoidal constraint of
the magnetic field. Next we describe in detail the multidimensional
finite volume method with high-order WENO reconstruction and
the shock capturing strategy used in this work. Finally, numerical
computations of one-dimensional and two-dimensional problems
with different shock configurations are shown and discussed.

2 IDEAL MAGNETOHYDRODYNAMICS

2.1 MHD Equations

Magnetohydrodynamics provides a powerful framework for de-
scribing the macroscopic behavior of plasmas, including both labo-
ratory and space plasmas. The equations of the ideal magnetohydro-
dynamics, derived from the combination of Euler equations of the
Hydrodynamics and theMaxwell equations of Electrodynamics, are
given by the conservation of mass, the conservation of momentum,
the conservation of energy and induction equations:

∂ρ

∂t
+ ∇ · S = 0, (1a)

∂S
∂t
+ ∇ ·

(
S ⊗ v + P

)
= 0, (1b)

∂E
∂t
+ ∇ ·

(
Ev + P · v

)
= 0, (1c)

∂B
∂t
+ ∇ ·

(
B ⊗ v − v ⊗ B

)
= 0. (1d)

This system must satisfy an additional constraint: the solenoidal
property of the magnetic field, which means that magnetic
monopoles do not exist,

∇ · B = 0. (2)

The pressure tensor appearing in equations (1b) and (1c) combines
the influence of the hydrodynamic and the magnetic pressure (the
quantity in brackets is the total pressure)

P =

(
p +

1
2
|B|2

)
I − B ⊗ B. (3)

An equation of state (EOS) is used to close the system. In this
work we make use of the ideal gas equation of state with adiabatic
exponent γ

p = (γ − 1)
(
E −

1
2
ρ |v|2 −

1
2
|B|2

)
. (4)

2.2 Divergence Cleaning with the Generalized Lagrange
Multiplier Method

The divergence-free constraint of the magnetic field given in equa-
tion (2) has to be preserved also from the numerical point of view.
The simplest and straightforward manner to do it is by means of
the divergence cleaning of (Munz et al. 1999; Dedner et al. 2002).
In this work we use the mixed hyperbolic/parabolic strategy first
proposed in (Dedner et al. 2002). In this approach, the solenoidal
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constraint (2) is coupled with the induction equation (1d) through
the potentialψ. The induction equation and the solenoidal constraint
take the following form

∂B
∂t
+ ∇ ·

(
B ⊗ v − v ⊗ B + ψI

)
= 0, (5a)

∂ψ

∂t
+ ∇ ·

(
c2hB

)
= −

c2
h

c2p
ψ. (5b)

Equations (1a), (1b), (1c), (5a), and (5b), constitute the so-called
GLM-MHD system. This equation system is still conservative (ex-
cept for the equation for the unphysical scalar field ψ).

2.3 Eigenvalues of the MHD-GLM System

Next, we present the eigenvalues of the Jacobian matrices, Aα , for
the GLM-MHD equations. These matrices are defined by

Ai =
∂fi (u)
∂u

, (i = x, y, z), (6)

with u the state vector of conservative variables (plus the scalar field
ψ) and f = [f, g, h] the tensor of physical fluxes. The fluxes f , g, h
are respectively the flux in the x-direction, in the y-direction, and in
the z-direction. Here we show only the eigenvalues of the Jacobian
matrices in the x-direction, Ax , whereas the cases y and z easily
follows from symmetry. The eigenvalues of Ax in nondecreasing
order are

λ1 = −ch, λ2 = vx − cf , λ3 = vx − ca,

λ4 = vx − cs, λ5 = vx, λ6 = vx + cs,

λ7 = vx + ca, λ8 = vx + cf , λ9 = ch,

(7)

where cf , ca , and cs are the fast, Alfvén, and slow characteristic
speeds. Observe that in the equation (7) there are three MHD waves
families associated with the characteristic speeds and an entropy
mode. The three characteristic speeds are given by

ca = |b1 | , (8)

cs =

√√
1
2

*
,
a2 + b2 −

√(
a2 + b2

)2
− 4a2b21

+
-
, (9)

cf =

√√
1
2

*
,
a2 + b2 +

√(
a2 + b2

)2
− 4a2b21

+
-
, (10)

where we have used the abbreviations

a2 =
γp
ρ
, b2 =

|B|2

ρ
, b21 =

B2
x

ρ
. (11)

Observe the two new eigenvalues from the GLM-MHD equations,
namely λ1,9 = ±ch . These eigenmodes propagate the divergence
errors to the boundaries at speed ch ; besides, these divergence errors
are damped at a rate c2

h
/c2p . The magnitude of the wave speeds ch

is set to the maximum allowed speed in the pure MHD system
and that is compatible with the CFL restriction in an explicit time
discretization,

ch = max
i

(
max

(
|λ2, i |, |λ8, i |

))
, i = x, y, z. (12)

The value of the constant cp is chosen after setting
cr ≡ c2p/ch = 0.18 (see Dedner et al. (2002)).

3 NUMERICAL METHODS

3.1 Finite Volume Methods

Let us consider the following system of conservation laws

∂u
∂t
+
∂f (u)
∂x

+
∂g(u)
∂y

+
∂h(u)
∂z

= 0. (13)

By integrating equation (13) over the computational cell Ωi jk =[
xi− 1

2
, xi+ 1

2

]
×

[
y j− 1

2
, y j+ 1

2

]
×

[
zk− 1

2
, zk+ 1

2

]
, we get the semi-

discrete scheme

dui jk
dt
= −

f̂ i+ 1
2 , jk
− f̂ i− 1

2 , jk

∆x

−

ĝi, j+ 1
2 ,k
− ĝi, j− 1

2 ,k

∆y
−

ĥi j,k+ 1
2
− ĥi j,k− 1

2

∆z
,

(14)

where, in the context of finite volume methods, ui jk is the spatial
average of u in the cell Ωi jk at time t

ui jk =
1

��Ωi jk
��

∫
Ωi jk

u(x, y, z) dz dy dx, (15)

with ���Ωi jk
��� = ∆x∆y∆z, and f̂ i± 1

2 , jk
, ĝi, j± 1

2 ,k
, and ĥi j,k± 1

2
are

spatial averages of the physical fluxes over the cell faces xi± 1
2
,

y j± 1
2
, and zk± 1

2
, respectively, at time t

f̂ i± 1
2 , jk

=
1

��σ jk
��

∫
σ jk

f
(
u(xi± 1

2
, y, z)

)
dz dy,

ĝi, j± 1
2 ,k
=

1
��σik

��

∫
σik

g
(
u(x, y j± 1

2
, z)

)
dz dx,

ĥi j,k± 1
2
=

1
��σi j

��

∫
σi j

h
(
u(x, y, zk± 1

2
)
)
dy dx,

(16)

with the surfaces elements defined by σi j =
[
xi− 1

2
, xi+ 1

2

]
×[

y j− 1
2
, y j+ 1

2

]
, σ jk =

[
y j− 1

2
, y j+ 1

2

]
×

[
zk− 1

2
, zk+ 1

2

]
, and σik =[

xi− 1
2
, xi+ 1

2

]
×

[
zk− 1

2
, zk+ 1

2

]
. The area of the faces are then

��σi j
�� = ∆x∆y, ��σ jk

�� = ∆y∆z, and ��σik
�� = ∆x∆z. The numeri-

cal fluxes

f̂ i+ 1
2 , jk

= f̂ (ui−p, jk, . . . , ui+q, jk ),

ĝi, j+ 1
2 ,k
= ĝ(ui, j−p,k, . . . , ui, j+q,k ),

ĥi j,k+ 1
2
= ĥ(ui j,k−p, . . . , ui j,k+q ),

(17)

are an approximation of the physical fluxes and are consistent with
them in the sense that f̂ (u, . . . , u) = f (u), ĝ(u, . . . , u) = g(u), and
ĥ(u, . . . , u) = h(u) (see LeVeque (1992); Bressan (2000); LeVeque
(2002); Toro (2009)).

When solving hyperbolic conservation laws, one of the most
important requirement on the numerical method is that it should be
a conservative scheme. In fact, the Lax-Wendroff theorem guaran-
tees that for such numerical methods, if they are convergent, they
converge to the weak solution (Lax & Wendroff 1960). Another
important result related to conservative methods is the presented
in (Hou & LeFloch 1994). They showed that a non-conservative
numerical scheme does not converge to the correct solution if shock
waves are present in the solution. Because of discontinuities are
inherent to conservation laws, it is necessary to use conservative
methods and those non-conservative should be avoided.

The semi-discrete scheme (14) is an exact relation as well as
the averaged quantities (15) and (16). A high-order approximation
of the fluxes (16) has to be found in order to get a high-order
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accurate solution of (14). The integrals of the fluxes given in the
equation (16) are discretized by means of a high-order Gaussian
quadrature with suitable Gaussian integration points over the faces
of the control volume; in the case of the present work, for Cartesian
meshes, these are written as

f̂ i± 1
2 , jk

=
1
∆y

1
∆z

NGP∑
α=1

NGP∑
β=1

f
(
u(xi± 1

2
, yα, zβ )

)
ωαωβ,

ĝi, j± 1
2 ,k
=

1
∆x

1
∆z

NGP∑
α=1

NGP∑
β=1

g
(
u(xα, y j± 1

2
, zβ )

)
ωαωβ,

ĥi j,k± 1
2
=

1
∆x

1
∆y

NGP∑
α=1

NGP∑
β=1

h
(
u(xα, yβ, zk± 1

2
)
)
ωαωβ .

(18)

A high-order accurate numerical procedure is required to recon-
struct the point-wise values of u at the Gaussian integration points
at the faces from the only known quantities, the cell averages ui jk at
the cell barycenter. By evaluating the fluxes at the Gaussian points,
two sets of reconstructed values at a given face are present: those
obtained through the use of the cell Ωi jk as the main cell in the
reconstruction procedure and those associated with the neighbor-
ing cell. These are known as the left and right values at the face
interface: uL and uR . Finally the fluxes are evaluated by replacing
f , g, and h by a monotone flux, the so-called Riemann solver (Toro
2009).

xtroem-fv includes several Riemann solvers for the MHD
equations, namely, the Rusanov numerical flux (Rusanov 1961),
the Roe Riemann solver (Roe & Balsara 1996), the HLL Riemann
solver (Toro 2009), the HLLC Riemann solver (Gurski 2004), and
the HLLD Riemann solver (Miyoshi & Kusano 2005). In spite of
the better accuracy of the HLL family of Riemann solvers, in this
work we report computation that only use the Rusanov Riemann
solver because it is much more robust and cheap that the other
ones (because it adds enough dissipation to ensure stability of the
scheme (LeVeque 1992)). The Rusanov numerical flux is given by

f̂ (uL, uR ) =
1
2
(
f (uL ) + f (uL ) − |λmax |(uL − uR )

)
, (19)

where λmax is the largest local wave speed, which guarantees the
stability of the scheme. Taking λmax locally instead of globally
implies that less viscositywill be added in regionswhere the solution
is smooth.

Finally, a flow diagram for the xtroem-fv framework based
on finite volume methods is depicted in the figure 1.

3.2 Discretization of the GLM Divergence Cleaning

The equations for Bx andψ are decoupled from the rest of the GLM-
MHD system. In fact, cleaning a vector quantity B with divergence
errors results in the linear system

∂

∂t

(
Bx

ψ

)
+

(
0 1
c2
h

0

)
∂

∂x

(
Bx

ψ

)
=

*.
,

0

−
c2
h

c2p
ψ

+/
-
. (20)

The numerical flux is then derived as the solution of the local
Riemann problem with left-hand state (Bx,l, ψl )T and right hand
state (Bx,r , ψr )T as

Bx,m =
1
2

(Bx,r + Bx,l ) −
1

2ch
(ψr − ψl ), (21)

ψm =
1
2

(ψr + ψl ) −
ch
2

(Bx,r − Bx,l ). (22)

Reading Input Parameters

Setup of Initial Model

Calculate Shock Indicator

Calculate Time Step

Set Boundary Conditions

Calculate Shock Indicator

Perform Reconstruction

Calculate Numerical Fluxes

Calculate Source Terms

Update Time Derivative

Runge-Kutta Stage

Repeat for all Runge-Kutta stages

Write Solution to Disk

Time Discretization

Repeat until final time is reached

End of Simulation

Figure 1. Flow diagram for the high-order finite volume method.

It is possible to employ for the quantities Bx and ψ the Riemann
solver used in the full MHD system, but in this work we use the
exact solution (21) of the linear Riemann problem (20). Dedner et al.
(2002) suggest to use the solution (21) as input for the Riemann
solver used in the solution of the other conserved quantities.

There are basically two possible ways to deal with the source
term in equation (5b). The first one consists in simple add this
source term to the hyperbolic update, that is to the semi-discrete
scheme (14) (see Susanto et al. (2013)). The second one is based
on an operator-splitting approach. Following the idea presented in
Dedner et al. (2002), we first solve the homogeneous GLM-MHD
system in a so-called hyperbolic step, and then we consider the
source term in the source step. The scalar field ψ is then

ψ (∆t ) = ψ (0) exp
(
−αp

ch
∆h/∆t

)
, with αp = ∆h

ch
c2p

(23)

where ψ (0) has been computed in the hyperbolic step, and ∆h =
min

(
∆x,∆y,∆z

)
is the minimum mesh size. This approach is very

simple to implement and is unconditionally stable (Dedner et al.
2002).

3.3 WENO Schemes

The basic idea of the WENO schemes is based on an adaptive
reconstruction procedure to obtain a higher-order approximation
on smooth regions while the scheme remains non-oscillatory near
discontinuities (Shu 2009). In each stencil, a polynomial is recon-
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structed from the cell averages of the solution and later a weighted
combination of all these polynomials is constructed. The nonlinear
weights are computed taking into account the smoothness of every
polynomial in its respective stencil.

In the following, the dimension-by-dimension WENO recon-
struction algorithm is outlined. In appendix A is presented the de-
scription of the main aspects of the WENO reconstruction opera-
tor, as for example, the computation of the oscillation indicators,
and the linear and nonlinear weights for the WENO3, WENO5 and
WENO7 schemes. The dimension-by-dimension reconstructionwas
introduced in Casper & Atkins (1993) in the ENO framework for
two-dimensional conservation laws. The scheme was extended to
three-dimensional domains in Titarev & Toro (2004). We empha-
size that the dimension-by-dimension reconstruction is only valid
for structured meshes, and at the same time, it is the less com-
putationally expensive among all reconstructions (although a new
methodology for finite volume methods in Cartesian meshes has
been introduced in Buchmüller & Helzel (2014), making the recon-
struction process as simple as for finite difference methods). For
unstructured grids (and they are also valid in Cartesian grids) there
are another strategies, for example, the genuine multidimensional
reconstruction of Hu & Shu (1999), but they will not be considered
in this work.

The aim of the reconstruction is the following: From the cell
averages of the solution, points values of the function at appropriate
points (that is, the Gaussian integration points) are interpolated (or
reconstructed). Thesewill be used in the finite-volumemethodology
to calculate the numerical fluxes via a Riemann solver. This means,
given the cell averages of the function u(x, y, z) in the cell Ωi jk

ui jk =
1

���Ωi jk
���

∫
Ωi jk

u(x, y, z) dz dy dx, (24)

we reconstruct point values of u at the Gaussian integration points
(xi± 1

2
, y j+α, zk+β ), (xi+α, y j± 1

2
, zk+β ), (xi+α, y j+β, zi± 1

2
). In this

work we make use of the two points Gaussian quadrature rule∫ +1

−1
f (x) dx ≈

2∑
i=1

wi f (xi ) = f
(
−

1
√
3

)
+ f

(
+

1
√
3

)
, (25)

for calculating the surface integral appearing in the finite vol-
ume formulation just as it is reported in Titarev & Toro (2004,
2005). In the figure 2 these Gaussian integration points are de-
picted. They are given by (xi± 1

2
, y j+α ) and (xi+α, y j± 1

2
) in 2D and

(xi± 1
2
, y j+α, zk+β ), (xi+α, y j± 1

2
, zk+β ), (xi+α, y j+β, zi± 1

2
) in 3D,

with α, β = ±1/2
√
3. A higher-order Gaussian quadrature gives

as result negatives linear weights in the point-wise WENO recon-
struction. Although there is an strategy to deal with such negatives
weights (see Shi et al. (2002)), we prefer to follow the recommenda-
tions given in Titarev & Toro (2004). We stress that the high-order
accuracy of the scheme is provided by the high-order reconstruction
of the function values at the Gaussian integration points.

In the following, we are going to show the dimension-by-
dimension algorithm only for the reconstruction at the Gaussian
integration points (xi± 1

2
, y j+α, zk+β ), i.e., the points at faces xi± 1

2
.

In an analog way we can reconstruct the point values of the function
u(x, y, z) at points (xi+α, y j± 1

2
, zk+β ), and (xi+α, y j+β, zi± 1

2
), cor-

responding to the faces y j± 1
2
and zk± 1

2
. The algorithm consists of

three sweeps in the 3D case and two sweeps in the 2D case. Let us
start defining the stencils (and adopting the notation given in Titarev
& Toro (2004)). In order to reconstruct ui± 1

2 , j+α,k+β
with aWENO

scheme of (2N + 1)th order (where the polynomials used in every

Figure 2.Gaussian integration points in a control volume where the WENO
reconstruction is performed. Left: At cell edges in the two-dimensional
case, they are given by (x

i± 1
2
, y j+α ) and (xi+α, y j± 1

2
). Right: At cell

faces in the three-dimensional case, they are given by (x
i± 1

2
, y j+α, zk+β ),

(xi+α, y j± 1
2
, zk+β ), and (xi+α, y j+β, zi± 1

2
). In both cases α, β =

±1/2
√
3.

x i−2
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y j−1

x i

y j

x i+1

y j+1

x i+2

y j+2

xi−2 xi−1 xi xi+1 xi+2
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y j+1
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zk+1

zk
zk−1

zk−2

Figure 3. Stencil for the high-order WENO5 reconstruction for finite vol-
ume methods. The state is reconstructed in the Gaussian integration points
depicted in the Figure 2. Left: For the cell Ωi j in 2D. Right: For the cell
Ωi jk in 3D.

stencil are of degree N), we require the stencil to be formed by the
cells Ωix iy iz , with ix , iy , and iz satisfying

i − N ≤ ix ≤ i + N,

j − N ≤ iy ≤ j + N,

k − N ≤ iz ≤ k + N .

(26)

As an example, the stencils for the WENO5 reconstruction proce-
dure are depicted in the Figure 3 for the two- and three-dimensional
cases. Once the stencils are defined, we proceed with the description
of the sweeps:

(1) First Sweep: From the cell averages ui jk , a one-dimensional
reconstruction in the x-direction is carried out for all values of the
indexes iy , iz from the stencil. Two-dimensional averages at faces
xi± 1

2
are obtained from this procedure

¯̄uiy iz
����x

i± 12

=
1
∆y

1
∆z

∫ y
iy+

1
2

y
iy−

1
2

∫ z
iz+

1
2

z
iz−

1
2

u(xi± 1
2
, y, z) dz dy.

(2) Second Sweep: From the obtained two-dimensional averages
¯̄uiy iz , a one-dimensional reconstruction in the y-direction is carried
out for all values of the index iz from the stencil. One-dimensional
averages at lines y j± 1

2
√
3
on the faces xi± 1

2
are obtained from this

procedure

ūiz
����xi± 12
y
j± 1

2
√
3

=
1
∆z

∫ z
iz+

1
2

z
iz−

1
2

u(xi± 1
2
, y j± 1

2
√
3
, z) dz.
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Figure 4. Sweeps and stencils for the two-dimensional WENO5 reconstruc-
tion procedure. Top: x-direction. Bottom: y-direction.

(3) Third Sweep: In the last sweep, a one-dimensional recon-
struction in the z-direction is carried out from all line averages ū
of every line (x = xi± 1

2
, y = y j± 1

2
√
3

). In this step, all point-wise
values u(xi± 1

2
, y j± 1

2
√
3
, zk± 1

2
√
3

) are reconstructed.

The dimension-by-dimension WENO reconstruction for the
two-dimensional case can be summarized as follows (see figure 4)
{
ui j

}
−→

{
ūi± 1

2 , iy

}
−→

{
ui± 1

2 , j±
1

2
√
3

}
, (27)

and for the three-dimensional case
{
ui jk

}
−→

{
¯̄ui± 1

2 , iy iz

}
−→

{
ūi± 1

2 , j±
1

2
√
3
, iz

}
−→

{
ui± 1

2 , j±
1

2
√
3
,k± 1

2
√
3

}
.

(28)

In xtroem-fv, the WENO reconstruction operator of order third,
fifth, and seventh order are implemented. In this work, the reported
two-dimensional computations were done with the WENO7 opera-
tor.

3.4 Shock Capturing for High-Order Finite Volume Methods

The general methodology used in this work to stabilize the solution
when the scheme fails to give a physically meaningful state, because
either shocks are present or some unphysical states are produced in
the intermediate stages of the simulation (e.g., during the recon-
struction step), consists basically in the three blocks outlined in the
following

(1) Checking of quantities with restrictions

• Positivity of density
• Positivity of pressure

(2) Detection of regions with strong shocks

• Shocks indicators

• Marking of troubled points/cells and direct neighbors

(3) Special treatment in troubled regions

• Employment of robust second/third order scheme
• Employment of robust Riemann solvers

The way this strategy is implemented establishes different “flavors”
of the shock capturing, but in principle, the ground idea is the shock
detection and a further order reduction of the scheme in the vicinity
of the shock, the so-called fallback approaches (Mignone et al.
2007; Tchekhovskoy et al. 2007; Beckwith & Stone 2011; Radice &
Rezzolla 2011, 2012). This is equivalent to addingmore dissipation,
because a lower-order scheme together with a dissipative Riemann
solver is employed in the vicinity of the shock. There are some
cases in which the high-order WENO reconstruction fails when it is
performed, that is, negative densities or pressure are obtained after
the reconstruction step. This occurs especially in regionswith severe
shocks or when in the stencil several discontinuities are present. In
such cases, the WENO algorithm cannot select an oscillation-free
polynomial from all stencils. For that reason, we have to adopt
the reconstruction-order-reduction strategy outlined above in those
stencils containing more than one discontinuity or having a strong
shock. That is, we first apply a shock indicator to every point/cell and
then mark only those having a shock and their direct neighbors. For
this purpose, we use the Jameson indicator in the pressure (Jameson
et al. 1981),

ηi =
��pi+1 − 2pi + pi−1��

��pi+1�� + 2��pi �� + ��pi−1��
. (29)

If the Jameson indicator is larger than η = 5.0 × 10−3, then the cell
is flagged. Next, for every marked cell, aWENO3 reconstruction (or
in severe cases, the second order MUSCL reconstruction) is used. If
these schemes fail to give a physical state, then we switch to the first-
order Godunov scheme, where no reconstruction is performed. We
remark that the use of the above strategy will never deteriorate the
high order of accuracy of the method for smooth solutions, and the
reason is that the indicator only flags the cells with discontinuities.
We refer to the classical work of Harten et al. (1987) for more
details.

We have to point out that this approach has provided very
good results for a wide series of problems in one-dimensional and
multidimensional magnetohydrodynamics. In fact, all calculations
presented in this work have made use of WENO3 reconstruction in
troubled cells and higher-order WENO schemes in smooth parts of
the flow.

3.5 Time Discretization

The semi-discrete scheme (14) is solved explicitly using the so-
called method of lines. The method of lines acquires the accuracy
order of the integrator used to solve the system of ordinary differ-
ential equations, under the condition that the spatial discretization
is of the same order of accuracy or higher (Schiesser 1991). The
system of ordinary differential equations (14) is solvedwith the fam-
ily of Strong-Stability Preserving Runge-Kutta Methods (SSPRK).
The class of SSPRK methods was first developed in Shu & Osher
(1988); Shu (1988), where they called them TVD (Total Variation
Diminishing) time discretizations, and further by Gottlieb & Shu
(1998). New developments have been reported in Hundsdorfer et al.
(2003); Ruuth & Spiteri (2002); Spiteri & Ruuth (2002, 2003); Got-
tlieb (2005); Gottlieb et al. (2009). The main idea of these methods
resides in assuming that the first-order forward Euler method is
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strongly stable under the total variation norm (and in general, any
given norm) and a suitable time step restriction. From this, the
aim is to construct a higher-order time discretization that preserves
strong stability under the TVD norm, and maybe, with a different
time step restriction (Shu & Osher 1988). The SSPRK methods
are desirable in problems with discontinuities and strong shocks,
because they guarantee that, as part of the time-integration process,
no additional oscillations are introduced (Hesthaven & Warburton
2008; Shu 2009).

The systems of ordinary differential equations (14) can be
recast as
du
dt
= L(u, t), u(t0) = u0, t ∈ [t0, t f ], (30)

where −L(u, t) is the spatial discretization operator. Let us consider
the general m-stages Runge-Kutta method of the Shu-Osher form
(Shu & Osher 1988)

u(0) = un,

u(i) =

i−1∑
k=0

(
αiku(k ) + ∆t βikL

(
u(k ), tn + γk∆t

))
,

un+1 = u(m),

(31)

with αik ≥ 0, i = 1, . . . ,m. The coefficients of the fourth-order
SSPRK with five stages derived in Spiteri & Ruuth (2002) are
presented in the table 1. This scheme has an SSP coefficient
c ≡ mini,k

αik
βik
= 1.50818004975927. The SSP coefficient satisfies

∆t ≤ c∆tE , where ∆tE is the time step restricted by the Courant-
Friedrichs-Levy (CFL) condition for the first-order forward Euler
method.

3.5.1 Courant-Friedrichs-Lewy Condition

The Courant-Friedrichs-Lewy (CFL) condition is a necessary con-
dition for stability of any explicit one-level numerical scheme
(Courant et al. 1928). It establishes that the domain of dependence of
the solution is contained in the numerical domain of dependence of
the numerical method. From a physical point of view, this condition
guarantees that the propagation speed of any traveling wave is al-
ways smaller than the numerical speed cN ≡ ∆x/∆t. In other words,
the time step should be equal to or smaller than the time necessary
for a wave to travel across the stencil of the spatial discretization
scheme (Blazek 2005). This condition is applied to constraint the
time step, and in the one-dimensional case is given by

∆t = CCFLmin
k

(
∆x
|λk,x |

)
, (32)

with λk the maximum eigenvalue of the physical x-flux Jacobian
over all computational cells. The number CCFL satisfies CCFL ≤ 1,
and depends on the spatial discretization and on the time-stepping
scheme used for solving the conservation law. In the multidimen-
sional case, only approximated values of the CFL condition are
available for nonlinear equations. We consider here the CFL condi-
tion presented in Titarev & Toro (2005), namely

∆t =
CCFL
2

min
k

(
∆x
|λk,x |

,
∆y

|λk,y |

)
, (33)

for a two-dimensional space, and

∆t =
CCFL
3

min
k

(
∆x
|λk,x |

,
∆y

|λk,y |
,
∆z
|λk,z |

)
, (34)

for a three-dimensional space. The number CCFL corresponds to the
one-dimensional case.

4 NUMERICAL COMPUTATIONS

4.1 Propagation of a smooth circularly polarized Alfvén wave

This problem is characterized for being an exact solution of the
MHD equations. Because of the smoothness of this wave, it can
be used for doing a convergence analysis. The test is run with
the following simulation parameters (Tóth 2000): The dimensions
of the computational domain satisfy Lx = 2Ly = 1.0, and the
discretization of it, Nx = 2Ny . The wave propagates along the
diagonal of the grid, at an angle α = arctan(0.5) ≈ 26.6° with
respect to the x-axis. Since the wave does not propagate along the
diagonals of the grid cells, it is guaranteed that the x- and y-fluxes are
different; as a consequence, the problem is truly multi-dimensional.
The density is set to ρ = 1, and the pressure p = 0.1. Let be
v0 = 0.1 and B0 = 0.1. Additionally let be x ‖ = (x cos α+ y sin α).
The components of the velocity and magnetic field perpendicular
to the wave vector are given by v⊥ = v0 sin(2πx ‖ ) and B⊥ =
B0 sin(2πx ‖ ), and the velocity and magnetic field in z-direction are
vz = v0 cos(2πx ‖ ) and Bz = B0 cos(2πx ‖ ). The quantities v⊥ and
B⊥ are related to Bx and By via B⊥ = By cos α−Bx sin α, and B‖ =
Bx cos α + By sin α. An adiabatic equation of state with γ = 5/3
is considered. At the boundaries of the domain, periodic boundary
conditions are imposed. In the table 2 are shown the convergence
rates at time t f = 1.0 when the MHD equations are solved with the
finite volume scheme using theWENO reconstruction operator. The
experimental order of convergence (EOC) confirms the high-order
accuracy of the numerical method for smooth flows, even when
nonlinearities are present in the exact solution.

4.2 One-dimensional Riemann Problems

In this section we present the calculation of one-dimensional Rie-
mann problems, which feature different shocks configurations after
the initial state is evolved to certain end time t f . The study of shock
tube problems constitutes the standard benchmark in computational
magnetohydrodynamics because it is through these simple initial
conditions that the robustness of the scheme is evaluated and also
it is analyzed its capacity to resolve continuous and discontinu-
ous flow structures (Mignone & Tzeferacos 2010). The considered
tests are those discussed in Ryu & Jones (1995a), although some
of them were first presented in Brio & Wu (1988) and in Dai &
Woodward (1994b). For all these tests, we set the adiabatic index
γ = 5/3 and transmissive boundary conditions. The CFL number
is set to CCFL = 0.95. The one-dimensional domain is the closed
interval [0, 1], and the membrane separating the left and right ini-
tial states is localized in the point x = 0.5. The left state will be
represented by ûL =

(
ρ, vx, vy, vz, p, Bx, By, Bz

)
L and the right

state by ûR =
(
ρ, vx, vy, vz, p, Bx, By, Bz

)
R . Observe that left and

right states are provided in primitive variables. The computational
domain is decomposed into 500 cells. The WENO3, WENO5, and
WENO7 reconstruction operators were used in smooth parts of the
flow and the WENO3 in regions with discontinuities and/or shocks
(only for the WENO5 and WENO7 schemes). The exact solution of
the Riemann problems is plotted as red lines and they were obtained
by solving the MHD equations with the second order MUSCL finite
volume scheme with the MINMOD limiter, and in a very fine mesh
made of 20.000 cells. The six initial conditions are given in table 3.
The description of the flow patterns is presented below together
with some comments regarding the capabilities of the Xtroem-FV
Code for solving such problems.
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Table 1. Coefficients of the fourth-order SSPRK method with five stages.

Stages k = 0 k = 1 k = 2 k = 3 k = 4

αik

i = 1 1
i = 2 0.44437049406734 0.55562950593266
i = 3 0.62010185138540 0 0.37989814861460
i = 4 0.17807995410773 0 0 0.82192004589227
i = 5 0.00683325884039 0 0.51723167208978 0.12759831133288 0.34833675773694

βik

i = 1 0.39175222700392
i = 2 0 0.36841059262959
i = 3 0 0 0.25189177424738
i = 4 0 0 0 0.54497475021237
i = 5 0 0 0 0.08460416338212 0.22600748319395

γk 0 0.39175222700392 0.58607968896779 0.47454236302687 0.93501063100924
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Figure 5. Plots for the Riemann problems RP-1, RP-2, and RP-3. The initial states have been provided in the table 3. An ideal equation of state with adiabatic
index γ = 5/3 is used. The computations were done with a finite volume method with WENO3, WENO5, and WENO7 reconstruction operators. The CFL
number is CCFL = 0.95.
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Figure 6. Solution plots for the Riemann problems RP-4, RP-5, and RP-6. The initial states have been provided in the table 3. An ideal equation of state with
adiabatic index γ = 5/3 is used. The computations were done with a finite volume method employing the WENO3, WENO5, and WENO7 reconstruction
operators. The CFL number is CCFL = 0.95.

Riemann Problem 1 (RP-1) This initial state will develop into
two fast shocks, one weak slow shock, one slow rarefaction and one
contact discontinuity. Plots of the density, thermal pressure, and
the y-component of the magnetic field are depicted in the figure 5
(top). The final simulation time is t f = 0.08. Small oscillations
are observed only for the WENO7 scheme. The shocks are very
well captured in around 3-4 cells with the WENO3 reconstruction
operator. The WENO5 scheme provides the best results in this
simulation.

Riemann Problem 2 (RP-2) The final simulation time is t f =
0.03. This Riemann problem features one left-moving fast shock
and one left-moving slow shock, one fast rarefaction and one slow
rarefaction wave moving to the right, and one contact discontinuity.
The z-component of the velocity and magnetic field is zero in all
regions. Plots of the density, thermal pressure, and the y-component
of the magnetic field are depicted in the figure 5 (middle). Some

oscillations are present for the WENO5 and WENO7 schemes. In
spite of that, the shocks are better resolved when they are combined
with the WENO3 scheme.

Riemann Problem 3 (RP-3) This problem is characterized by
the appearance of multiple weak discontinuities, namely, two fast
shocks, two slow shocks, two rotational discontinuities and one
contact discontinuity. The shocks propagate from each side of the
contact discontinuity. Plots of the density, thermal pressure, and the
y-component of the magnetic field at time t f = 0.20 are depicted
in the figure 5 (bottom). The WENO5 and WENO7 solutions re-
quired less cells (around 3-4) to resolve the discontinuities than the
WENO3 scheme (around 10-20).

Riemann Problem 4 (RP-4) This test involves one of the so-called
switch-on and switch-off structures, a switch-on fast shock. The
main property of this problems is that the tangential magnetic field
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Table 2. Convergence rates for the MHD equations with initial condition
given by the smooth circularly polarized Alfvén wave. In these calculations
we have employed the Rusanov Riemann solver. Results for L2 norm error of
the y-component of magnetic field are given, with reconstruction operator
WENO3, WENO5 and WENO7. Simulation time was set to t f = 1.0.

Method Cells L2 error L2 order

WENO3

20 × 10 2.163 × 10−3
40 × 20 3.218 × 10−4 2.75
80 × 40 4.120 × 10−5 2.97
160 × 80 5.097 × 10−6 3.01
320 × 160 6.275 × 10−7 3.02

WENO5

20 × 10 6.375 × 10−5
40 × 20 2.134 × 10−6 4.90
80 × 40 6.848 × 10−8 4.96
160 × 80 2.158 × 10−9 4.98
320 × 160 6.561 × 10−11 5.03

WENO7

20 × 10 8.482 × 10−6
40 × 20 8.285 × 10−8 6.67
80 × 40 7.984 × 10−10 6.69
160 × 80 7.543 × 10−12 6.72
320 × 160 6.308 × 10−14 6.90

turns on in the region located behind the switch-on fast shocks
and switch-on slow rarefactions waves. The switch-on fast shock is
moving to the right. A fast rarefaction, a slow rarefaction, a contact
discontinuity, and a slow shock are among the other structures de-
veloped in this problem. Plots of the density, thermal pressure, and
the y-component of themagnetic field are shown in the figure 6 (top)
at the time t f = 0.15. Only the solution computed with WENO7
scheme shows oscillations around the discontinuities, which are
resolved using only 3-4 cells.

Riemann Problem 5 (RP-5) This problem comprises a switch-
on slow rarefaction wave. In this case, the following structures are
created: A hydrodynamic rarefaction, a switch-on slow rarefaction,
a contact discontinuity, a slow shock, a rotational discontinuity, and
a fast rarefaction. Plots of the density, thermal pressure, and the
y-component of the magnetic field at time t f = 0.16 are depicted in
the figure 6 (middle). The structures mentioned before are showed
in the figure, from left to right. The shocks have been very well
captured using around 3-4 cells with the WENO3 reconstruction.

Riemann Problem 6 (RP-6) This problem is similar to the Sod
problem for the Euler equations. The test is characterized by the
formation of the so-called compound structures. These structures
involve a shock and a rarefaction wave traveling together. This kind
of structures was first analyzed in Brio & Wu (1988). This test
involves a left-going slow compound wave. Plots of the density,
thermal pressure, and the y-component of the magnetic field at time
t f = 0.1 are showed in the figure 6 (bottom). The plots show the
development (from left to right) of a left-going fast rarefaction, the
left-going slow compound wave, a contact discontinuity, a right-
going slow shock wave, and a right-going fast rarefaction wave. The
WENO3 reconstruction operator used for shock capturing resolves
very well the shock wave and the contact discontinuity within just
a few cells.

4.3 Multidimensional Test Problems

4.3.1 Magnetic Field Loop Advection

The magnetic field loop advection is a very important test for mul-
tidimensional MHD because with it, one can observe whether the
algorithm is able to preserve ∇ · B = 0. In this test a cylindrical
current distribution is advected along some direction of the com-
putational domain. Because of the loop remains in magnetostatic
balance, after some periods, its profile should be the same. With
multidimensional MHD codes that do not include an algorithm for
the treatment of the solenoidal constraint of the magnetic field, or if
they use numerical methods too much diffusive, the magnetic loop
will smear over the time. More details can be found in Tóth (2000);
Stone et al. (2008); Mignone & Tzeferacos (2010).

Following the description to this problem given in Tóth (2000),
the computational domain is given by the box [−1.0,+1.0] ×
[−0.5,+0.5]. We set the density to ρ = 1, and the pressure p = 1 in
the whole domain. The initial velocity is given by

vx = v0nx, vy = v0ny, vz = 0, (35)

where v0 is the magnitude of the velocity (we use v0 =
√
5), nx

and ny are the components of the unit vector in the direction of
movement of the loop (we use nx = 2/

√
5 and ny = 1/

√
5). The

magnetic field is constant everywhere, except for the loop structure
of radius R (we use R = 0.3). In this way, for r ≤ R we have

Bx = −B0y/r, By = +B0x/r, Bz = 0, (36)

where r =
√

x2 + y2, B0 is the magnitude of the magnetic field and
it should be small in such a way that the magnetic pressure is smaller
than the gas pressure (we use B0 = 10−3). An adiabatic equation of
state with γ = 5/3 is considered. At the boundaries of the domain
we consider periodic boundary conditions. The simulation time is
t f = 2.0, and in the figure 7 is depicted the magnetic pressure at
times t ∈

{
0.0, 2.0

}
when the RKFV method was used. The compu-

tational domain is decomposed into 800 × 400 cells. The WENO7
reconstruction is used. No shock capturing method was employed in
this test. The divergence cleaning of Dedner et al. (2002) was used,
with cr = 0.18, and ch determined by the maximum propagation
speed in the system. The CFL condition was set to CCFL = 0.95.
We observe that the loop profile is only kept when the GLM is taken
into account.

4.3.2 Current Sheet

This problemwas first discussed inHawley&Stone (1995). Initially,
a region is uniformly filled with a gas at rest. The magnetic field
is initialized in such a way that this switches signs at the slices
x = +0.25 and x = −0.25. Then we perturb the system with a
sinusoidal velocity function in y, which generates nonlinear, linearly
polarized Alfvén waves. Because the magnetic pressure does not
remain constant, these Alfvén waves turn into magnetosonic waves.
Magnetic reconnection occurs because of the two current sheets at
x = ±0.25. Additionally, since the parameter β < 1, the magnetic
reconnection drives highly over-pressurized regions, which launch
magnetosonicwaves transverse to the field, causingmagnetic energy
to be transformed into thermal energy (Hawley&Stone 1995). Large
magnetic field gradients are produced close to the points where the
magnetic reconnection take place. Because of that, this test problem
is useful to check if the algorithm can handle these features.

For the simulation,we consider the computational domain to be
the box [−0.5,+0.5]× [−0.5,+0.5]. We set the density and pressure
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Table 3. Riemann problems for the magnetohydrodynamics equations. The initial states have been taken from Ryu & Jones (1995a). The adiabatic index is set
to γ = 5/3 and the computational domain is the interval [0, 1]. For the problems 1 to 3, the magnetic field components have to be divided by

√
4π.

Test State ρ vx vy vz p Bx By Bz

RP-1 ûL 1.00 10.00 0.00 0.00 20.00 5.00 5.00 0.00
ûR 1.00 −10.00 0.00 0.00 1.00 5.00 5.00 0.00

RP-2 ûL 1.00 0.00 0.00 0.00 1.00 3.00 5.00 0.00
ûR 0.10 0.00 0.00 0.00 10.00 3.00 2.00 0.00

RP-3 ûL 1.08 1.20 0.01 0.50 0.95 2.00 3.60 2.00
ûR 1.00 0.00 0.00 0.00 1.00 2.00 4.00 2.00

RP-4 ûL 1.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00
ûR 0.20 0.00 0.00 0.00 0.10 1.00 0.00 0.00

RP-5 ûL 1.00 0.00 0.00 0.00 1.00 0.70 0.00 0.00
ûR 0.30 0.00 0.00 1.00 0.20 0.70 1.00 0.00

RP-6 ûL 1.00 0.00 0.00 0.00 1.00 0.75 1.00 0.00
ûR 0.125 0.00 0.00 0.00 0.10 0.75 −1.00 0.00

Magnetic Pressure, t = 0.0

2.0

4.0

·10−7 Magnetic Pressure, t = 2.0

2.0

4.0

·10−7

Magnetic Pressure, t = 0.0

2.0

4.0

·10−7 Magnetic Pressure, t = 2.0

2.0

4.0

·10−7

Figure 7. Magnetic field loop advection. Contour plots of the magnetic pressure without divergence cleaning (top) and with divergence cleaning (bottom)
at time t = 0.0 (left) and at time t = 2.0 (right). The solution was computed with a finite volume method with WENO7 reconstruction. The computational
domain is the box [−1.0, +1.0] × [−0.5, +0.5], discretized by using a mesh of 800 × 400 cells.

uniform in the whole domain, with ρ = 1.0, and p = 0.5β, where β
is an input parameter which represents the ratio of gas pressure to
magnetic energy density. We set vy = vz = 0, and vx = A sin(2πy),
where A is a parameter that is typically used to test the robustness
of the algorithm. We set Bx = Bz = 0, and By = 1 for |x | > 0.25
and By = −1 otherwise. We employ A = 0.1 and β = 0.1 in
our simulations. An adiabatic equation of state with γ = 5/3 is
considered. At the boundaries of the domain we consider periodic
boundary conditions. The simulation time is t f = 10.0, and in
the figure 8 are depicted the density at times t ∈

{
5.0, 7.5

}
obtained

with the finite volume scheme with WENO7 reconstruction. The
CFL condition was set to CCFL = 0.95. The results are quite similar
to those obtained in Stone et al. (2008), but also they show the
robustness of the code when tackling complex flow configurations
with very high-order WENO reconstruction operators.

4.3.3 Orszag-Tang Vortex

This problem was first studied in Orszag & Tang (1979) for the in-
compressible MHD equations. Many authors have used the Orszag-
Tang vortex for the compressibleMHDequations as a test problem in
order to know how robust is the employed numerical scheme at han-
dling the formation and the interactions of MHD shocks (Zachary
et al. 1994; Ryu & Jones 1995a; Ryu et al. 1998; Dai & Woodward
1998; Helzel et al. 2011; Jiang &Wu 1999; Tóth 2000; Londrillo &
del Zanna 2000). The initial flow profile, which consists of smooth
initial data, is obtained by the superposition of a velocity vortex
with a magnetic vortex. Because of this highly unstable setup, a
broad range of MHD waves are generated, interacting with each
other, making a transition towards turbulence.

For this problem, the computational domain is given by the
box [0, 1] × [0, 1]. We set the density and pressure uniform in the
whole domain, with ρ = γ2 and p = γ. With this choice of the
density and pressure we have a sound speed cs = 1. For the 2D case
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Figure 8. Current sheet problem. Contour plots of the density at times t = 5.0 (left) and t = 7.5 (right). The calculations were performed with a RKFV with
WENO7 reconstruction. The computational domain is the box [−0.5, +0.5] × [−0.5, +0.5], discretized by using a mesh of 600 × 600 cells.

of the Orszag-Tang vortex, the velocity has the following profile

vx = − sin(2πy), vy = + sin(2πx), vz = 0. (37)

The magnetic field is given by

Bx = − sin(2πy), By = + sin(4πx), Bz = 0. (38)

An adiabatic equation of state with γ = 5/3 is considered. At the
boundaries of the domain we consider periodic boundary condi-
tions. The simulation time is t f = 1.0, and in the figure 9 are
depicted the density and pressure at time t = 0.5. The computa-
tional domain is decomposed into 600 × 600 cells. The WENO7
reconstruction is used in smooth parts of the flow and the WENO3
in regions with shocks. The divergence cleaning of Dedner et al.
(2002) was used, with cr = 0.18, and ch determined by the max-
imum propagation speed in the system. We set the CFL condition
to CCFL = 0.95. For this very demanding problem, all schemes
(WENO3, WENO5 and WENO7) are very stable and robust. The
code was able to handle very well the shock waves and their in-
teractions with the other flow structures emerging in the evolution
of this configuration. In the figure 10 is plotted the pressure along
the slices y = 0.4277 and y = 0.3125 at time t = 0.5 for different
mesh resolutions and different WENO reconstruction operators. It
is observed the lack of oscillations in these slices for all WENO
reconstructions.

4.3.4 Cylindrical Blast Wave

This problem concernswith the formation and propagation of strong
shock waves in a highly magnetized medium (Zachary et al. 1994;
Londrillo& del Zanna 2000; Stone et al. 2008;Mignone et al. 2010).
Initially, a cylindrical region located in the center of a domain is
filled with a magnetized overpressured gas. As result, a strong shock
wave moving outwards is formed. This test is very difficult for any
numerical method in the sense that the code can crash because of
the formation of unphysical values in quantities like the density
or the pressure. If periodic boundary conditions are used, then the
interactions of the shock waves lead to very complex configurations.

For this problem, the computational domain is given by the box
[0, 1] × [0, 1]. We set the density and pressure uniform in the whole

domain, with ρ = 1 and p = 0.1. The pressure in the cylindrical
region (x − xc )2 + (y − yc )2 < R, with (xc, yc ) = (0.5, 0.5),
and R = 0.1, is p = 10.0. Initially, the velocity is set to zero,
that is vx = vy = vz = 0. For the 2D case, the magnetic field
is set to Bx = By = Bz = 1/

√
2. An adiabatic equation of state

with γ = 5/3 is considered. At the boundaries of the domain we
consider periodic boundary conditions. The simulation time is t f =
0.5, and in the figure 11 are depicted the density at times t =
0.1, and t = 0.5. The computational domain is decomposed into
600 × 600 cells. The reconstruction operator used for this problem
was the WENO7, combined with the WENO3 for shock regions.
The divergence cleaning of (Dedner et al. 2002) was used, with
cr = 0.18. We set the CFL condition to CCFL = 0.95. The finite
volume scheme effectively resolves the strong gradients arising after
the release of the cylindrical region.

4.3.5 Rotor Problem

The rotor problem was first proposed in Balsara & Spicer (1999b),
and also it was studied in Tóth (2000). It consists of a high-density,
rapidly spinning fluid in a low-density fluid. Initially, both fluids are
subject to an uniformmagnetic field. Because of the rapidly rotating
fluid, torsional Alfvén waves are launched into the fluid at rest. As a
consequence the rotor suffers a decrease in its angular momentum.

The initial configuration of this problem is as follows: The
computational domain is the box [0, 1]×[0, 1].We set the density and
pressure uniform in the ambient medium, with ρ = 1.0 and p = 1.0.
Inside the cylindrical rotor (0.0 ≤ (x − xc )2 + (y − yc )2 ≤ 0.1,
with (xc, yc ) = (0.5, 0.5)) we set the density ρ = 10.0, and the
pressure is the same as in the ambient fluid. The velocity in the
ambient medium is initially set to zero, that is vx = vy = vz = 0.
The rotor has an angular velocity ω such that v = ωr = 1 at
r = 0.1. A linear taper is applied to the velocity and density field,
however only in a very small range 0 ≤ r ≤ 1.115 so that the
density and the velocity match those of the ambient fluid at rest at
a radius of R = 1.115. The magnetic field is set to Bx = 5.0, and
By = Bz = 0 in the whole computational domain. An adiabatic
equation of state with γ = 7/5 is considered. At the boundaries
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Figure 9. Orszag-Tang vortex problem. Contour plots of the density (left) and the pressure (right) at time t = 0.5. Computations were done with a RKFV
method with WENO7 reconstruction. The computational domain is the box [0, 1] × [0, 1], discretized by using a mesh of 600 × 600 cells.
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Figure 10. Orszag-Tang vortex problem. Plots of the pressure along the
slices y = 0.3125 (top) and y = 0.4277 (bottom) at time t = 0.5 for
different mesh resolutions and different WENO reconstruction operators.

of the domain we consider transmissive boundary conditions. The
computational domain is discretized using 600 × 600 finite volume
cells. The WENO7 reconstruction is used in smooth parts of the
flow and the WENO3 in regions with shocks/discontinuities. The
divergence cleaning of (Dedner et al. 2002) was used, with cr =
0.18, and ch was determined by the maximum wave propagation
speed in the system. We set the CFL condition to CCFL = 0.95.

This problem is extremely difficult for any numerical method,
even for low-order schemes. A mechanism to preserve the positivity
of the density and pressure has to be kept in mind for this problem,
and efficiently combined with the shock capturing approach. The
end simulation time is t f = 0.5, and in the figure 12 are depicted the
density, pressure, Mach number, and the magnitude of the magnetic
field at time t = 0.25. In the plot for the Mach number is clearly
visible that the fluid inside the rotor is still rotating with uniform

angular speed. In the figure 13 is plotted the pressure along the slices
x = 0.5 and y = 0.5 at time t = 0.25 for different mesh resolutions
and different WENO reconstruction operators.

4.3.6 Cloud-Shock Interaction

This problemconsists in the interaction of a strong shockwavewith a
dense cloud. We follow mainly the setup presented by (Tóth 2000),
which is basically similar to the discussed by (Dai & Woodward
1994b).

The computational domain is the box [0, 2] × [0, 1]. The dis-
continuity is located at x = 1.2 with the left and right states given
by

ûL =

*..............
,

3.86859
0.0
0.0
0.0

167.345
0.0

2.1826182
−2.1826182

+//////////////
-

, ûR =

*..............
,

1.0
−11.2536

0.0
0.0
1.0
0.0

0.56418958
0.56418958

+//////////////
-

. (39)

The cloud is assumed to be a high-density cylinder, which center is
located at (1.6, 0.5). Its radius is r = 0.15, and its density and pres-
sure are ρ = 10.0, p = 1.0. The cloud is in hydrostatic equilibrium
with the ambient gas. An adiabatic equation of state with γ = 5/3
is considered. At the boundaries of the domain we consider trans-
missive boundary conditions. The end simulation time is t f = 0.1,
and in the figure 14 are depicted the density, gas pressure, and the
magnitude of the velocity at time t = 0.1, when the MHD equations
were solved with the RKFV method and using the WENO7 recon-
struction with WENO3 as shock capturing. The CFL condition was
set to CCFL = 0.95.

4.3.7 Kelvin-Helmholtz Instability

The Kelvin-Helmholtz instability occurs when a perturbation is in-
troduced to a system with a velocity shear. Here, we run this test
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Figure 11. Cylindrical blast wave. Contour plots of the density (left) and pressure (right) at times t = 0.10 (top) and t = 0.50 (bottom) obtained with a finite
volume method with WENO7 reconstruction. The computational domain is the box [0, 1] × [0, 1], discretized by using a mesh of 600 × 600 cells.

problem to demonstrate the algorithm’s ability to evolve a linear
perturbation into nonlinear magnetohydrodynamic turbulence. As
a test of the linear regime, one can compare the growth rate of the
instability with the analytic result before the instability becomes
nonlinear. A single mode perturbation is needed for such a compar-
ison.

The computational domain is the box [−0.5,+0.5] ×
[−0.5,+0.5]. The density is set to ρ = 1.0 for |y | ≤ 0.25, and
ρ = 2.0 for |y | < 0.25. We set the pressure uniform in the whole
domain, with p = 2.5. We set vx = 0.5 if |y | ≤ 0.25, and vx = −0.5
if |y | < 0.25. The shear velocity is given by

vx (x) =



+vshear + A0 sin(2πx), if y ≥ 0.25;
−vshear − A0 sin(2πx), if y < 0.25;

(40)

where vshear = 0.5. The instability is seeded by adding a small
perturbation in the transverse component of the velocity,

vy (x) =



+A0 sin(2πx), if y ≥ 0.25;
−A0 sin(2πx), if y < 0.25;

(41)

where A0 = 0.01 is the perturbation amplitude. The components of
the magnetic field are given by Bx = 0.2, and By = Bz = 0. An
adiabatic equation of state with γ = 7/5 is considered. At the bound-
aries of the domain we consider periodic boundary conditions. The
computational domain is decomposed into 600 × 600 cells. The
WENO7 reconstruction is used in smooth parts of the flow and the
WENO3 in regions with discontinuities. The divergence cleaning
of (Dedner et al. 2002) was used. The CFL condition was set to
CCFL = 0.95. The simulation is run until t f = 6.0, and in the fig-
ure 15 are depicted the density at times t ∈

{
1.0, 2.0, 3.0, 6.0

}
. In

the the figure 16 is plotted the area-averaged of the y-component of
the velocity during the linear growth phase of the Kelvin-Helmholtz
instability when a high-order finite volume scheme with different
resolutions and WENO reconstruction operators is used.

5 CONCLUSIONS

xtroem-fv is a new simulation code for computational astrophysics
based on state-of-the-art very high-order finite volume WENO
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Figure 12. Rotor problem. Contour plots of the density, pressure, Mach number, and the magnitude of the magnetic field at time t = 0.25. These calculations
were performed with a RKFV with hybrid WENO7/WENO3 reconstruction. The computational domain is the box [0, 1] × [0, 1], discretized by using a mesh
of 600 × 600 cells.

schemes. In this work, we have focused on the implementation
details of the ideal magnetohydrodynamics equations in xtroem-
fv. Algorithms for achieving arbitrary high-order of accuracy in
space are discussed in detail on Cartesian meshes. For this purpose,
the WENO schemes are used in combination with a fallback ap-
proach as shock capturing strategy. The point values of the solution
at cell interfaces are obtained with the reconstruction procedure.
The input values of the reconstruction operator are the cell averages
of the solution written in primitive variables. It is not necessary
to use the characteristic variables because the use of the fallback
approach, and as consequence, the expensive computation of the
left and right eigenvectors of the physical flux Jacobian matrices
is avoided. This scheme is quite robust and offers the possibil-
ity of using arbitrary high-order reconstruction operators in those
smooth parts of the flow, and stable reconstruction operators (typi-
cally second or third order accurate) when discontinuities or strong
rarefactions take place.

xtroem-fv includes several Riemann solvers for computing
the solution values at cell interfaces. The Rusanov numerical flux

showed to be the most robust and stable among all numerical fluxes
considered in our calculations. The other Riemann solvers imple-
mented (HLL, HLLC and HLLD) failed to compute the cell inter-
face values for some test problems with very high-order of accuracy,
especially those involving strong shock waves and complicated in-
teractions of these with the other flow structures. Strong Stability-
PreservingRunge-Kutta schemeswere also used in order to integrate
in time the system of equations obtained from the finite volume dis-
cretization. The divergence constraint of the magnetic field in the
MHD equations has to be kept from the numerical point of view. For
that purpose, the divergence cleaning mechanism of Dedner et al.
(2002) has been used because its simplicity, ease of implementa-
tion, and robustness. High-order numerical computations confirm
the reliability and feasibility of the divergence cleaning for keeping
the solenoidal constraint.

xtroem-fv was subject to a wide range of problems in one
and two space dimensions.Multidimensional smooth flow problems
were used for probing the high-order of accuracy of the numerical
algorithms, and the results confirm that xtroem-fv numerically
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Figure 13. Rotor problem. Plots of the y-component of the magnetic field
along the slice y = 0.5 (top) and plots of the x-component of the magnetic
field along the slice x = 0.5 (bottom) at time t = 0.25 for different mesh
resolutions and different WENO reconstruction operators.

converges to the expected rate. Additionally, one-dimensional and
two-dimensional flows containing very challenging structures like
discontinuities, strong rarefactions, and shock waves, have been
simulated with xtroem-fv. The followed strategy for the shock
capturing allowed us to compute such problems with very high-
order WENO reconstruction operators. All two-dimensional calcu-
lations reported in this work were obtained with aWENO7 operator,
combined with a WENO3 for troubled zones. Computations with
WENO5 andWENO7 reconstruction operators look very similar for
this kind of problems, although only those obtained with WENO7
have been reported.

Further work involves the implementation onxtroem-fv of the
equations of relativistic astrophysics on flat spacetimes (relativistic
hydrodynamics and relativistic magnetohydrodynamics), resistive
magnetohydrodynamics and resistive relativistic magnetohydrody-
namics. Moreover, numerical flow simulations with complex and
highly dynamical structures require efficient adaptive mesh refine-
ment (AMR) algorithms (see for example, Berger & Oliger (1984);
Berger & Colella (1989); Bell et al. (1994); Balsara (2001); Teyssier
(2002);Anderson et al. (2006); Zhang&MacFadyen (2006); van der
Holst & Keppens (2007); Miniati & Martin (2011); Keppens et al.
(2012); Hu (2013); Dumbser et al. (2013); Bryan et al. (2014)),
because such methods can save a lot of computational effort and
memory consumption over a static mesh approach. A new version of
xtroem-fv including AMR techniques is under development. We
are focusing on unstructured hexahedral meshes with tree-based
adaptive mesh refinement algorithms, which allow recursive grid
refinements on a cell-by-cell basis (Teyssier 2002; van der Holst
& Keppens 2007; Keppens et al. 2012). With AMR, xtroem-fv
will be able to control the mesh resolution and resolve the small
flow structures in an very efficient manner. Applications to mag-
netohydrodynamic turbulence will be also considered within this
context.
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Figure 14. Cloud-Shock Interaction. Contour plots of the density (top),
pressure (middle), and velocity magnitude (bottom) at time t = 0.1. The
computations were done with a RKFV with WENO7 reconstruction. The
computational domain is the box [0, 2]× [0, 1], discretized by using a mesh
of 800 × 400 cells.
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Figure 16.Kelvin-Helmholtz instability. Area-averaged of the y-component
of the velocity during the linear growth phase of the Kelvin-Helmholtz
instability. Computations were done with a high-order finite volume scheme
with different resolutions and WENO reconstruction operators.
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APPENDIX A: WENO RECONSTRUCTION PROCEDURE

A1 Basic Idea

We are going to present theWENO reconstruction of third, fifth and
seventh order for the following interpolation points:

x = xi− 1
2
, x = xi+ 1

2
, x = xi− 1

2
√
3
, x = xi+ 1

2
√
3
. (A1)

The general idea will be described in the following for the interpo-
lation point x = xi+ 1

2
but the procedure is completely similar for

the other points.
Let be I = [a, b]. Let a < · · · < xi−1 < xi < xi+1 < · · · < b

be a partition of I. Let us assume that the mesh is uniform, i.e.,
∆x = xi+1 − xi = constant. Therefore we can take xi = i∆x. Let
u(x) be a function. Let us assume that all cell averages

ūi =
1
∆x

∫ x
i+ 12

x
i− 12

u(x) dx (A2)

over the intervals Ii =
(
xi− 1

2
, xi+ 1

2

)
are given. As an example, let

us find an approximation of the function u(x) at a point other than
the cell barycenter xi , for instance, the point x = xi+ 1

2
. Defining

the primitive function u(x) by

U (x) =
∫ x

x
− 12

u
(
ζ
)
dζ (A3)

where the lower limit is irrelevant and can be replaced for any fixed
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point, then clearly we have

U
(
xi+ 1

2

)
=

∫ x
i+ 12

x
− 12

u
(
ζ
)
dζ

=

i∑
l=0

∫ x
l+ 12

x
l− 12

u
(
ζ
)
dζ =

i∑
l=0
∆x ūl

(A4)

That is, knowing all the cell averages ūl , we also know the point
values of the primitive function U

(
xi+ 1

2

)
at all half nodes. There-

fore, interpolation polynomials can be constructed for the primitive
function U (x). The derivative of such an interpolation polynomial
for U (x) can then be used as an approximation to u(x) = U ′(x).

Let Pk (x) be the polynomials of degree at most N + 1 which
interpolates the function U (x) at the N + 2 points x j+ 1

2
, for j =

i − N − 3 + k + l, with l = 1, . . . , N + 2. Let us approximate the
value of the function u(x) at xi+ 1

2
, ui+ 1

2
by using polynomials of

degree N . For that, we can use N +1 possible stencils Sk containing
the interval Ii and build unique interpolation polynomials of degree
at most N , pk (x) = P′

k
(x) that reconstruct the function u(x) over

the stencil Sk =
{
I j �� j = i − N − 2 + k + l, with l = 1, . . . , N + 1

}

in the sense that

(p̄k ) j =
1
∆x

∫ x
j+ 12

x
j− 12

pk (x) dx = ū j, (A5)

approximates the value u(k )
i+ 1

2
≡ pk (xi+ 1

2
), for j = i − N − 2+ k + l,

with l = 1, . . . , N + 1. All these polynomials satisfy pk (xi ) = ui .

A2 WENO3 scheme

Let us approximate the value of the function u(x) at the points xi− 1
2
,

xi+ 1
2
, xi− 1

2
√
3
and xi+ 1

2
√
3
by using polynomials of degree N = 1. For

the stencil Sk we get the corresponding values u(k )
i− 1

2
, u(k )

i+ 1
2
, u(k )

i− 1
2
√
3

and u(k )
i+ 1

2
√
3

. Let us write down the stencils

S1 = {Ii−1, Ii } , S2 = {Ii, Ii+1} . (A6)

The corresponding interpolated values for the point xi− 1
2
are

u(1)
i− 1

2
=

1
2
(
ūi−1 + ūi

)
, (A7)

u(2)
i− 1

2
=

1
2
(
3ūi − ūi+1

)
, (A8)

and the corresponding interpolated values for the point xi+ 1
2
are

u(1)
i+ 1

2
=

1
2
(
−ūi−1 + 3ūi

)
, (A9)

u(2)
i+ 1

2
=

1
2
(
ūi + ūi+1

)
. (A10)

In the same way as before, the corresponding interpolated values
for the point xi− 1

2
√
3
are

u(1)
i− 1

2
√
3

=
1
6
(√

3ūi−1 + 6ūi −
√
3ūi

)
, (A11)

u(2)
i− 1

2
√
3

=
1
6
(√

3ūi + 6ūi −
√
3ūi+1

)
, (A12)

and the corresponding interpolated values for the point xi+ 1
2
√
3
are

u(1)
i+ 1

2
√
3

=
1
6
(
−
√
3ūi−1 + 6ūi +

√
3ūi

)
, (A13)

u(2)
i+ 1

2
√
3

=
1
6
(
−
√
3ūi + 6ūi +

√
3ūi+1

)
. (A14)

If we choose the large stencil

S = {Ii−1, Ii, Ii+1} (A15)

which is the union of all 2 stencils Sk , then we are able to find
an interpolation polynomial p(x) of degree at most 2, satisfying
p(x j ) = u j for i − N ≤ j ≤ i + N and giving the approximations
ui− 1

2
≡ p(xi− 1

2
), ui+ 1

2
≡ p(xi+ 1

2
),

ui− 1
2
=

1
6
(
2ūi−1 + 5ūi − ūi+1

)
, (A16)

ui+ 1
2
=

1
6
(
−ūi−1 + 5ūi + 2ūi+1

)
, (A17)

and the approximations ui− 1
2
√
3
≡ p(xi− 1

2
√
3

) and ui+ 1
2
√
3
≡

p(xi+ 1
2
√
3

)

ui− 1
2
√
3
=

1
12

(√
3ūi−1 + 12ūi −

√
3ūi+1

)
, (A18)

ui+ 1
2
√
3
=

1
12

(
−
√
3ūi−1 + 12ūi +

√
3ūi+1

)
, (A19)

provided that the function is smooth in the large stencil S.

A3 WENO5 scheme

Let us approximate the value of the function u(x) at the points xi− 1
2
,

xi+ 1
2
, xi− 1

2
√
3
and xi+ 1

2
√
3
by using polynomials of degree N = 2. For

the stencil Sk we get the corresponding values u(k )
i− 1

2
, u(k )

i+ 1
2
, u(k )

i− 1
2
√
3

and u(k )
i+ 1

2
√
3

. Let us write down the stencils

S1 = {Ii−2, Ii−1, Ii } ,

S2 = {Ii−1, Ii, Ii+1} ,

S3 = {Ii, Ii+1, Ii+2} .

(A20)

The corresponding interpolated values for the point xi− 1
2
are

u(1)
i− 1

2
=

1
6
(
−ūi−2 + 5ūi−1 + 2ūi

)
, (A21)

u(2)
i− 1

2
=

1
6
(
2ūi−1 + 5ūi − ūi+1

)
, (A22)

u(3)
i− 1

2
=

1
6
(
11ūi − 7ūi+1 + 2ūi+2

)
, (A23)

and the corresponding interpolated values for the point xi+ 1
2
are

u(1)
i+ 1

2
=

1
6
(
2ūi−2 − 7ūi−1 + 11ūi

)
, (A24)

u(2)
i+ 1

2
=

1
6
(
−ūi−1 + 5ūi + 2ūi+1

)
, (A25)

u(3)
i+ 1

2
=

1
6
(
2ūi + 5ūi+1 − ūi+2

)
. (A26)
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In the same way as before, the corresponding interpolated values
for the point xi− 1

2
√
3
are

u(1)
i− 1

2
√
3

=
1
12

(
−
√
3ūi−2 + 4

√
3ūi−1 + 12ūi − 3

√
3ūi

)
, (A27)

u(2)
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2
√
3
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1
12

(√
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√
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)
, (A28)
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2
√
3

=
1
12

(
12ūi + 3

√
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√
3ūi+1 +

√
3ūi+2

)
, (A29)

and the corresponding interpolated values for the point xi+ 1
2
√
3
are

u(1)
i+ 1

2
√
3

=
1
12

(√
3ūi−2 − 4

√
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)
, (A30)
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)
, (A31)
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2
√
3

=
1
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(
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√
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√
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√
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)
. (A32)

If we choose the large stencil

S = {Ii−2, Ii−1, Ii, Ii+1, Ii+2} (A33)

which is the union of all 3 stencils Sk , then we are able to find
an interpolation polynomial p(x) of degree at most 4, satisfying
p(x j ) = u j for i − N ≤ j ≤ i + N and giving the approximations
ui− 1

2
≡ p(xi− 1

2
), ui+ 1

2
≡ p(xi+ 1

2
),

ui− 1
2
=

1
60

(
− 3ūi−2 + 27ūi−1

+ 47ūi − 13ūi+1 + 2ūi+2
)
,

(A34)

ui+ 1
2
=

1
60

(
+ 2ūi−2 − 13ūi−1

+ 47ūi + 27ūi+1 − 3ūi+2
)
,

(A35)

and the approximations ui− 1
2
√
3
≡ p(xi− 1

2
√
3

) and ui+ 1
2
√
3
≡

p(xi+ 1
2
√
3

)

ui− 1
2
√
3
=

1
4320

(
− 70
√
3ūi−2 − ūi−2 + 500

√
3ūi−1

+ 4ūi−1 + 4314ūi − 500
√
3ūi+1

+ 4ūi+1 + 70
√
3ūi+2 − ūi+2

)
,

(A36)

ui+ 1
2
√
3
=

1
4320

(
+ 70
√
3ūi−2 − ūi−2 − 500

√
3ūi−1

+ 4ūi−1 + 4314ūi + 500
√
3ūi+1

+ 4ūi+1 − 70
√
3ūi+2 − ūi+2

)
,

(A37)

provided that the function is smooth in the large stencil S.

A4 WENO7 scheme

Let us approximate the value of the function u(x) at the points xi− 1
2
,

xi+ 1
2
, xi− 1

2
√
3
and xi+ 1

2
√
3
by using polynomials of degree N = 3. For

the stencil Sk we get the corresponding values u(k )
i− 1

2
, u(k )

i+ 1
2
, u(k )

i− 1
2
√
3

and u(k )
i+ 1

2
√
3

. Let us write down the stencils

S1 = {Ii−3, Ii−2, Ii−1, Ii } , S2 = {Ii−2, Ii−1, Ii, Ii+1} ,

S3 = {Ii−1, Ii, Ii+1, Ii+2} , S4 = {Ii, Ii+1, Ii+2, Ii+3} .
(A38)

The corresponding interpolated values for the point xi− 1
2
are

u(1)
i− 1

2
=

1
12

(
ūi−3 − 5ūi−2 + 13ūi−1 + 3ūi

)
, (A39)

u(2)
i− 1

2
=

1
12

(
−ūi−2 + 7ūi−1 + 7ūi − ūi+1

)
, (A40)

u(3)
i− 1

2
=

1
12

(
3ūi−1 + 13ūi − 5ūi+1 + ūi+2

)
, (A41)

u(4)
i− 1

2
=

1
12

(
25ūi − 23ūi+1 + 13ūi+2 − 3ūi+3

)
, (A42)

and the corresponding interpolated values for the point xi+ 1
2
are

u(1)
i+ 1

2
=

1
12

(
−3ūi−3 + 13ūi−2 − 23ūi−1 + 25ūi

)
, (A43)

u(2)
i+ 1

2
=

1
12

(
ūi−2 − 5ūi−1 + 13ūi + 3ūi+1

)
, (A44)

u(3)
i+ 1

2
=

1
12

(
−ūi−1 + 7ūi + 7ūi+1 − ūi+2

)
, (A45)

u(4)
i+ 1

2
=

1
12

(
3ūi + 13ūi+1 − 5ūi+2 + ūi+3

)
. (A46)

In the same way as before, the corresponding interpolated values
for the point xi− 1

2
√
3
are

u(1)
i− 1

2
√
3

=
1
216

(
+ 11
√
3ūi−3 − 51

√
3ūi−2

+ 105
√
3ūi−1 + 216ūi − 65

√
3ūi

)
,

(A47)

u(2)
i− 1

2
√
3

=
1
216

(
− 7
√
3ūi−2 + 39

√
3ūi−1

+ 216ūi − 21
√
3ūi − 11

√
3ūi+1

)
,

(A48)

u(3)
i− 1

2
√
3

=
1
216

(
+ 11
√
3ūi−1 + 216ūi

+ 21
√
3ūi − 39

√
3ūi+1 + 7

√
3ūi+2

)
,

(A49)

u(4)
i− 1

2
√
3

=
1
216

(
+ 216ūi + 65

√
3ūi

− 105
√
3ūi+1 + 51

√
3ūi+2 − 11

√
3ūi+3

)
,

(A50)

and the corresponding interpolated values for the point xi+ 1
2
√
3
are

u(1)
i+ 1

2
√
3

=
1
216

(
− 11
√
3ūi−3 + 51

√
3ūi−2

− 105
√
3ūi−1 + 216ūi + 65

√
3ūi

)
,

(A51)

u(2)
i+ 1

2
√
3

=
1
216

(
+ 7
√
3ūi−2 − 39

√
3ūi−1

+ 216ūi + 21
√
3ūi + 11

√
3ūi+1

)
,

(A52)

u(3)
i+ 1

2
√
3

=
1
216

(
− 11
√
3ūi−1 + 216ūi

− 21
√
3ūi + 39

√
3ūi+1 − 7

√
3ūi+2

)
,

(A53)

u(4)
i+ 1

2
√
3

=
1
216

(
+ 216ūi − 65

√
3ūi

+ 105
√
3ūi+1 − 51

√
3ūi+2 + 11

√
3ūi+3

)
.

(A54)

If we choose the large stencil

S = {Ii−3, Ii−2, Ii−1, Ii, Ii+1, Ii+2, Ii+3} (A55)

which is the union of all 4 stencils Sk , then we are able to find
an interpolation polynomial p(x) of degree at most 6, satisfying
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p(x j ) = u j for i − N ≤ j ≤ i + N and giving the approximations
ui− 1

2
≡ p(xi− 1

2
) and ui+ 1

2
≡ p(xi+ 1

2
)

ui− 1
2
=

1
420

(
+ 4ūi−3 − 38ūi−2 + 214ūi−1 + 319ūi

− 101ūi+1 + 25ūi+2 − 3ūi+3
)
,

(A56)

ui+ 1
2
=

1
420

(
− 3ūi−3 + 25ūi−2 − 101ūi−1 + 319ūi

+ 214ūi+1 − 38ūi+2 + 4ūi+3
)
,

(A57)

and the approximations ui− 1
2
√
3
≡ p(xi− 1

2
√
3

) and ui+ 1
2
√
3
≡

p(xi+ 1
2
√
3

)

ui− 1
2
√
3
=

(
+ 3717

√
3ūi−3 + 50ūi−3 − 32508

√
3ūi−2

− 552ūi−2 + 144585
√
3ūi−1 + 1758ūi−1

+ 1086128ūi − 144585
√
3ūi+1 + 1758ūi+1

+ 32508
√
3ūi+2 − 552ūi+2 − 3717

√
3ūi+3

+ 50ūi+3
)
/1088640,

(A58)

ui+ 1
2
√
3
=

(
− 3717

√
3ūi−3 + 50ūi−3 + 32508

√
3ūi−2

− 552ūi−2 − 144585
√
3ūi−1 + 1758ūi−1

+ 1086128ūi + 144585
√
3ūi+1 + 1758ūi+1

− 32508
√
3ūi+2 − 552ūi+2 + 3717

√
3ūi+3

+ 50ūi+3
)
/1088640,

(A59)

provided that the function is smooth in the large stencil S.

A5 WENO algorithm

The WENO idea is to choose the final approximation as a convex
combination of the approximations u(k )

i+ 1
2

ui+ 1
2
=

N+1∑
k=1

wku(k )
i+ 1

2
, (A60)

where wk ≥ 0,
∑N+1

k=1 wk = 1.

A6 Linear weights

The approximations calculated by using the large stencils can be
written as a linear convex combination of the approximations u(k )

i+ 1
2

based on the small stencils Si

ui+ 1
2
=

N+1∑
k=1

γku(k )
i+ 1

2
(A61)

where the constants γ j satisfy
∑N+1

j=1 γ j = 1, are usually referred to
as the linear weights in the WENO literature. We provide the linear
weights for the points of interest considered before, namely, xi− 1

2
,

xi+ 1
2
, xi− 1

2
√
3
, and xi+ 1

2
√
3
, in the table A1.

To find the linear weights, simply solve for γ j in the following
equation system
N+1∑
i=1

γi p(i) (x) =
i+N∑

k=i−N

αkuk (x), (A62)

where the right hand side was determined with interpolation in the

Table A1. Linear weights for the WENO3, WENO5, andWENO7 schemes.

N γ x
i− 1

2
x
i+ 1

2
x
i− 1

2
√
3

x
i+ 1

2
√
3

1
γ1

2
3

1
3

1
2

1
2

γ2
1
3

2
3

1
2

1
2

2

γ1
3
10

1
10

210+
√
3

1080
210−

√
3

1080

γ2
3
5

3
5

11
18

11
18

γ3
1
10

3
10

210−
√
3

1080
210+

√
3

1080

3

γ1
4
35

1
35

11151+50
√
3

166320
11151−50

√
3

166320

γ2
18
35

12
35

168021+1174
√
3

388080
168021−1174

√
3

388080

γ3
12
35

18
35

168021−1174
√
3

388080
168021+1174

√
3

388080

γ4
1
35

4
35

11151−50
√
3

166320
11151+50

√
3

166320

large stencil. This system is not always solvable, and for some cases,
the linear weights are negative (see Shi et al. (2002)). All this means
that the WENO reconstruction procedure can only be applied for
certain points in the interval Ii =

(
xi− 1

2
, xi+ 1

2

)
.

A7 Nonlinear weights

The nonlinear weights wk satisfy the following requirements

• wk ≈ γk if u(x) is smooth in the big stencil S;
• wk ≈ 0 if u(x) has a discontinuity in the stencil Sk but is small

in at least one of the other stencils.

It can be shown (Jiang & Shu 1996) that, as long as

wk = γk + O(∆xN ), (A63)

the WENO interpolation ui+ 1
2
is (2N + 1)th order accurate,

ui+ 1
2
− u(xi+ 1

2
) = O(∆x2N+1), (A64)

when the function u(x) is smooth in the large stencil S. The sec-
ond requirement above would guarantee a nonoscillatory, at least
N th order accurate WENO approximation ui+ 1

2
, since the contri-

bution from any stencil containing the discontinuity of u(x) has an
essentially zero weight.

The choice of the nonlinear weights wk relies on the smooth-
ness indicator βk , which measures the relative smoothness of the
function u(x) in the stencil Sk . The larger this smoothness indicator
βk , the less smooth the function u(x) is in the stencil Sk . In the
most of the WENO papers, the smoothness indicator is chosen as
in (Jiang & Shu 1996)

βk =

N∑
l=1
∆x2l−1

∫ x
i+ 12

x
i− 12

(
dl

dxl
pk (x)

)2
dx, (A65)

where N is the polynomial degree of pk (x) (in our examples,
N = 1, 2, 3). This is clearly just a scaled sum of the square L2

norms of all the derivatives of the relevant interpolation polynomial
pk (x) in the relevant interval [xi− 1

2
, xi+ 1

2
], where the interpolating

point is located. The scaling factor ∆x2l−1 is to make sure that the
final explicit formulae for the smoothness indicators do not depend
on the mesh size ∆x. Let us write the smoothness indicators for
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polynomials of degree N = 1

β1 = (ūi−1 − ūi )2 , (A66)

β2 = (ūi − ūi+1)2 , (A67)

and for polynomials of degree N = 2 we get

β1 =
1
3
(
+ 4ū2i−2 − 19ūi−1ūi−2 + 11ūi ūi−2

+ 25ū2i−1 + 10ū2i − 31ūi−1ūi
)
,

(A68)

β2 =
1
3
(
+ 4ū2i−1 − 13ūi ūi−1 + 5ūi+1ūi−1

+ 13ū2i + 4ū2i+1 − 13ūi ūi+1
)
,

(A69)

β3 =
1
3
(
+ 10ū2i − 31ūi+1ūi + 11ūi+2ūi

+ 25ū2i+1 + 4ū2i+2 − 19ūi+1ūi+2
)
,

(A70)

and for polynomials of degree N = 3 we get

β1 =
1
240

(
+ 547ū2i−3 − 3882ūi−3ūi−2 + 4642ūi−3ūi−1

− 1854ūi−3ūi + 7043ū2i−2 − 17246ūi−2ūi−1

+ 7042ūi−2ūi + 11003ū2i−1 − 9402ūi−1ūi

+ 2107ū2i
)
,

(A71)

β2 =
1

240
(
+ 267ū2i−2 − 1642ūi−2ūi−1 + 1602ūi−2ūi

− 494ūi−2ūi+1 + 2843ū2i−1 − 5966ūi−1ūi

+ 1922ūi−1ūi+1 + 3443ū2i − 2522ūi ūi+1

+ 547ū2i+1
)
,

(A72)

β3 =
1
240

(
+ 547ū2i−1 − 2522ūi−1ūi + 1922ūi−1ūi+1

− 494ūi−1ūi+2 + 3443ū2i − 5966ūi ūi+1

+ 1602ūi ūi+2 + 2843ū2i+1 − 1642ūi+1ūi+2

+ 267ū2i+2
)
,

(A73)

β4 =
1

240
(
+ 2107ū2i − 9402ūi ūi+1 + 7042ūi ūi+2

− 1854ūi ūi+3 + 11003ū2i+1 − 17246ūi+1ūi+2

+ 4642ūi+1ūi+3 + 7043ū2i+2 − 3882ūi+2ūi+3

+ 547ū2i+3
)
.

(A74)

Notice that these smoothness indicators are quadratic functions of
the values of u(x) in the relevant stencils. Equipped with these
smoothness indicators, we can now define the nonlinear weights as

wk =
w̃k∑N
i=1 w̃i

, with w̃k =
γk(

ε + βk
)2 . (A75)

Here ε is a small positive number used to avoid the denominator
becoming zero and is typically chosen to be ε = 10−6, but in our
calculations we have used ε = 10−24.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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