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Vers une approche unifiée pour la séparation aveugle de sources en sur et sous-déterminé, basée sur la parcimonie et la décorrélation

L'analyse en composantes indépendantes (ICA -Independant Component Analysis) est un des principaux outils pour la séparation aveugle de sources (BSS -Blind Source Seperation). Les études théoriques et expérimentales montrent que l'hypothèse d'indépendance semble bien adaptée pour la séparation des signaux audios. Ces dernières années, les approches par optimisation utilisant la parcimonie sont apparues comme une autre approche efficace pour la séparation de sources. Cet article commence par introduire une nouvelle approche de séparation aveugle de sources qui tire parti à la fois de la décorrélation (qui est une conséquence directe de l'indépendance) et de la parcimonie dans un dictionnaire de Gabor. On montre que l'approche proposée fonctionne à la fois pour les mélanges sur-déterminés et sous-déterminés. Les résultats expérimentaux illustrent les bonnes performances sur des mélanges de signaux audio.

Abstract -Independent component analysis (ICA) has been a major tool for blind source separation (BSS). Both theoretical and practical evaluations showed that the hypothesis of independence suits well for audio signals. In the last few years, optimization approach based on sparsity has emerged as another efficient implement for BSS. This paper starts from introducing some new BSS methods that take advantages of both decorrelation (which is a direct consequence of independence) and sparsity using overcomplete Gabor representation. It is shown that the proposed methods work in both under-determined and over-determined cases. Experimental results illustrate the good performances of these approaches for audio mixtures.

Introduction

Le modèle de mélange instantané de sources s'écrit

x = As + e , (1) 
où x ∈ R M ×T et s ∈ R N ×T sont respectivement les matrices des canaux observés et les signaux sources. A ∈ R M ×N est la matrice de mélange et e ∈ R M ×T le bruit de fond. Les méthodes d'ICA [START_REF] Comon | Handbook of Blind Source Separation : Independent component analysis and applications[END_REF] sont utilisées dans le cas sur-déterminé (M ≥ N ). Ces méthodes estiment les sources originales en minimisant un critère d'indépendance entre ces sources estimées. Dans le cas sous-déterminé (M < N ), une méthode en deux étapes est généralement utilisées : la matrice de mélange est d'abord estimée par une méthode de classification [START_REF] Arberet | A robust method to count and locate audio sources in a multichannel underdetermined mixture[END_REF], puis les sources sont estimées en utilisant le principe de parcimonie dans un dictionnaire temps-fréquence de type Gabor [START_REF] Yilmaz | Blind separation of speech mixtures via time-frequency masking[END_REF].

Récemment, il est montré dans [START_REF] Daubechies | Independent component analysis for brain fmri does not select for independence[END_REF] que, dans le contexte de l'imagerie par résonance magnétique fonctionnel (fMRI), les méthodes Infomax et FastICA utilisées pour l'ICA ont plutôt tendance à séparer des sources parcimonieuses plutôt que des sources indépendantes. Les auteurs concluent que des méthodes cherchant des décompositions en composantes parcimonieuses devraient être développées plutôt que chercher des composantes indépendantes. Cette remarque est à la base des méthodes développées dans cet article, où l'on montre qu'en combinant la décorrélation des sources dans le domaine tempo-rel, et la parcimonie dans le domaine temps-fréquence, on peut améliorer les performances de séparations. On propose alors plusieurs algorithmes pouvant être utilisés aussi bien dans les cas sur-déterminés que sous-déterminés.

Le reste de l'article est organisé comme suit. La section 2 exploite des résultats récents en optimisation pour pallier l'absence de preuve de convergence d'une méthode classique de séparation, de type GMCA [START_REF] Bobin | Sparsity and morphological diversity in blind source separation[END_REF]. La section 3 expose de nouvelles approches évaluées numériquement dans la section 4.

Notations et état de l'art 2.1 Notations

Soit Φ ∈ C T ×B la matrice associée à un dictionnaire de Gabor ajusté, qui conserve l'énergie du signal. Les sources s sont synthétisées par leurs coefficients de synthèse α ∈ C N ×B par s = αΦ * , où Φ * ∈ C B×T l'adjoint de Φ. Le problème de BSS se pose comme un problème d'optimisation jointe :

min α,A f (A, α) + Ψ(α) + g(A) (2) 
où f est l'attache aux données entre les observations x et les coefficients de synthèses α des sources via la matrice de mélangeA. Ψ permet de modéliser la parcimonie des coefficients α. On choisit ici une norme 1 classique dans un soucis de simplicité, mais de nombreux autres choix existent [START_REF] Balazs | Adapted and adaptive linear time-frequency representations : a synthesis point of view[END_REF]. g(A) permet de limiter l'ambiguité de séparation [START_REF] Boumaraf | Séparation aveugle de mélanges convolutifs de sources[END_REF] tel que le problème d'échelle entre s et A. Avec une attache aux données 2 :

min α,A L(A, α) = 1 2 x -AαΦ * 2 2 + λ α 1 + ı B (A) (3)
où ı B est l'indicatrice de l'ensemble B :

ı B (A) = 0, si a n 2 ≤ 1 ∀n + ∞, sinon (4) 
où a n est la n-ieme colonne de A.

Cette fonctionnelle apparaît naturellement dans la BSS, dès que l'on veut exploiter la parcimonie. En particulier, une fonctionnelle similaire est proposée dans l'approche GMCA (Generalized Morphological Component Analysis) [START_REF] Bobin | Sparsity and morphological diversity in blind source separation[END_REF] pour la séparation de mélanges sur-déterminés d'images.

Approche de type GMCA

Afin de minimiser (3), les auteurs de [START_REF] Bobin | Sparsity and morphological diversity in blind source separation[END_REF] proposent une approche intuitive de type "minimisation alternée", suivie par une projection de A sur B à chaque étape. Une version pratique de l'algorithme est donnée dans l'algorithme 1 (sans l'hypothèse de type "composantes morphologiques").

Algorithm 1: GMCA Initialisation : α 1 ∈ C N ×B , A 1 ∈ R M ×N , I ≥ 1, L 1 = A 1 2 , k = 1 ; repeat for i=1 :I do α k,i+1 = prox ψ L k (α k,i - ∇αf (A k ,α k,i ) L k ) ; α k+1 = α k,I ; A k+1/2 = xΦα * k+1 (α k+1 Φ * Φα * k+1 ) -1 ; a k+1,n = a k+1/2,n / a k+1/2,n if a k+1/2,n > 1 ; L k = A k+1 2 , k = k + 1; until convergence; où ∇ α f (A k , α) = -A T k (x -A k αΦ * )Φ et prox ψ L k (z) = argmin α 1 2 z -α 2 + 1 L k ψ(α)
est l'opérateur de proximité de ψ, c'est-à-dire le seuillage doux pour la norme 1 [START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF].

À cause de l'étape de projection, la convergence de cet algorithme n'est pas établie. Cependant, grâce aux travaux [START_REF] Bolte | Proximal alternating linearized minimization for nonconvex and nonsmooth problems[END_REF][START_REF] Chouzenoux | A block coordinate variable metric forward-backward algorithm[END_REF], on peut utiliser l'algorithme 2 pour minimiser (3) où G k et H k sont des matrices symétriques définies positives, et

prox U,ψ (z) = argmin α 1 2 (z -α)U, z -α + ψ(α)
pour toute matrices symétriques définies positives U.

Les choix simples G k = L k et H k = s k 2 I donne l'al- gorithme PALM (Proximal Alternating Linearized Minimiza- tion) [9]. Un autre choix intéressant est G k = L k I et H k = ∂f (A,α k+1 ) 2 ∂ 2 A = α k+1 Φ * Φα * k+1 . Dans ce cas, la deuxième Algorithm 2: PALM / BC-VMFB Initialisation : α 1 ∈ C N ×B , A 1 ∈ R M ×N , k = 1 ; repeat α k+1 = prox G k ,ψ (α k -∇ α f (A k , α k )G -1 k ) ; A k+1 = prox H k ,g (A k -∇ A f (A k , α k+1 )H -1 k ) ; k = k + 1;
until convergence; étape de l'algorithme 2 devient :

A k+1/2 = xΦα * k+1 (α k+1 Φ * Φα * k+1 ) -1 A k+1 = prox H k ,ı B (A k+1/2 ) (5) 
La première étape de (5) est la solution des moindres carrés de f (A) pour A. La seconde étape est une projection à métrique variable induit par α k+1 Φ * Φα * k+1 , qui peut être difficile à résoudre. Cependant, si à chaque étape les sources estimées s k = α k Φ * sont décorrélées, alors cela devient une simple projection orthogonale.

La section suivante propose deux approches pour prendre en compte cette décorrélation.

3 Séparation aveugle de sources avec parcimonie et décorrélation 

min α,A 1 2 x -AαΦ * 2 2 + µ 2 A 2 2 + λ α 1 + ı C (A) (6) 
avec :

ı C (A) = 0, si a n 2 = 1, ∀n + ∞, sinon (7) 
Ici, la contrainte sur le cercle unité n'est pas convexe, mais l'algorithme PALM (Alg. 2 avec

G k = L k et H k = s k 2 I) peut toujours être utilisé. Si l'on choisit f (A, α) = 1 2 x - AαΦ * 2 2 + µ 2 A 2 2 dans l'algorithme 2, avec G k = L k et H k = ∂f (A,α k+1 ) 2 ∂ 2 A = α k+1 Φ * Φα *
k+1 + µI, la deuxième étape de l'algorithme 2 devient :

A k+1/2 = xΦα * k+1 (α k+1 Φ * Φα * k+1 + µI) -1 A k+1 ∈ prox H k ,ı C (A k+1/2 ) (8) 
En raison de la contrainte sur le cercle unité, le choix du paramètre µ ne change pas la valeur du minimum de la fonctionnelle [START_REF] Balazs | Adapted and adaptive linear time-frequency representations : a synthesis point of view[END_REF]. Par conséquent, en choisissant µ assez gros pour avoir (α k+1 Φ * Φα * k+1 + µI) -1 = 1 µ I + ε où ε est de l'ordre de la précision machine, la projection s'écrit simplement

A k+1/2 = xΦα * k+1 /µ , a k+1,n = a k+1/2,n / a k+1/2,n (9) 
Cette version particulière de l'algorithme est donnée dans l'algorithme 3, qu'on appelle GMCA-régularisé.

Algorithm 3: GMCA-régularisé Initialisation : α 1 ∈ C N ×B , A 1 ∈ R M ×N , L 1 = A 1 2 , k = 1 ; repeat α k+1 = prox ψ L k (α k -∇αf (A k ,α k ) L k ) ; A k+1/2 = xΦα * k+1 ; a k+1,n = a k+1/2,n / a k+1/2,n ; L k = A k+1 2 , k = k + 1; until convergence;
On peut montrer que (9) assure la décorrélation des sources estimées dans le cas sur-déterminé non bruité, par simples considérations sur les conditions d'optimalité. Bien que cette preuve soit omise par manque de place, les expériences numériques supportent clairement cette affirmation.

Un GMCA décorrélé

L'algorithme précédent assure la décorrélation seulement dans le cas sur-déterminé. On propose ici une alternative qui assure la décorrélation dans le cas sous-déterminé en ajoutant une étape de projection à chaque itération. Pour cela, on se base sur la proposition suivante issue de [START_REF] Comon | Independent component analysis, a new concept ?[END_REF], afin d'obtenir l'algorithme 4.

Proposition 1. Soit s ∈ R N ×T un signal de moyenne nulle, avec une matrice de covariance définie positive Σ s = ss T . Soit W la transformation de décorrélation optimale qui minimise l'erreur quadratique moyenne entre s et y = Ws de covariance diagonale Σ y :

min y=Ws s-y 2 2 alors W = diag Σ 1/2 s Σ -1/2 s Algorithm 4: GMCA-décorrélé Initialisation : α 1 ∈ C N ×B , A 1 ∈ R M ×N , L 1 = A 1 2 , k = 1 ; repeat 1. α k+1 = prox ψ L k (α k -∇αf (A k ,α k ) L k ) ; 2. s = α k+1 Φ * ; 3. Σ s = ss T ; 4. W = diag Σ 1/2 s Σ -1/2 s ; 5. y = Ws ; 6. A k+1/2 = xy T ; 7. a k+1,n = a k+1/2,n / a k+1/2,n ; 8. L k = A k+1 2 , k = k + 1; until convergence;
Dans cet algorithme, la projection qui assure la décorrélation à chaque itération (étape 2 à 5), assure que les sources estimées seront décorrélés, tout en conservant leur énergie initiale. Cette étape est peu couteuse étant donné que cela ne dépend que du nombre de sources à estimer. Cependant, la preuve de convergence d'un tel algorithme reste un problème ouvert.

Expériences numériques 4.1 Conditions expérimentales

Les signaux sont des sources de paroles d'hommes et de femmes issues de SiSEC2011 [START_REF] Araki | The 2011 signal separation evaluation campaign (SiSEC2011) :-audio source separation[END_REF], ainsi que le système de mélange sous-déterminé. La matrice de mélange sur-déterminée est créée aléatoirement. Le nombre de sources à estimer est fixé à trois, et le nombre de microphones varie de deux à cinq. Le dictionnaire de Gabor est construit avec des fenêtres de Hann se chevauchant de 50%, grâce à la toolbox ltfat [START_REF] Sondergaard | The linear time frequency analysis toolbox[END_REF]. Les performances sont mesurées à l'aide des rapports signal à distorsion (SDR) et signal à interférences (SIR) [START_REF] Vincent | Performance measurement in blind audio source separation[END_REF]. Le SDR indique la qualité générale de la séparation pour chaque source, tandis que le SIR indique le résidu du aux interférences des autres sources pour la source estimée. On évalue aussi la robustesse des approches au bruit, en ajoutant un bruit blanc gaussien (spatialement et temporellement) à différent niveau de rapport signal à bruit (SNR) en entrée. Tous les algorithmes sont initialisés de façon aléatoire.

Cas sur-déterminé

On présente les performances dans les cas déterminé (M = 3, N = 3) et sur-déterminé (M = 5, N = 3). On utilise Efficient Variant of FastICA (EFICA) [START_REF] Cichocki | Icalab toolboxes[END_REF] [16] avec nonlinéarité adaptée comme référence. Les performances sont données sur la figure 1. Bien que EFICA obtient les meilleurs résultats lorsque le SNR d'entrée est élevé (i.e. le bruit est négligeable), ses performances se dégradent rapidement, et se fait dépasser par les autres approches de façon significatives. Les approches GMCArégularisé et GMCA-décorrélés obtiennent des performances similaires, meilleures que l'approche PALM (3).

Cas sous-déterminé

Dans le cas sous-déterminé (M = 2, N = 3), on utilise la matrice de mélange [START_REF] Araki | The 2011 signal separation evaluation campaign (SiSEC2011) :-audio source separation[END_REF] dont le conditionnement est égal On a choisi de maintenir l'énergie des sources à chaque étape et de forcer les colonnes de la matrice de mélange à avoir une norme unité, afin de se prémunir de l'ambiguité d'échelle. En théorie, il est possible de forcer les sources à avoir une norme unité, et donc ne pas avoir de contraintes sur les normes de la matrice de mélange. Étonnamment, cette approche donne des résultats décevant par rapport à celle proposée ici.
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 4223 FIGURE 2 -Cas sous-déterminé.Comme attendu, le GMCA-décorrélé obtient les meilleurs résultats à la fois en SDR et en SIR, pour tous les niveaux de bruit. La figure 3 montre l'évolution des performances en fonction du temps de calcul dans le cas sous-déterminé.