
HAL Id: hal-01199635
https://hal.science/hal-01199635v1

Submitted on 15 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Inverse Problems with Time-frequency Dictionaries and
non-white Gaussian Noise

Matthieu Kowalski, Alexandre Gramfort

To cite this version:
Matthieu Kowalski, Alexandre Gramfort. Inverse Problems with Time-frequency Dictionaries and
non-white Gaussian Noise. 23rd European Signal Processing Conference (EUSIPCO 2015), Aug 2015,
Nice, France. �hal-01199635�

https://hal.science/hal-01199635v1
https://hal.archives-ouvertes.fr


INVERSE PROBLEMS WITH TIME-FREQUENCY DICTIONARIES AND NON-WHITE
GAUSSIAN NOISE

Matthieu Kowalski∗†?, Alexandre Gramfort‡?

∗ Laboratoire des Signaux et Systèmes (Univ Paris-Sud, CNRS, CentraleSupelec) Gif-sur-Yvette, France
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ABSTRACT

Sparse regressions to solve ill-posed inverse problems have
been massively investigated over the last decade. Yet, when
noise is present in the model, it is almost exclusively consid-
ered as Gaussian and white. While this assumption can hold
in practice, it rarely holds when observations are time series
as they are corrupted by auto-correlated and colored noise. In
this work we study sparse regression under the assumption
of non white Gaussian noise and explain how to run the in-
ference using proximal gradient methods. We investigate an
application in brain imaging: the problem of source localiza-
tion using magneto- and electroencephalography which allow
functional brain imaging with high temporal resolution. We
use a time-frequency representation of the source waveforms
and a sparse regularization which promotes focal sources with
smooth and transient activations. Our approach is evaluated
using simulations comparing it to strategies that assume the
noise is white or to simple prewhitening.

Index Terms— Deconvolution, Inverse Problem, Time-
Frequency Whitening, Non white Gaussian Noise, Sparse re-
covery, Denoising

1. INTRODUCTION

Sparse regression consists in estimating unknown coefficients
in a linear regression framework under the assumption that
only a few regressors, also called variables or features, are
predictive. In a word, most features are non-informative and
their associated coefficients should be zero. The forward
problem we consider in this work is the one proposed in [1]
in the context of M/EEG. MEG and EEG are brain imaging
methods that record the electromagnetic signals produced by
active neurons using an array of sensors. The ambition is to
use M/EEG to localize active brain regions non-invasively,
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and therefore obtain images of the active brain at a millisec-
ond time-scale, which is particularly useful for clinical and
cognitive neuroscience.

The M/EEG data are multivariate time series. The model
reads:

M = GX + n (1)

where
• M ∈ RNT is the measurement matrix (N signals of

length T );

• G ∈ RNP is the known instantaneous mixing matrix,
a.k.a. lead field matrix or gain matrix obtained by solv-
ing numerically Maxwell’s equations;

• X ∈ RPT is the unknown matrix containing the neuronal
source waveforms (P signals of length T );

• n ∈ RNT is the noise, supposed to be independent in
space, i.e. across lines, with each line being distributed
according a (possibly correlated) normal Law.
The rest of the paper is organized as follows. In next Sec-

tion 2 we expose a brief state of the art to deal with non white
Gaussian noise. Section 3 exposes an efficient time-frequency
whitening strategy to take into account the non white noise in
the model. In Section 4 we perform a numerical comparison
of five strategies to deal with the non white noise. finally,
Section 5 concludes the paper.

2. STATE OF THE ART

The state of the art of M/EEG inverse problem with white
Gaussian noise using a Lasso/Basis pursuit denoising [2, 3]
approach reads [1]:

min
Z

1

2
(M −GZΦ∗)∗Σ−1(M −GZΦ∗) + λ||Z||1 , (2)

where ||Z||1 stands for the `1 norm for the flattened matrix
Z, Φ ∈ CTQ is a matrix of Q time-frequency atoms and
Z ∈ CPQ are the corresponding synthesis coefficients. The
dimension Q is the product of the number of time bins Qt
and frequency bins Qf . Estimation of the sources are then



given by resynthesis X = ZΦ∗. ‖Z‖1 may eventually be re-
placed by a mixed-norm or a combination of mixed-norm and
`1 norm [1]. For the sake of simplicity and clarity, we stick
here to the `1 norm.

A classic approach to deal with non white Gaussian noise,
is to use the variance-covariance matrix Σ of the noise in the
data-fidelity term:

min
Z

1

2
(M −GZΦ∗)∗Σ−1(M −GZΦ∗) + λ||Z||1 . (3)

However, this approach supposes to have a nice estimation
of Σ−1 and depends of the length T . Here, we use the fact
that any Gaussian noise n ∼ N (0,Σ) (with autocorrelation
in `1(Z)) can be obtained by filtering a white Gaussian noise
n = w ? ñ, where ñ ∼ N (0, 1). Then w is a whitening filter
such that w−1 ? n ∼ N (0, 1), and the whitening process can
be done directly on the Fourier domain by “flattening” the
power spectrum.

Another classic approach is to pre-whiten the data M [4–
6]. Denoting by M̃ = M ?w−1 such a pre-whitening matrix,
one solves

min
Z

1

2
‖M̃ −GZΦ∗‖2 + λ||Z||1 . (4)

Then, the estimated sources are given by X = ZΦ∗ ? w.
While this approach is useless with a `2 regularizer (the min-
imizer remaining the same as in the original problem), it is
justified when using an `1 regularization thanks to the thresh-
olding step: pre-whiten the data M enhances the frequencies
which are the less corrupted by the non-white noise.

3. MODEL AND ALGORITHM

We present here two approaches in order to take the non-white
noise into account. The first one uses the “true” direct model,
supposing that one knows perfectly the power spectrum of the
noise. The second one is more realistic to practical situation,
where the power spectrum of the noise can only be estimated
on the data.

3.1. True whitening in the frequency domain

Supposing one has a whitening filter w−1 such that the noise
satisfies n = w−1 ? ñ with n ∼ N (0, 1). One can rewrite the
forward model (1)

M = GX + n

= GX + w ? ñ

M ? w−1 = GX ? w−1 + ñ (5)

where the filtering operations • ? w−1 are always applied to
each rows of the matrices. Then, if one knows the whitening
filter w−1, the non-white forward model can be written as a
classic forward model corrupted by a white noise. However,

we will see that only the spectrum of w−1 has to be known in
practice. Indeed, using Equation (5), the sparse approach to
estimate X reads

min
Z

1

2
‖M ? w−1 −GZΦ∗ ? w−1‖2 + λ||Z||1 , (6)

which can be written in the Fourier domain

min
Z

1

2
‖(M ? w−1 −GZΦ∗ ? w−1)F‖2 + λ||Z||1 , (7)

where F is the orthogonal complex valued matrix correspond-
ing to the Fourier transform.

Minimizing (7) using a first order optimization scheme
such as (F)ISTA [7,8] requires to compute the gradient of the
data term, which is the smooth term,

1

2
‖(M?w−1−GZΦ∗?w−1)F‖2 =

1

2
‖(M̂−GZΦ∗F )⊗ŵ−1|‖2 ,

(8)
where M̂ denotes the Fourier transform of each of the rows
of M and M̂ ⊗ ŵ−1 denotes the element-wise multiplication
of each row of M̂ by ŵ−1. The gradient step is then followed
by the soft-thresholding operator, which corresponds to the
proximal operator of the `1 norm. The gradient step on the
data term reads:

Zk+1/2 = Zk

+
1

L
GT
((
M̂ −GZkΦ∗F

)
⊗ |ŵ−1|2

)
F ∗Φ (9)

Interestingly, one can see that only the power spectrum of
w−1 appears, without any phase information. The scalar L >
0 depends on the Lipschitz constant of the data fidelity term
and can be upper bounded by ‖Φ‖2‖G‖2‖‖ŵ−1‖2∞. Using
FISTA [8], this whitening approach in the Fourier domain is
summarized in Algorithm 1. We choose here the relaxation
given in [9], which ensures the convergence of the iterates.

Algorithm 1: FISTA with true whitening in the Fourier
domain

Input: Z(0), Y (0) ∈ RN , |ŵ−1|2,
L = ‖Φ‖2‖G‖2‖‖ŵ−1‖2∞
repeat

Zk+1/2 =
Y k + 1

LG
T
((
M̂ −GY kΦ∗F

)
⊗ |ŵ−1|2

)
F ∗Φ;

Zk+1 = Zk+1/2
(

1− λ/L
|Zk+1/2|

)+
;

Y (k+1) = Z(k+1) + k+4
k+5 (Z(k+1) − Z(k));

until convergence;

3.2. Whitening in the time-frequency domain

A practical challenge is to obtain an estimation of the noise
spectrum. In practice, one can use a Welch estimator [10] to



obtain an estimate of the spectrum, which depends of the size
of the analysis window. Using the same window as in Φ, we
denote by |w̃|2 the Welch estimator of the noise spectrum. We
use here a classical approximation widely use in audio-source
separation [11, 12]. That is, for a signal x ∈ RT and a con-
volution kernel w ∈ RT , denoting by ϕkf the time-frequency
atoms constituing Φ, the convolution can be approximated in
the time-frequency domain by the complex valued product

〈w ? x, ϕkf 〉 ' ŵ[f ]〈x, ϕkf 〉 . (10)

This approximation is studied in [13, Lemma 1]. One could
be tempted to use this approximation in order to simplify the
gradient evaluation (9). However, using such an approxima-
tion in ISTA can lead to a divergent algorithm, as the error
could be not summable [7].

We then propose to consider the following function,
where the convolution is directly approximated in the time-
frequency domain

min
Z

1

2
‖MΦ⊗ w̃−1Φ∗−G(Z⊗ w̃−1)Φ∗‖2 +λ‖Z‖1 . (11)

Then, using the changes of variables M̃ = MΦ⊗w̃−1Φ∗ and
Z̃ = Z ⊗ w̃−1, one has

min
Z̃

1

2
‖M̃ −GZ̃Φ∗‖2 + λ‖Z̃‖w̃;1 , (12)

with ‖Z̃‖w̃;1 =
∑
kf wf |Z̃kf |. Minimization Problem (11)

reduces then to a simple Basis-Pursuit Denoising with a
weighted `1 norm. The gradient step reduces to a classic
gradient descent as with the white noise problem (1), with
a data matrix M̃ prewithened in the time-frequency domain.
The proximal step is a soft-thresholding operation, depending
on the amount of the noise in each frequency bin. Using
FISTA to minimize (12) gives Algorithm 2. In practice
w̃−1 = (1/

√
(|w|2)1 , . . . , 1/

√
(|w|2)Qf

), |w|2 being the
noise power spectrum estimated by the Welch estimator [10].
The sources are then re-synthesized in the time domain such
that X = (Z ⊗ w̃)Φ∗

Algorithm 2: FISTA with time-frequency whitening

Input: Z(0), Y (0) ∈ RN , w̃−1, L = ‖Φ‖2‖G‖2‖
repeat

Zk+1/2 = Y k + 1
LG

T
(
M̃ −GY kΦ∗

)
Φ;

Zk+1 = Zk+1/2
(

1− w̃λ/L
|Zk+1/2|

)+
Y (k+1) = Z(k+1) + k+4

k+5 (Z(k+1) − Z(k))+;
until convergence;

Notice that, when intialized by 0, the first step of this al-
gorithm can be seen as a classic spectral substraction [14].

4. NUMERICAL EXPERIMENTS

Application context. In the present work, we explore the
effect of non white Gaussian noise in the context of func-
tional brain imaging using magnetoencephalography (MEG)
and electroencephalography (EEG) signals. Source imaging
with MEG and EEG delivers insights into the active brain at a
millisecond time scale in a non-invasive way. To achieve this,
one needs to solve the bioelectromagnetic inverse problem. It
is a high dimensional ill-posed regression problem which re-
quires proper regularization. As it is natural to assume that
a limited set of brain foci are active during a cognitive task,
sparse focal source configurations are commonly promoted
using convex sparse priors [15, 16].

For the problem at stake the noise is known to be non-
white with a signal-to-noise ratio (SNR) that depends on the
frequency [17]. The amplitude of power spectrum of the noise
is commonly modeled as a “1/f” function: the energy of the
noise decreases as the inverse of the frequency.
Method comparison setup. We propose to compare five
strategies in order to solve the M/EEG inverse problem in the
presence of pink noise:
1. A “True whitening” in the Fourier domain, using the true

noise spectrum in 1/f . This corresponds to Algorithm 1.
Method is referred to as TrueWhite in the Figures and pro-
vide an oracle result in order to compare other approaches.

2. An Estimated whitening in the Fourier domain, using the
Welch estimator of the noise spectrum. This corresponds
to Algorithm 2. Method is referred to as TFWhiteEst in
the Figures.

3. A “True Pre-Whitening” in the Fourier domain. The ma-
trix M is whitened in the Fourier domain, and a classic `2
data term is used in the cost function. Method is referred
to as PreWhiteTrue in the Figures and provide an oracle
results for the prewhitening approaches.

4. An Estimated Pre-Whitening in the Fourier domain.
Method is referred to as PreWhiteEst in the Figures.

5. A baseline approach without any (pre)whitening process.
Method is referred to as L1 in the Figures.

Simulation setup. We simulated the signals such that T =
1024 samples, Φ is a Gabor matrix with Hann window of
length 64 samples and a hop-size of 16 samples. The ma-
trix G ∈ R30×200 was generated randomly with highly corre-
lated columns such that correlation between column i and j
is 0.95|i−j|. Z has 10 non-zeros lines, each non zero line is a
random sparse coefficient vector (from 70% to 90% of zeros
coefficients), and n is a Pink noise (noise spectrum in 1/f ).

Results are summarized on Figure 1. For each method
the quality of the estimate is evaluated using the reconstruc-
tion error in dB. As the ground truth is here known and the
discussion on the setting of the regularization parameter is
outside of the scope of this paper, for each method the regu-
larization parameter yielding the smallest reconstruction error



was used. One can observe that all strategies taking into ac-
count the color of the noise outperform the L1 method that
just assumes an additive white noise. As expected, the “true
whitening” approach outperforms all the other approach, but
is unusable in practice, as the true spectrum of the noise is
unattainable. This justifies its use as an oracle. The proposed
strategy TFWhiteEst yields a systematic improvement that is
the highest when the SNR is low and Z is the less sparse. This
observation is particularly relevant for the application at stake
where the SNR is low and the number of sources can increase
with complexity of the cognitive experiments. More interest-
ingly, it still outperforms the “true pre-whitening” approach,
and justifies to take into account the profile of the noise in
the direct problem. Finally, the simple approach without any
(pre-)whitening process gives the worst results as expected.

5. CONCLUSION

The contribution of this work is to propose a principled
approach to take into account colored Gaussian noise in
sparse regressions solved using first order optimization meth-
ods. The method is particularly adapted to inverse problems
where data are time series, as they are generally corrupted by
an autocorrelated noise. The approach proposed is tested on
a neuroscience application. Using simulated MEG data and
realistic noise models our results demonstrate the benefit of
the approach.

Future work will be on the extension of this contribu-
tion to sparse structured regularizations, beyond `1, as well
as non-convex regularizations, such as SCAD [18] or empiri-
cal Wiener [19], for which proximal operators exist.
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