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ABSTRACT
In this paper, we propose a new unconstrained nonnegative
matrix factorization method designed to utilize the multilayer
structure of audio signals to improve the quality of the source
separation. The tonal layer is sparse in frequency and tem-
porally stable, while the transient layer is composed of short
term broadband sounds. Our method has a part well suited for
tonal extraction which decomposes the signals in sparse or-
thogonal components, while the transient part is represented
by a regular nonnegative matrix factorization decomposition.
Experiments on synthetic and real music data in a source
separation context show that such decomposition is suitable
for audio signal. Compared with three state-of-the-art har-
monic/percussive decomposition algorithms, the proposed
method shows competitive performances.

Index Terms— nonnegative matrix factorization, projec-
tive nonnegative matrix factorization, audio source separa-
tion, harmonic/percussive decomposition.

1. INTRODUCTION

Introduced by Lee & Seung [1], Non-Negative Matrix Fac-
torization (NMF) has been widely used in a large variety of
fields. In particular, this decomposition technique has been
applied with great success in audio signal processing for au-
tomatic transcription [2,3] and audio source separation [4,5].

The goal of NMF is to approximate a data matrix V ∈
Rn×m

+ as:
V ≈ Ṽ = WH (1)

with W ∈ Rn×k
+ and H ∈ Rk×m

+ and where k is the rank of
factorization, typically chosen such that k(n+m) << nm.
As the data matrix V is usually redundant, the product WH
can be thought as a compressed form of V , where W is a
dictionary or a set of patterns and where H contains the ex-
pansion coefficients.

However, in practice, it is not guaranteed that the obtained
decomposition has a valuable semantic interpretation. To alle-

H. Papadopoulos is supported by a Marie Curie International Outgoing
Fellowship within the 7th European Community Framework Programme

This work was supported by a grant from DIGITEO

viate this problem, it is necessary to exploit some prior infor-
mation or to impose some constraints on the decomposition.
For instance, information from the scores or from midi signals
is used in a so-called supervised NMF in [2]. This method
improves the automatic transcription accuracy, but requires
well organized prior information. Another strategy is to rely
on specific constraints deduced from the characteristics of the
processed signals. For example, it is shown in [6] that enforc-
ing temporal smoothness improves the physical meaning of
the decomposition. Similarly in [7], Canadas & al. used four
constraints in order to achieve a specific harmonic/percussive
decomposition. In this case, the four hyper-parameters linked
to the constraints need to be optimized and the best setting is
often signal dependent.

Concurrently, other methods aim at underlining some
mathematical properties of the decomposition, for example
the orthogonality between the nonnegative basis functions
(or patterns). Projective NMF (PNMF) and orthogonal NMF
(ONMF) rely on this property. PNMF was used for image
processing [8] and for feature extraction and clustering [9].
PNMF revealed interesting properties in practice: a higher
efficiency for clustering than NMF [8] and the generation
of a much sparser decomposition than NMF [9]. These in-
trinsic properties are particularly interesting for audio source
separation as shown in [7].

The main advantage of these approaches compared to
constrained NMF is that sparsity or orthogonality is obtained
as intrinsic properties so they avoid a tedious and often un-
satisfactory hyperparameter tuning stage. However, these
approaches do not have a sufficient flexibility to properly rep-
resent the complexity of an audio scene composed of multiple
and concurrent harmonic and percussive sources.

In this paper, we propose a new decomposition technique
suitable for audio source separation that takes advantage of
the sparse decomposition of PNMF but that allows a better
representation of complex audio signals. More precisely, the
initial nearly-orthogonal decomposition obtained by PNMF
is extended by a non-orthogonal component that reveals to be
particularly relevant to represent percussive or transient sig-
nals. The merit of this new method termed Structured Pro-
jected Nonnegative Matrix Factorization (SPNMF) is experi-
mentally demonstrated on synthetic signals and on a specific



task of percussive/harmonic components separation of real
audio signals. It is important here to underline that our ap-
proach relies on an optimization problem without the need of
any hyperparameter.

The paper is organized as follows. In Section 2, the Pro-
jective and Orthogonal NMF are described and compared on a
theoretical basis. The SPNMF is then introduced in Section 3.
We detail our experimental protocol and the results obtained
on synthetic and real audio signals in Section 4. Finally, some
conclusions are drawn in Section 5.

2. PROJECTIVE AND ORTHOGONAL NMF

2.1. Overview

The aim of PNMF is to find a non negative projection matrix
P ∈ Rn×n

+ such that V ≈ Ṽ = PV . In [10] Yuan & al. pro-
posed to seek P as an approximative projection matrix under
the form P = WWT with W ∈ Rn×k

+ with k 6 n. The
PNMF problem reads :

min
W>0

||V −WWTV ||2 (2)

where ‖.‖2 is the squared Frobenius norm (Euclidean dis-
tance).

The ONMF [8] consists in solving the following problem:

min
W>0,H>0

||V −WH||2 s.t. WTW = Ik (3)

In this method, orthogonality between nonnegative basis
functions is enforced during the optimization process. In
practice, it seems that PNMF and ONMF lead to similar de-
compositions, as the W matrix estimated by PNMF is almost
orthogonal (i.e., ‖WTW − Ik‖2 is small). The links between
PNMF, ONMF and the regular NMF are discussed in the next
section.

2.2. On the equivalence between NMF, PNMF and ONMF

Using a squared Euclidean distance between the data matrix
V and its approximation WH , the NMF problems reads:

min
W,H≥0

‖V −WH‖2 ,

where PNMF (resp. ONMF) adds the constraint H = WTV
(resp. WTW = I). Let us assume that V admits an NMF
decomposition without any errors, i.e., one can find W and H
of rank k such that V = WH . Then, one can easily prove that
necessarily H = (WTW )−1WTV . Now, as demonstrated
in [11], an invertible matrix is nonnegative if and only if it is
a monomial matrix, that is, up to a scaling and permutation
matrix, we necessarily have WTW = I . This result allows
one to state the following theorem:

Theorem 1 Let V ∈ Rn×m
+ . Let Wnmf ,Wonmf ,Wpnmf ∈

Rn×k
+ be solutions of the NMF, ONMF and PNMF respec-

tively, with similar notations for the H ∈ Rk×m
+ matrix. Sup-

pose that k ≤ min(m,n) and rank(W ) =rank(H) = k,
and that V = WnmfHnmf . Moreover, suppose that V ∈
span(Wnmf ). Then, up to a scaling and permutation matrix,
we have:

Wnmf = Wonmf = Wpnmf

and
Hnmf = Honmf = Hpnmf = WT

nmfV.

Or, equivalently, there exists a scaling and a permutation ma-
trix such that:

WT
nmfWnmf = I and Hnmf = WT

nmfV.

In practice, the assumption V = WH does not hold as
soon as k < min(n,m), hence the motivation to introduce
PNMF and ONMF. However, it is interesting to stress that the
orthogonality of W is a requirement to obtain a true projector
for H . Moreover, in practice, Wpnmf is “almost” orthogonal,
leading to an “almost projection” for Hpnmf as motivated by
the authors in [10]. This remark has encouraged us to build
upon PNMF instead of ONMF in the next section.

3. STRUCTURED PROJECTIVE NMF (SPNMF)

3.1. Principle

As stated in [7], harmonic instruments have sparse basis func-
tions whereas percussive instruments have much flatter spec-
tra. As the columns of W are orthogonal, when two sources
overlap in the Time-Frequency (TF) domain only one basis
function will represent the mixture which is not adequate for
efficient separation. To overcome this problem, we propose to
add a standard NMF decomposition term to the PNMF. With a
similar technique as in [4], we increase the rank of the PNMF.
Let k = k′ + e with e being the number of additional compo-
nents. We can expect that most of the harmonic components
will be represented by the orthogonal part while the percus-
sive ones will be in the regular NMF components. Let V be
the magnitude spectrogram of the input data. The model is
then given by

V ≈ Ṽ = W1H1 +W2H2, (4)

where W1H1 is the almost orthogonal part with rank k′ and
W2H2 are e regular NMF components. Following the same
idea as in section 2.2, we obtain :

H1 = WT
1 (V −W2H2), iff WT

1 W1 = I . (5)

We then propose the structured projected NMF cost function:

min
W1,W2,H2≥0

||V −W1W
T
1 (V −W2H2)−W2H2||2. (6)

As in [4], e is kept smaller than k′. The goal here is to
focus most of the energy in the orthogonal part to benefit from
the sparse decomposition property of PNMF.



3.2. Multiplicative update rules

Similarly to the regular PNMF, multiplicative update rules can
be obtained from the cost function (6). The optimization of
W1 is straightforward, using similar technique as in [10, 12]
which consists in splitting the gradient ∇F (W1) in its pos-
itive [∇F (W1)]

+ and negative parts [∇F (W1)]
−. One ob-

tains:

[∇F (W1)]
+ = [4(V HT

2 W
T
2 +W2H2V

T )

+2W1W
T
1 (V V T +W2H2H

T
2 W

T
2 )

+2(V V T +W2H2H
T
2 W

T
2 )W1W

T
1 ]W1 (7)

and:
[∇F (W1)]

− = [4V V T + 4W2H2H
T
2 W

T
2

+2W1W
T
1 (V HT

2 W
T
2 +W2H2V

T )

+2(V HT
2 W

T
2 +W2H2V

T )W1W
T
1 ]W1. (8)

We are now able to write the multiplicative updates used for
SPNMF as

W1 ←W1 ⊗
[∇F (W1)]

−

[∇F (W1)]+
.

Similar expressions are obtained for W2, H2, but are omitted
here for the sake of brevity.

4. EXPERIMENTAL VALIDATION

4.1. Experimental Protocol

We compare SPNMF with PNMF and regular NMF. The
squared Euclidean distance with multiplicative update rules as
stated in [1] is used for NMF. The three algorithms are initial-
ized with the same random positive matrices Wini ∈ Rn×k

and Hini ∈ Rk×m
+ . The rank of factorization k is the same

for all methods. The k audio components are extracted by
Wiener filtering and are then grouped into musical sources
following the oracle method introduced by Virtanen in [6].
The Signal-to-Noise Ratio (SNR) is computed between the
jth separated components x̃j and the mth original sources
xm as:

SNR(m, j) =
x̃j

2

(x̃j − xm)2

The component j is assigned to the source m which leads to
the highest SNR. The results are compared by means of the
Signal-to-Distortion Ratio (SDR), the Signal-to-Interference
Ratio (SIR) and the Signal-to-Artifact ratio (SAR) of each of
the separated sources using the BSS Eval toolbox provided
in [13].

4.2. Synthetic Tests

The test signal models a mix of harmonic and percussive in-
struments. The harmonic part is simulated by a sum of sine
waves that overlap in time and in frequency. The first sum

NMF PNMF SPNMF
C(2) 11.21 7.97 13.44

SDR G(2) 10.44 13.16 16.79
(dB) Noise 2.37 0.11 13.38

C(2) 14.20 17.67 13.79
SIR G(2) 17.60 4.94 18.53
(dB) Noise 7.82 0.45 20.40

C(2) 15.57 14.38 24.90
SAR G(2) 18.99 20.66 21.64
(dB) Noise 3.69 10.42 14.38

Table 1: Source separation performance for the synthetic
signal.

simulates a C(2) with fundamental frequency f0 = 131 Hz,
the other one a G(2) with f0 = 196 Hz. To simulate the per-
cussive part, every 1 s, we add 0.1 s of Gaussian white noise.
The signal is 5 sec. long and the sampling rate is 4000 Hz. We
compute the Short Time Fourier Transform (STFT) with a 512
sample-long (0.128 s) Hann analysis window and a 50% over-
lap. Here, k′ = 2 and e = 1. The spectrogram of the signal is
represented in Figure 1. As our input signal has three sources,
we expect that one source will be represented by one com-
ponent. Results are presented in Table 1 and on the whole,
SPNMF outperforms NMF and PNMF on this synthetic sig-
nal. The NMF separates the three sources but, as shown in [6],
the lack of temporal continuity degrades the extraction of the
original signal from the mixture leading to poor SDR and SIR
for the noise component. For the PNMF, because of the fre-
quency overlap, the orthogonal components do not succeed to
represent the noise correctly. The SIR is also low which in-
dicates a poor separation of the sources. The SPNMF model
supposes that the sources do not overlap in the TF domain.
However, in this example, the SPNMF extracts the three com-
ponents and performs better than the other methods.

Fig. 1: Spectrogram of the synthetic test signals.

4.3. Tests on real audio signals

4.3.1. Database

The database is composed of monophonic real-world music
excerpts. Each music signal contains percussive, harmonic
instruments and vocals. The dataset is taken from SiSEC
2010 [14]. It consists of four recordings of duration ranging



from 14 to 24 s. To expand the tests, we add five extra audio
files from the Medley-dB dataset [15]. The goal is to perform
an harmonic/percussive decomposition as in [7] thus the vocal
part is omitted. All the signals are sampled at 44.1kHz. We
compute the STFT with a 1024 sample-long Hann frame and
a 50% overlap. Two tests are run on these data. The first test
aims at comparing SPNMF, PNMF and regular NMF on the
whole database. The second test aims at comparing SPNMF
with three state-of-the-art methods on the SiSEC database.

4.3.2. Evaluation of SPNMF, PNMF and NMF

For the first test, the total number of components is set to
k = 16 and the number of regular NMF components is set to
e = 5. As in [4] the number of regular NMF components is
set to a low value so that a maximum of the energy is in the
orthogonal part. The results are displayed in figure 2. Each
box-plot is made up of a central line indicating the median
of the data, upper and lower box edges indicating the 1st and
3rd quartiles, and whiskers indicating the minimum and max-
imum values.

Fig. 2: SDR, SIR and SAR of harmonic (left bar)/percussive
(right bar) estimated sources from the 9 test signals by NMF,

PNMF and SPNMF.

Overall, the SPNMF outperforms NMF in terms of SDR
and SIR. The SAR is similar for the two methods. These
results on real audio signals confirm that SPNMF is more
suitable than regular NMF to manage low interference source
separation with TF overlap without having to optimize hyper-
parameters.

The PNMF is outclassed by the other methods. This
model is too restrictive for audio source separation because
all the components tend to represent the harmonic instru-
ments only. As a very small amount of energy is present in
the percussive signal, it achieves very high scores for SAR
and SIR.

4.3.3. State-of-the-art benchmark

For the second test, SPNMF is compared against three state of
the art percussive/harmonic methods: HPSS [16], MFS [17],

and constrained NMF [7]. These three algorithms are unsu-
pervised.

Table 2 shows that our method outperforms the state of
the art method on the first two songs, where the harmonic in-
struments have soft transients. The third song is a rap song
with strong percussive sounds and a soft harmonic part. The
SPNMF fails to separate the sources as they are blended in
what the algorithm automatically attributes to the percussive
part. Concurrently, the harmonic part has very low energy and
does not obtain satisfying SDR and SIR scores. The TF over-
lap between the harmonic instruments can probably explain
this drop in performance. On the last song the presence of
prominent transients produced by the harmonic instruments
degrade the performance. On this example the guitar and the
snare drum are represented with the same component. The
proposed method is outperformed on this song.

On average, SPNMF reaches a better percussive separa-
tion than MFS and HPSS, but obtains lower results for the
harmonic separation. The initial sources together with the es-
timated sources of the experiments can be found on our web
page1.

4.3.4. Discussion

The results of section 4.2 show that having only an orthogonal
basis (PNMF case) is too restrictive to reach a good quality of
source separation. In the case of SPNMF, the tonal layer is
extracted in the orthogonal portion and the noise is extracted
in the unconstrained part, as expected from the model. The
results of section 4.3 show that on real-world audio signals,
SPNMF reaches state of the art results. The method is partic-
ularly efficient when pitched instruments have soft transients
and when percussive sounds are not too prominent. In this
case, the signal corresponds well to the model stated in (4) be-
cause the harmonic and the percussive parts have well defined
different structures. However, if harmonic instruments have
strong attacks, our SPNMF is outperformed by other state of
the art methods because harmonic instruments are not well
represented by the orthogonal basis functions.

5. CONCLUSION

In this paper, we demonstrated that SPNMF is a very promis-
ing model as an unconstrained decomposition method. In-
deed, for synthetic and real audio data, the SPNMF is able to
extract sources with less interference and better quality. On a
harmonic/percussive separation task, it obtains similar results
as purposely built methods. It can also retrieve a well struc-
tured decomposition with the tonal layer mostly extracted by
the orthogonal part, while the transients are represented by
the regular NMF components.

Future work on SPNMF will be dedicated to design of ef-
ficient initialization strategies. For instance, W2 and H2 can

1http://perso.telecom-paristech.fr/laroche/Article/EUSIPCO2015/



HPSS [16] MFS [17] Constrained NMF [7] SPNMF
Percussive Separation SDR SIR SAR SDR SIR SAR SDR SIR SAR SDR SIR SAR
T2 01 2.6 13.2 1.1 -0.2 -1.5 8.4 4.0 6.5 5.7 4.3 11.0 5.6
T2 02 2.4 10.2 3.4 3.1 8.0 4.9 5.2 8.3 7.5 5.0 9.7 7.2
T2 03 2.6 6.9 4.0 2.5 2.1 12.3 2.8 2.6 11.1 1.5 6.6 4.0
T2 04 5.5 11.5 6.5 6.2 9.6 8.0 7.5 10.3 10.3 3.6 6.5 7.7
Mean 3.2 10.5 3.8 2.9 4.6 8.4 4.9 7.0 8.7 3.6 8.4 6.1
Harmonic Separation SDR SIR SAR SDR SIR SAR SDR SIR SAR SDR SIR SAR
T2 01 9.8 13.8 11.9 7.1 13.8 11.5 11.0 14.8 13.9 7.3 7.4 28.3
T2 02 4.8 6.3 9.8 5.5 16.2 11.6 7.5 9.3 12.1 6.5 7.8 12.8
T2 03 4.8 8.7 6.3 4.6 11.0 8.0 5.0 9.1 8.6 3.8 6.2 8.4
T2 04 5.6 11.5 6.7 6.2 9.3 8.7 7.5 10.6 10.5 4.7 6.6 10.1
Mean 6.3 10.1 8.7 5.9 12.6 10.0 7.8 11.0 11.3 5.6 7.0 14.9

Table 2: Harmonic/percussive source separation performance (in dB)

be forced to represent most of the transient part in order to
obtain an fully unsupervised harmonic/percussive decompo-
sition.
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