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ABSTRACT

We propose a new hybrid (or morphological) generative
model that decomposes a signal into two (and possibly more)
layers. Each layer is a linear combination of localised atoms
from a time-frequency dictionary. One layer has a low-rank
time-frequency structure while the other as a sparse structure.
The time-frequency resolutions of the dictionaries describing
each layer may be different. Our contribution builds on the
recently introduced Low-Rank Time-Frequency Synthesis
(LRTFS) model and proposes an iterative algorithm similar
to the popular iterative shrinkage/thresholding algorithm. We
illustrate the capacities of the proposed model and estima-
tion procedure on a tonal + transient audio decomposition
example.

Index Terms— Low-rank time-frequency synthesis,
sparse component analysis, hybrid/morphological decom-
positions, non-negative matrix factorisation.

1. INTRODUCTION

Sparse time-frequency signal representations (e.g., [1,2]) on
the one hand and low-rank time-frequency spectrogram fac-
torizations on the other one (e.g., [3]) have attracted signif-
icant attention in recent years. Furthermore, so-called hy-
brid or morphological decompositions have been a popular
subtopic of sparse representations [4,5]. In the latter, the sig-
nal is expressed as a sum of elementary atoms from various
dictionaries with different characteristics, such as dictionaries
of Gabor atoms with different time resolutions.

This work describes a new framework that merges sparse
and low-rank time-frequency signal representations for hy-
brid decomposition. In our framework, the signal is expressed
as the sum of two layers (and potentially more); the first layer
is a linear combination of time-frequency atoms tied by a low-
rank variance structure while the other layer is a linear com-
bination of time-frequency atoms characterised by structured
sparsity. This is a relevant modelling for musical signals for
example, for which the low-rank layer may appropriately cap-
ture the tonal structures while the sparse layer may capture
transient sounds or even outliers.
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The paper builds on our previous work [6], where a gen-
erative low-rank time-frequency signal synthesis model is de-
scribed. We here further demonstrate the flexibility of the
previously proposed model by showing how it can readily
be adapted to hybrid decompositions settings with mixed de-
signs.

The paper is organised as follows. Section 2 describes the
generative hybrid/morphological model in a statistical setting.
Section 3 describes an iterative algorithm for maximum a pos-
teriori estimation in the proposed model. Section 4 illustrates
our approach on a tonal + transient decomposition of an audio
signal. Section 5 concludes.

2. MODEL

2.1. Observation model
2.1.1. Notations

Let us denote by z(t) the observed signal in the time domain,
witht = 1,...,T. Our two-layers model writes

w(t) = a"(t) + 2*(t) + e(t), (1)

where 2" (t) and x*P(t) refer respectively to the “low-rank”
and “sparse” layers, and e() denotes a residual term, account-
ing for noise and/or modelling errors. Each of the layers is
constructed as a linear combination of atoms from two time-
frequency dictionaries, which may or may not be identical,
such that

xlr(t) = an O‘fnd)fn(t)v )
:L,sp(t) = qu 6ql'l/)ql(t)v (3)

where the variables o ¢,, and 34 denote synthesis coefficients
and the variables ¢ ¢, () and 14 (¢) denote dictionary atoms.
The variables f = 1,...,F and ¢ = 1,...,Q index fre-
quencies, while the variablesn =1,...,Nand!l =1,...,L
index time frames. The time-frequency tilings of dimensions
F x N and @ x L characterising each dictionary are typically
different. Their numbers of elements are denoted M = F'IN
and P = QL.



In the following, we will sometimes more conveniently
use the vectorial form of Eq. (1), such that

x=x"+xP+e=®a+ VG +e, )
where xU, x and e are vectors of size T, with elements
2" (¢), 2P (¢) and e(t), respectively. Given arbitrary mappings
from (f,n)tom =1,..., M and from (¢,l)top=1,..., P,
o and 3 are vectors of size M and P with elements oy, and
Bqi» respectively. Similarly, the matrices ® and ¥, of size
T x N and T x P, collect the set of time-frequency atoms
defining each dictionary.

2.1.2. Complex vs real-valued modelling

For generality but also simplicity of exposure, we will con-
sider in this paper the complex-valued case, i.e., all the vari-
ables in Eq. (1)—(3) are assumed to be complex-valued. This
is obviously relevant in cases where the data is naturally
complex-valued, but can be interesting as well in audio cases
where the real and imaginary parts of x can be the left and
right channels of a stereophonic recording. However, in most
cases x(t) will be real-valued and it may be more natural to
assume all the variables in Eq. (1)—(3) to be real-valued. In
such a case, the derivations presented for the complex case
readily adapt to the real case.

A more intricate setting occur with some dictionaries,
such as Gabor dictionaries (closely connected to the short-
time Fourier transform), that are naturally defined in the
complex-valued domain though they are commonly used
for the representation of real-valued signals. In that case,
about half of the dictionary atoms (corresponding to “neg-
ative frequencies”) are the complex conjugates of the other
half (corresponding to “positive frequencies”). It is thus nat-
ural to assume that the synthesis coefficients satisfy the same
Hermitian symmetry, automatically leading to a real-valued
observation z(t) (assuming furthermore that the residual e(t)
is real-valued). This setting is slightly more complicated to
address but in the end only amounts to estimating synthesis
coefficients corresponding to positive frequencies and deduce
the other half deterministically by conjugation [7]. Another
and closely connected perspective to this setting consists of
analysing the complex-valued analytic transform of the real-
valued signal and revert to the complex-valued signal setting
where the “negative frequencies” synthesis coefficients are
constrained to be zero.

2.2. Statistical assumptions

2.2.1. Low-rank layer modelling

The synthesis coefficients of the “low-rank” layer are as-
sumed to be distributed as

plapa|[WH] ) = Ne(apn |0, [WH],), )

where N.(z|u, A) is the probabilistic density function of the
circular complex Gaussian distribution with mean y and vari-
ance \,! and W and H are non-negative matrices of dimen-
sions F' x K and K x N. W and H are free parameters to
be estimated and K is assumed lower than both /" and N, so
that WH can be viewed as a low-rank approximation of the
“power spectrogram” matrix with coefficients |af,|?. The
model (5) was proposed in [6]. It is a “synthesis” version of
the statistical model underlying non-negative matrix factori-
sation with the Itakura-Saito divergence [8].

The synthesis coefficients {aty, } 7, are further assumed
mutually independent conditionally upon WH.

2.2.2. Sparse layer modelling

The synthesis coefficients of the “sparse” layer are assumed
to follow a distribution that reflects a sparse structure. In the
simplest case where the synthesis coefficients are assumed
mutually independent a priori, we may for example assume
a Laplace distribution of the form

P(BatlAs) = As ™ exp[=A7 Bl (©)

However, it is often more realistic or desirable to assume that
the synthesis coefficients bear some structure a priori (so-
called structured sparsity) in the form of specific dependences
(e.g., group-sparsity). In such cases, the prior for 3 takes
a more complicated expression. We here assume that it can
nevertheless be written as

p(BIAs) = Cexp[-A;'S(8)], (7)

where S(3) reflects the structured sparsity assumptions and
C is a normalising constant that may depend on As. A large
class of such sparsity-inducing priors is presented in [9]. For
example, in the experiments we will consider a group-sparsity
prior similar to the group-Lasso.

2.2.3. Residual term modelling

The sequence e(t) is assumed identically and independently
distributed with distribution N,(0, A.).

2.2.4. Relation to prior works

As mentioned in the introduction, our work builds on hy-
brid decomposition frameworks proposed in the sparse liter-
ature, e.g., [4, 5], and on other works on audio decomposi-
tion via the factorisation of spectrograms [3]. In the latter
area, so-called “robust factorisations” have been proposed,
e.g., [10-12], where the spectrogram is decomposed into a
low-rank part plus a sparse term, that accounts for outliers.

'The complex random variable « has distribution N (i, \) if and only
if its real and imaginary parts are real-valued independent random variables
with Gaussian distributions N (Re[u], A/2) and Nc(Im[u], A/2).



For example, in the speech/music separation of [10], the low-
rank term accounts for the music part while the sparse com-
ponent accounts for the more variable speech part. Our con-
tribution bears some resemblance with such works. However
fundamental differences are as follows. Firstly, our model
is generative of the time-domain signal itself (i.e., of x(t))
and not of a pre-computed spectrogram, and secondly, differ-
ent time-frequency dictionaries can possibly be used to model
each of the two terms.

3. ESTIMATION

3.1. Maximum joint likelihood estimation

We address estimation in light of maximum joint likelihood
and as such, we consider the optimisation of

CJL(aa 16) Wv H) = - 1ng(X, «, /6|W7 H7 >\ea )‘s)
—logp(x|e, B, Ac) — log p(a| WH) — log p(B|As),

subject to to non-negativity of the matrices W and H. The
scale parameters A., \s are here treated as fixed hyper-
parameters. After rearrangements of these hyper-parameters,
the minimisation of the joint likelihood is equivalent to the
minimisation of
1
Cle. B, W H) = ||x — B — ¥B||; + (1~ 7)S(8)
+o13 el b oy Y o Wiy, ®
fn

= 5||x —®o— U5 +0(1—7)5(B)

+ J’YZDIS (|afn|2|[WH]fn) + Uwzlog \afn|2 + M
fn fn
)

where Dis(z|y) = z/y — log(x/y) — 1 is the Itakura-Saito
divergence between non-negative numbers, and 0 < v <
1, o > 0 are the two new hyper-parameters. The objective
function describes a least-squares problem with sparse penal-
isation on 3 and low-rank penalisation on c by means of the
Itakura-Saito divergence. The two equivalent formulations
(8) and (9) exhibit two kinds of structure. With W, H (and 3)
fixed, the formulation of (8) describes a least-squares regres-
sion problem with weighted /5-regularisation on . Alterna-
tively, with a (and 3) fixed, the formulation of (9) reduces to
an Itakura-Saito NMF problem.

3.2. Algorithm

Various approaches can be considered to solve (8) or (9).
We here adopt the Expectation-Minimization (EM) approach
presented in [6, 13], which leads to the classical forward-
backward algorithm [14] in the convex case. The resulting
procedure is an iterative shrinkage algorithm described in

Alg. 1 that updates the synthesis coefficients for the two lay-
ers and the matrices W, H in turn. In short, the algorithm
performs a gradient descent on the synthesis coefficients
(jointly for the two layers) and then shrinks or thresholds
the updated coefficients according on their prior low-rank
or sparse prior. The matrices W and H are updated after
each update of the synthesis coefficients, by solving a regular
IS-NMF problem.

Algorithm 1: Iterative sparse & low-rank signal decom-
position

Initialisation: L > ||®||?||¥||?, « € CM, B € CF,
WeRPF HeRF N 6>0,7>0
repeat

o

% Gradient descent
r(i=D) — $ali-1) 4 wgli-D,
Zl(ri) — ol 4 %(I)H (X _ r(i71));

2l) = 80D 4 Lo (x _ yl-D),

o

% Shrlnkage for low-rank layer
_ _ wOeVHCY,, FON
<f7 )7 afn_ [W(z DHGi— 1)]f,L+o"y/L fn’
% Low-rank parameters update

(WO HO} =

argmin 3 Dis (1 21 WH] )
W H>0

o

% Shrlnkage for sparse layer
3 )

B = provas ¢ (44

until convergence;

In Alg. 1, we denote by || - || the spectral norm, and by
proxy g(z) = argming 1llz — B> + 15(B) the proximity
operator associated with the function 1S, see, e.g., [14]. As
mentioned in Section 2.2.2, one can choose any sparse reg-
ulariser on 3. In practice, the proximal step associated with
this type of regulariser reduces to a shrinkage or thresholding
step. One can also choose the expected shrinkage/proximal
operator directly, instead of designing the regulariser [15].
For example, if the soft-thresholding operator is associated
to the ¢; regulariser, one can choose instead the empirical-
Wiener/non-negative garrotte shrinkage operator. Indeed, the
soft-thresholding operator is known to induce a bias in the
estimation of large coefficients. This bias can be limited by
designing nice shrinkage/thresholding operator (see, e.g., [16,
17] for a review of such operators).

3.3. Estimation of the “rank-1" components

As explained in [6, 8], the low-rank model described by
Eq. (5) underlies latent components with “rank-1”" variance.
Indeed, the model is equivalent to af, = >, o fn With
ok, fn ~ Ne(0,wsphiy,). Given an estimate of oy, the
latent “rank-1” components can be estimated by Wiener fil-



tering, such that

Wrkhkn .

P L LI (10)
S wkhin

The set of synthesis coefficients {a, fp}sn form the time-
frequency expression of spectral pattern wy, the k" col-
umn of W. Its temporal expression is given by z¥(¢) =
> fn Ok, fn®n(t). Note that, with these notations, our signal

model can be further written as z(t) = Y, ¥ (¢) + 2*P(t).

4. EXPERIMENTS

In order to illustrate the interest of the proposed model, we
propose to perform a tonal + transient decomposition of a
6-seconds musical signal sampled at 20 kHz. Tonal + tran-
sient decompositions have enjoyed a large interest in audio
signal processing, for example for audio coding [4, 18] or au-
dio restoration [19]. See also [20] for a review.

The data is an excerpt from the song Mamavatu from
Susheela Raman. It is composed of a guitar melody accom-
panied by percussions. As such, we may expect to capture the
guitar in the low-rank tonal layer, and the percussive part in
the sparse transient layer, similar to [21]. The experimental
parameters are specified as follows:

o the Gabor dictionary for the low-rank tonal layer is built
from a 51-ms Hann window with 50% overlap,

o the Gabor dictionary for the sparse transient layer is built
from a 6-ms Hann window with 50% overlap,

e the number of components in the low-rank tonal layer is
setto K = 3,

e the shrinkage/thresholding operator used for the sparse
transient layer is the group non-negative garrotte (aka,
group empirical-Wiener) shrinkage operator, which can
provide sharp transient estimates:

+
7 11)
n<_ n 1_7 b)
Qpn < oy >, laml? (

e the hyper-parameters are chosen as v = 5.1072 and o =
1.10~3, which led to a satisfactory tonal + transient de-
composition in practice, with an almost perfect recon-
struction.

In the following, we compare the tonal + transient decom-
position obtained by the proposed low-rank (LR) + sparse
model with the decomposition obtained by the two-layers
low-rank model proposed in our previous work [6]. We
display on Fig. 1 the time-frequency synthesis coefficients
estimated by the two models. One can see that, thanks to
the chosen group-sparse structure, the transients estimated by
the proposed model are well localised in time, and that all
the frequencies are active in each group. When one listens
to the estimated layer, the transients given by the two-layers
low-rank model are far less satisfactory.

We also give for comparison the three “rank-1" compo-
nent obtained for the tonal layer by the proposed approach, by
the two-layers low-rank model [6] and by classic IS-NMF [§]
used on the analysis coefficients computed with the Gabor
dictionary chosen for the tonal layer on Figure 2. On the first
and the second components, one can recognise the “stochas-
tic” nature of the percussions. This figure shows that the LR +
sparse decomposition helps the estimation of the tonal layer:
the third component corresponds to the guitar and is much
cleaner with the low-rank + sparse model. Indeed, with the
two-layers LR model and the IS-NMF, the guitar is split be-
tween at least two rank-1 components.

LR + sparse

Tonal

two-layers LR [6]

Fig. 1. Power spectrograms {|af,|?} , and {|B4]? } 1 of the
tonal (top) and transient (bottom) layers.

LR + sparse two-layers LR [6] IS-NMF [8]

Fig. 2. Power spectrograms {|ag, fn|?}fn of the “rank-1"
components obtained by three methods.

5. CONCLUSION

We have presented a new hybrid/morphological model that
allows to mix low-rank and sparse time-frequency designs,
in a generative framework that can accommodate multiple
time-frequency resolutions. We proposed and iterative esti-
mation procedure similar to forward-backward. The benefit




of our new modelling paradigm is demonstrated on a clas-
sic transient + tonal audio decomposition example, in which
sharper transients can be estimated thanks to the structured
sparse prior.
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