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ABSTRACT
Independent component analysis (ICA) has been a major tool
for blind source separation (BSS). Both theoretical and prac-
tical evaluations showed that the hypothesis of independence
suits well for audio signals. In the last few years, optimization
approach based on sparsity has emerged as another efficient
implement for BSS. This paper starts from introducing some
new BSS methods that take advantages of both decorrelation
(which is a direct consequence of independence) and sparsity
using overcomplete Gabor representation. It is shown that the
proposed methods work in both under-determined and over-
determined cases. Experimental results illustrate the good
performances of these approaches for audio mixtures.

Index Terms— Blind Source Separation; Sparsity; Inde-
pendant Component Analysis; Optimization

1. INTRODUCTION

The instantaneous linear mixture model of BSS assumes that:

x = As + e , (1)

where x ∈ RM×T and s ∈ RN×T are the matrices of mixture
channels and source signals respectively. A ∈ RM×N is the
mixing matrix and e ∈ RM×T models the background noise.

The ICA [1] methods are often applied when M ≥ N
(over-determined case). These methods try to achieve sep-
aration by minimizing an independence criterion between
the components of the estimated sources. In the under-
determined case (M < N ), two-steps methods based on
sparsity are largely used [2]: The mixing system is first es-
timated using clustering methods [3], then the sources are
estimated thanks to optimization approaches [4].

On the other hand, it was shown in [5] that ICA meth-
ods (Infomax and FastICA) separate sparse sources rather
than independent sources for fMRI (functional magnetic res-
onance imaging ) in certain cases. They conclued that one
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should develop alternating decomposition methods targeting
decompositions into sparse components rather than indepen-
dent components. This idea greatly motivates this work and
this article shows that by combining the decorrelation as-
sumption, which is a direct consequence of independence,
and sparsity, we can achieve better separation performances.

The contributions of this paper are twofolds: first, we of-
fer a combination of the decorrelation assumption and the
sparse model. This is the first time, to our knowledge, that
such a combination is used for BSS. Second, we propose
several efficient optimization algorithms mostly with proven
convergence which work in both under-determined and over-
determined case.

The rest of this paper is organized as follow. Sec-
tion 2 presents the convergence study of a typical separation
method. We show our proposed methods in Section 3 and the
experiments in Section 4.

2. NOTATIONS AND STATE-OF-THE-ART

2.1. Notations

Let us denote by Φ ∈ CT×B the matrix representing an
energy-preserving STFT (Short-Time Fourier Transform) op-
erator (or Parseval Gabor frame), the sources s can be resyn-
thesized from their synthesis coefficients α ∈ CN×B by s =
αΦ∗, where Φ∗ ∈ CB×T is the adjoint operator of Φ, that
is its Hermitian transpose. We propose to formulate the BSS
problem as an optimization problem:

min
α,A

f(A,α) + Ψ(α) + g(A) (2)

where f is the loss between the mixture x and the synthesis
coefficients α of sources via the mixing matrix A. Ψ mod-
els the sparsity assumption of the sources coefficients α. We
choose here a classic `1 norm for the sake of simplicity, but
various other choices can be made (see for example [6] and
references therein). g(A) is mainly used to avoid the separa-
tion ambiguity [7] such as the scaling and permutation prob-
lem between s and A. Using the `2 loss, the problem be-



comes:

min
α,A

L(A,α) =
1

2
‖x−AαΦ∗‖22 + λ‖α‖1 + ıB(A) (3)

where ıB is the indicator function of a closed convex set B
which is :

ıB(A) =

{
0 if ‖an‖2 ≤ 1
+∞ otherwise ∀n (4)

where an is the n-th column of A.
This functional appears quite naturally in BSS as soon

as one wants to exploit sparsity. More particularly, a similar
functional was proposed in the so-called Generalized Mor-
phological Component Analysis (GMCA) [8] in the over-
determined setting for images. One can notice that this kind
of functional also appears in Dictionary Learning (DL) prob-
lem [9].

2.2. GMCA-like method

In order to minimize (3), the authors of [8] proposed an intu-
itive algorithm inspired by alternating minimization, followed
by a projection of A on (4) at each step. A practical version
of this algorithm (without the ”morphological hypothesis” for
the sake of clarity) is given in Alg. 1.

Algorithm 1: GMCA

Initialization : α1 ∈ CN×B , A1 ∈ RM×N , I ≥ 1,
L1 = ‖A1‖2, k = 1;
repeat

for i=1:I do
αk,i+1 = prox ψ

Lk

(αk,i − ∇αf(Ak,αk,i)
Lk

);

αk+1 = αk,I ;
Ak+1/2 = xΦα∗k+1(αk+1Φ

∗Φα∗k+1)−1;
ak+1,n = ak+1/2,n/‖ak+1/2,n‖ if ‖ak+1/2,n‖ > 1;
Lk = ‖Ak+1‖2, k = k + 1;

until convergence;

where ∇αf(Ak,α) = −AT
k (x − AkαΦ∗)Φ and

prox ψ
Lk

(z) = argminα
1
2‖z−α‖2 + 1

Lk
ψ(α) is the proxim-

ity operator of ψ, which reduces to the soft-thresholding for
the `1 norm [10].

However, and despite all the convergence studies of the al-
ternating minimization approach [11, 12], and especially be-
cause of the projection step, the theoretical convergence of
GMCA is not established. Thanks to the recent works [13,14],
one can use Alg. 2 in order to minimize (3)

where Gk and Hk are some symmetric positive definite
matrices, and

proxU,ψ(z) = argmin
α

1

2
〈(z−α)U, z−α〉+ ψ(α)

Algorithm 2: PALM

Initialization : α1 ∈ CN×B , A1 ∈ RM×N , k = 1;
repeat

αk+1 = proxGk,ψ
(αk −∇αf(Ak,αk)G−1

k );
Ak+1 = proxHk,g

(Ak −∇Af(Ak,αk+1)H−1
k );

k = k + 1;
until convergence;

for any symmetric positive definite matrix U.
The simplest choice Gk = Lk and Hk = ‖sk‖2I leads to

the PALM (Proximal Alternating Linearized Minimization)
algorithm [13], and can be used directly with convergence
guaranties. Another interesting choice is setting Gk = LkI

and Hk = ∂f(A,αk+1)2

∂2A = αk+1Φ
∗Φα∗k+1. In this case, the

second step of Alg. 2 reads:

Ak+1/2 = xΦα∗k+1(αk+1Φ
∗Φα∗k+1)−1

Ak+1 = proxHk,ıB
(Ak+1/2)

(5)

It is clear that the first step of (5) is the least squares solu-
tion of f(A) for A and the second step is a variable met-
ric projection induced by αk+1Φ

∗Φα∗k+1. Unfortunately,
this last projection can be difficult to solve. But, if at each
step the estimated sources sk = αkΦ

∗ are decorrelated, i.e.
sks

T
k = αkΦ

∗Φα∗k = I then it reduces to a simple orthogo-
nal projection.

Next section proposes two approaches to take this decor-
relation into account.

3. BSS WITH SPARSITY AND DECORRELATION

We present two approaches which consider some decorrela-
tion on the sources. The first approach shows that this decor-
relation appears in the estimation of the mixing matrix, by
adding a simple regularization. The second approach intro-
duces a projection step which ensures the decorrelation of the
sources during the algorithm.

3.1. When regularisation on A implies a numerical decor-
relation

Rather than (3), we propose to minimize the following func-
tional, where a `2 regularizer is added on the mixing matrix
A, and the constraint on the `2 ball is replaced by the `2 cir-
cle:

min
α,A

1

2
‖x−AαΦ∗‖22 +

µ

2
‖A‖22 + λ‖α‖1 + ıC(A) (6)

with:

ıC(A) =

{
0 if ‖an‖2 = 1
+∞ otherwise ∀n (7)



Notice that this constraint is not convex, but the PALM algo-
rithm (Alg. 2 with Gk = Lk and Hk = ‖sk‖2I) can still be
used with the same guaranties.

Now, if one chooses f(A,α) = 1
2‖x − AαΦ∗‖22 +

µ
2 ‖A‖

2
2 in Alg. 2, with the particular choice Gk = Lk and

Hk = ∂f(A,αk+1)2

∂2A = αk+1Φ
∗Φα∗k+1 +µI, the second step

of Alg. 2 becomes:

Ak+1/2 = xΦα∗k+1(αk+1Φ
∗Φα∗k+1 + µI)−1

Ak+1 ∈ proxHk,ıC
(Ak+1/2)

(8)

Because of the constraint on the unit circle, the choice
of the parameter µ does not change the minimizer of (6).
Then, by choosing µ large enough to have (αk+1Φ

∗Φα∗k+1+

µI)−1 = 1
µI+ ε where ε is of order of the machine precision,

the projection simply reads

Ak+1/2 = xΦα∗k+1/µ

ak+1,n = ak+1/2,n/‖ak+1/2,n‖
(9)

We give in Alg. 3 this particular version of the BC-VMFB
algorithm which is called Regularized-GMCA

Algorithm 3: Regularized-GMCA

Initialization : α1 ∈ CN×B , A1 ∈ RM×N ,
L1 = ‖A1‖2, k = 1;
repeat

αk+1 = prox ψ
Lk

(αk − ∇αf(Ak,αk)
Lk

);

Ak+1/2 = xΦα∗k+1;
ak+1,n = ak+1/2,n/‖ak+1/2,n‖;
Lk = ‖Ak+1‖2, k = k + 1;

until convergence;

It can be proven that (9) enforces the decorrelation of
the sources estimation in the over-determined noiseless case
(λ → 0 in (3)), by considering simple optimality conditions.
We omit the proof due to the lack of space, but this claim will
be clearly supported by the experiments.

3.2. A decorrelated GMCA

The above algorithm only enforces the decorrelation in the
over-determined noiseless case. So we develop here an algo-
rithm which enforces decorrelation in all scenarios by imple-
menting a decorrelation projection at each iteration.

We first present the following proposition for Minimized
Mean-Squared Error (MMSE) decorrelation, which is a con-
sequence of the result presented in [15]

Proposition 1. Let s ∈ RN×T be a 0-mean signal matrix
with a positive definite covariance matrix Σs = ssT . Let W
be the optimal decorrelation transformation that minimizes

the Mean-Squared Error (MSE) between the input s and the
output y = Ws with covariance Σy being a diagonal matrix:

min
y=Ws

‖s− y‖22 (10)

then W = diag
(

Σ
1/2
s

)
Σ
−1/2
s where diag (.) is the diagonal

matrix formed with its diagonal elements.

Proof. We consider the problem (10) in the following way:

min
W̄
‖s− W̄ȳ‖22

s.t. W̄W̄T = D
(11)

where ȳ is the whitened signal, i.e. ȳ = Σ
−1/2
s s and D is any

diagonal matrix. Then the MSE can be rewritten as :

e = ‖s‖22 + ‖W̄ȳ‖22 − 2〈s,W̄ȳ〉 (12)

According to Cauchy-Schwarz inequality, one has 〈s,W̄ȳ〉 ≤
‖s‖2‖W̄ȳ‖2 with equality if and only if W̄ is a diagonal ma-
trix. We note d̄i the i-th element on the diagonal of W̄, then
we can reformulate e as :

e =

N∑
i=1

(si − d̄iȳi)(si − d̄iȳi)T (13)

where si is the i-th row of s and ȳi is the i-th row of y. Now
minimizing e with respect to d̄i is a simple problem with the
solution d̄i = siȳ

T
i which means W̄ = diag

(
sȳT

)
.

By incorporating such a projection in the GMCA algo-
rithm, we obtain the decorrelated-GMCA in Alg. 4.

Algorithm 4: Decorrelated-GMCA

Initialization : α1 ∈ CN×B , A1 ∈ RM×N ,
L1 = ‖A1‖2, k = 1;
repeat

1. αk+1 = prox ψ
Lk

(αk − ∇αf(Ak,αk)
Lk

);

2. s = αk+1Φ
∗;

3. Σs = ssT ;
4. W = diag

(
Σ

1/2
s

)
Σ
−1/2
s ;

5. y = Ws;
6. Ak+1/2 = xyT ;
7. ak+1,n = ak+1/2,n/‖ak+1/2,n‖;
8. Lk = ‖Ak+1‖2, k = k + 1;

until convergence;

In the above algorithm, the MMSE decorrelation projec-
tion in each iteration (step 2 to 5) is designed to make sure
that the estimated signals are decorrelated and to keep their
energy unchanged at the same time. It is worthy mentioning
that these extra steps will not bring too much computational
cost. However, the convergence proof of this algorithm re-
mains an open problem.



4. NUMERICAL EXPERIMENTS

After the presentation of the experimental setup, we describe
in this section the performances of the proposed methods in
different scenarios.

4.1. Experimental setup

For all the experiments, the signals are taken from 7 dif-
ferent sets of male or female speech sources (available in
SiSEC2011 [16]). The number of sources is set to 3 while
the number of microphones varies among 2, 3 and 5. The
STFT was computed with half-overlapping tight Hann win-
dow using the ltfat toolbox [17] and the performances were
assessed using Signal to Distorsion Ratio (SDR) and Signal
to Interference Ratio (SIR) [18]. The SDR indicates the over-
all quality of each estimated source compared to the target,
while the SIR reveals the amount of residual crosstalk from
the other sources. The robustness to the noise is also eval-
uated by adding a white Gaussian noise at various level of
input SNR. All the algorithms are initialized randomly and
the hyperparameter λ is chosen as the one that corresponds to
the best performance from various values.

4.2. Over-determined BSS

We present here the performances in determined (M = 3,
N = 3) and over-determined (M = 5, N = 3) cases. Fas-
tICA [19] is evaluated as a baseline. The performances are
shown in Fig. 1.
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Fig. 1. Top: Performance evaluation in determined case with
M = 3 and N = 3. Bottom: Performance evaluation in
over-determined case with M = 5 and N = 3

Although the FastICA outperforms other algorithms when
the input noise is negligeable, its performance decreases
rapidly as the noise increases, and becomes outperformed by
other approaches. One can remark that decorrelated-GMCA
and regularized-GMCA perform similarly in over-determined
case and outperform the PALM minimization of (3). This ob-

servation confirms the intuition that the decorrelation can
help the estimation.

4.3. Under-determined BSS

We evaluate the algorithms in the under-determined case
(M = 2, N = 3) using the mixing matrix from [16] which
has a condition number equal to 4.2. For this case, we use
the DUET [4] algorithm as a baseline. The SDR/SIR perfor-
mances are displayed on Fig. 2
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Fig. 2. Performance evaluation in under-determined case with
M = 2 and N = 3

As expected, the decorrelated-GMCA outperforms all the
other algorithms in both SDR and SIR, for every level of input
noise. It is interesting to note that, for a high input SNR the
PALM algorithm outperforms the regularized-GMCA in term
of SIR, while their performances are similar in term of SDR.
This confirms that the regularized-GMCA ensures a decorre-
lated solution only in the over-determined case.

4.4. Computational comparison

We end this experimental section by giving some indications
about the computational time of different methods. Fig. 3
shows the separation performance in terms of the average
computational time in the under-determined noiseless case.
It can be noticed that even though decorrelated-GMCA takes

0 500 1000
−10

−5

0

5

10

15

20

SDR

Computational time (s)

S
D

R
 (

d
B

)

0 500 1000
−10

−5

0

5

10

15

20

SIR

Computational time (s)

S
IR

 (
d
B

)

 

 

Regu−GMCA

Deco−GMCA

GMCA

PALM

Fig. 3. Computaional time in under-determined noiseless case

more steps in each iteration, it does not cost too much com-
putational time to reach its best performance. Besides, DUET
takes less than one second to proceed the separation on a lap-
top with Pentium CPU (2.1 GHz), 2 Gb memory.



5. DISCUSSION AND CONCLUSION

We studied and proposed several iterative methods to sep-
arate instantaneous mixture in under-determined and over-
determined BSS. In particular, we developped an approach
to combine both the decorrelation in the time domain and the
sparsity in the time-frequency domain of the sources. It has
been shown that this approach leads to better separation in
both SDR and SIR, and is very robust to the noise.

In the decorrelated-GMCA, we chose to maintain the en-
ergy of the sources, and forced each columns of the mixing
matrix to have a unit norm to deal with the scaling ambigu-
ity. In theory, it is totally possible to force the sources to have
a unit norm, and then to have ssT = I to release the con-
straint on the mixing matrix. Surprisingly enough, this ap-
proach does not work as well as the proposed approach. We
then chose to only present the decorrelated-GMCA as in this
article.

Future works will focus on extending the decorrelation
and sparsity combination to convolutive mixture. Structured
sparsity will also be considered to take signal structures into
account. From an applicative point of view, such an approach
may be applied to M/EEG and fMRI signals.
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