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A NOTE ON A FIXED POINT METHOD FOR DECONVOLUTION

C. DUVAL1

Abstract. In this paper we study a particular multidimensional deconvolution problem.
The distribution of the noise is assumed to be of the form G(dx) = (1− α)δ(dx) + αg(x)dx,

where δ is the Dirac mass at 0 ∈ Rd, g : Rd → [0,∞) is a density and α ∈ [0, 1
2

[. We propose
a new estimation procedure, which is not based on a Fourier approach, but on a fixed point

method. The performances of the procedure are studied over isotropic Besov balls for Lp loss

functions, 1 ≤ p <∞. A numerical study illustrates the method.

Keywords. Density deconvolution. Nonparametric estimation. Wavelets.

AMS Classification. 62G07, 62H12, 62G20.

1. Introduction

1.1. Statistical setting. Suppose we observe the following multivariate deconvolution model

Yi = Xi + εi, i = 1, . . . , n(1)

where (Xi) are i.i.d. (independent and identically distributed) random variables on Rd, d ≥ 1,
with density f : Rd → [0,∞) with respect to the Lebesgue measure and independent of (εi) which
are d dimensional i.i.d. random variables with known distribution G. We aim at estimating f
by a fixed point method from the indirect observations (Yj) and under the following assumption
(H1). Suppose there exist a positive number 0 ≤ α < 1/2 and a density function g : Rd → [0,∞),
with respect to the Lebesgue measure, such that

G(dx) = (1− α)δ(dx) + αg(x)dx(H1)

where δ is the Dirac mass concentrated at 0 and dx = dx1 . . . dxd.

The law of the observations (Yi) is f ? G, where ? denotes the convolution product. Then,
to estimate f from the indirect observations (Yi), one needs to compute P−1, the inverse of the
convolution operator:

P : f −→ P[f ] = f ? G.

This model has been extensively studied in the literature assuming the distribution G to be
absolutely continuous with respect to the Lebesgue measure (which corresponds to α = 1).
Optimal rates of convergence and adaptive procedures are well known if d = 1 (see e.g. Carroll
and Hall [5], Stefanski [27], Stefanski and Carroll [28], Fan [15], Butucea [1], Butucea and
Tsybakov [3, 4], Pensky and Vidakovic [25] or Comte et al. [2] for L2 loss functions or Lounici
and Nickl [22] for the L∞ loss). Results have also been established for multivariate anisotropic
densities (see e.g. Comte and Lacour [9] for L2 loss functions or Rebelles [26] for Lp loss
functions, p ∈ [1,∞]). Deconvolution with unknown error distribution has also been studied
(see e.g. Neumann [24], Delaigle et al. [10], Johannes [17] or Meister [23], if an additional error
sample is available, or Comte and Lacour [8], Delattre et al. [11], Johannes and Schwarz [18],
Comte and Kappus [7] or Kappus and Mabon [19] under other set of assumptions).
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2 C. DUVAL

The spirit of all the afore-mentioned procedures is to transport the problem in the Fourier
domain where the convolution product becomes a simple product, that can be easily inverted.
Let F [G] denote the Fourier transform of a distribution G, dominated by a measure ν, i.e.

F [G](u) :=

∫
eiuyG(y)ν(dy).

In the one dimensional setting we have

F [f ](u) =
F [f ? G](u)

F [G](u)
∀ u ∈ R such that F [G](u) 6= 0.(2)

If the distribution G of the noise ε is absolutely continuous with respect to the Lebesgue mea-
sure, its Fourier transform is vanishing at infinity. Then, at the points where F [G](u) gets small,
F [f ](u) is badly recovered. It leads to specific minimax rates of convergence, slower than usual
nonparametric rates, that depend on how fast F [G] goes to 0 at infinity (see e.g. Fan [15]). A
strategy based on (2) leads to an estimator of F [f ], which needs to be sent back in the space
of density functions to get an estimator of f . Working with a L2 loss function together with
the use of Plancherel equality facilitate the study of the estimator. This methodology may also
be adapted to general Lp loss functions (see e.g. Rebelles [26]) using a kernel density estimator
with a suitably chosen kernel that takes advantage of the structure of the problem in the Fourier
domain.

Recently, Lepski and Willer [21] considered the same convolution model where the distribution
of the noise is of the form (H1). For α ∈ [0, 1], they establish lower bounds for Lp loss functions,
p ∈ [1,∞], over very general anisotropic Nikol’skii classes. In their paper, if an outline on how to
estimate f is suggested, no estimator is given. Therefore the upper bounds are not established.
In this paper, we study a methodology based on a fixed point method, that permits to non
parametrically estimate the density f for Lp loss functions, 1 ≤ p < ∞ over isotropic Besov
balls. For the fixed point procedure to work, we add some restrictions on the distribution of
the noise G, namely α ∈ [0, 1

2 [. The interest of the procedure is threefold. Firstly, we solve a
particular deconvolution problem without relying on the specificity of the convolution product
in the Fourier domain. Secondly, we provide a consistent estimator of the density f , that is easy
to implement numerically. Thirdly, it matches the lower bounds of Lepski and Willer [21] under
some additional constraints on α.

1.2. Estimation strategy. We have i.i.d. observations with distribution

f ? G(x) =

∫
Rd
f(y)G(x− y)ν(dy),

where ν(dy) = δ(dy) + dy is a dominating measure. Formally, we introduce the convoluting
operator P

P : G(Rd) −→ G(Rd)(3)

f −→ P[f ] := f ? G = G ? f

where G(Rd) denotes the set of densities that are absolutely continuous with respect to the
Lebesgue measure on Rd. If we knew analytically the inverse P−1 of P, such that P−1[P] = I,
an estimator of f would be naturally

f̂ = P−1[P̂[f ]]

where P̂[f ] denotes any estimator of f ?G build from the direct observations (Y1, . . . , Yn). Even
if we know that P−1 exists, we do not have its analytic form. Here, we do not compute the
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inverse P−1, but we approximate it by a fixed point method. Consider the mapping T (see also
Duval [14])

T[h] = P[f ] + h−P[h], h ∈ G(Rd).(4)

We immediately check that f is a fixed point of T. If moreover T is contractant and f belongs to
a given Banach space equipped with some norm ‖‖B , applying the Banach fixed point theorem
we get limK→∞ ‖f − T◦K [h]‖B = 0, for any density h and where ◦ denotes the composition
product and T◦K = T ◦ . . . ◦T, K times. Then, a natural estimator of f is given by

f̂K = T◦K [P̂[f ]]

for a suitable choice of the integer K ≥ 1.

Predictably enough, to make T contractant, we need to impose some conditions on G, that
is why Assumption (H1) is introduced, with α ∈ [0, 1

2 [. In that setting, the lower bounds of
Lepski and Willer [21] suggests that there exists an estimator converging at usual nonparametric
rate. In comparison with the deconvolution models usually studied in the literature (α = 1),
introducing a Dirac mass in the distribution of the noise G simplifies the estimation problem.
Indeed, for u ∈ R,

F [G](u) = (1− α) + αF [g](u)

that no longer tends to 0 as |u| → ∞. This suggests that this specific inverse problem is well-
posed and that standard deconvolution procedures based on a Fourier approach should attain
usual nonparametric rates of convergence. The introduction of a distribution G with a mass
at 0 appears naturally. Indeed, the Dirac mass δ is the neutral element for the convolution
product. This is not enough to make T contractant, we work in a more constrained setting that
is 0 < α < 1

2 (see Proposition 1 hereafter). It means that the data set contains at least 50% of
direct observations.

We investigate the nonparametric estimation of the density f on any compact set D of Rd,
under Assumption (H1) with α < 1/2. We use wavelet threshold density estimators and study
their rate of convergence uniformly over isotropic Besov balls for the following Lp loss function,
1 ≤ p <∞, (

E
[
‖f̂ − f‖pLp(D)

])1/p
,(5)

where f̂ is an estimator of f and ‖.‖Lp(D) denotes Lp loss over the compact set D. In the sequel
we distinguish the norm ‖.‖Lp(Rd) from ‖.‖Lp(ν) as follows

‖f‖Lp(Rd) =
(∫

Rd
|f(x)|pdx

)1/p

and ‖G‖Lp(ν) =
(∫

Rd
|G(x)|pν(dx)

)1/p

.

1.3. Link with the estimation of random sums. Assumption (H1) can be understood as
follows. If α = 0, it means that Yi = Xi for all i ∈ {1, . . . , n} and P = I = P−1. On
the contrary, α = 1 corresponds to the classical deconvolution model (see references above).
Finally, 1 > α > 0 means that α percents of the dataset are blurred observations of X and the
others are direct measurements, which is the case when observations are recorded with a device
that is sometimes subject to measurement errors. However, we do not know from the dataset
(Y1, . . . , Yn) which observation is blurred and which is not.

This assumption appears naturally when one estimates the jump density of a jump process,
e.g. a compound Poisson process or a renewal reward process, from high frequency observations.
It can be formalized as a deconvolution problem. Let Z be a jump process with stationary
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increments defined by

Zt =

Nt∑
i=1

ξi

where N is a counting process with stationary increments and independent of (ξi) which are i.i.d.
with density f . Without loss of generality one can suppose we observe n nonzero increments of
Z at the sampling rate ∆. The distribution of Z∆|Z∆ 6= 0 is

P(N∆ = 1|N∆ 6= 0)f +

∞∑
k=2

P(N∆ = k|N∆ 6= 0)f?k

= f ?
(
P(N∆ = 1|N∆ 6= 0)δ +

∞∑
k=2

f?k−1P(N∆ = k|N∆ 6= 0)
)
.

We recover a similar setting as the one studied above. Note that the exact form of P defined
in (3) is unknown since it depends on the counting process N and on the density f itself. A
fixed point approach has been investigated in Duval [14] (see also Duval [13] for an explicit
computation of P−1) in the particular case where the process is observed at high frequency, i.e.
∆→ 0. Then, it is possible to estimate f at usual nonparametric rates. The constraint on the
sampling rate ∆ entails that nonzero increments (Zi∆ − Z(i−1)∆|Zi∆ − Z(i−1)∆ 6= 0) are most
of the time realizations of f , indeed, if ∆ is small, we have P(N∆ = 1|N∆ 6= 0) ≈ 1 −∆. We
recover a condition similar to Assumption (H1).

2. Estimation of f

2.1. Preliminary on Besov spaces and wavelet thresholding. In the sequel we consider
wavelet threshold density estimators and study their performance uniformly over isotropic Besov
balls. In this paragraph we reproduce some classical results on Besov spaces, wavelet bases,
wavelet-tensor products and wavelet threshold estimators (see Cohen [6], Donoho et al. [12] or
Kerkyacharian and Picard [20]) that we use in the next sections.

Wavelets and Besov spaces. Let
(
ψλ
)
λ

be a regular wavelet basis adapted to the compact set

D ⊂ Rd (for a precise definition of (ψλ)λ see hereafter). The multi-index λ concatenates the
spatial index and the resolution level j = |λ|. Set Λj := {λ, |λ| = j} and Λ = ∪j≥−1Λj , for
f : Rd → [0,∞) in Lp(Rd) we have

f =
∑
j≥−1

∑
λ∈Λj

〈f, ψλ〉ψλ,(6)

where j = −1 incorporates the low frequency part of the decomposition and 〈., 〉 denotes the
usual L2 inner product. Let s > 0 and π ∈ (0,∞], a function f belongs to the Besov space
Bsπ∞(D) if the norm

‖f‖Bsπ∞(D) := ‖f‖Lπ(D) + ‖f (bsc)‖Lπ(D) +
∥∥∥w2

π(f (bsc), t)

ta

∥∥∥
L∞(D)

(7)

is finite, where s = bsc+ a, bsc ∈ N and a ∈ (0, 1], w is the modulus of continuity defined by

w2
π(f, t) = sup

|h|≤t

∥∥DhDh[f ]
∥∥
Lπ(D)

and Dh[f ](x) = f(x − h) − f(x). Equivalently we can define Besov space in term of wavelet
coefficients (see Härdle et al. [16] or Kerkyacharian and Picard [20]), f belongs to Bsπ∞(D) if

sup
j≥−1

2j(s+d(1/2−1/π))
( ∑
λ∈Λj

|〈f, ψλ〉|π
)1/π

<∞,
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with usual modifications if π = ∞. We need additional properties on the wavelet basis
(
ψλ
)
λ
,

which are listed in the following assumption.

Assumption 1. Let p ≥ 1, it holds that

• For some C ≥ 1,

C−12d|λ|(p/2−1) ≤ ‖ψλ‖pLp(D) ≤ C2d|λ|(p/2−1).

• For some C > 0, σ > 0 and for all s ≤ σ, J ≥ 0,∥∥f −∑
j≤J

∑
λ∈Λj

〈f, ψλ〉ψλ
∥∥
Lp(D)

≤ C2−Js‖f‖Bsπ∞(D).(8)

• If p ≥ 1, for some C ≥ 1 and for any sequence of coefficients
(
uλ
)
λ∈Λ

,

C−1
∥∥∥∑
λ∈Λ

uλψλ

∥∥∥
Lp(D)

≤
∥∥∥(∑

λ∈Λ

|uλψλ|2
)1/2∥∥∥

Lp(D)
≤ C

∥∥∥∑
λ∈Λ

uλψλ

∥∥∥
Lp(D)

.(9)

• For any subset Λ0 ⊂ Λ and for some C ≥ 1

C−1
∑
λ∈Λ0

‖ψλ‖pLp(D) ≤
∫
D

( ∑
λ∈Λ0

|ψλ(x)|2
)p/2

≤ C
∑
λ∈Λ0

‖ψλ‖pLp(D).(10)

Property (8) ensures that definition (7) of Besov spaces matches the definition in terms of
linear approximation. Property (9) ensures that

(
ψλ
)
λ

is an unconditional basis of Lp and (10)

is a super-concentration inequality (see Kerkyacharian and Picard [20] p.304 and p.306).

Wavelet threshold estimator. Let (ϕ,ψ) be a pair of scaling function and mother wavelet that
generate a basis

(
ψλ
)
λ
. Denote ϕ0k(.) = ϕ(. − k), ψjk(.) = 2j/2ψ(2j . − k), the associated

translated-dilated functions. Consider the triples (j,k, A), where j ∈ N, k = (k1, . . . , kd) ∈ Zd
and A ∈ Sd the set of all non empty subsets of {1, . . . , d}. Let the functions ϕk : Rd → R and
ψ(j,k,A) : Rd → R defined by

ϕk(x) = ϕk(x1, . . . , xd) =

d∏
i=1

ϕ0ki(xi),

ψ(j,k,A)(x) = ψ(j,k,A)(x1, . . . , xd) =
∏
i∈A

ψjki(xi)
∏
i∈Ac

ϕjki(xi).

The system
{
ϕk, k ∈ Zd, ψ(j,k,A), j ∈ N, k ∈ Zd, A ∈ Sd

}
is a wavelet-tensor product. If

constructed on compactly supported wavelets (ϕ,ψ), it satisfies Assumption 1 for some σ > 0
(see Kerkyacharian and Picard [20] pp. 305, 306 and 314-315). To simplify notation, we write the
basis {ψjk, j ∈ N, k ∈ Aj} where Aj is a set of cardinality proportional to 2jd and incorporates
boundary terms that we choose not to distinguish in the notation. Then, (6) becomes

f =
∑
j≥0

∑
k∈Aj

γjkψjk,

where γjk =
∫
Rd ψjk(x)f(x)dx. We consider classical hard threshold estimators of the form

f̂(.) =

J∑
j=0

∑
k∈Aj

γ̂jk1{|γ̂jk|≥η}ψjk(.),

where γ̂jk is an estimator of γjk, J and η are respectively the resolution level and the threshold,
possibly depending on the data.
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2.2. Construction of the estimator. We estimate densities f which satisfy a smoothness
property in term of Besov balls

G(s, π,M) =
{
f ∈ G(R), ‖f‖Bsπ∞(Rd) ≤M

}
,(11)

where M is a positive constant. The fact that f is in a Besov space Bsπ,∞(Rd) is used to

approximate P−1 with a fixed point method. The fact that its Besov norm is bounded is used
to control the risk of the estimator over the ball G(s, π,M).

Construction of the inverse. For π ≥ 1, the space Bsπ∞(Rd) is a Banach space if equipped with
the Besov norm (7). Consider the mapping T, for which f is a fixed point, defined for h in
Bsπ∞(Rd) by

T[h] := P[f ] + h−P[h],(12)

where P is defined in (3). The following Proposition 1 guarantees that the definition of the
operator (12) matches the assumptions of the Banach fixed point theorem.

Proposition 1. Let π ≥ 1 and 0 < α < 1
2 . Then, the mapping T sends elements of Bsπ∞(Rd)

into itself and is a contraction. For all h1, h2 ∈ Bsπ∞(Rd) we have∥∥T[h1]−T[h2]
∥∥
Bsπ∞(Rd)

≤ 2α‖h1 − h2‖Bsπ∞(Rd).

Proposition 1 permits to apply the Banach fixed point theorem: let 0 < α < 1
2 , we derive that

f is the unique fixed point of T and from any initial point h0 in Bsπ∞(Rd) we have∥∥f −T◦K [h0]
∥∥
Bsπ∞(Rd)

−→ 0 as K →∞.

We choose h0 = P[f ] as initial point as we can construct an optimal estimator of P[f ] from the
observations (Y1, . . . , Yn) (Lemma 1 in Section 4 ensures that P[f ] is in G(s, π,M) ⊂ Bsπ∞(Rd)).

Remark 1. The restriction on α is imposed by the factor 2 in the contraction property. This
factor seems unavoidable: we control the difference of 2 singular probability measures, one ab-
solutely continuous with respect to the Lebesgue measure and the other with the Dirac mass δ.
This factor 2 seems sharp and the operator T might be useless to approximate P−1 for α ≥ 1

2 .

Proposition 2. Let K ≥ 0, it holds that

T◦K
[
P[f ]

]
= HK [G] ?P[f ]

where for K ≥ 1, HK is given by HK [G] =

K+1∑
k=1

CkK+1(−1)k+1G?k and we set H0[G] = δ.

Note that G ? HK [G] = δ − (δ − G)?K+1. Proposition 2 is useful from a numerical point of
view. It permits to easily compute T◦K

[
P[f ]

]
, where replacing P[f ] by an estimator leads to

our estimator.

Construction of an estimator of P[f ]. Define the wavelet coefficients

γ̂jk =
1

n

n∑
i=1

ψjk(Yi).(13)

Let η > 0 and J ∈ N \ {0}, define P̂ the estimator of P[f ] over D as

P̂ (x) =

J∑
j=0

∑
k∈Aj

γ̂jk1{|γ̂jk|≥η}ψjk(x), x ∈ D.(14)
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Definition 1. Let f̂K be an estimator of f defined for K in N and x in D as

f̂K(x) = HK [G] ? P̂ (x)(15)

where HK is defined in Proposition 2.

The estimator f̂K may be interpreted as follows, if α = 0 then f = P[f ], which can be directly
estimated, and one should have K = 0. However, if α > 0, the dataset is contaminated with
blurred observations that need to be counterbalanced by the addition of K corrections. For
instance, suppose α = n−1/4. Straightforward computations lead to

T
[
P[f ]

]
= (1− n−1/2)f +O(n−1/2)

whereas the direct approximation is P[f ] = (1−n−1/4)f +O(n−1/4). Then, applying T permits
to approximate f more rapidly than the crude approximation of P[f ].

2.3. Convergence rates and discussion.

Theorem 1. We work under Assumption 1. Let p ≥ π ≥ 1, σ > s > 1/π and P̂ be the threshold
wavelet estimator of P[f ] on D defined in (14). Take J such that 2Jdn−1 log

(
n1/2

)
≤ 1 and

η = κn−1/2
√

log
(
n1/2

)
, for some κ > 0.

(1) The estimator P̂ of P[f ] satisfies for sufficiently large κ > 0

sup
P[f ]∈G(s,π,M)

(
E
[∥∥P̂ −P[f ]

∥∥p
Lp(D)

])1/p ≤ Cn−δ(s,p,π),

up to logarithmic factors in n, where

δ(s, p, π) = min
{ s

2s+ d
,
s+ d/p− d/π

2
(
s+ d/2− d/π

)}(16)

and C depends on s, π, p,M,ψ. An explicit bound for κ is given in Lemma 3.

(2) Suppose moreover that Assumption (H1) holds. The estimator f̂K for K ∈ N defined in
(15) satisfies for sufficiently large κ > 0

sup
f∈G(s,π,M)

(
E
[
‖f̂K − f‖pLp(D)

])1/p ≤ max
(

2Kn−δ(s,p,π), (2α)K+1M
)
,

up to logarithmic factors in n, where C depends on s, π, p,M,ψ.

Proof of Theorem 1 is postponed to Section 4. Note that the estimator f̂K with J and η chosen
as in Theorem 1 is adaptive, recall that K is chosen by the practitioner. This upper bound is
easy to interpret. The estimator cannot perform well if P−1 is poorly approximated by T◦K , it

leads to the deterministic loss (2α)K+1. It also cannot perform better than the estimator P̂ of
P[f ], which imposes the random error n−δ(s,p,π), this is optimal. However, there is an additional
constant in 2K , that may not be negligible. It is due to the form of the estimator that may be
rewritten:

f̂K(x) =

K+1∑
k=1

CkK+1(−1)k+1G?k ? P̂ (x).

Ideally, we should take K such that the deterministic error is negligible compared to the
random error and would realize the tradeoff 2Kn−δ(s,p,π) � (2α)K+1. As δ(s, p, π) is unknown,
we use that δ(s, p, π) ≤ 1

2 , which leads to the adaptive choice K∗, the smallest integer such that

n−
1
2 > 2.αK+1

K∗ �
⌈1

2

log(n)

log
(

1
α

) − 1
⌉
.(17)

We have K∗ := K∗(α) that is increasing with α.
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However, this choice of K∗, if it gives a consistent procedure, may not attain minimax rates
of convergence. Indeed, the resulting rate is 2K

∗
n−δ(s,p,π) (up to logarithmic terms in n). If

K∗ gets too large, 2K
∗

deteriorates the rate of convergence. The question may be reformulated
as follows, how large can α be for the procedure to be rate optimal i.e. such that 2K

∗
entails

at most a logarithmic loss in n. If K = O(log(log(n))) then α∗n the maximum α for which the
procedure attains the minimax rate is

α∗n = exp
(
− log(n)

2 log(log(n))

)
.

Note that α∗n → 0 as n → ∞. But, in the cases where α := αn ≤ α∗n, f̂K∗ is rate optimal and
converges at usual nonparametric rate, up to a logarithmic loss. It matches the lower bound of
Lepski and Willer [21]. Nonetheless, the aim of the present note is not to solve this particular
problem, but to stress that it is possible to solve a deconvolution problem without relying on a
Fourier argument and underline the fact that fixed point approaches are possible tools to solve
inverse problems.

3. Numerical study

In this Section we illustrate, in the univariate setting, how the method performs on simu-
lated data and examine in particular its behavior when K increases and α is varying. We
also compare its performances with an oracle: the wavelet estimator we would compute in the
idealized framework where direct observations (Xi, 1 ≤ i ≤ n) are available.

Wavelet estimators are based on the evaluation of the first wavelet coefficients. To perform
those we use Symlets 16 wavelet functions, that are compactly supported and satisfy Assumption
1. Moreover we transform the data in an equispaced signal on a grid of length 2L with L = 8.
It is the binning procedure (see Härdle et al. [16] Chap. 12). The threshold and the resolution
level are chosen as in Theorem 1. The parameter κ is taken equal to 1. The estimators we
compute take the form of a vector giving the estimated values of the density f on the uniform
grid [a, b] with mesh 0.01, where a and b are adapted to the estimated density f . We use the

wavelet toolbox of Matlab. To compute f̂K for K ≥ 1, we compute (G?k ? P̂ , 1 ≤ k ≤ K − 1)
with the function conv of Matlab.

Figure 1 represents the estimation procedure for different values of K ∈ {0, 1, 2}, α = 0.25, g
a Gaussian density with mean 3 and variance 0.5 and f being the following mixture:

0.2N (−2, 1) + 0.8N (2, 1)

All the estimators are evaluated on the same trajectory. They all manage to reproduce the

shape of the density f but f̂0 and f̂1 are biased. Increasing K permits to reduce this bias. Even
though the optimal choice for K given by (17) is 4, it seems that with K = 2 we already have
a good estimation of the mixture.

Evaluation of L2 risks confirms the former graphical observation. We approximate the L2

errors by Monte Carlo. For that we compute M = 1000 times each estimator, for each iteration,

the estimators (f̂K)K≥0 are computed on the same dataset (Yj , 1 ≤ j ≤ n) and the oracle on
the direct observations (Xi, 1 ≤ i ≤ n) used to computed the values (Yj , 1 ≤ j ≤ n). The results
are reproduced in Tables 1, 2 and 3.

In Table 2 we observe that the procedure is meaningful, regardless the density g. The L2

risks decrease with K, until K gets larger that K∗ defined in (17), afterwards, they get stable.
Also it appears that the most significant gains in the risk come from the first iterations of the
fixed point method (K ∈ {1, 2}) and that the gain is less important then. In Table 3 we see
that even for large values of α the procedure works. In both Tables, even the risks associated to

f̂K∗ are larger than the oracle ones, even for large values of n. It can be explained by the fact
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Figure 1. Estimators of the density f (plain black) for n = 106 and α = 0.25:

f̂0 (dotted black), f̂1 (dotted dark grey) and f̂2 (dashed light grey).

that the minimax rate can be attained only for values of α that are close to 0. Indeed for the
values of α and n of Table 3, we have 2K

∗
αK

∗+1 = 0.1 which is the limiting term in the rate
according to Theorem 1. If we take α small enough such that the associated K is smaller than
log(log(n)) as in Table 1 where α = 0.03, we observe that our procedure attain the oracle rate,
that is minimax. Numerical results are consistent with the theoretical results of Theorem 1.

g n (K∗) Oracle f̂0 f̂1 f̂2 f̂3

104 0.29× 10−3 0.83× 10−3 0.66× 10−3 0.66× 10−3 0.66× 10−3

(1) (0.20 × 10−3) (0.35 × 10−3) (0.31 × 10−3) (0.31 × 10−3) (0.31 × 10−3)

N (2, 2) 105 0.07× 10−3 0.19× 10−3 0.04× 10−3 0.04× 10−3 0.04× 10−3

(1) (0.29 × 10−4) (0.35 × 10−4) (0.21 × 10−4) (0.21 × 10−4) (0.21 × 10−4)

104 0.29× 10−3 0.30× 10−3 0.24× 10−3 0.24× 10−3 0.24× 10−3

(1) (0.20 × 10−3) (0.17 × 10−3) (0.17 × 10−3) (0.17 × 10−3) (0.17 × 10−3)

U([−1, 3]) 105 0.07× 10−3 0.15× 10−3 0.09× 10−3 0.09× 10−3 0.09× 10−3

(1) (0.28 × 10−4) (0.44 × 10−4) (0.41 × 10−4) (0.41 × 10−4) (0.41 × 10−4)

Table 1. Mean of the L2-risks for different values of K and the oracle estimator; standard
deviation in parenthesis. In this case, f is N (1, 1), α = 0.03 and D = [−3, 4]. In bold it is

the loss of the estimator f̂K∗ , where K∗ is chosen as in (17).

4. Proofs

In the sequel C denotes a constant which may vary from line to line. Its dependency in other
constants are sometimes given in subscripts.

4.1. Preliminary. We establish a technical lemma, which states that regularity assumptions
on f transfer to P[f ].

Lemma 1. If f belongs to G(s, π,M) then, P[f ] also belongs to G(s, π,M).
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g n (K∗) Oracle f̂0 f̂1 f̂2 f̂3

104 0.28× 10−3 2.62× 10−3 1.06× 10−3 1.00× 10−3 1.00× 10−3

(1) (0.19 × 10−3) (0.58 × 10−3) (0.44 × 10−3) (0.42 × 10−3) (0.42 × 10−3)

N (2, 2) 105 0.07× 10−3 1.77× 10−3 0.32× 10−3 0.27× 10−3 0.27× 10−3

(2) (0.03 × 10−3) (0.11 × 10−3) (0.05 × 10−3) (0.05 × 10−3) (0.05 × 10−3)

104 0.29× 10−3 1.09× 10−3 0.54× 10−3 0.53× 10−3 0.53× 10−3

(1) (0.20 × 10−3) (0.27 × 10−3) (0.24 × 10−3) (0.24 × 10−3) (0.24 × 10−3)

U([−1, 3]) 105 0.07× 10−3 0.93× 10−3 0.40× 10−3 0.38× 10−3 0.38× 10−3

(2) (0.28 × 10−4) (0.88 × 10−4) (0.67 × 10−4) (0.67 × 10−4) (0.67 × 10−4)

104 0.28× 10−3 1.87× 10−3 0.97× 10−3 0.94× 10−3 0.94× 10−3

(1) (0.19 × 10−3) (0.67 × 10−3) (0.58 × 10−3) (0.57 × 10−3) (0.57 × 10−3)

E(2) 105 0.07× 10−3 1.34× 10−3 0.52× 10−3 0.49× 10−3 0.49× 10−3

(2) (0.03 × 10−3) (0.15 × 10−3) (0.13 × 10−3) (0.13 × 10−3) (0.13 × 10−3)

Table 2. Mean of the L2-risks for different values of K and the oracle estimator; standard
deviation in parenthesis. In this case, f is N (1, 1), α = 0.1 and D = [−3, 4]. In bold it is the

loss of the estimator f̂K∗ , where K∗ is chosen as in (17).

g n (K∗) Oracle f̂0 f̂1 f̂2 f̂K∗

N (2, 2) 105 0.07× 10−3 2.78× 10−2 1.07× 10−2 0.72× 10−2 0.61× 10−2

(6) (0.03 × 10−3) (0.67 × 10−3) (0.60 × 10−3) (0.53 × 10−3) (0.52 × 10−3)

U([−1, 3]) 105 0.07× 10−3 1.34× 10−2 0.76× 10−2 0.67× 10−2 0.65× 10−2

(6) (0.28 × 10−4) (0.34 × 10−3) (0.33 × 10−3) (0.32 × 10−3) (0.32 × 10−32)

Table 3. Mean of the L2-risks for different values of K and the oracle estimator; standard

deviation in parenthesis. In this case, f is N (1, 1), α = 0.4 and D = [−3, 4]. In bold it is the

loss of the estimator f̂K∗ , where K∗ is chosen as in (17).

Proof of Lemma 1. It is straightforward to derive
∥∥P[f ]

∥∥
L1(ν)

= 1. The remainder of the proof

is a consequence of the following result: Let f ∈ Bsπ∞(Rd) and g ∈ L1(Rd) we have

‖f ? g‖Bsπ∞(Rd) ≤ ‖f‖Bsπ∞(Rd)‖g‖L1(Rd).(18)

To prove (18) we use the definition of the Besov norm (7); the result is a consequence of Young’s
inequality and elementary properties of the convolution product. First, Young’s inequality gives

‖f ? g‖Lπ(Rd) ≤ ‖f‖Lπ(Rd)‖g‖L1(Rd).(19)

Second, the differentiation property of the convolution product leads for n ≥ 1 to∥∥∥ dn
dxn

(f ? g)
∥∥∥
Lπ(Rd)

=
∥∥∥( dn
dxn

f
)
? g
∥∥∥
Lπ(Rd)

≤
∥∥∥ dn
dxn

f
∥∥∥
Lπ(Rd)

‖g‖L1(Rd).(20)

Finally, translation invariance of the convolution product gives∥∥DhDh[(f ? g)(n)]
∥∥
Lπ(Rd)

=
∥∥(DhDh[f (n)]) ? g

∥∥
Lπ(R)

≤
∥∥DhDh[f (n)]

∥∥
Lπ(Rd)

‖g‖L1(Rd).(21)

Inequality (18) is then obtained by bounding ‖f ? g‖Bsπ∞(Rd) using (19), (20) and (21). We now

complete the proof of Lemma 1, using the triangle inequality and (18)

‖P[f ]‖Bsπ∞(Rd) =
∥∥G ? f

∥∥
Bsπ∞(Rd)

=
∥∥(1− α)f + αg ? f

∥∥
Bsπ∞(Rd)

≤ ‖f‖Bsπ∞(Rd) ≤M,

where α and g are defined in (H1). The proof is now complete. �
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4.2. Proof of Proposition 1. We show that T is a contraction that sends elements of Bsπ∞(Rd)
into Bsπ∞(Rd). We have for all h1, h2 ∈ Bsπ∞(Rd)

T[h1]−T[h2] =h1 − h2 −G ? (h1 − h2) = α(h1 − h2)− αg ? (h1 − h2).

It follows from Young’s inequality and assumption (H1) that∥∥T[h1]−T[h2]
∥∥
Bsπ∞(Rd)

≤ 2α‖h1 − h2‖Bsπ∞(Rd).

Finally, let h ∈ Bsπ∞(Rd). The last assertion together with the fact that the null function is in
Bsπ∞(Rd) and Lemma 1 lead to∥∥T[h]

∥∥
Bsπ∞(Rd)

≤
∥∥T[0]

∥∥
Bsπ∞(Rd)

+
∥∥T[h]−T[0]

∥∥
Bsπ∞(Rd)

≤
∥∥P[f ]

∥∥
Bsπ∞(R)

+ 2α‖h‖Bsπ∞(Rd) <∞.

The proof is now complete.

4.3. Proof of Proposition 2. A proof by induction readily gives the result. It holds for K = 1,
assuming the result at rank K we have

T◦K+1
[
P[f ]

]
= T

[
T◦K

[
P[f ]

]]
= P[f ] + HK [G] ?P[f ]−G ?HK [G] ?P[f ]

= (δ + HK [G]−G ?HK [G]) ?P[f ].

Then, G ? (δ + HK [G]−G ?HK [G]) = G+G ?HK [G]−G ? G ?HK [G]

= G+ δ − (δ −G)?K+1 −G ? (δ − (δ −G)?K+1)

= δ − (δ −G) ? (δ −G)?K+1 = δ − (δ −G)K+2,

which concludes the proof.

4.4. Proof of Theorem 1.

Proof of part 1) of Theorem 1. To prove part 1) of Theorem 1 we apply the general results of
Kerkyacharian and Picard [20]. For that we state some technical lemmas whose proof is based
on classical Rosenthal’s and Bernstein’s inequalities.

Lemma 2. Let 2jd ≤ n, then for p ≥ 1 we have

E
[∣∣γ̂jk − γjk∣∣p] ≤ Cn−p/2,

where C depends on p, ‖ψ‖Lp(Rd), M and γ̂jk is defined in (13) and

γjk =

∫
Rd
ψjk(y)P[f ](y)dy.(22)

Proof of Lemma 2. The result is obtained applying Rosenthal’s inequality: let p ≥ 1 and let
(U1, . . . , Un) be centered independent real random variables such that E

[
|Ui|p

]
< ∞. Then

there exists Cp such that

E
[∣∣∣ n∑

i=1

Ui

∣∣∣p] ≤ Cp{ n∑
i=1

E
[
|Ui|p

]
+
( n∑
i=1

E
[
|Ui|2

])p/2}
.(23)

Set Zi = ψjk(Yi), for p ≥ 1 we have by convex inequality

E
[∣∣Zi − E[Zi]

∣∣p] ≤ 2pE
[∣∣Zi∣∣p] ≤ 2p2jdp/2

∫
Rd
|ψ(2jy − k)|pP[f ](y)dy

= 2p2jd(p/2−1)

∫
Rd
|ψ(z)|pP[f ](2−j(z − k))dy
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where we made the substitution z = 2jy−k. Lemma 1 and Sobolev embeddings (see [6, 12, 16])

Bsπ∞ ↪→ Bs
′

p∞ and Bs
′

π∞ ↪→ Bs∞∞,(24)

where p > π, sπ > 1 and s′ = s− 1/π + 1/p, give
∥∥P[f ]

∥∥
∞ ≤M . It follows that

E
[∣∣Zi − E[Zi]

∣∣p] ≤ 2p2jd(p/2−1)‖ψ‖p
Lp(Rd)

M

and E
[∣∣Zi − E[Zi]

∣∣2] ≤M since ‖ψ‖L2(Rd) = 1. Rosenthal’s inequality (23) gives for p ≥ 1

E
[∣∣γ̂jk − γjk∣∣p] ≤ Cp{2p

(2jd

n

) p
2−1

‖ψ‖p
Lp(Rd)

M +Mp/2
}
n−

p
2 .

Finally, since 2jd ≤ n
E
[∣∣γ̂jk − γjk∣∣p] ≤ Cp,‖ψ‖

Lp(Rd)
,Mn

−p/2.

This completes the proof. �

Lemma 3. Choose j and c such that

2jdn−1 log(n1/2) ≤ 1 and c2 ≥ 8
(
M +

c ‖ψ‖∞
3

)
.

For all r ≥ 1, let κr = cr. We have

P
(∣∣γ̂jk − γjk∣∣ ≥ κr

2
n−1/2

√
log(n1/2)

)
≤ n−r/2,

where γ̂jk is defined in (13) and γjk in (22).

Proof of Lemma 3. The proof is obtained with Bernstein’s inequality. Consider U1, . . . , Un
centered, bounded and independent real random variables such that |Ui| ≤ S and set s2

n =∑n
i=1 E[U2

i ]. Then for any λ > 0,

P
(∣∣∣ n∑

i=1

Ui

∣∣∣ > λ
)
≤ 2 exp

(
−

λ2

2(s2
n + λS

3 )

)
.(25)

We keep notation Zi introduced in the proof of Lemma 2, γ̂jk − γjk is a sum of centered and

identically distributed random variables bounded by 2jd/2‖ψ‖∞ such that E
[∣∣Zi−E[Zi]

∣∣2] ≤M,
It follows from (25)

P
(
|γ̂jk − γjk| ≥

κr
2
n−1/2

√
log(n1/2)

)
= P

(∣∣∣ n∑
i=1

Zi − E(Zi)
∣∣∣ ≥ κr

2
n1/2

√
log(n1/2)

)
≤ 2 exp

(
− κ2

r log(n1/2)

8

(
M +

κr2
jd/2n−1/2

√
log(n1/2)‖ψ‖∞

3

)
)
.

Using that 2jdn−1 log(n1/2) ≤ 1 we have

P
(
|γ̂jk − γjk| ≥

κr
2
n−1/2

√
log(n1/2)

)
≤ 2 exp

(
− c2r

8
(
M + κr‖ψ‖∞

3

)r log(n1/2)

)
≤ n−r/2,

if c2 ≥ 8
(
M +

c ‖ψ‖∞
3

)
and r ≥ 1. The proof is complete. �

Proof of of part 1) of Theorem 1. It is a consequence of Lemma 1, 2, 3 and of the general theory
of wavelet threshold estimators of Kerkyacharian and Picard [20]. Let J , such that 2Jd =
n(log(n))−1. Conditions (5.1) and (5.2) of Theorem 5.1 of [20], are satisfied –Lemma 2 and

3– with c(n) = n−1/2
√

log(n) and Λn = c(n)−1 (with the notation of [20]), we can now apply
Theorem 5.1, its Corollary 5.1 and Theorem 6.1 of [20] to obtain the result. �
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Completion of the proof of Theorem 1. We decompose the Lp loss as follows, using notation of
Proposition 2 and Definition 1(

E
[
‖f̂K − f‖pLp(D)

]) 1
p ≤

(
E
[∥∥f̂K −HK [G] ?P[f ]‖pLp(D)

]) 1
p +

∥∥HK [G] ?P[f ]− f
∥∥
Lp(D)

.(26)

An upper bound for the first term is given by part 1) of Theorem 1, the triangle inequality and
Young’s inequality

E
[∥∥f̂K −HK [G] ?P[f ]‖pLp(D)

]
= E

[∥∥HK [G] ?
(
P̂ −P[f ]

)
‖pLp(D)

]
≤ 2KpE

[
‖P̂ −P[f ]‖pLp(D)

]
≤ C2Kpn−δ(s,p,π)p,(27)

where C depends on s, π, p,M,ϕ, ψ.

To bound the second term in (26) we use the fixed point theorem’s approximation. First we
have to relate the Lp norm with the Besov norm. The triangle inequality and Lemma 1 ensure
that if f is in G(s, π,M) then HK [G] ?P[f ]− f is in G(s, π,M). It follows from the definition
of the Besov norm that∥∥HK [G] ?P[f ]− f

∥∥
Lp(D)

≤
∥∥HK [G] ?P[f ]− f

∥∥
Bsπ∞(Rd)

.

We now use the approximation given by the Banach fixed point theorem∥∥HK [G] ?P[f ]− f
∥∥
Bsπ∞(Rd)

≤ (2α)K
∥∥H1[G] ?P[f ]−P[f ]

∥∥
Bsπ∞(R)

.

After replacing H1[G] ? P[f ] by its expression, using Lemma 1, the triangle inequality and
Young’s inequality we have ∥∥H1[G] ?P[f ]−P[f ]

∥∥
Bsπ∞(Rd)

≤ 2αM,

which leads to ∥∥HK [G] ?P[f ]− f
∥∥
Lp(D)

≤ (2α)K+1M.(28)

We conclude by injecting (27), (28) into (26). The proof of Theorem 1 is now complete.
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[16] Härdle, W., Kerkyacharian, G., Picard, D. and Tsybakov, A. (1998). Wavelets, Approximation,
and Statistical Applications. Lecture Notes in Statistics, 129. Springer.

[17] Johannes, J. (2009). Deconvolution with unknown error distribution. The Annals of Statistics ,
37(5a):2301–2323.

[18] Johannes, J. and Schwarz, M. (2013). Adaptive circular deconvolution by model selection under
unknown error distribution. Bernoulli , 19(5A):1576–1611.

[19] Kappus, J. and Mabon, G. (2014). Adaptive density estimation in deconvolution problems with
unknown error distribution. Electron. J. Statist. 8, 2879-2904.

[20] Kerkyacharian, G. and Picard, D. (2000). Thresholding algorithms, maxisets and well-concentrated
bases. Test, Vol. 9, No. 2, 283–344.

[21] Lepski, O.V. and Willer, T. (2015). Lower bounds in the convolution structure density model. To
appear in Bernoulli.

[22] Lounici, K. and Nickl, R. (2011). Uniform Risk Bounds and Confidence Bands in Wavelet Decon-
volution. Annals of Statistics, 39, 201–231.

[23] Meister, A. (2009). Deconvolution Problems in Nonparametric Statistics. Lecture Notes in Statistics.
Springer.

[24] Neumann, M. H. (1997). On the effect of estimating the error density in nonparametric deconvo-
lution. Journal of Nonparametric Statistics , 7(4):307–330.

[25] Pensky, M. and Vidakovic, B. (1999). Adaptive wavelet estimator for nonparametric density de-
convolution. The Annals of Statistics , 27(6):2033– 2053.

[26] Rebelles, G. (2015) Structural adaptive deconvolution under Lp-losses. Arxiv preprint.
[27] Stefanski, L. (1990). Rates of convergence of some estimators in a class of deconvolution problems.

Statistics and Probability Letters , 9(3):229–235.
[28] Stefanski, S. and Carroll, R. (1990). Deconvoluting kernel density estimators. Statistics , 21(2):169–

184


	1. Introduction
	1.1. Statistical setting
	1.2. Estimation strategy
	1.3. Link with the estimation of random sums

	2. Estimation of f
	2.1. Preliminary on Besov spaces and wavelet thresholding
	2.2. Construction of the estimator
	2.3. Convergence rates and discussion

	3. Numerical study
	4. Proofs
	4.1. Preliminary
	4.2. Proof of Proposition 1
	4.3. Proof of Proposition 2 
	4.4. Proof of Theorem 1

	Acknowledgements
	References

