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Abstract

In practice, an alliance can be a bond or connection between individuals, families, states,
or entities, etc. Formally, a non empty set S of vertices of a graph G is a defensive k-alliance
(resp. an offensive k-alliance) if every vertex of S (resp. the boundary of S) has at least k more
neighbors inside of S than it has outside of S. A powerful k-alliance is both defensive k-alliance
and offensive (k+2)-alliance. During the last decade there has been a remarkable development
on these three kinds of alliances. Due to their variety of applications, the alliances in its broad
sense have received a special attention from many scientists and researchers. There have been
applications of alliances in several areas such as bioinformatics, distributed computing, web
communities, social networks, data clustering, business, etc. Several k-alliance numbers have
been defined and a huge number of theoretical (algorithmic and computational) results are
obtained for various graph classes. In this paper, we present a survey which covers the vast
mathematical properties of the three types of k-alliances by giving a special attention to the
study of the associated k-alliance (partition) numbers for different graph classes.

Keywords: Defensive (offensive, powerful) k-alliance, Boundary k-alliance, Partitioning
of graphs, k-alliance (partition) numbers, Graph classes.
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1 Introduction

1.1 Historical view and applications of alliances

The word alliance can be defined as a union or association formed for mutual benefit, for example
it can be: a formal agreement or treaty between two or more nations to cooperate for specific
purposes, a merging of efforts or interests by persons, families, states, or organizations. The study
of alliances in graphs is first investigated by Kristiansen et al. [39] by defining different types
of alliances that have been extensively studied in the last decade. These types of alliances are
called defensive alliances [34, 69], offensive alliances [25, 45] and dual or powerful alliances [6, 7].
A generalization of these alliances called k-alliance (or r-alliance) introduced by Shafique and
Dutton [51, 52] has received a special attention in recent years. In this setting, there have been
definitions of many and various parameters which have been studied widely in the case of defensive
(offensive, powerful) k-alliances and for different graphs classes. The study of the alliances (in its
broad sense) is motivated by interesting applications in several areas.

The research work of Kristiansen et al. [39] is motivated by the alliance of nations in war for
mutual support. They considered two cases: the first which correspond to a defensive alliance
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is realized when nations are obligated to join forces if one or more of them are attacked and the
second is an offensive alliance which is used as a mean of keeping the peace; as an example of
illustration, the action of NATO troops in a war-torn country is given. Thus in the corresponding
graph of this situation, the vertices represent the nations and the edges correspond to possible
relations (of either friendship or hostility) between them. Essentially, Kristiansen et al. [39]
studied the mathematical properties of defensive alliances in graphs.

Haynes et al. [35] studied structural characteristics of a class of biomolecules in the bioin-
formatics arena by involving several graphical invariants based on domination numbers. In fact,
they studied the applicability of graphs in the analysis of secondary RNA structure. They used
graph-theoretic trees as a modeling method to represent secondary RNA motifs. Specifically, they
utilized five domination parameters including the global defensive (−1)-alliance number, that are
highly sensitive to the structural changes of small ordered trees, to identify which trees of orders
seven and eight are RNA-like in structure. With this study, it is shown that graphical invariants,
which aid in the optimization of computer and electrical networks, are useful and serve as an
interesting tool for genomic and proteomic predictions.

In distributed computing, one of the central problems is how to deal with failures. Flocchini
et al. [30], Peleg [41], Srimani and Xu [61], and Xu and Srimani [63] studied the fault toler-
ance of distributed computing and communication networks. Generally, a distributed system is
represented by a graph where the vertices represent the processors and the edges correspond to
different communications between them. Thus by using the process of local majority voting in
graphs, processors are partitioned into two alliances. Furthermore, Srimani and Xu [61], and
Xu and Srimani [63] designed self-stabilizing fault tolerant distributed algorithms for the global
defensive (offensive) alliances in a given arbitrary graph.

Flake et al. [29] defined a community on the web as a set of web pages that link (in either
direction) to more web pages in the community than to pages outside of the community. With
this definition, the defensive alliances represent exactly the mathematical model of such web
communities.

Szabö and Czárán [62] and Kim and Liu [38] have studied defensive alliances in cyclical inter-
action models of six mutating species which represent generalizations of the Rock-Scissors-Paper
game.

The alliances are also used in business and social networks in order to achieve common ob-
jectives by partners. In this context, Dickson and Weaver [17] studied the interaction between
the firm size and the level of national R&D intensity to determine if it would be interesting for
an SME (small and medium enterprise) to form a strategic alliance. Furthermore, H. Chen and
T.J. Chen [16] investigated the strategic alliances between organizations by providing empirical
evidence to show what kind of resources should be shared and how such resource sharing should
be organized between partners.

The partitioning of a set of objects is a process which partitions these objects into subsets, so
that the objects of the same group have similar characteristics, and two objects belonging to two
distinct subsets are dissimilar. In fact, this process is subjective because the same set of elements
should often be divided differently for various applications. It is known that the partitioning
process is involved in many applications occurred in various areas such as: clustering of data,
load balancing in parallel machines, image segmentation, data mining, scientific computing, VLSI
design, task scheduling, parallel programming, geographical information systems, division of space
air, classification of documents, etc.
One of the approaches used to solve the partitioning problem is to reduce it to a problem of graphs
where the objects are represented by vertices and the edges correspond to possible relationships
between the objects. Although some problems try to partition the edges of a graph, we usually
mean by the partition of a graph the partition of the vertices of this graph. Once the graph is
obtained, the problem is to find a partition of the graph into subgraphs according to a certain
criterion. However, the main question is which criterion to choose so that we obtain the “best
partition”?

For example, the partition of a graph into the least number of independent sets is used to solve
the chromatic number problem. On the other hand, there exist several studies on partitioning
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graphs into k-alliances and various theoretical results are obtained for some graphs classes in the
literature. In this framework, the partitioning of graphs into defensive k-alliances is investigated by
Eroh and Gero [22, 23], Haynes and Lachniet [36], Yero et al. [65], the partitioning into offensive k-
alliances is the subject matter of Sigarreta et al. [59], Yero [64], and the partitioning into powerful
k-alliances is discussed in Slimani and Kheddouci [60], Yero and Rodŕıguez-Velázquez [70]. In this
context, it would be interesting to see how such partitioning can be of interest to solve practical
problems.

Shafique [50] studied the partitioning of data (objects) into clusters by involving the concept
of defensive 0-alliance. In general, the clusters are defined by maximizing the similarities of
objects belonging to each cluster as well as the dissimilarities of objects between the clusters.
Thus, there exist more bonds inside each cluster than between the clusters. He represented this
situation by a graph where the vertices correspond to data and the edges symbolize the common
property (similarity) that the data share. This implies that the vertices in every cluster have at
least as many edges adjacent to the vertices inside the cluster as to the vertices outside it. This
corresponds to the definition of defensive 0-alliance. On the basis of this, Shafique [50] established
an approximate algorithm and applied it for different clustering applications.

In mobile ad hoc networks (MANETs), ensure confidentiality and secure communications in
groups is a critical task. In this context, Seba et al. [49] proposed a fully distributed and self-
stabilizing clustering algorithm for key management in MANETs by using the concept of defensive
(−1)-alliance as a clustering criterion. Thus, they proposed a solution which meets the criteria
of self-organization and mobility resilience. With experiments, they showed that the concept of
defensive (−1)-alliance is an efficient clustering criterion for group key management in MANETs
by comparing to other existing clustering schemes.

Recently, there have been two surveys in the literature on alliances: the first by Yero and
Rodŕıguez-Velázquez [69] presents essentially results on one type of k-alliances in graphs namely
those are defensive, and in the second Fernau and Rodŕıguez-Velázquez [26] have investigated
the problem of several graph parameters which are known under completely different names in
different areas and they have proposed a new framework called (global) (D, O)-alliances in order
to unify their notations.

In this paper, we survey the vast mathematical properties of defensive, offensive and powerful
k-alliances in graphs by presenting a large number of theoretical results corresponding to bounds
and/or exact values obtained for the associated k-alliance (partition) numbers for various graph
classes. There is an originality in our draft by surveying the most important results by classifying
them firstly according to the “type of k-alliance” then by the criterion “graph class”. This allows
us to see how the study of various k-alliance (partition) numbers varies according to the two
criteria “graph class” and “type of k-alliance”. In particular, it is deduced the most/least studied
graph classes (type of k-alliances) on which there are more/less results. The paper is partitioned
into three principal parts: the first part given in Section 2 is devoted to the study of defensive k-
alliances, the second part given in Section 3 deals with the offensive k-alliances, and the third part
given in Section 4 discuss the powerful k-alliances. At the end of each part, we establish a table
that summarizes the principal results obtained for every k-alliance (partition) number according
to the different graph classes and we discuss some of their relationships and properties. Finally,
in Section 5 we summarize and draw conclusions.

1.2 Terminology and definitions

In this part, we give some terminology and definitions which will be heavily used in the rest of
this paper. Let G = (V,E) be an undirected finite graph without loops and multiple edges where
V denotes the vertex set and E denotes the edge set with |V | = n and |E| = m. For a nonempty
subset S ⊆ V , 〈S〉 denotes the subgraph of G induced by S. For any vertex v ∈ V , N(v) is the
open neighborhood of the vertex v, i.e. the set of vertices that are adjacent to v in G, and the closed
neighborhood of v is the set N [v] = N(v) ∪ {v}. degS(v) = |NS(v)| is the degree of v in S with
NS(v) = {u ∈ S : uv ∈ E} is the set of neighbors v has in S and NS [v] = NS(v) ∪ {v}. The open
neighborhood of S is N(S) =

⋃
v∈S N(v) and the closed neighborhood of S is N [S] = N(S) ∪ S.
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The boundary of S is the set ∂S = N(S) − S and the complement of S in V is S̄ = V − S. We
denote the degree sequence of G by δ1 ≥ δ2 ≥ ... ≥ δn. Other notations will be introduced when
needed.

A set S is a dominating set if N [S] = V and it is a total dominating set or an open dominating
set if N(S) = V . The minimum cardinality of a dominating set (resp. total dominating set) of G
is the domination number γ(G) (resp. total domination number γt(G)).

A non-empty set of vertices S ⊆ V is called defensive alliance if for every vertex v ∈ S,
|N [v] ∩ S| ≥ |N(v) ∩ S̄| or equivalently degS(v) + 1 ≥ degS̄(v). In this case, we say that every
vertex in S is defended from possible attack by vertices in S̄. A defensive alliance S is called strong
if for every vertex v ∈ S, degS(v) + 1 > degS̄(v). S ⊂ V is called offensive alliance, if for every
vertex v ∈ ∂(S), |N(v) ∩ S| ≥ |N [v] ∩ S̄| or equivalently degS(v) ≥ degS̄(v) + 1. In this case, we
say that every vertex in ∂(S) is vulnerable to possible attack by vertices in S. An offensive alliance
S is called strong if for every vertex v ∈ ∂(S), degS(v) > degS̄(v)+1. The alliances that are both
defensive and offensive are called powerful alliances. That is, S ⊂ V is a powerful alliance if for
every vertex v ∈ N [S], |N [v] ∩ S| ≥ |N [v] ∩ S̄|. An alliance S of any type (defensive, offensive or
powerful) is called global if S is a dominating set, and it is called critical or minimal if no proper
subset of S is an alliance of the same type.

A subset S ⊆ V is a defensive k-alliance, with k ∈ {−δ1, ..., δ1}, if for every v ∈ S, degS(v) ≥
degS̄(v) + k. S ⊂ V is an offensive k-alliance, with k ∈ {2 − δ1, ..., δ1} if for every v ∈
∂(S), degS(v) ≥ degS̄(v) + k. S ⊂ V is a powerful k-alliance if it is both a defensive k-alliance
and an offensive (k + 2)-alliance. Yero and Rodŕıguez-Velázquez [66, 67] studied the limit case
of defensive (resp. offensive and powerful) k-alliances and by considering equalities in their as-
sociated definitions they defined the so-called boundary defensive (resp. offensive and powerful)
k-alliances.

2 Defensive k-alliances in graphs

In this section, we study mathematical properties of defensive k-alliances by giving bounds and/or
exact values of several parameters studied for various graphs classes. A defensive k-alliance in a
graph G = (V,E) is a set of vertices S ⊆ V satisfying the condition that every vertex in S has at
least k more neighbors in S than it has outside of S. The case k = −1 (resp. k = 0) corresponds
to the standard defensive alliances (resp. strong defensive alliances which is also known as a
cohesive set) defined in [39].

Several parameters have been defined and studied in the literature for defensive k-alliances,
one can see [21, 34, 39, 48, 55, 57] and others. These parameters are defined as follows: The
defensive (−1)-alliance number known as defensive alliance number ad

−1(G) (resp. defensive 0-
alliance number known as strong defensive alliance number ad

0(G)) is the minimum cardinality
among all (critical) defensive (−1)-alliances (resp. defensive 0-alliances) of G [39]. The global
defensive (−1)-alliance number γd

−1(G) (resp. global defensive 0-alliance number γd
0 (G)) is the

minimum cardinality among all (critical) global defensive (−1)-alliances (resp. global defensive
0-alliances) of G [34]. The upper defensive (−1)-alliance number Ad

−1(G) (resp. upper defensive
0-alliance number Ad

0(G)) is the maximum cardinality among all critical defensive (−1)-alliances
(resp. defensive 0-alliances) of G [39, 50]. The defensive k-alliance number ad

k(G) is the minimum
cardinality among all (critical) defensive k-alliances of G [50, 52]. The global defensive k-alliance
number γd

k(G) is the minimum cardinality among all (critical) global defensive k-alliances of G
[44]. The upper defensive k-alliance number Ad

k(G) is the maximum cardinality among all critical
defensive k-alliances of G [50].

Now, we give some basic relations and observations which bind various parameters of defensive
k-alliances. For any graph G = (V, E), we have:

1) ad
−1(G) ≤ ad

0(G) ≤ Ad
0(G) [39, 50];

2) ad
−1(G) ≤ Ad

−1(G) [39, 50];
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3) ad
−1(G) ≤ γd

−1(G) [9, 34];

4) ad
0(G) ≤ γd

0 (G) [9, 50];

5) ad
−1(G) = 1 ⇔ ∃ v ∈ V, deg(v) ≤ 1 [39];

6) ad
0(G) = 1 ⇔ G contains an isolated vertex [39];

7) ad
−1(G) = 2 ⇔ δn ≥ 2 and G has two adjacent vertices of degree at most 3 [39];

8) ad
0(G) = 2 ⇔ δn ≥ 1 and G has two adjacent vertices of degree at most 2 [39];

9) ad
−1(G) ≤ ad

0(G) ≤ γd
0 (G) [9, 34];

10) γ(G) ≤ γd
−1(G) ≤ γd

0 (G) [9, 24, 34];

11) ad
k(G) ≤ ad

k+1(G) [44, 48, 65];

12) ad
k(G) ≤ γd

k(G) [44, 65];

13) γ(G) ≤ γd
k(G) ≤ γd

k+1(G) [44, 65];

14) Ad
k(G) ≤ Ad

k+1(G) [55].

2.1 Study of defensive k-alliance numbers for various graphs classes

Defensive k-alliances are extensively studied in the literature for different graphs classes. In this
subsection, we present important theoretical results obtained for this type of alliance. Essentially,
we give bounds or exact values established for defensive k-alliance numbers studied for various
graphs classes.

2.1.1 General graphs

We present essential results concerning defensive k-alliances in the case of general graphs. In
particular, we give bounds obtained for various defensive k-alliance numbers by using different
graph parameters. Let G = (V,E) be a general graph of order n.

The study of defensive k-alliances in graphs was introduced by Kristiansen et al. [39]. They
proposed some sharp bounds for the defensive (−1)-alliance number and the defensive 0-alliance
number as follows: for any connected graph G, ad

−1(G) ≤ min{n − ⌈
δn

2

⌉
,
⌈

n
2

⌉} and ad
0(G) ≤

min{n−⌊
δn

2

⌋
,
⌊

n
2

⌋
+1} (note that these bounds are attained, for example, for the complete graph

G = Kn). Rodŕıguez-Velázquez and Sigarreta [47] studied the relationship between the (global)
defensive k-alliance numbers of a graph, its algebraic connectivity (the second smallest eigenvalue
of the Laplacian matrix of the graph G) and its spectral radius (the largest eigenvalue of the
adjacency matrix of the graph G). They obtained lower bounds for the parameters ad

−1(G) and
ad
0(G) by using the maximum degree δ1 and the algebraic connectivity µ. Thus they showed that

for a simple graph G, ad
−1(G) ≥

⌈
nµ

n+µ

⌉
, ad

0(G) ≥
⌈

n(µ+1)
n+µ

⌉
and for a simple connected graph G,

ad
0(G) ≥

⌈
n(µ−b δ1

2 c)
µ

⌉
(note that this latter bound is reached, for example, in the following cases

given in [47]: the complete graph, the Petersen graph, and the 3-cube graph). Other bounds for
the same parameters are given by Araujo-Pardo and Barrière [1] by using the minimum degree of
the graph and its girth.

Haynes et al. [34] investigated the global defensive (−1)-alliance number and the global defen-
sive 0-alliance number. They obtained sharp bounds and showed that: if G is a graph of order
n, then γd

−1(G) ≥
√

4n+1−1
2 and γd

0 (G) ≥ √
n; and for any graph G with no isolated vertices

and minimum degree δn, γd
−1(G) ≤ n − ⌈

δn

2

⌉
and γd

0 (G) ≤ n − ⌊
δn

2

⌋
. They also obtained that

if G is a graph of order n, then γd
−1(G) ≥ n

d r
2e+1

. Moreover, Haynes et al. [34] obtained other
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results for the same parameters by using the total domination number γt(G). Thus, for the global
defensive (−1)-alliance number they showed that for any graph G with δn ≥ 2, γd

−1(G) ≥ γt(G),
and furthermore if δ1 ≤ 3 then γd

−1(G) = γt(G). For the global defensive 0-alliance number they
showed that for any graph G with no isolated vertices, γd

0 (G) ≥ γt(G). On the other hand,
Rodŕıguez-Velázquez and Sigarreta [47] gave lower bounds for these parameters in terms of the
order of a simple graph G, its maximum degree δ1 and its spectral radius λ. These results are:

γd
−1(G) ≥

⌈
n

λ+2

⌉
, γd

−1(G) ≥
⌈

2n
δ1+3

⌉
, γd

0 (G) ≥
⌈

n
λ+1

⌉
and γd

0 (G) ≥
⌈

n

b δ1
2 c+1

⌉
. For more bounds

on these parameters, one can see Favaron [24], Hsua et al. [37] and Sigarreta and Rodŕıguez-
Velázquez [57], where other concepts such as the minimum cardinality of an independent set, the
dominating number, and the diameter of graph G are used.

Yero et al. [65] presented some relations for the (global) defensive k-alliance number by consid-
ering the cases where the degrees of vertices and k are even/odd. Thus, they obtained that if every
vertex of G has even degree and k is odd, k = 2l−1, then every (global) defensive (2l−1)-alliance
in G is a (global) defensive (2l)-alliance and vice versa. Hence, in such a case, ad

2l−1(G) = ad
2l(G)

and γd
2l−1(G) = γd

2l(G). Analogously, if every vertex of G has odd degree and k is even, k = 2l,
then every defensive (2l)-alliance in G is a defensive (2l+1)-alliance and vice versa. Hence, in such
a case, ad

2l(G) = ad
2l+1(G) and γd

2l(G) = γd
2l+1(G). Rodŕıguez-Velázquez et al. [48] and Sigarreta

in his thesis [54] studied the defensive k-alliances and showed that for every k ∈ {−δn, ..., δ1},
the defensive k-alliance number satisfies

⌈
δn+k+2

2

⌉ ≤ ad
k(G) ≤ n− ⌊

δn−k
2

⌋
, and if k ∈ {−δn, ..., 0}

one has the upper bound ad
k(G) ≤ ⌈

n+k+1
2

⌉
(note that these bounds are attained, for example,

for the complete graph G = Kn for every k ∈ {1 − n, ..., n − 1}). Moreover, for every k, r ∈ Z
such that −δn ≤ k ≤ δ1 and 0 ≤ r ≤ k+δn

2 , they showed that ad
k−2r(G) + r ≤ ad

k(G). They also
gave other bounds by involving the algebraic connectivity of G. Thus, for any connected graph

G and k ∈ {−δn, ..., δ1}, ad
k(G) ≥ dn(µ+k+1)

n+µ e and ad
k(G) ≥

⌈
n(µ−b δ1−k

2 c)
µ

⌉
. By using the isoperi-

metric number I(G) and the algebraic connectivity µ, Yero [64] and Yero et al. [65] obtained
other bounds for the same parameter. They showed that for any graph G if it is partitionable
into defensive k-alliances, then ad

k(G) ≥ I(G) + k + 1 and ad
k(G) ≥

⌈
µ+2(k+1)

2

⌉
. Note that this

latter bound is reached for example for the graph G = C3 × C3 for k = 0, given in [64, 65], in
this case µ = 3. We recall that the isoperimetric number of a graph G = (V, E) is defined as

I(G) = min
S⊂V :|S|≤n

2

{ P
v∈S

degS̄(v)

|S|

}
or I(G) = min |E(X,Y )|

min{|X|,|Y |} with X, Y ⊆ V .

Fernau et al. [27] studied the global defensive k-alliances and established bounds for the global
defensive k-alliance number. Thus they presented that for any graph G,

√
4n+k2+k

2 ≤ γd
k(G) ≤

n− d δn−k
2 e and γd

k(G) ≥
⌈

n

b δ1−k
2 c+1

⌉
. These results are also obtained by Rodŕıguez-Velázquez et

al. [44] and Sigarreta [54] by showing that these bounds are a generalization of those obtained by
Haynes et al. [34] for γd

−1(G) and γd
0 (G) in the cases of general and bipartite graphs. Furthermore,

Rodŕıguez-Velázquez et al. [44] and Sigarreta [54] showed that for S a global defensive k-alliance
of minimum cardinality in G, if W ⊂ S is a dominating set in G then for every r ∈ Z such that
0 ≤ r ≤ γd

k(G) − |W |, γd
k−2r(G) + r ≤ γd

k(G). By using the spectral radius λ, Sigarreta [54] also

obtained that for every graph G, γd
k(G) ≥

⌈
n

λ−k+1

⌉
.

The upper defensive k-alliances have been studied by Sigarreta [55]. He established a bound
for the upper defensive k-alliance number in terms of the order of G and its minimum degree.
Thus for every k ∈ {−δn, ..., δ1} and for every graph G, Ad

k(G) ≤ ⌈
2n−δn+k

2

⌉
; and if every S ⊂ V

such that |S| ≥ r is a defensive k-alliance, then Ad
k(G) ≤ r. He also gave an other upper bound

by defining and using a new concept φd
k(G) which is the largest cardinality of a maximal defensive

k-alliance free set. A set X ⊂ V is defensive k-alliance free, if for all defensive k-alliance S,
S \X 6= ∅ (X does not contain any defensive k-alliance as a subset). A defensive k-alliance free
set X is maximal if for every v 6∈ X, there exists S ⊆ X such that S∪{v} is a defensive k-alliance.
Thus, for every k ∈ {−δ1, ..., δ1} one has Ad

k(G) ≤ φd
k(G) + 1.
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By considering the limit case of k-alliances, Yero in his thesis [64] and Yero and Rodŕıguez-
Velázquez [66] defined a new variant of k-alliances called boundary k-alliances. They studied
mathematical properties of such alliances by obtaining in particular several bounds on the cardi-
nality of every boundary defensive k-alliance. Thus, if S is a boundary defensive k-alliance in a
graph G, then

⌈
δn+k+2

2

⌉ ≤ |S| ≤ ⌊
2n−δn+k

2

⌋
(note that these two bounds are reached, for instance,

for the complete graph G = Kn for every k ∈ {1 − n, ..., n − 1}). Furthermore, for a connected

graph G, if S is a boundary defensive k-alliance in G then
⌈

n(µ−b δ1−k
2 c)

µ

⌉
≤ |S| ≤

⌊
n(µ∗−d δn−k

2 e)
µ∗

⌋

and
⌈

n(µ+k+2)−µ
2n

⌉
≤ |S| ≤ n−

⌈
n(µ−k)−µ

2n

⌉
, where µ∗ is the Laplacian spectral radius (the largest

Laplacian eigenvalue of the graph G).

2.1.2 Tree graphs

By definition, a tree T = (V, E) of order n and size m is a connected graph with m = n− 1. The
study of trees is particularly interesting because various applications are modeled and solved by
using their properties. Thus, the study of alliances in general and defensive alliances in particular
for this class of graph is important. In what follows, we present some results concerning defensive
k-alliance numbers in trees.

Kristiansen et al. [39] studied the defensive k-alliances and gave an exact value for the defensive
(−1)-alliance number and an upper bound for the defensive 0-alliance number. These results are:
ad
−1(T ) = 1 and ad

0(T ) ≤ n.
Haynes et al. [34] obtained upper bounds and sharp lower bounds for the global defensive

(−1)-alliance number and the global defensive 0-alliance number as follows: if T is a tree of order
n, then γd

−1(T ) ≥ n+2
4 , γd

0 (T ) ≥ n+2
3 , γd

−1(T ) ≤ 3n
5 for n ≥ 4 (with equality for the latter bound

if and only if T ∈ T1 with T1 is a special family of trees [34]), and γd
0 (T ) ≤ 3n

4 for n ≥ 3 (with
equality if and only if T belongs to a special family of trees T2 [34]). Rodŕıguez-Velázquez and
Sigarreta [43] gave more general lower bounds for the same parameters by imposing a condition
on the number of connected components of the subgraphs induced by the alliances. They showed
that if S is a global defensive (−1)-alliance (resp. 0-alliance) in a tree T such that the subgraph
〈S〉 has c connected components, then |S| ≥ dn+2c

4 e (resp. |S| ≥ dn+2c
3 e). As a particular case of

these results, if 〈S〉 is connected, they obtained lower bounds for γd
−1(T ) and γd

0 (T ) already proved
by Haynes et al. in [34]. On the other hand, Chen and Chee [15] proved that for a tree T of order
n ≥ 3 having s support vertices, γd

−1(T ) ≤ n+s
2 , with equality if and only if T belongs to a special

family of trees ξ [15] (we recall that a vertex of degree one is called a leaf and its neighbor is a
support vertex). Bouzefrane et al. [4] showed that if T is a tree of order n ≥ 2 with l leaves and s
support vertices, then γd

−1(T ) ≥ 3n−l−s+4
8 (with equality if and only if T = P2 or T ∈ T with T

is a special family of trees [4]) and γd
0 (T ) ≥ 3n−l−s+4

6 (with equality if and only if T belongs to a
special family of trees F [4]).

Harutyunyan [33] studied the global defensive (−1)-alliance number for the complete t-ary tree
Tt,d and for its particular case the complete binary tree Td = T2,d. A t-ary tree is a rooted tree
where each vertex has at most t children. A complete t-ary tree is a t-ary tree in which all the
leaves have the same depth and all the vertices except the leaves have t children; thus Tt,d is the
complete t-ary tree with depth d. For a complete binary tree Td of order n, Harutyunyan gave
an exact value for the global defensive (−1)-alliance number : γd

−1(Td) = γd
−1(T2,d) =

⌈
2n
5

⌉
for any

d. For complete t-ary tree Tt,d, he obtained lower and upper bounds for the same parameter by
means of t and d. Thus, for d ≥ 2 and t ≥ 2, we have td−1

⌊
t−1
2

⌋
+ td−1 + td−2 ≤ γd

−1(Tt,d) ≤
td−1

⌊
t−1
2

⌋
+ td−1 + td−2 + td−3. Moreover, exact values for Tt,d, t = 3 and t = 4 are given

in [10, 33]. On the other hand, for any tree T of order n Harutyunyan presented a bound for
γd
−1(T ) by using the global offensive (−1)-alliance number γo

−1(T ) (that we will study in the next
section). This result is γd

−1(T ) ≤ γo
1(T ) + n

2 . By using the independence number β(T ) (the
maximum cardinality of an independent set in T ), Chellali and Haynes [13] gave sharp bounds for
the global defensive (−1)-alliance number and the global defensive 0-alliance number as follows:
for any tree T , γd

−1(T ) ≤ β(T ), furthermore they obtained that for every nontrivial tree T with
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l leaves γd
−1(T ) ≤ n+l−1

2 ; note that for l ≤ n
5 this latter bound is an improvement of the one

(γd
−1(T ) ≤ 3n

5 for n ≥ 4) given by Haynes et al. [34]. For the global defensive 0-alliance number
they showed that if T is a tree of order n ≥ 3 with s support vertices, then γd

0 (T ) ≤ 3β(T )−1
2 and

γd
0 (T ) ≤ β(T ) + s− 1.

Favaron [24] compared the global defensive (−1)-alliance number and the global defensive 0-
alliance number to the independent domination number i. He obtained bounds in the forms
i(T ) ≤ f(γd

−1(T )) and i(T ) ≤ g(γd
0 (T )) for special families of trees, where f and g are functions.

Rodŕıguez-Velázquez and Sigarreta [44] and Sigarreta [54] considered global defensive k-
alliances and they obtained a lower bound for the cardinality of every global defensive k-alliance
in trees, by imposing a condition on the number of connected components of the subgraphs in-
duced by the k-alliances. Thus, if S is a global defensive k-alliance in T such that the subgraph
〈S〉 has c connected components, then |S| ≥

⌈
n+2c
3−k

⌉
(note that the authors gave two unusual

graphs for which this bound is reached). As a particular case of this result, if 〈S〉 is connected,
Rodŕıguez-Velázquez and Sigarreta [44] and Sigarreta [54] obtained lower bounds for γd

−1(T ) and
γd
0 (T ) already proved by Haynes et al. in [34]. Furthermore, as a consequence of this same result,

they obtained that for every tree T of order n, γd
k(T ) ≥

⌈
n+2
3−k

⌉
. This latter bound is attained for

k ∈ {−4,−3,−2, 0, 1} in the case of G = K1,4 as given in [44, 54].

2.1.3 Planar graphs

We say that a graph is planar if one can draw it in the plan so that its edges do not cross. In
this paragraph, we put on view the essential results obtained on defensive k-alliance parameters
for this type of graphs. Let P = (V, E) be a planar graph of order n.

A global alliance S is said to be an empire if with respect to a planar embedding of G, each
connected component of 〈S〉 can be enclosed by a closed Jordan curve - a “wall” surrounding
a fortress, where the region outside of each Jordan curve contains all vertices of S̄. Enciso and
Dutton [21] and Enciso [20] used this concept and showed that for a planar graph P where S ⊆ V
is a global defensive (−1)-alliance (resp. global defensive 0-alliance) of P , if S is an empire then
|S| ≥ dn+6

6 e (resp. |S| ≥ dn+6
5 e). Rodŕıguez-Velázquez and Sigarreta [43] presented tight bounds

in planar graphs for the global defensive (−1)-alliance number and the global defensive 0-alliance
number according to the order n as follows:

i) If n > 6, then γd
−1(P ) ≥ ⌈

n+12
8

⌉
.

ii) If n > 6 and P is a triangle-free graph, then γd
−1(P ) ≥ ⌈

n+8
6

⌉
.

iii) If n > 4, then γd
0 (P ) ≥ ⌈

n+12
7

⌉
.

iv) If n > 4 and P is a triangle-free graph, then γd
0 (P ) ≥ ⌈

n+8
5

⌉
.

Furthermore, they proved that if S is a global defensive (−1)-alliance in a general graph G such
that the subgraph 〈S〉 is planar connected with f faces, then |S| ≥ dn−2f+4

4 e and in the case where

S is a global defensive 0-alliance then |S| ≥
⌈

n−2f+4
3

⌉
. Rodŕıguez-Velázquez and Sigarreta [43] also

showed that for a general graph G of order n where S is a global defensive (−1)-alliance such that

|S| ≥ 2, if 〈S〉 is planar and its minimum degree is at least σ, then |S| ≥
⌈

σ−7+
√

(σ−7)2+4(12+n)

2

⌉
;

moreover, if 〈S〉 is also a triangle-free graph, then |S| ≥
⌈

σ−5+
√

(σ−5)2+4(8+n)

2

⌉
. Note that, they

presented several examples of graphs for which all the above bounds are reached.
On the other hand, Rodŕıguez-Velázquez and Sigarreta [44] and Sigarreta [54] presented tight

lower bounds for the global defensive k-alliance number. They showed that for any planar graph
P of order n:

i) If n > 2(2− k), then γd
k(P ) ≥

⌈
n+12
7−k

⌉
.
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ii) If n > 2(2− k) and P is a triangle-free graph, then γd
k(P ) ≥

⌈
n+8
5−k

⌉
.

They also obtained that if a simple general graph G has a global defensive k-alliance S such that
the subgraph 〈S〉 is planar connected with f faces, then |S| ≥

⌈
n−2f+4

3−k

⌉
. Note that, Rodŕıguez-

Velázquez and Sigarreta [44] and Sigarreta [54] presented examples of graphs where all these
bounds are attained.

Yero [64] and Yero and Rodŕıguez-Velázquez [66] studied the boundary defensive k-alliances.
They showed that if S is a boundary defensive k-alliance in a general graph G such that 〈S〉 is

planar connected with f faces then |S| = C+4−2f
2−k for k 6= 2, and |S| ≤

⌊√
16−8f+(n+k−2)2+n+k−2

2

⌋
,

where C is the number of edges of G with one endpoint in S and the other endpoint outside of S.
Note that this latter bound is tight and it is attained for example for the complete graph G = K5

where any subset S of G of cardinality four is a boundary defensive 2-alliance and 〈S〉 ∼= K4 as
given in [64, 66]. Furthermore, they presented lower and upper bounds for |S| according to the
value of k. Thus, they proved that for a boundary defensive k-alliance S in a general graph G
such that 〈S〉 is planar connected with f > 2 faces, if k ∈ {5−δ1, ..., δ1} (resp. k ∈ {5−δn, ..., δ1})
then |S| ≥ d 4f−8

δ1+k−4e (resp. |S| ≤ b 4f−8
δn+k−4c).

2.1.4 Complete graphs

Let Kn = (V, E) be a complete graph of order n. In this part, we exhibit some exact values
obtained for defensive k-alliance numbers in complete graphs.

Kristiansen et al. [39] investigated the defensive k-alliances and obtained exact values for the
defensive (−1)-alliance number and the defensive 0-alliance number as follows: ad

−1(Kn) =
⌈

n
2

⌉
and ad

0(Kn) =
⌊

n
2

⌋
+ 1.

Haynes et al. [34] studied the global defensive k-alliances and established exact values for the
global defensive (−1)-alliance number and the global defensive 0-alliance number. These results
are: γd

−1(Kn) =
⌊

n+1
2

⌋
and γd

0 (Kn) =
⌈

n+1
2

⌉
.

Rodŕıguez-Velázquez and Sigarreta [44], Rodŕıguez-Velázquez et al. [48] and Sigarreta [54]
considered the (global) defensive k-alliances and obtained an exact value for the (global) defensive
k-alliance number. Thus, they showed that for every k ∈ {1 − n, ..., n − 1}, ad

k(Kn) = γd
k(Kn) =⌈

n+k+1
2

⌉
. Sigarreta [55] studied the upper defensive k-alliance number and obtained the same

value for this parameter as well, i.e. Ad
k(Kn) =

⌈
n+k+1

2

⌉
.

Yero [64] and Yero and Rodŕıguez-Velázquez [66] studied the boundary defensive k-alliances
and proved that the cardinality of every boundary defensive k-alliance S in the complete graph is
|S| = n+k+1

2 .

2.1.5 Bipartite graphs and complete bipartite graphs

A graph is bipartite if its vertices can be divided into two sets X and Y so that every edge of the
graph connects a vertex in X to a vertex in Y . Let B = (X, Y, E) be a bipartite graph of order n.
Kr,s is the complete bipartite graph where r (resp. s) is the cardinality of the set X (resp. Y ).

Kristiansen et al. [39] studied the defensive k-alliances and established exact values for the
defensive (−1)-alliance number and the defensive 0-alliance number in complete bipartite graphs.
So they obtained that for 2 ≤ r ≤ s, ad

−1(Kr,s) =
⌊

r
2

⌋
+

⌊
s
2

⌋
and ad

0(Kr,s) =
⌈

r
2

⌉
+

⌈
s
2

⌉
.

Haynes et al. [34] investigated the global defensive k-alliances and obtained sharp lower
bounds for the global defensive (−1)-alliance number and the global defensive 0-alliance num-
ber in bipartite graphs γd

−1(B) ≥ 2n
δ1+3 and γd

0 (B) ≥ 2n
δ1+2 . Furthermore, they presented exact

values for the same parameters in complete bipartite graphs as follows: γd
−1(K1,s) =

⌊
s
2

⌋
+ 1,

γd
−1(Kr,s) =

⌊
r
2

⌋
+

⌊
s
2

⌋
if r, s ≥ 2, and γd

0 (Kr,s) =
⌈

r
2

⌉
+

⌈
s
2

⌉
. Favaron [24] compared the global

defensive (−1)-alliance number and the global defensive 0-alliance number to the independent
domination number i. He obtained bounds in the forms i(B) ≤ f(γd

−1(B)) and i(B) ≤ g(γd
0 (B))

for special families of bipartite graphs, where f and g are functions.
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Sigarreta [55] studied the mathematical properties of upper defensive k-alliances in graphs and
presented some results for the upper defensive k-alliance number in complete bipartite graph Kr,s

where r ≥ s. Thus, he proved that: Ad
k(Kr,s) = 1, for k ∈ {−r, ...,−s}; Ad

k(Kr,s) =
⌈

r+k
2

⌉
+

⌈
s+k
2

⌉
,

for k ∈ {−1, 0, ..., s− 1}; and Ad
k(Kr,s) = r + s− ⌊

r−k
2

⌋
, for k ∈ {s, ..., r − 1}.

2.1.6 Regular graphs

A graph of which all the vertices have the same degree is known as regular and if the common
degree is δ then it is said that the graph is δ-regular. In this paragraph, we give some bounds or
exact values obtained for defensive k-alliance numbers concerning this class of graphs. For this,
we denote by Rδ = (V, E) the δ-regular graph of order n.

In the literature, the alliance numbers of δ-regular graphs are known only for small degrees.
Kristiansen et al. [39] and Araujo-Pardo and Barrière [1] presented some exact values for the
defensive (−1)-alliance number, the defensive 0-alliance number, the upper defensive (−1)-alliance
number and the upper defensive 0-alliance number in δ-regular graphs. According to the value of
δ and by using the concept of girth (the length of a smallest cycle in a graph) and lc(Rδ) (the
maximum length of an induced cycle in the graph), they obtained the results given as follows:

i) ad
−1(R1) = Ad

−1(R1) = 1 and ad
0(R1) = Ad

0(R1) = 2.

ii) ad
−1(R2) = Ad

−1(R2) = ad
0(R2) = Ad

0(R2) = 2.

iii) ad
−1(R3) = Ad

−1(R3) = 2, ad
0(R3) = girth(R3) and Ad

0(R3) = lc(R3).

iv) ad
−1(R4) = ad

0(R4) = girth(R4) and Ad
−1(R4) = Ad

0(R4) = lc(R4).

v) ad
−1(R5) = girth(R5) and Ad

−1(R5) = lc(R5).

Haynes et al. [34] studied the global defensive k-alliances and gave a lower bound for the global
defensive (−1)-alliance number in 4-regular graph that is γd

−1(R4) ≥ n
3 . Note that this bound is

also true for cubic graphs as mentioned in [34].
Yero [64] and Yero and Rodŕıguez-Velázquez [66] studied the boundary defensive k-alliances.

They showed that for k ∈ {5− δ, ..., δ}, if S is a boundary defensive k-alliance in δ-regular graph
such that 〈S〉 is planar connected with f faces, then |S| = 4f−8

δ+k−4 , and C = 2(δ−k)(f−2)
δ+k−4 , where C is

the number of edges of the graph with one endpoint in S and the other endpoint outside of S.

2.1.7 Cycle graphs

In this paragraph, we exhibit exact values obtained for defensive k-alliance numbers for this class
of graphs. Let Cn = (V,E) be a cycle graph of order n.

Kristiansen et al. [39] investigated the defensive k-alliances and showed that the different
defensive k-alliance numbers, the defensive (−1)-alliance number, the defensive 0-alliance number,
the upper defensive (−1)-alliance number and the upper defensive 0-alliance number, have the same
exact value which is equal to 2. Thus, ad

−1(Cn) = ad
0(Cn) = Ad

−1(Cn) = Ad
0(Cn) = 2.

Haynes et al. [34] studied the global defensive k-alliances and proved that in a cycle graph of
order n ≥ 3 the global defensive (−1)-alliance number and the global defensive 0-alliance number
are equal to the total domination number. Thus, γd

−1(Cn) = γd
0 (Cn) = γt(Cn).

2.1.8 Path graphs

Let Pn = (V, E) be a path graph of order n. Kristiansen et al. [39] showed that for any path graph
Pn, the defensive (−1)-alliance number satisfies ad

−1(Pn) = 1 and the defensive 0-alliance number
verify ad

0(Pn) = 2. They also proved that for every path Pn with n ≥ 4 the upper defensive (−1)-
alliance number and the upper defensive 0-alliance number are equal to the same value. Thus,
Ad
−1(Pn) = Ad

0(Pn) = 2 for n ≥ 4.
Haynes et al. [34] studied the global defensive k-alliances in paths and obtained some results

for the global defensive (−1)-alliance number and the global defensive 0-alliance number. Thus,
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for any path Pn with n ≥ 3 they proved that the global defensive 0-alliance number is equal to
the total domination number, i.e. γd

0 (Pn) = γt(Pn). Furthermore, for the global defensive (−1)-
alliance number, they showed that: for n ≥ 2, γd

−1(Pn) = γt(Pn) unless n ≡ 2(mod 4), in which
case γd

−1(Pn) = γt(Pn)− 1.

2.1.9 Line graphs

A line graph L(G) of a graph G is obtained by associating a vertex with each edge of the graph and
connecting two vertices with an edge if and only if the corresponding edges in G meet at one or both
endpoints. In this part, we present theoretical results concerning defensive k-alliance parameters
in line graphs. Let G = (V,E) be a graph of size m and degree sequence δ1 ≥ δ2 ≥ ... ≥ δn. Let
L(G) be the line graph of G.

Sigarreta and Rodŕıguez-Velázquez [57] studied mathematical properties of the defensive (−1)-
alliance number, the defensive 0-alliance number, the global defensive (−1)-alliance number and
the global defensive 0-alliance number in line graphs. They obtained bounds for ad

−1(L(G)) and
ad
0(L(G)) in terms of the maximum degree of G (δ1), its minimum degree (δn) and its second

minimum degree (δn−1) as follows: d δn+δn−1
2 e ≤ ad

0(L(G)) ≤ δ1,
⌈

δn+δn−1−1
2

⌉
≤ ad

−1(L(G)) ≤ δ1

(note that all these bounds are reached, for instance, in the case of G = C4 with ad
−1(L(C4)) =

ad
0(L(C4)) = 2). Moreover, if G has a unique vertex of maximum degree then the upper bound

becomes ad
−1(L(G)) ≤ δ1 − 1. They also showed that if G is a δ-regular graph with δ > 0

then ad
−1(L(G)) = ad

0(L(G)) = δ. Furthermore, for a simple graph G, Sigarreta and Rodŕıguez-
Velázquez [57] gave bounds for γd

−1(L(G)) and γd
0 (L(G)) by means of the maximum degrees δ1

and δ2 of G and its size m. These bounds are: γd
−1(L(G)) ≥

⌈
2m

δ1+δ2+1

⌉
, γd

0 (L(G)) ≥
⌈

2m
δ1+δ2

⌉
, and

if m > 6 then γd
−1(L(G)) ≥ ⌈√

m + 4− 1
⌉
.

Rodŕıguez-Velázquez et al. [48] and Sigarreta [54] studied the defensive k-alliances and obtained
bounds for the defensive k-alliance number in L(G). They showed that for every k ∈ {2 −
δ1 − δ2, ..., δ1 + δ2 − 2}, ad

k(L(G)) ≥
⌈

δn+δn−1+k
2

⌉
. Moreover, they proved that for every k ∈

{2(1− δ1), ..., 0}, ad
k(L(G)) ≤ δ1 +

⌈
k
2

⌉
; note that this upper bound is attained if G is a δ-regular

graph [48, 54]. Furthermore, Sigarreta [54] established an other lower bound by involving the
algebraic connectivity µl of line graph L(G). He proved that the defensive k-alliance number is

bounded by ad
k(L(G)) ≥

⌈
m(µl−b δ1+δ2−2−k

2 c)
µl

⌉
.

Fernau et al. [27], Rodŕıguez-Velázquez and Sigarreta [44] and Sigarreta in his thesis [54] pre-
sented a lower bound for the global defensive k-alliance number in L(G) by using the maximum

degrees δ1 and δ2 of G and its size m. Thus they obtained that γd
k(L(G)) ≥

⌈
m

b δ1+δ2−2−k
2 c+1

⌉
.

Moreover, Sigarreta [54] established two other lower bounds for γd
k(L(G)). In fact, he ob-

tained that for all graph G of size m and degree sequence δ1 ≥ δ2 ≥ ... ≥ δn, γd
k(L(G)) ≥⌈

m√
(δ1+δ2−2)(δ1+δ3−2)−k+1

⌉
; Furthermore, if there exist in G two non adjacent vertices whose

degrees are δ1 and δ2 then γd
k(L(G)) ≥

⌈
m

δ1+δ2−k−1

⌉
.

2.1.10 Cartesian product graphs

Given two graphs G1 = (V1, E1) and G2 = (V2, E2) with the sets of vertices V1 = {v1, v2, ..., vn1}
and V2 = {u1, u2, ..., un2} respectively, the Cartesian product of G1 and G2 is the graph G1×G2 =
(V, E), where V = V1 × V2 and two vertices (vi, uj) and (vk, ul) are adjacent in G1 × G2 if and
only if “vi = vk and (uj , ul) ∈ E2” or “(vi, vk) ∈ E1 and uj = ul”. Let Gi be a graph of order ni,
minimum degree δ̄i and maximum degree ∆̄i, i ∈ {1, 2}.

Kristiansen et al. [39] studied the defensive k-alliances in Cartesian product graphs and ob-
tained bounds for the defensive (−1)-alliance number and the defensive 0-alliance number as
follows: ad

−1(G1×G2) ≤ min{ad
−1(G1)ad

0(G2), ad
0(G1)ad

−1(G2)} and ad
0(G1×G2) ≤ ad

0(G1)ad
0(G2).
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Chang et al. [10] obtained a lower bound for the global defensive (−1)-alliance number of
a general graph. They showed that if G is a graph of order n and maximum degree δ1, then

γd
−1(G) ≥

⌈
2n

b δ1+3
2 c

⌉
. As a consequence they established a lower bound for the global defensive

(−1)-alliance number of the Cartesian product of paths and cycles. Thus, if Gi = Pni
or Cni

for
i = 1, 2, then γd

−1(G1 ×G2) ≥
⌈

n1n2
3

⌉
.

Yero in his thesis [64] and Yero et al. [65] studied defensive k-alliances in Cartesian product
graphs and gave some results for the defensive k-alliance number in G1 ×G2. They showed that
if S1 is a defensive k1-alliance in G1 and S2 is a defensive k2-alliance in G2, then S1 × S2 is a
defensive (k1 + k2)-alliance in G1 × G2 and ad

k1+k2
(G1 × G2) ≤ ad

k1
(G1)ad

k2
(G2); note that this

bound is a general case of the results obtained by Kristiansen et al. [39]. They also obtained that
ad

k−s(G1 ×G2) ≤ min{ad
k(G1), ad

k(G2)} where s ∈ Z such that max{∆̄1, ∆̄2} ≤ s ≤ ∆̄1 + ∆̄2 + k.
On the other hand, Yero [64] obtained that if G1 × G2 contains defensive k-alliances, then Gi

contains defensive (k−∆̄j)-alliances, with i, j ∈ {1, 2}, i 6= j, and as a consequence ad
k(G1×G2) ≥

max{ad
k−∆̄2

(G1) , ad
k−∆̄1

(G2)}.
Yero [64] and Yero et al. [65] studied global defensive k-alliances in Cartesian product graphs

and presented some bounds for the global defensive k-alliance number in G1 × G2. Thus, they
obtained that if G1 contains a global defensive k1-alliance, then for every integer k2 ∈ {−∆̄2, ..., δ̄2},
G1 × G2 contains a global defensive (k1 + k2)-alliance and γd

k1+k2
(G1 × G2) ≤ γd

k1
(G1)n2. And

if G2 contains a global defensive k2-alliance, then for every integer k1 ∈ {−∆̄1, ..., δ̄1}, G1 × G2

contains a global defensive (k1 + k2)-alliance and γd
k1+k2

(G1 ×G2) ≤ γd
k2

(G2)n1.

Remark 1. Let us note that

i) the defensive k-alliances were studied in the literature for other graph classes such as star
graphs, cubic graphs and circulant graphs. For more details, the reader can refer to [1, 27,
34, 37, 44, 54].

ii) some results for the defensive k-alliance number ad
k(G) in the case of complement graphs are

given by Sigarreta et al. [56].

Now, we summarize the results presented above by giving some bounds and exact values
obtained for various parameters of defensive k-alliances for different graph classes. These results
are given in the two following tables:
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Defensive alliance numbers
Graph
classes

ad
−1(G) ad

0(G) γd
−1(G) γd

0 (G) Ad
−1(G) Ad

0(G)

G • ad
−1(G) ≤ min{n −

l
δn
2

m
,
l

n
2

m
} [39]

• ad
−1(G) ≥

l
nµ

n+µ

m

[47]

• ad
0(G) ≤ min{n −j

δn
2

k
,
j

n
2

k
+ 1} [39]

• ad
0(G) ≥�

n(µ+1)
n+µ

�
[47]

• ad
0(G) ≥2

66666

n(µ−
�

δ1
2

�
)

µ

3
77777

[47]

• γd
−1(G) ≥

√
4n+1−1

2 [34]

• γd
−1(G) ≤ n −

l
δn
2

m
[34]

• γd
−1(G) ≥ nl

r
2

m
+1

[34]

• γd
−1(G) ≥ γt(G) [34]

• γd
−1(G) ≥

l
n

λ+2

m
[47]

• γd
−1(G) ≥

�
2n

δ1+3

�
[47]

• γd
0 (G) ≥ √

n [34]

• γd
0 (G) ≤ n −

j
δn
2

k

[34]

• γd
0 (G) ≥ γt(G) [34]

• γd
0 (G) ≥

l
n

λ+1

m

[47]

• γd
0 (G) ≥2

66666
n�

δ1
2

�
+1

3
77777

[47]

T • ad
−1(T ) = 1 [39] • ad

0(T ) ≤ n [39] • γd
−1(T ) ≥ n+2

4 [34]

• γd
−1(T ) ≤ 3n

5 [34]

• |S| ≥ dn+2c
4 e [43]

• γd
−1(T ) ≤ n+s

2 [15]

• γd
−1(T ) ≥ 3n−l−s+4

8 [4]

• γd
−1(Td) = γd

−1(T2,d) =
l
2n
5

m
[33]

• td−1
j

t−1
2

k
+ td−1 +

td−2 ≤ γd
−1(Tt,d) ≤

td−1
j

t−1
2

k
+td−1+td−2+

td−3 [33]

• γd
−1(T ) ≤ β(T ) [13]

• γd
−1(T ) ≤ n+l−1

2 [13]

• γd
0 (T ) ≥ n+2

3 [34]

• γd
0 (T ) ≤ 3n

4 [34]

• |S| ≥ dn+2c
3 e [43]

• γd
0 (T ) ≥

3n−l−s+4
6 [4]

• γd
0 (T ) ≤ 3β(T )−1

2
[13]

• γd
0 (T ) ≤ β(T )+s−

1 [13]

P • |S| ≥
l

n+6
6

m
[20, 21]

• γd
−1(P ) ≥

l
n+12

8

m
[43]

• |S| ≥
l

n−2f+4
4

m
[43]

• |S| ≥2
666

σ−7+
q

(σ−7)2+4(12+n)
2

3
777

[43]

• |S| ≥
l

n+6
5

m
[20,

21]

• γd
0 (P ) ≥

l
n+12

7

m

[43]

• |S| ≥
l

n−2f+4
3

m

[43]

Kn • ad
−1(Kn) =

l
n
2

m
[39] • ad

0(Kn) =
j

n
2

k
+ 1

[39]

• γd
−1(Kn) =

j
n+1

2

k
[34] • γd

0 (Kn) =
l

n+1
2

m

[34]

• B
• Kr,s

• ad
−1(Kr,s) =

j
r
2

k
+

j
s
2

k
[39]

• ad
0(Kr,s) =

l
r
2

m
+

l
s
2

m
[39]

• γd
−1(B) ≥ 2n

δ1+3 [34]

• γd
−1(K1,s) =

j
s
2

k
+ 1 [34]

• γd
−1(Kr,s) =

j
r
2

k
+
j

s
2

k

[34]

• γd
0 (B) ≥ 2n

δ1+2 [34]

• γd
0 (Kr,s) =

l
r
2

m
+

l
s
2

m
[34]

Rδ • ad
−1(Rδ) = δ, δ = 1

or 2 [1, 39]

• ad
−1(R3) = 2 [1, 39]

• ad
−1(Rδ) =

girth(Rδ), δ = 4
or 5 [1, 39]

• ad
0(Rδ) = 2, δ = 1

or 2 [1, 39]

• ad
0(Rδ) =

girth(Rδ), δ = 3
or 4 [1, 39]

• γd
−1(R4) ≥ dn

3 e [34] • Ad
−1(Rδ) = δ,

δ = 1 or 2 [1]

• Ad
−1(R3) = 2

[1, 39]

• Ad
−1(Rδ) =

lc(Rδ), δ = 4 or
5 [1, 39]

• Ad
0(Rδ) = 2,

δ = 1 or 2 [1]

• Ad
0(Rδ) =

lc(Rδ), δ = 3 or
4 [1, 39]

Cn • ad
−1(Cn) = 2 [39] • ad

0(Cn) = 2 [39] • γd
−1(Cn) = γt(Cn) [34] • γd

0 (Cn) = γt(Cn)
[34]

• Ad
−1(Cn) = 2

[39]

• Ad
0(Cn) = 2

[39]

Pn • ad
−1(Pn) = 1 [39] • ad

0(Pn) = 2 [39] • γd
−1(Pn) = γt(Pn) [34] • γd

0 (Pn) = γt(Pn)
[34]

• Ad
−1(Pn) = 2

[39]

• Ad
0(Pn) = 2

[39]

L(G) •
�

δn+δn−1−1
2

�
≤

ad
−1(L(G)) ≤ δ1 [57]

•
�

δn+δn−1
2

�
≤

ad
0(L(G)) ≤ δ1 [57]

• γd
−1(L(G)) ≥

�
2m

δ1+δ2+1

�
[57]

• γd
−1(L(G)) ≥

�√
m + 4 − 1

�
[57]

• γd
0 (L(G)) ≥�

2m
δ1+δ2

�
[57]

G1×G2 • ad
−1(G1 × G2) ≤

min{ad
−1(G1)ad

0(G2),

ad
0(G1)ad

−1(G2)} [39]

• ad
0(G1 × G2) ≤

ad
0(G1)ad

0(G2) [39]

• γd
−1(G1 ×G2) ≥

ln1n2
3

m

with Gi = Pni
or Cni

for
i = 1, 2, [10]

Table 1: Previous results on defensive k-alliance numbers for various graph classes, with k ∈
{−1, 0}
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Defensive k-alliance numbers
Graph
classes

ad
k(G) γd

k(G) Ad
k(G)

G •
l

δn+k+2
2

m
≤ ad

k(G) ≤ n −
j

δn−k
2

k

[48, 54]

• ad
k(G) ≤

l
n+k+1

2

m
[48, 54]

• ad
k−2r(G) + r ≤ ad

k(G) [48, 54]

• ad
k(G) ≥

�
n(µ+k+1)

n+µ

�
[48, 54]

• ad
k(G) ≥

2
66666

n(µ−
�

δ1−k
2

�
)

µ

3
77777

[48, 54]

• ad
k(G) ≥ I(G) + k + 1 [64, 65]

• ad
k(G) ≥

�
µ+2(k+1)

2

�
[64, 65]

•
q

4n+k2+k

2 ≤ γd
k(G) ≤ n −l

δn−k
2

m
[27, 44, 54]

• γd
k(G) ≥

2
66666

n�
δ1−k

2

�
+1

3
77777

[27,

44, 54]

• γd
k−2r(G)+r ≤ γd

k(G) [44, 54]

• γd
k(G) ≥

l
n

λ−k+1

m
[54]

• Ad
k(G) ≤

l 2n−δn+k
2

m
[55]

• Ad
k(G) ≤ r [55]

• Ad
k(G) ≤ φd

k(G) + 1 [55]

T • |S| ≥
l

n+2c
3−k

m
[44, 54]

• γd
k(T ) ≥

l
n+2
3−k

m
[44, 54]

P • γd
k(P ) ≥

l
n+12
7−k

m
[44, 54]

• |S| ≥
l

n−2f+4
3−k

m
[44, 54]

Kn • ad
k(Kn) =

l
n+k+1

2

m
[48, 54] • γd

k(Kn) =
l

n+k+1
2

m
[44, 54] • Ad

k(Kn) =
l

n+k+1
2

m
[55]

• B
• Kr,s

• Ad
k(Kr,s) = 1 [55]

• Ad
k(Kr,s) =

l
r+k
2

m
+
l

s+k
2

m

[55]

• Ad
k(Kr,s) = r + s−

j
r−k
2

k
[55]

Rδ
Cn
Pn

L(G) • ad
k(L(G)) ≥

�
δn+δn−1+k

2

�
[48, 54]

• ad
k(L(G)) ≤ δ1 +

l
k
2

m
[48, 54]

• ad
k(L(G)) ≥

2
66666

m(µl−
�

δ1+δ2−2−k
2

�
)

µl

3
77777

[54]

• γd
k(L(G)) ≥2

66666
m�

δ1+δ2−2−k
2

�
+1

3
77777

[27, 44, 54]

• γd
k(L(G)) ≥�

mp
(δ1+δ2−2)(δ1+δ3−2)−k+1

�

[54]

• γd
k(L(G)) ≥

�
m

δ1+δ2−k−1

�

[54]

G1×G2 • ad
k1+k2

(G1 × G2) ≤ ad
k1

(G1)ad
k2

(G2)

[64, 65]

• ad
k−s(G1 × G2) ≤ min{ad

k(G1),

ad
k(G2)} [64, 65]

• ad
k(G1 × G2) ≥ max{ad

k−∆̄2
(G1),

ad
k−∆̄1

(G2)} [64]

• γd
k1+k2

(G1 × G2) ≤
γd

k1
(G1)n2 [64, 65]

• γd
k1+k2

(G1 × G2) ≤
γd

k2
(G2)n1 [64, 65]

Table 2: Previous results on defensive k-alliance numbers for various graph classes

Concluding remarks 1. As we can see from Tables 1 and 2, the defensive k-alliance numbers
are studied for various graph classes. From this, we note that the most studied parameter is the
global defensive (-1)-alliance number (γd

−1(G)) and the least studied one is the upper defensive
k-alliance number (Ad

k(G)). Furthermore, the general and tree graph classes are the most studied
ones and the cycle and path graph classes are the least studied ones. Moreover, some parameters
are not studied for certain graph classes. For example for the planar graphs class, several defensive
k-alliance numbers are not studied such as ad

−1(P ), ad
k(P ) and Ad

k(P ). Besides, for the regular
graphs class, all the defensive k-alliance numbers with index k namely ad

k(Rδ), γd
k(Rδ) and Ad

k(Rδ)
are not studied. However, the upper defensive k-alliance numbers are not studied for several graph
classes. In particular, for Ad

k(G) just some results are given in the case of general and complete
(bipartite) graph classes.

Remark 2. The defensive (−1)-alliances as defined in the literature take into consideration the
defense of a single vertex. In order to forestall any attack on the entire alliance or any subset of the
alliance, Brigham et al. [8] proposed a model that take over this situation. Thus, they introduced
the so-called secure sets as a generalization of the concept of defensive (−1)-alliances. Security
and secure sets are studied in the literature and for more details one can refer to [8, 18, 19] and
others.

Remark 3. Rad and Rezazadeh [42] studied (strong) open alliances in graphs. According to their
definition, an alliance is called open if it is defined completely in terms of open neighborhoods.
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They investigated the (strong) open defensive (resp. offensive) alliances by defining parameters
called (strong) open defensive (resp. offensive) alliance number denoted by (ât(G)) at(G) (resp.
(âot(G)) aot(G)). Since at(G) ∼= ad

0(G) and âot(G) ∼= ao
1(G), Rad and Rezazadeh [42] established

bounds only for ât(G) and aot(G).

2.2 Study of defensive k-alliance partition numbers for some graph
classes

The partitioning of graphs into k-alliances is a process which partitions the set of vertices of a graph
into subsets, so that each subset constitutes a k-alliance. The problem of partitioning a graph into
defensive 0-alliances is introduced and studied by Gerber and Kobler [31] and Shafique and Dutton
[53], and is referred to as “Satisfactory Graph Partitioning Problem (SGP)”. Thereafter, Shafique
[50] investigated this partitioning problem and its application to data clustering. Moreover, Seba
et al. [49] studied the partitioning of graphs into defensive (−1)-alliances and its application in
mobile ad hoc networks (MANETs).

Some parameters have been defined and studied in the literature for the partitioning into de-
fensive k-alliances, these parameters are defined as follows: For any graph G = (V, E), the (global)
defensive (−1)-alliance partition number of G, (ψgd

−1(G)) ψd
−1(G), is defined to be the maximum

number of sets in a partition of V such that each set of the partition is a (global) defensive
(−1)-alliance [23, 36]. The (global) defensive k-alliance partition number of G, (ψgd

k (G)) ψd
k(G),

k ∈ {−δ1, ..., δn} is defined to be the maximum number of sets in a partition of V such that each
set of the partition is a (global) defensive k-alliance [64]. We say that G is partitionable into
(global) defensive k-alliances if (ψgd

k (G) ≥ 2) ψd
k(G) ≥ 2. Concerning the defensive k-alliance

partition number, Yero et al. [65] have given examples of extreme cases as follows: ψd
−δ1

(G) = n

where each set composed of one vertex is a defensive (−δ1)-alliance, and ψd
δ (G) = 1 for the case

of a connected δ-regular graph where V is the only defensive δ-alliance.
In this subsection, we study mathematical properties of the (global) defensive (−1)-alliance

partition number and the (global) defensive k-alliance partition number by presenting important
theoretical results obtained for these parameters. Essentially, we give bounds or exact values for
defensive k-alliance partition numbers studied for some graph classes.

2.2.1 General graphs

Eroh and Gera [22] studied the basic properties of the defensive (−1)-alliance partition number
by presenting general bounds by means of the minimum degree, the order and the girth of graph
G. For a connected graph G of order n ≥ 3, they obtained sharp bounds given as follows:
1 ≤ ψd

−1(G) ≤
⌊
n + 3

2 −
√

1+4n
2

⌋
. Furthermore, they gave upper bounds by involving the minimum

degree and the girth of G. Thus for a graph G having minimum degree δn, then ψd
−1(G) ≤⌊

n

d δn+1
2 e

⌋
, and if G is a graph with girth(G) ≥ 3 and δn ≥ 4, then ψd

−1(G) ≤ b n
girth(G)c.

On the other hand, Eroh and Gera [23] established an upper sharp bound for the global defensive
(−1)-alliance partition number in a connected graph G having minimum degree δn. Thus, they
proved that ψgd

−1(G) ≤ 1 +
⌈

δn

2

⌉
.

Yero [64] and Yero et al. [65] presented some relations for the (global) defensive k-alliance
partition number by considering the cases where the degrees of vertices and k are even/odd.
Thus, they obtained that if every vertex of G has even degree and k is odd, k = 2l− 1, then every
(global) defensive (2l−1)-alliance in G is a (global) defensive (2l)-alliance and vice versa. Hence, in
such a case, ψd

2l−1(G) = ψd
2l(G) and ψgd

2l−1(G) = ψgd
2l (G). Analogously, if every vertex of G has odd

degree and k is even, k = 2l, then every defensive (2l)-alliance in G is a defensive (2l + 1)-alliance
and vice versa. Hence, in such a case, ψd

2l(G) = ψd
2l+1(G) and ψgd

2l (G) = ψgd
2l+1(G). Furthermore,

they established a relation between the defensive k-alliance numbers ad
k(G) and ψd

k(G) by showing
that their product is bounded by the order of graph, that is ad

k(G)ψd
k(G) ≤ n. From this relation,
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they deduced that the lower bounds on ad
k(G) lead to upper bounds on ψd

k(G). For example,
from the lower bound given for ad

k(G) by Rodŕıguez-Velázquez et al. [48], ad
k(G) ≥ ⌈

δn+k+2
2

⌉
,

they concluded that the defensive k-alliance partition number is bounded upperly by ψd
k(G) ≤{ b 2n

δn+k+2c, δn + k even,
b 2n

δn+k+3c, δn + k odd.
Like the defensive k-alliance partition number, the global defensive k-alliance partition number

is obtained from the relation between γd
k(G) and ψgd

k (G), and lower bounds of γd
k(G). The relation

between γd
k(G) and ψgd

k (G) given by Yero [64] and Yero et al. [65] is γd
k(G)ψgd

k (G) ≤ n. By
combining this relation and the lower bound obtained by Rodŕıguez-Velázquez and Sigarreta [44],

γd
k(G) ≥

⌈
n

b δ1−k
2 c+1

⌉
, Yero [64] and Yero et al. [65] obtained that the global defensive k-alliance

partition number is bounded upperly by ψgd
k (G) ≤ ⌊

δ1−k
2

⌋
+ 1. They established other bounds

for the global defensive k-alliance partition number. Thus, they showed that for every graph G

partitionable into global defensive k-alliances, ψgd
k (G) ≤

⌊√
k2+4n−k

2

⌋
and ψgd

k (G) ≤ ⌊
δn−k+2

2

⌋
.

These latter bounds are attained, for instance, in the following cases given in [64, 65]: ψgd
−1(K4 ×

C4) = 4, ψgd
0 (K3×C4) = 3, ψgd

1 (K2×C4) = 2 and ψgd
1 (Ptr) = 2, where Ptr denotes the Petersen

graph. They also proved that for every k ∈ {1− δn, ..., δn} if ψgd
k (G) ≥ 2, then γd

k(G) + ψgd
k (G) ≤

n+4
2 . By involving the algebraic connectivity µ, Yero [64] and Yero et al. [65] showed that if any

graph G is partitionable into global defensive k-alliances, then ψgd
k (G) ≤ ⌊

δ1 + 1− µ
2 − k

⌋
. The

authors in [64, 65] gave an example of equality for this latter bound when the graph G = C3×C3 for
k = 0, in this case µ = 3. They obtained an other bound for the same invariant by using an other

parameter of the graph G which is the isoperimetric number I(G) = min
S⊂V :|S|≤n

2

{ P
v∈S

degS̄(v)

|S|

}
.

Thus, they proved that for any graph G, if G is partitionable into global defensive k-alliances,
then ψgd

k (G) ≤ δ1 + 1− I(G)− k.

2.2.2 Tree graphs

Eroh and Gera [22] obtained upper and lower sharp bounds for the defensive (−1)-alliance partition
number in trees. Thus, they showed that for a tree T of order n ≥ 3, ψd

−1(T ) ≤ b 3n
4 + 1

2c. Moreover,
if T is a tree of order n ≥ 3 and diameter D ≥ 2 then ψd

−1(T ) ≥ dD2 e + 1. Furthermore, they
proved that if T is a binary tree with a maximum matching M (a matching is a subset M ⊂ E
such that: u ∩ v = ∅ for each u, v ∈ M), then ψd

−1(T ) ≥ n− |M |.
On the other hand, Eroh and Gera [23] showed that in a tree T of order n ≥ 3, the global

defensive (−1)-alliance partition number is bounded by 1 ≤ ψgd
−1(T ) ≤ 2.

2.2.3 Regular graphs

Eroh and Gera [22] studied the defensive (−1)-alliance partition number in regular graphs and
obtained some upper bounds and an exact value for this parameter. Thus, for a δ-regular graph

Rδ of order n, ψd
−1(Rδ) ≤

⌊
n

d δ+1
2 e

⌋
, if furthermore δ ≥ 3 and girth(Rδ) ≥ 5, then ψd

−1(Rδ) ≤
n

1+(girth(Rδ)−2)d δ−3
2 e . As particular case, for a connected 3-regular graph having a maximum

matching M , ψd
−1(R3) = |M |.

2.2.4 Cartesian product graphs

Haynes and Lachniet [36] studied the defensive (−1)-alliance partition number of grid graphs
Pr × Pc and showed that if 4 ≤ r ≤ c, then ψd

−1(Pr × Pc) =
⌊

r−2
2

⌋ ⌊
c−2
2

⌋
+ r + c− 2.

Yero [64] and Yero et al. [65] studied the defensive k-alliance partition number in Cartesian
product graphs and they proved that for any graphs G1 and G2, if there exist a partition of
Gi into defensive ki-alliances, i ∈ {1, 2}, then there exists a partition of G1 × G2 into defensive
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(k1 + k2)-alliances and ψd
k1+k2

(G1×G2) ≥ ψd
k1

(G1)ψd
k2

(G2). Moreover, for any graphs Gi of order
ni and maximum degree ∆̄i, i ∈ {1, 2}, they also showed that if s ∈ Z such that max{∆̄1, ∆̄2} ≤
s ≤ ∆̄1 + ∆̄2 + k, then ψd

k−s(G1 ×G2) ≥ max{n2ψ
d
k(G1), n1ψ

d
k(G2)}.

Furthermore, Yero [64] and Yero et al. [65] proved that if Gi is partitioned into global defensive
ki-alliances, i ∈ {1, 2}, then the global defensive k-alliance partition number of G1×G2 is bounded
by ψgd

k1+k2
(G1 ×G2) ≥ max{ψgd

k1
(G1), ψ

gd
k2

(G2)}. Moreover, they presented a relation between the
global defensive (k1 +k2)-alliance number of G1×G2 and the global defensive ki-alliance partition
number of Gi, i ∈ {1, 2}. Thus, they obtained that for a graph Gi of order ni, i ∈ {1, 2}, if
ψgd

ki
(G) ≥ 1 then γd

k1+k2
(G1 ×G2) ≤ n1n2

max
i∈{1,2}

{ψgd
ki

(Gi)}
.

2.2.5 Partitioning a graph into boundary defensive k-alliances

Yero [64] supposed G = (V, E) a graph and Πd
r(G) = {S1, S2, ..., Sr} a partition of V into r

boundary defensive k-alliances and obtained tight bounds for r. Thus, he showed that if G can
be partitioned into r boundary defensive k-alliances, then 2n

2n−δn+k ≤ r ≤ 2n
δn+k+2 (note that the

complete graph Kn can be partitioned into r = 2n
n+k+1 boundary defensive k-alliances [64]). He

also presented other tight bounds for r by using the algebraic connectivity µ and the Laplacian
spectral radius µ∗, these bounds are: 2µ∗

2µ∗−δn+k ≤ r ≤ 2µ
2µ−δ1+k . An example where these bounds

are reached is the complete graph G = Kn as mentioned in [64]. Furthermore, he proved that for
a graph G = (V,E) and C ⊂ E a cut set partitioning V into two boundary defensive k-alliances
S and S̄, where k 6= δ1 and k 6= δn, then

⌈
2m−kn
2(δ1−k)

⌉
≤ |S| ≤

⌊
2m−kn
2(δn−k)

⌋
and |C| = 2m−kn

4 (note

that for a δ-regular graph |S| = n
2 and |C| = n(δ−k)

4 as given in [64]). On the other hand,
Yero [64] showed that if {X,Y } is a partition of V into two boundary defensive k-alliances in

G, then without loss of generality,
⌈√

n(kn−2m+nµ)
4µ + n

2

⌉
≤ |X| ≤

⌊√
n(kn−2m+nµ∗)

4µ∗
+ n

2

⌋
and

⌈
n
2 −

√
n(kn−2m+nµ∗)

4µ∗

⌉
≤ |Y | ≤

⌊
n
2 −

√
n(kn−2m+nµ)

4µ

⌋
.

Now, we summarize the results presented above by giving some bounds and exact values
obtained for defensive k-alliance partition numbers for some graph classes. These results are given
in the following table:
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Defensive k-alliance partition numbers

Graph
classes

ψd
−1(G) ψ

gd
−1(G) ψd

k(G) ψ
gd
k

(G)

G • 1 ≤ ψd
−1(G) ≤

�
n + 3

2 −
√

1+4n
2

�
[22]

• ψd
−1(G) ≤

6664 nl
δn+1

2

m
7775 [22]

• ψd
−1(G) ≤

�
n

girth(G)

�
[22]

• ψ
gd
−1(G) ≤ 1 +

l
δn
2

m

[23]

• ad
k(G)ψd

k(G) ≤ n [64, 65]

• ψd
k(G) ≤8

<
:

b 2n
δn+k+2 c, δn + k even,

b 2n
δn+k+3 c, δn + k odd.

[64, 65]

• γd
k(G)ψ

gd
k

(G) ≤ n [64, 65]

• ψ
gd
k

(G) ≤
�

δ1−k
2

�
+ 1 [64,

65]

• ψ
gd
k

(G) ≤
6664
q

k2+4n−k

2

7775

[64, 65]

• ψ
gd
k

(G) ≤
j

δn−k+2
2

k
[64,

65]

• γd
k(G) + ψ

gd
k

(G) ≤ n+4
2 [64,

65]

• ψ
gd
k

(G) ≤
j
δ1 + 1 − µ

2 − k
k

[64, 65]

• ψ
gd
k

(G) ≤ δ1 + 1− I(G)− k

[64, 65]

T • ψd
−1(T ) ≤

j
3n
4 + 1

2

k
[22]

• ψd
−1(T ) ≥

lD
2

m
+ 1 [22]

• ψd
−1(T ) ≥ n − |M| [22]

• 1 ≤ ψ
gd
−1(T ) ≤ 2 [23]

Rδ • ψd
−1(Rδ) ≤

6664 nl
δ+1
2

m
7775 [22]

• ψd
−1(Rδ) ≤

n

1+(girth(Rδ)−2)
l

δ−3
2

m [22]

• ψd
−1(R3) = |M| [22]

G1×G2 • ψd
−1(Pr × Pc) =

j
r−2
2

k j
c−2
2

k
+ r + c − 2

[36]

• ψd
k1+k2

(G1 × G2) ≥
ψd

k1
(G1)ψd

k2
(G2) [64, 65]

• ψd
k−s(G1 × G2) ≥

max{n2ψd
k(G1), n1ψd

k(G2)}
[64, 65]

• ψ
gd
k1+k2

(G1 × G2) ≥

max{ψ
gd
k1

(G1), ψ
gd
k2

(G2)}
[64, 65]

Table 3: Previous results on defensive k-alliance partition numbers for some graph classes

Concluding remarks 2. As we can see from Table 3, and comparing with Tables 1 and 2,
we deduce that the defensive k-alliance partition numbers are studied on much less graph classes
contrary to the defensive k-alliance numbers. For the studied graph classes (general, tree, regular,
and Cartesian product graphs) the most studied parameter is the defensive (−1)-alliance partition
number (ψd

−1(G)) and the least studied one is the global defensive (−1)-alliance partition number
(ψgd
−1(G)). Furthermore, the general graph class is the most studied one and the regular graph

class is the least studied one. Moreover, for the tree and regular graphs classes all the defensive
k-alliance partition numbers with index k namely ψd

k(G) and ψgd
k (G) are not studied.

3 Offensive k-alliances in graphs

In this section, we study mathematical properties of offensive k-alliances by giving bounds and/or
exact values of several parameters studied for various graph classes. An offensive k-alliance in a
graph G = (V,E) is a set of vertices S ⊂ V with the property that every vertex in the boundary
of S has at least k more neighbors in S than it has outside of S. The case k = 1 (resp. k = 2)
corresponds to the standard offensive alliances (resp. strong offensive alliances) defined in [25, 39].

Several parameters have been defined and studied in the literature for offensive k-alliances,
one can see [24, 25, 28, 43, 58, 68] and others. These parameters are defined as follows: The
offensive 1-alliance number known as offensive alliance number ao

1(G) (resp. offensive 2-alliance
number known as strong offensive alliance number ao

2(G)) is the minimum cardinality among all
(critical) offensive 1-alliances (resp. offensive 2-alliances) of G [25, 39]. The global offensive 1-
alliance number γo

1(G) (resp. global offensive 2-alliance number γo
2(G)) is the minimum cardinality

among all (critical) global offensive 1-alliances (resp. global offensive 2-alliances) of G [45]. The
upper offensive 1-alliance number Ao

1(G) (resp. upper offensive 2-alliance number Ao
2(G)) is the

maximum cardinality among all critical offensive 1-alliances (resp. offensive 2-alliances) of G [39].
The offensive k-alliance number ao

k(G) is the minimum cardinality among all (critical) offensive
k-alliances of G [51, 52]. The global offensive k-alliance number γo

k(G) is the minimum cardinality
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among all (critical) global offensive k-alliances of G [27, 28].
Now, we give some basic relations and observations which bind various invariants of offensive

k-alliances for any graph G.

1) ao
1(G) ≤ ao

2(G) ≤ Ao
2(G) [39, 50];

2) ao
1(G) ≤ Ao

1(G) [39, 50];

3) ao
1(G) ≤ γo

1(G) [45];

4) ao
2(G) ≤ γo

2(G) [45];

5) γ(G) ≤ γo
1(G) ≤ γo

2(G) [24];

6) ao
k(G) ≤ ao

k+1(G) [28];

7) ao
k(G) ≤ γo

k(G) [28, 54, 64];

8) γ(G) ≤ γo
k(G) ≤ γo

k+1(G) [28, 54, 64].

3.1 Study of offensive k-alliance numbers for various graph classes

Like defensive k-alliances the offensive k-alliances are studied in the literature for different graph
classes. In this subsection, we present important theoretical results obtained for this type of
alliance. We give bounds or exact values established for offensive k-alliance numbers studied for
various graph classes.

3.1.1 General graphs

In what follows, we present some theoretical results which exhibit various bounds for offensive
k-alliance numbers in the case of general graphs. Let G = (V,E) be a general graph of order n
and size m.

Favaron et al. [25] explored the elementary properties of the offensive k-alliance numbers and
they obtained bounds for the offensive 1-alliance number and the offensive 2-alliance number in
general graphs. Thus they showed that: δn+1

2 ≤ ao
1(G) ≤ γ(G)+n

2 and ao
2(G) > δn+1

2 ; if every vertex
of G has odd degree then ao

1(G) ≤ n
2 ; if n ≥ 2 then ao

1(G) ≤ 2n
3 , and if n ≥ 3 then ao

2(G) ≤ 5n
6 .

Moreover, they established that if δn ≥ 2 then this latter bound becomes ao
2(G) ≤ 3n

4 .
Rodŕıguez-Velázquez and Sigarreta [45] studied the global offensive k-alliances and presented

several tight bounds for the global offensive 1-alliance number and the global offensive 2-alliance
number in terms of several parameters of graph G. They showed that for all connected graph G of
order n ≥ 2, the global offensive 1-alliance number is bounded upperly by: γo

1(G) ≤ ⌊
2n
3

⌋
, γo

1(G) ≤⌊
γ(G)+n

2

⌋
, γo

1(G) ≤
⌊

n(2µ∗−δn)
2µ∗

⌋
and γo

1(G) ≤ min{n − β(G),
⌊

n+β(G)
2

⌋
}, where γ(G) (resp. µ∗

and β(G)) denotes the domination number (resp. Laplacian spectral radius and independence
number) of G. Note that, these bounds are attained, for instance, for the cocktail-party graph
G = K6 − F ∼= K2,2,2 where n = µ∗ = 6, δn = 4, β(G) = γ(G) = 2 and γo

1(G) = 4 [45].
Moreover, they presented an other upper bound for γo

1(G) in the case of any connected graph
G by means of its order and its maximum degree δ1, that is γo

1(G) ≤ ⌊
2n−δ1

2

⌋
. On the other

hand, Rodŕıguez-Velázquez and Sigarreta [45] obtained tight upper bounds for the global offensive
2-alliance number by proving that for all connected graph G of order n: γo

2(G) ≤
⌊

n+γ2(G)
2

⌋
, and

in addition if δn ≥ 2 then γo
2(G) ≤ n− β(G) and γo

2(G) ≤ ⌊
5n
6

⌋
(γ2(G) denotes the 2-domination

number of G which is the minimum cardinality of a two dominating set; this latter is a dominating
set where every vertex in S̄ is adjacent to at least two vertices in S). These previous results on
global offensive k-alliances are also given by Sigarreta and Rodŕıguez-Velázquez [58]. Note that
to prove some of these results Rodŕıguez-Velázquez and Sigarreta [45, 58] used a new technique
with respect to the one used by Favaron et al. [25] in their proof.
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Furthermore, Rodŕıguez-Velázquez and Sigarreta [45, 58] obtained tight lower bounds for γo
1(G)

and γo
2(G) in terms of the order and the size of graph G, as follows: γo

1(G) ≥ d 3n−√9n2−8n−16m
4 e

and γo
2(G) ≥

⌈
3n+1−√9n2−10n−16m+1

4

⌉
. By involving the maximum degree of G, these bounds are

improved by the same authors to obtain: γo
1(G) ≥

⌈
2m+n
3δ1+1

⌉
and γo

2(G) ≥
⌈

2(m+n)
3δ1+2

⌉
(note that these

two latter bounds are reached, for instance, in the case of the 3-cube graph G = K2 ×K2 ×K2,
where γo

1(G) = γo
2(G) = 4 as given in [45, 58]). Moreover, by using the Laplacian spectral radius

µ∗ and the minimum degree of G, Rodŕıguez-Velázquez and Sigarreta [45, 47, 58] presented other
tight lower bounds for the same parameters: γo

1(G) ≥
⌈

n
µ∗

⌈
δn+1

2

⌉⌉
and γo

2(G) ≥
⌈

n
µ∗

(
⌈

δn

2

⌉
+ 1)

⌉
.

For these two latter bounds, if G is the Petersen graph, then µ∗ = 5, γo
1(G) ≥ 4 and γo

2(G) ≥ 6
[45, 47, 58].

On the other hand, Rodŕıguez-Velázquez and Sigarreta [47] gave other lower bounds for the
same parameters. They showed that for a simple graph of order n, size m and maximum degree δ1,
the global offensive 1-alliance number (resp. global offensive 2-alliance number) of G is bounded by

γo
1(G) ≥

⌈
(2n+δ1+1)−

√
(2n+δ1+1)2−8(2m+n)

4

⌉
(resp. γo

2(G) ≥
⌈

(2n+δ1+2)−
√

(2n+δ1+2)2−16(m+n)

4

⌉
).

Note that, this bound on γo
1(G) (resp. on γo

2(G)) is tight in the case of the complete graph Kn

and the complete bipartite graph K3,6 (resp. the complete bipartite graph K3,3) [47].
In [58], Sigarreta and Rodŕıguez-Velázquez studied the offensive k-alliances with connected

subgraphs and showed that for all minimal global offensive 1-alliance (resp. 2-alliance) S of G

such that 〈S̄〉 is connected, |S| ≥
⌈

3n−2
δ1+3

⌉
(resp. |S| ≥

⌈
4n−2
δ1+4

⌉
) (note that these bounds are

attained, for example, for the cycle graph G = C3, with γo
1(C3) = γo

2(C3) = 2). Other upper
bounds for the global offensive 1-alliance number and the global offensive 2-alliance number are
given by Harutyunyan [32].

Fernau et al. [28] and Sigarreta [54] studied the (global) offensive k-alliance number and they
showed that for any simple graph G and for all k ∈ {1, ..., δn} one has γo

k(G) ≤
⌊

n(2k+1)
2k+2

⌋
, and for

any graph G and for every k ∈ {2− δn, ..., δn} one has
⌈

δn+k
2

⌉ ≤ ao
k(G) ≤ γo

k(G) ≤ n− d δn−k+2
2 e

(note that these latter bounds are attained for every k in the case of the complete graph Kn as
mentioned in [28, 54]). Furthermore, Fernau et al. [27, 28] obtained lower and upper bounds for
γo

k(G) by using the k-domination number γk(G) of a simple graph G and its Laplacian spectral

radius µ∗, that are
⌈

n
µ∗

⌈
δn+k

2

⌉⌉ ≤ γo
k(G) ≤

⌊
γk(G)+n

2

⌋
. On the other hand, Sigarreta [54] obtained

two lower bounds for γo
k(G) by means of the order of graph G, its size and its maximum degree.

These bounds are: γo
k(G) ≥

⌈
2m+kn
3δ1+k

⌉
and γo

k(G) ≥
⌈

(2n+δ1+k)−
√

(2n+δ1+k)2−8(2m+kn)

4

⌉
.

Yero and Rodŕıguez-Velázquez [67] studied the mathematical properties of boundary powerful
k-alliances and obtained that if S is a boundary offensive k-alliance in a graph G, then

⌈
δn+k

2

⌉ ≤
|S| ≤ ⌊

2n−δn+k−2
2

⌋
(note that these bounds are attained, for instance, for the complete graph

G = Kn for every k ∈ {3− n, ..., n− 1}).

3.1.2 Tree graphs

In this paragraph, we put on view some results concerning offensive k-alliance numbers in trees.
Let T = (V,E) be a tree of order n.

Favaron et al. [25] studied the offensive k-alliances and explored upper bounds for the offensive
1-alliance number and the offensive 2-alliance number in trees. Thus, they obtained that for any
tree of n vertices, ao

1(T ) ≤ ⌊
n
2

⌋
and ao

2(T ) ≤ ⌈
3n
4

⌉
. For the first bound, the equality is obtained

for the path and the only other examples of equality are K1,3 with one edge subdivided once, and
K1,4 with two edges each subdivided once [25].

Rodŕıguez-Velázquez and Sigarreta [43] studied the global k-alliances in planar graphs and
presented some results for global offensive k-alliance numbers in trees. They obtained that if S
is a global offensive 2-alliance in a tree such that the subgraph 〈S〉 has c connected components,
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then |S| ≥ n − c + 1. Furthermore, they showed that if S is a global offensive 1-alliance (resp.
2-alliance) in T such that 〈S̄〉 is a forest with c connected components then |S| ≥

⌈
3(n−c)+1

4

⌉
(resp.

|S| ≥ ⌈
4n−3c+1

5

⌉
). Moreover, Bouzefrane and Chellali [3] showed that for a tree T of order n ≥ 3

with l leaves and s support vertices, the global offensive 1-alliance number is bounded lowerly by
γo
1(T ) ≥ n−l+s+1

3 (with equality if and only if T belongs to a special family of trees F [3]). They
also proved that if T ∈ F then γo

1(T ) = γ(T ). On the other hand, Favaron [24] compared the
global offensive 1-alliance number and the global offensive 2-alliance number to the independent
domination number i. He was interested in the existence of bounds in the forms γo

1(T ) ≤ f(i(T ))
and i(T ) ≤ g(γo

2(T )) where f and g are functions. Thus, he obtained that for every tree T (resp.
every tree T of order n ≥ 2), γo

1(T ) ≤ 2i(T ) − 1 (resp. i(T ) ≤ γo
2(T ) − 1), and these bounds are

sharp.
Harutyunyan [33] studied the global offensive k-alliances in complete t-ary trees and presented

an exact value for the global offensive 1-alliance number. Thus, they showed that for the complete
t-ary tree Tt,d with depth d ≥ 1, γo

1(Tt,d) =
⌊

n
t+1

⌋
.

On the other hand, Chellali [12] studied the offensive k-alliances in trees and proved that if
k ≥ 2 and T belongs to a special family of trees Fk, then γo

k(T ) = γk(T ), with γk(T ) is the k-
domination number of T . Moreover, Chellali and Volkmann [14] obtained an other exact value for
the global offensive k-alliance number of any tree T of the family Fk by involving the cardinality of
Lσ(T ) which is the set of vertices having degree at most σ− 1. Thus, they showed that if T ∈ Fk,
then γo

k(T ) = n+|Lσ(T )|
2 . Furthermore, Sigarreta [54] presented a lower bound for the cardinality

of every global offensive k-alliance. He proved that if S is a global offensive k-alliance in a tree T

such that the subgraph 〈S̄〉 is a forest with c connected components, then |S| ≥
⌈

n(k+2)−3c+1
k+3

⌉
.

3.1.3 Planar graphs

In this part, we present results concerning global offensive k-alliances in planar graphs. Let
P = (V,E) be a planar graph of order n.

Rodŕıguez-Velázquez and Sigarreta [43] studied the global offensive k-alliances in planar graphs
and showed that, for a planar graph P of order n > 2, if S is a global offensive 1-alliance (resp.
2-alliance) in P such that the subgraph 〈S̄〉 has c connected components then |S| ≥ ⌈

n−2c+4
3

⌉
(resp. |S| ≥ ⌈

n−c+2
2

⌉
). Moreover, for a planar graph P of order n, they proved that if S is a

global offensive 1-alliance (resp. 2-alliance) in P such that the minimum degree of 〈S̄〉 is at least
σ then |S| ≥ dn(σ−1)+4

σ+1 e (resp. |S| ≥ dnσ+4
σ+2 e). Furthermore, Rodŕıguez-Velázquez and Sigarreta

[43] obtained other lower bounds for the cardinality of S which can be a global offensive 1-alliance
or 2-alliance by using the number of faces of 〈S̄〉. Thus, they proved that, for a planar graph of
order n, if S is a global offensive 1-alliance (resp. 2-alliance) in P such that the subgraph 〈S̄〉 is
connected and has f faces, then |S| ≥

⌈
n+2f

3

⌉
(reps. |S| ≥

⌈
n+f

2

⌉
).

Sigarreta [54] considered the global offensive k-alliances and obtained lower bounds concerning
the cardinality of every global offensive k-alliance in planar graphs. Thus, he showed that if
S is a global offensive k-alliance in a planar graph P of order n with k ∈ {1, 2, ..., δ1} (resp.
k ∈ {0, 1, ..., δ1}) such that the subgraph 〈S̄〉 has c connected components (resp. 〈S̄〉 is connected
with f faces), then |S| ≥

⌈
nk+2(2−c)

k+2

⌉
(resp. |S| ≥

⌈
nk+2f

k+2

⌉
). Furthermore, he presented a lower

bound for the global offensive k-alliance number, that is for a planar graph P of order n and
size m, if P contains a global offensive k-alliance of minimum cardinality greater than two, then
γo

k(P ) ≥
⌈

2m−n(6−k)+24
6+k

⌉
.

3.1.4 Complete graphs

We exhibit in this paragraph some exact values obtained for offensive k-alliance numbers in com-
plete graphs. Let Kn = (V, E) be a complete graph of order n.
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Favaron et al. [25] studied the offensive k-alliances and established exact values for the offensive
1-alliance number and the offensive 2-alliance number in complete graphs. Thus, they obtained
that for n ≥ 1, ao

1(Kn) =
⌈

n
2

⌉
and ao

2(Kn) =
⌈

n+1
2

⌉
. Note that these values are examples of

equality in bounds given in Section 3.1.1 obtained for general graphs by Favaron et al. [25], that
are ao

1(G) ≥ δn+1
2 and ao

2(G) > δn+1
2 .

Fernau et al. [28] obtained an exact value for the offensive k-alliance number in complete
graphs, that is for every k ∈ {3 − n, ..., n − 1}, ao

k(Kn) =
⌈

n+k−1
2

⌉
. It is clear, in this case, that

every offensive k-alliance is global and every vertex-set of cardinality
⌈

n+k−1
2

⌉
is a global offensive

k-alliance. Thus, as given by Bermudo et al. [2], γo
k(Kn) =

⌈
n+k−1

2

⌉
.

3.1.5 Bipartite graphs and complete bipartite graphs

In this part, we present theoretical results representing bounds or exact values concerning offensive
k-alliance numbers in bipartite graphs and complete bipartite graphs. Let B = (X,Y, E) be a
bipartite graph of order n, and Kr,s be a complete bipartite graph.

Favaron et al. [25] studied the offensive k-alliances and presented some exact values for the
offensive 1-alliance number and the offensive 2-alliance number in complete bipartite graphs.
Thus, they obtained that:

• for 1 ≤ r ≤ s, ao
1(Kr,s) =

⌈
r+1
2

⌉
;

• for 2 ≤ r ≤ s, ao
2(Kr,s) =

⌈
r
2 + 1

⌉
, but ao

2(K1,s) =
⌈

s
2 + 1

⌉
.

Note that these values are examples of equality in bounds given in Section 3.1.1 obtained for
general graphs by Favaron et al. [25], that are ao

1(G) ≥ δn+1
2 and ao

2(G) > δn+1
2 .

Sigarreta and Rodŕıguez-Velázquez [58] studied the global offensive k-alliances and established
an upper bound for the global offensive 1-alliance number in bipartite graphs. Thus, they obtained
that for all nontrivial bipartite graph, γo

1(B) ≤ n
2 . Note that this bound is an improvement of the

one given by Rodŕıguez-Velázquez and Sigarreta [45] for general graphs (γo
1(G) ≤ ⌊

2n
3

⌋
) in the case

of bipartite graphs. Moreover, the same authors in [46] proved that this bound is an exact value
for the global offensive 2-alliance number in the case of bipartite cubic graphs, that is γo

2(B) = n
2 .

On the other hand, Chellali [11] obtained other bounds for γo
1(B) and γo

2(B). Thus, he showed
that for every bipartite graph B without isolated vertices, having l vertices of degree one (and s
support vertices), γo

2(B) ≤ n+l
2 (and γo

1(B) ≤ n−l+s
2 ).

By using Lσ(B) (the set of vertices having degree at most σ − 1), Chellali and Volkmann [14]
established a bound for the global offensive k-alliance number in bipartite graphs. They proved
that for an integer σ ≥ 1, one has γo

k(B) ≤ n+|Lσ(B)|
2 . On the other hand, Bermudo et al. [2] and

Yero [64] gave bounds for the same parameter in complete bipartite graphs. Thus, they showed
that for a complete bipartite graph Kr,s with s ≤ r and for every k ∈ {2− r, ..., r} :

i) If k ≥ s + 1, then γo
k(Kr,s) = r.

ii) If k ≤ s and
⌈

r+k
2

⌉
+

⌈
s+k
2

⌉ ≥ s, then γo
k(Kr,s) = s.

iii) If −s < k ≤ s and
⌈

r+k
2

⌉
+

⌈
s+k
2

⌉
< s, then γo

k(Kr,s) =
⌈

r+k
2

⌉
+

⌈
s+k
2

⌉
.

iv) If k ≤ −s and
⌈

r+k
2

⌉
+

⌈
s+k
2

⌉
< s, then γo

k(Kr,s) = min{s, 1 +
⌈

r+k
2

⌉}.

3.1.6 Regular graphs

We present in this paragraph some results obtained for offensive k-alliance numbers in regular
graphs. We denote by Rδ = (V, E) the δ-regular graph of order n.

Rodŕıguez-Velázquez and Sigarreta [46] studied mathematical properties of the global offensive
k-alliance numbers of cubic graphs and presented lower and upper bounds for the global offensive
1-alliance number in δ-regular graphs. Thus, they showed that for all δ-regular graph Rδ of order
n and odd degree δ, n(δ+1)

3δ+1 ≤ γo
1(Rδ) ≤ n

2 . In the case of regular graphs of odd degree, this
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upper bound is an improvement of the one given by Rodŕıguez-Velázquez and Sigarreta [45] for
general graphs (γo

1(G) ≤ ⌊
2n
3

⌋
). The same authors in [58] established an upper bound for the

global offensive 2-alliance number in 3-regular connected graph, that is γo
2(R3) ≤

⌊
3n
4

⌋
.

Bermudo et al. [2] and Yero [64] investigated the relationships between global offensive k-
alliances and some characteristic sets of a graph including r-dependent sets. They obtained an
exact value for the offensive k-alliance number in δ-regular graphs, with δ > 0, by using a pa-
rameter of graphs, which is the maximum cardinality of an r-dependent set αr(Rδ) (For a graph
G = (V, E), a set S ⊆ V is an r-dependent set in G if the maximum degree of every vertex in the
subgraph 〈S〉 induced by S is at most r i.e. degS(v) ≤ r, ∀ v ∈ S). Thus, they showed that for
every k ∈ {1, ..., δ}, γo

k(Rδ) = n− αb δ−k
2 c(Rδ).

3.1.7 Cycle graphs

Let Cn = (V, E) be a cycle graph of order n. In this part, we exhibit some results obtained for
offensive k-alliance numbers in this class of graphs.

Favaron et al. [25] studied the offensive k-alliances and they obtained that the offensive 1-
alliance number and the offensive 2-alliance number have the same value. Thus, they esatblished
that for n ≥ 3, ao

1(Cn) = ao
2(Cn) =

⌈
n
2

⌉
.

The problem of finding the global offensive k-alliance number is NP -complete. Even so, for
some graphs it is possible to obtain this number [2, 64]. For instance, the family of the complete
graphs, the cycle graphs and the path graphs. Thus, Bermudo et al. [2] and Yero [64] obtained
exact values for the global offensive k-alliance number in cycle graphs for small specific values of

k, in terms only of the order of graph, that is γo
k(Cn) =

{ dn
3 e for k = 0,
dn

2 e for k = 1, 2.

3.1.8 Path graphs

Let Pn = (V, E) be a path graph of order n. Favaron et al. [25] studied the offensive k-alliances and
established exact values for the offensive 1-alliance number and the offensive 2-alliance number.
Thus they obtained that for n ≥ 1, ao

1(Pn) =
⌊

n
2

⌋
and ao

2(Pn) =
⌊

n
2

⌋
+ 1.

Bermudo et al. [2] and Yero [64] studied the global offensive k-alliances and presented exact
values for the global offensive k-alliance number in path graphs for small specific values of k. Thus,

they obtained that γo
k(Pn) =

{ dn
3 e for k = 0,

bn
2 c+ k − 1 for k = 1, 2.

3.1.9 Line graphs

In this part, we exhibit some results obtained for offensive k-alliance numbers in line graphs. Let
G = (V, E) be a graph and L(G) its associated line graph.

Sigarreta [54] studied the offensive k-alliances and obtained a lower bound for the global offen-
sive k-alliance number in the line graph L(G). Thus, from a bound obtained for general graphs
(that is γo

k(G) ≥
⌈

2m+kn
3δ1+k

⌉
), he deduced that for a graph G of size m having a degree sequence

δ1 ≥ δ2 ≥ ... ≥ δn, γo
k(L(G)) ≥




nP
i=1

δ2
i +m(k−2)

3(δ1+δ2−2)+k




. Furthermore, Fernau et al. [28] and Sigarreta [54]

presented a lower bound for γo
k(L(G)) where G is a δ-regular graph. Thus, they showed that if L(G)

is a line graph of a δ-regular graph G of order n, then γo
k(L(G)) ≥ n

4

⌈
2(δ−1)+k

2

⌉
. On the other hand,

Sigarreta [54] deduced that if G is a cubic graph of order n then 3n
4 ≤ γo

2(L(G)) = γo
1(L(G)) ≤ n.

Note that these latter bounds are tight. For example, Sigarreta [54] mentioned that the upper
one is reached in the case of the complete graph K4: γo

1(L(K4)) = 4 = n. Moreover, in the case
of the complete bipartite graph K3,3, he obtained that γo

1(L(K3,3)) = 5 and for the lower bound
9
2 ≤ γo

1(L(K3,3)).
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3.1.10 Cartesian product graphs

Let Gi = (Vi, Ei) be a graph of order ni, minimum degree δ̄i and maximum degree ∆̄i, i ∈ {1, 2}.
Yero and Rodŕıguez-Velázquez [68] obtained various closed formulas for the global offensive

1-alliance number of several families of Cartesian product graphs, given as follows:

• For any graphs G1 and G2, γo
1(G1 × G2) ≥ 1

2 max{γ(G1)γo
1(G2), γo

1(G1)γ(G2)}. Moreover,
if G1 has an efficient dominating set (S is an efficient dominating set if each vertex in S̄ is
adjacent to exactly one vertex in S), then γo

1(G1 ×G2) ≥ γ(G1)γo
1(G2).

• Let Pn be a path graph of order n. For every graph G of minimum degree δ̄ ≥ 1, γo
1(G×Pn) ≥⌈

(n−1)γo
1 (G)

2

⌉
+

⌈
δ̄
2

⌉
.

• Let Cn be a cycle graph of order n. For every graph G, γo
1(G× Cn) ≥

⌈
nγo

1 (G)
2

⌉
.

• If Bi is a connected bipartite graph of order ni, i ∈ {1, 2}, then γo
1(B1 ×B2) ≤ n1n2

2 .

• The global offensive 1-alliance number of bamboo graph Kr × Pt is γo
1(Kr × Pt) =

⌊
rt
2

⌋
.

• For any complete graph Kr and any path graph Pt, γo
1(Kr × Pt) ≥ γo

1(Kr)γo
1(Pt).

• If G1 is a graph partitionable into two global offensive 1-alliances X1 and X2 and G2 is
a graph partitionable into two global offensive 2-alliances Y1 and Y2, then γo

1(G1 × G2) ≤
|X1||Y1|+ |X2||Y2|.

• For any torus graph Cr × Ct, γo
1(Cr × Ct) ≥ γo

1(Cr)γo
1(Ct).

• The global offensive 1-alliance number of the graph Kr × Ct is γo
1(Kr × Ct) =

⌈
rt
2

⌉
.

• For any path graph Pr and any cycle graph Ct , γo
1(Pr × Ct) ≥ γo

1(Pr)γo
1(Ct).

• Let r and t be two positive integers. If r, t have the same parity, then γo
1(Kr ×Kt) =

⌈
rt
2

⌉
,

and if r and t have different parity then
⌈

rt(r+t−1)
2(r+t)

⌉
≤ γo

1(Kr ×Kt) ≤
⌈

rt
2

⌉
. Moreover, for

any complete graphs γo
1(Kr ×Kt) ≥ γo

1(Kr)γo
1(Kt).

• Let Pr × Pt be a grid graph.

. If r and t are even, then γo
1(Pr × Pt) = rt

2 .

. If r is even and t is odd, then γo
1(Pr × Pt) = r(t−1)

2 +
⌈

r
3

⌉
.

. If r and t are odd, then (r−1)(t−1)
2 +

⌈
r
3

⌉
+

⌈
t
3

⌉ ≤ γo
1(Pr × Pt) ≤ r(t−1)

2 +
⌈

r
3

⌉
.

Yero in his thesis [64] obtained bounds for the offensive k-alliance number in Cartesian product
graphs. He showed that:

i) If Si is an offensive ki-alliance in Gi = (Vi, Ei), i ∈ {1, 2}, then, for k = min{k2−∆̄1, k1−∆̄2},
S1 × S2 is an offensive k-alliance in G1 ×G2.

ii) If S1 × S2 is an offensive k-alliance in G1 × G2, with Si ⊂ Vi, i ∈ {1, 2}, then S1 is an
offensive (k + δ̄2)-alliance in G1 and S2 is an offensive (k + δ̄1)-alliance in G2, moreover,
k ≤ min{∆̄1 − δ̄2, ∆̄2 − δ̄1}.

As consequence, he obtained that for every k ≤ min{k1 − ∆̄2, k2 − ∆̄1}, ao
k(G1 × G2) ≤

ao
k1

(G1)ao
k2

(G2). Note that there is equality for the graph C4 × K4, that is ao
−3(C4 × K4) =

2 = ao
0(C4)ao

1(K4) [64].
On the other hand, Yero [64] studied the global offensive k-alliance number in Cartesian prod-

uct graphs and he showed that:
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(a) If S is a global offensive k-alliance in G1, then S × V2 is a global offensive (k − ∆̄2)-alliance
in G1 ×G2.

(b) If S×V2 is a global offensive k-alliance in G1×G2, then S is a global offensive (k+δ̄2)-alliance
in G1, moreover, k ≤ ∆̄1 − δ̄2.

As consequence, he obtained that for any graph G1 and any graph G2 of order n2 and maximum
degree ∆̄2, γo

k−∆̄2
(G1 ×G2) ≤ n2γ

o
k(G1). Furthermore, he established that the result given in (a)

above can be simplified in the case of G2 is a regular graph. In fact, for G2 = (V2, E2) a δ-regular
graph, a set S is a global offensive k-alliance in G1 if and only if S × V2 is a global offensive
(k − δ)-alliance in G1 ×G2.

Remark 4. Let us note that the offensive k-alliances were studied in the literature for other
graph classes such as star graphs and cubic graphs [24, 46, 68].

Now, we summarize the results presented above by giving some bounds and exact values
obtained for various offensive k-alliance numbers for different graph classes. These results are
given in the following table:
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Offensive k-alliance numbers
Graph
classes

ao
1(G) ao

2(G) γo
1 (G) γo

2 (G) ao
k(G) γo

k(G)

G • δn+1
2 ≤

ao
1(G) ≤

γ(G)+n
2

[25]
• ao

1(G) ≤
2n
3 [25]

• ao
2(G) >

δn+1
2 [25]

• ao
2(G) ≤

5n
6 [25]

• ao
2(G) ≤

3n
4 [25]

• γo
1 (G) ≤

j
2n
3

k
[45, 58]

• γo
1 (G) ≤

�
γ(G)+n

2

�
[45, 58]

• γo
1 (G) ≤

�
n(2µ∗−δn)

2µ∗

�
[45,

58]
• γo

1 (G) ≤ min{n −
β(G),

�
n+β(G)

2

�
} [45, 58]

• γo
1 (G) ≤

�
2n−δ1

2

�
[45, 58]

• γo
1 (G) ≥2

666
3n−

q
9n2−8n−16m

4

3
777

[45, 58]

• γo
1 (G) ≥

�
2m+n
3δ1+1

�
[45, 58]

• γo
1 (G) ≥

l
n

µ∗
l

δn+1
2

mm
[45,

47, 58]

• |S| ≥
�
3n−2
δ1+3

�
[58]

• γo
2 (G) ≤

�
n+γ2(G)

2

�
[45,

58]
• γo

2 (G) ≤ n − β(G) [45, 58]

• γo
2 (G) ≤

j
5n
6

k
[45, 58]

• γo
2 (G) ≥2

666
3n+1−

q
9n2−10n−16m+1

4

3
777

[45, 58]

• γo
2 (G) ≥

�
2(m+n)
3δ1+2

�
[45,

58]

• γo
2 (G) ≥

l
n

µ∗ (
l

δn
2

m
+ 1)

m

[45, 47, 58]

• |S| ≥
�
4n−2
δ1+4

�
[58]

•
l

δn+k
2

m
≤

ao
k(G) ≤ n −l
δn−k+2

2

m
[28,

54]

•
l

δn+k
2

m
≤ γo

k(G) ≤ n −
l

δn−k+2
2

m
[28, 54]

• γo
k(G) ≤

�
n(2k+1)

2k+2

�
[28,

54]

•
l

n
µ∗

l
δn+k

2

mm
≤

γo
k(G) ≤

�
γk(G)+n

2

�

[27, 28]

• γo
k(G) ≥

�
2m+kn
3δ1+k

�
[54]

T • ao
1(T ) ≤j

n
2

k
[25]

• ao
2(T ) ≤l

3n
4

m
[25]

• |S| ≥
�
3(n−c)+1

4

�
[43]

• γo
1 (T ) ≥ n−l+s+1

3 [3]

• γo
1 (T ) = γ(T ) [3]

• γo
1 (T ) ≤ 2i(T ) − 1 [24]

• γo
1 (Tt,d) =

j
n

t+1

k
[33]

• |S| ≥ n − c + 1 [43]

• |S| ≥
l
4n−3c+1

5

m
[43]

• i(T ) ≤ γo
2 (T ) − 1 [24]

• γo
k(T ) = γk(T ) [12]

• γo
k(T ) = n+|Lσ(T )|

2 [14]

• |S| ≥
�

n(k+2)−3c+1
k+3

�

[54]

P • |S| ≥
l

n−2c+4
3

m
[43]

• |S| ≥
�

n(σ−1)+4
σ+1

�
[43]

• |S| ≥
l

n+2f
3

m
[43]

• |S| ≥
l

n−c+2
2

m
[43]

• |S| ≥
l

nσ+4
σ+2

m
[43]

• |S| ≥
l

n+f
2

m
[43]

• |S| ≥
�

nk+2(2−c)
k+2

�
[54]

• |S| ≥
l

nk+2f
k+2

m
[54]

• γo
k(P ) ≥�

2m−n(6−k)+24
6+k

�
[54]

Kn • ao
1(Kn) =l

n
2

m
[25]

• ao
2(Kn) =l

n+1
2

m
[25]

• ao
k(Kn) =l

n+k−1
2

m
[28]

• γo
k(Kn) =

l
n+k−1

2

m
[2,

28]

• B
• Kr,s

• ao
1(Kr,s) =l

r+1
2

m
[25]

• ao
2(Kr,s) =l

r
2 + 1

m
[25]

• ao
2(K1,s) =l

s
2 + 1

m
[25]

• γo
1 (B) ≤ n

2 [58]

• γo
1 (B) ≤ n−l+s

2 [11]

• γo
2 (B) = n

2 [46]

• γo
2 (B) ≤ n+l

2 [11]

• γo
k(B) ≤ n+|Lσ(B)|

2
[14]
• γo

k(Kr,s) = r [2, 64]

• γo
k(Kr,s) = s [2, 64]

• γo
k(Kr,s) =

l
r+k
2

m
+

l
s+k
2

m
[2, 64]

• γo
k(Kr,s) = min{s, 1 +l

r+k
2

m
} [2, 64]

Rδ • n(δ+1)
3δ+1 ≤ γo

1 (Rδ) ≤ n
2 [46] • γo

2 (R3) ≤
j
3n
4

k
[58] • γo

k(Rδ) = n −
αj δ−k

2

k(Rδ) [2, 64]

Cn • ao
1(Cn) =l

n
2

m
[25]

• ao
2(Cn) =l

n
2

m
[25]

• γo
k(Cn) =(

dn
3 e, k = 0

dn
2 e, k = 1, 2

[2, 64]
Pn • ao

1(Pn) =j
n
2

k
[25]

• ao
2(Pn) =j

n
2

k
+ 1 [25]

• γo
k(Pn) =(

dn
3 e, k = 0

bn
2 c + k − 1, k = 1, 2

[2, 64]

L(G) • γo
k(L(G)) ≥

2
666666

nP
i=1

δ2
i +m(k−2)

3(δ1+δ2−2)+k

3
777777

[54]

• γo
k(L(G)) ≥

n
4

�
2(δ−1)+k

2

�
[28, 54]

G1 ×
G2

• γo
1 (G1 × G2) ≥

1
2 max{γ(G1)γo

1 (G2),

γo
1 (G1)γ(G2)} [68]

• γo
1 (B1 × B2) ≤ n1n2

2 [68]

• γo
1 (Kr × Pt) ≥

γo
1 (Kr)γo

1 (Pt) [68]
• γo

1 (Cr × Ct) ≥
γo
1 (Cr)γo

1 (Ct) [68]
• γo

1 (Pr × Ct) ≥
γo
1 (Pr)γo

1 (Ct) [68]
• γo

1 (Kr × Kt) ≥
γo
1 (Kr)γo

1 (Kt) [68]

• ao
k(G1 ×

G2) ≥
ao

k1
(G1)ao

k2
(G2)

[64]

• γo
k−∆̄2

(G1 × G2) ≥
n2γo

k(G1) [64]

Table 4: Previous results on offensive k-alliance numbers for various graph classes

Concluding remarks 3. As we can see from Table 4, the most studied parameter is the global
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offensive k-alliance number (γo
k(G)) and the least studied one is the offensive k-alliance number

(ao
k(G)). Furthermore, the general and tree graph classes are the most studied ones and the line

graphs class is the least studied one. Moreover, some parameters are not studied for all or certain
graph classes. For example, the upper offensive 1-alliance number Ao

1(G) and the upper offensive 2-
alliance number Ao

2(G) are not studied for all graph classes. Besides, for the line graphs class, only
the global offensive k-alliance number γo

k(L(G)) is investigated. However, for the global offensive
2-alliance number γo

2(G) there is no result in the case of cycle, path and Cartesian product graph
classes.

3.2 Study of offensive k-alliance partition numbers

Like the partitioning of graphs into defensive k-alliances the partitioning into offensive k-alliances is
also studied in the literature. There are two parameters of the partitioning of graphs into offensive
k-alliances which are defined as follows: for any graph G = (V, E), the (global) offensive k-alliance
partition number of G, (ψgo

k (G)) ψo
k(G), k ∈ {2− δ1, ..., δ1}, is defined to be the maximum number

of sets in a partition of V such that each set is (a global offensive) an offensive k-alliance [64]. We
say that G is partitionable into (global) offensive k-alliances if (ψgo

k (G) ≥ 2) ψo
k(G) ≥ 2. Note that

if every vertex of G has even degree and k is odd, or every vertex of G has odd degree and k is
even, then every (global) offensive k-alliance in G is an offensive (a global offensive) (k+1)-alliance
and vice versa. Hence, in such a case, ψo

k(G) = ψo
k+1(G) and ψgo

k (G) = ψgo
k+1(G) [59, 64].

In this subsection, we study the mathematical properties of the offensive k-alliance partition
numbers. In particular, we exhibit bounds and/or exact values obtained for the (global) offensive
k-alliance partition number for some graph classes.

3.2.1 General graphs

Sigarreta et al. [59] and Yero [64] studied the partitioning of graphs into (global) offensive
k-alliances and obtained several results. Using the relation between the offensive k-alliance
number and the offensive k-alliance partition number (ao

k(G)ψo
k(G) ≤ n), they established

that lower bounds on ao
k(G) lead to upper bounds on ψo

k(G). For example, from the lower
bound given by Fernau et al. in [28], that is ao

k(G) ≥ ⌈
δn+k

2

⌉
, they obtained that ψo

k(G) ≤{ b 2n
δn+k c, δn + k even,
b 2n

δn+k+1c, δn + k odd. Note that this bound is attained, for instance, for every δ-regular

graph, δ ≥ 1, by taking k = 2− δ. In such a case, each vertex is an offensive (2− δ)-alliance and
ψo

k(G) = n as illustrated in [59, 64].
Analogously, by using the relation between the global offensive k-alliance number and the global

offensive k-alliance partition number, that is γo
k(G)ψgo

k (G) ≤ n, Sigarreta et al. [59] and Yero [64]
established that lower bounds on γo

k(G) lead to upper bounds on ψgo
k (G). Thus, from the lower

bound presented by Bermudo et al. in [2], that is γo
k(G) ≥

⌈
2m+kn
3δ1+k

⌉
, they obtained that the global

offensive k-alliance partition number is bounded upperly by ψgo
k (G) ≤

⌊
nl

2m+kn
3δ1+k

m
⌋
. This bound

is attained, for instance, for the circulant graph CR(n, 2) for k = −2, and if n = 3j it is also
attained for k ∈ {−1, 0} as mentioned in [59, 64]. On the other hand, they showed that if a graph
G is partitionable into global offensive k-alliances, then

i) ψgo
k (G) ≤

⌊
2m−n(k−4)

2n

⌋
.

ii) ψgo
k (G) ≤ ⌊

δn−k+4
2

⌋
.

iii) ψgo
k (G) ≤

⌊
4−k+

√
k2+2(δn−k)

2

⌋
.

Sigarreta et al. [59] and Yero [64] also obtained that for any graph G of order n and size m,
ψgo

k (G) ≤
⌊

6m+nk
2m+nk

⌋
, and they noted that this bound is attained for the circulant graph CR(5n, 2),
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where ψgo
−2(G) = 5. Moreover, they established bounds for the cardinality of sets belonging to

a partition. Thus, they showed that if S belongs to a partition of G into global offensive k-
alliances, then

⌈
n(2δn−δ1+k)

δ1+2δn+k

⌉
≤ |S| ≤

⌊
2nδ1

δ1+2δn+k

⌋
. These bounds are reached for the circulant

graph CR(n, 2) which contains a partition into two global offensive 0-alliances S and S̄, such
that |S| = dn

3 e and |S̄| = b 2n
3 c [59, 64]. Furthermore, they proved that for a graph G with

Laplacian spectral radius µ∗, if S belongs to a partition of G into global offensive k-alliances with

−δn ≤ k ≤ µ∗− δn, then
⌈

n
2 −

√
n2(µ∗−k)−2nm

4µ∗

⌉
≤ |S| ≤

⌊
n
2 +

√
n2(µ∗−k)−2nm

4µ∗

⌋
. Note that these

bounds are attained for the complete graph Kn with n is even and k = 1. In this case Kn is
partitioned into two global offensive 1-alliances of cardinality n

2 as discussed in [59, 64].

3.2.2 Cartesian product graphs

Let Gi = (Vi, Ei) be a graph of order ni, i ∈ {1, 2}. Sigarreta et al. [59] and Yero [64] studied
the partitioning of Cartesian product graphs into offensive k-alliances and obtained that if Gi =
(Vi, Ei) is a graph of minimum degree δ̄i and maximum degree ∆̄i, i ∈ {1, 2} and Si is an offensive
ki-alliance in Gi, i ∈ {1, 2}, then, for k = min{k2− ∆̄1, k1− ∆̄2}, S1×S2 is an offensive k-alliance
in G1 × G2. Thus, they deduced that a partition Πo

ri
(Gi) = {S(i)

1 , S
(i)
2 , ..., S

(i)
ri } of Gi into ri

offensive ki-alliances, i ∈ {1, 2}, induces a partition of G1×G2 into r1r2 offensive k-alliances, with
k = min{k2− ∆̄1, k1− ∆̄2}. This partition is formally illustrated by the following matrix given in
[59, 64]:

Πo
r1r2

(G1 ×G2) =





S
(1)
1 × S

(2)
1 · · · S

(1)
1 × S

(2)
r2

S
(1)
2 × S

(2)
1 · · · S

(1)
2 × S

(2)
r2

...
. . .

...
S

(1)
r1 × S

(2)
1 · · · S

(1)
r1 × S

(2)
r2





.

As consequence, Sigarreta et al. [59] and Yero [64] established that for any graph Gi of maximum
degree ∆̄i, i ∈ {1, 2}, and for every k ≤ min{k1 − ∆̄2, k2 − ∆̄1}, ψo

k(G1 ×G2) ≥ ψo
k1

(G1)ψo
k2

(G2),
and they noted that for the particular case of the graph C4 ×K4, ψo

−3(C4 × K4) = 8 = 4 · 2 =
ψo

0(C4)ψo
1(K4).

For the global offensive k-alliance partition number, Sigarreta et al. [59] and Yero [64] showed
that for Gi = (Vi, Ei) a graph of order ni and Πgo

ri
(Gi) a partition of Gi into ri global offensive

ki-alliances, i ∈ {1, 2}, if xi = min
S∈Πgo

ri
(Gi)

{|S|} and k ≤ min{k1, k2}, then

i) γo
k(G1 ×G2) ≤ min{n2x1, n1x2};

ii) ψgo
k (G1 ×G2) ≥ max{ψgo

k1
(G1), ψ

go
k2

(G2)}.
They mentioned that if Gi is partitionable into global offensive ki-alliances, for ki ≥ 1 and i ∈
{1, 2}, the bound concerning the global offensive k-alliance partition number is attained for 1 ≤ k ≤
min{k1, k2}, where ψgo

k (G1×G2) = 2 = max{2, 2} = max{ψgo
k1

(G1), ψ
go
k2

(G2)}. Moreover, Sigarreta
et al. [59] and Yero [64] deduced that if a graph Gi of order ni is partitionable into global offensive
ki-alliances, i ∈ {1, 2}, then for k ≤ min{k1, k2}, γo

k(G1×G2) ≤ n1n2
max{ψgo

k1
(G1),ψ

go
k2

(G2)} . Example of

equality is obtained in [59, 64] for C4 ×K2, i.e. γo
1(C4 ×K2) = 4.2

max{ψgo
1 (C4),ψ

go
1 (K2)} = 4.

3.2.3 Circulant graphs - CR(n, 2)

Let Zn be the additive group of integers modulo n and let M ⊂ Zn such that, i ∈ M if and only if
−i ∈ M . A graph G = (V,E) can be constructed as follows, the vertices of V are the elements of
Zn and (i, j) is an edge in E if and only if j − i ∈ M . This graph is called a circulant of order n
and it is denoted by CR(n,M). The set M is called the set of generators of the circulant graph.
With this notation, a cycle graph is CR(n, {−1, 1}) and the complete graph is CR(n,Zn).
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Yero [64] in his thesis studied the partitioning of circulant graphs of type CR(n, 2) =
CR(n, {−2,−1, 1, 2}) into global offensive k-alliances and obtained some theoretical results. He
established two partitions of CR(n, 2) as follows: if n is even, Πgo

2 (CR(n, 2)) = {{1, 3, 5, ..., n −
1}, {2, 4, 6, ..., n}} is a partition of CR(n, 2) into global offensive 0-alliances, moreover, if n = 4j,
Πgo

4 (CR(n, 2)) = {{1, 5, ..., n − 3}, {2, 6, ..., n − 2}, {3, 7, ..., n − 1}, {4, 8, ..., n}} is a partition of
CR(n, 2) into global offensive (−2)-alliances.

Furthermore, Yero [64] considered the circulant graph G = CR(n, 2) and proved that:

i) Any dominating set in G is a global offensive (−2)-alliance.

ii) G is not partitionable into global offensive 3-alliances or global offensive 4-alliances.

iii) ψgo
1 (G) = ψgo

2 (G) = 2 if and only if n = 4j.

iv) ψgo
−1(G) = ψgo

0 (G) = 3 if and only if n = 3j.

v) ψgo
−2(G) =

⌊
n

dn
5 e

⌋
.

3.2.4 Relations between ψgo
k (G) and k

Sigarreta et al. [59] and Yero [64] studied relations between ψgo
k (G) and k and they first obtained

that, for any graph G without isolated vertices, there exists k ∈ {0, ..., δn} such that G is parti-
tionable into global offensive k-alliances. As a consequence, they deduced that any graph without
isolated vertices is partitionable into global offensive 0-alliances. Furthermore, they showed that
if a graph is partitionable into r ≥ 3 global offensive k-alliances, then k ≤ 3− r. From this latter
result, they obtained an interesting consequence which state that if G is partitionable into global
offensive k-alliances for k ≥ 1, then ψgo

k (G) = 2. Moreover, for a graph G without isolated ver-
tices, they deduced that if k ∈ {2− δ1, ..., 0} then the global offensive k-alliance partition number
is bounded by 2 ≤ ψgo

k (G) ≤ 3 − k. Note that, for the complete graph Kn, ψgo
0 (Kn) = 2 and for

the cycle graph C3n, n ≥ 1, ψgo
0 (C3n) = 3 [59, 64]. On the other hand, Yero [64] proved that if G

is a graph of order n such that ψgo
k (G) > 2, then for every l ∈ {1, ..., ψgo

k (G) − 2}, there exists a
subgraph, Gl, of G of order n(Gl) ≤ n− lγo

k(G) such that ψgo
l+k(Gl) + l ≥ ψgo

k (G).

3.2.5 Partition number and chromatic number

Motivated by the lower and upper bounds given for ψgo
k (G) in Subsubsection 3.2.4, that is if

k ∈ {2 − δ1, ..., 0} then 2 ≤ ψgo
k (G) ≤ 3 − k, Sigarreta et al. [59] and Yero [64] studied the limit

cases ψgo
0 (G) = 2 and ψgo

0 (G) = 3. Essentially, in this study they established relationships that
exist between the chromatic number of G, χ(G), and ψgo

0 (G).
Given a positive integer t, a t-dependent set in G is a set of vertices of G such that no vertex

in the set is adjacent to more than t vertices of the set. Thus, a 0-dependent set in G is simply an
independent set of vertices in G. Sigarreta et al. [59] and Yero [64] showed that, any set belonging
to a partition of a graph into r ≥ 3 global offensive k-alliances is a (−k)-dependent set. Moreover,
they noted that if k = 0 in this result, then r = 3 and as a consequence, every set in a partition
into three global offensive 0-alliances is an independent set, and also if ψgo

0 (G) = 3 then χ(G) ≤ 3.
A trivial example of graph where ψgo

0 (G) = 3 and χ(G) = 3 is the cycle graph C3, and a graph
where ψgo

0 (G) = 3 and χ(G) = 2 is the cycle graph C6 [59, 64].
Sigarreta et al. [59] and Yero [64] also obtained that if G is a non bipartite graph and

ψgo
0 (G) = 3, then χ(G) = 3, and they mentioned that the complete graph Kn with n ≥ 4 is an

example of graph where χ(G) > 3 and ψgo
0 (G) = 2. Moreover, they deduced that for any graph G

without isolated vertices and χ(G) > 3, ψgo
0 (G) = 2. On the other hand, they have given another

sufficient condition for the global offensive 0-alliance partition number to be 2, that is for any
graph G without isolated vertices containing a vertex of odd degree, it is satisfied ψgo

0 (G) = 2.
Sigarreta et al. [59] and Yero [64] remarked that this latter result is equivalent to saying that
if ψgo

0 (G) = 3, then every vertex in G has even degree. As a consequence of this, for k odd,
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every partition of G into (global) offensive k-alliances is a partition of G into (global) offensive
(k + 1)-alliances and vice versa. This latter leads to obtain that, if ψgo

0 (G) = 3 and k is odd, then
ao

k(G) = ao
k+1(G), γo

k(G) = γo
k+1(G), ψo

k(G) = ψo
k+1(G) and ψgo

k (G) = ψgo
k+1(G) [59, 64].

Now, we summarize the results presented above by giving some bounds obtained for offensive
k-alliance partition numbers for general, circulant and Cartesian product graph classes. These
results are given in the following table:

Offensive k-alliance partition numbers
Graph
classes

ψo
k(G) ψ

go
k

(G)

G • ao
k(G)ψo

k(G) ≤ n [59, 64]

• ψo
k(G) ≤

8
<
:

b 2n
δn+k

c, δn + k even,

b 2n
δn+k+1 c, δn + k odd.

[59, 64]

• γo
k(G)ψ

go
k

(G) ≤ n [59, 64]

• ψ
go
k

(G) ≤

666664 n�
2m+kn
3δ1+k

�

777775 [59, 64]

• ψ
go
k

(G) ≤
�
2m−n(k−4)

2n

�
[59, 64]

• ψ
go
k

(G) ≤
j

δn−k+4
2

k
[59, 64]

• ψ
go
k

(G) ≤
6664 4−k+

q
k2+2(δn−k)

2

7775 [59, 64]

• ψ
go
k

(G) ≤
j
6m+nk
2m+nk

k
[59, 64]

•
�

n(2δn−δ1+k)
δ1+2δn+k

�
≤ |S| ≤

�
2nδ1

δ1+2δn+k

�
[59, 64]

•
&

n
2 −

r
n2(µ∗−k)−2nm

4µ∗

’
≤ |S| ≤

$
n
2 +

r
n2(µ∗−k)−2nm

4µ∗

%
[59, 64]

• ψ
go
k

(G) = 2 [59, 64]

• 2 ≤ ψ
go
k

(G) ≤ 3 − k [59, 64]

G1×G2 • ψo
k(G1 × G2) ≥ ψo

k1
(G1)ψo

k2
(G2) [59, 64] • ψ

go
k

(G1 × G2) ≥ max{ψ
go
k1

(G1), ψ
go
k2

(G2)} [59, 64]

G =
CR(n, 2)

• ψ
go
1 (G) = ψ

go
2 (G) = 2 [64]

• ψ
go
−1(G) = ψ

go
0 (G) = 3 [64]

• ψ
go
−2(G) =

6664 nl
n
5

m
7775 [64]

Table 5: Previous results on offensive k-alliance partition numbers for some graph classes

Concluding remarks 4. As we can see from Table 5, and comparing with Table 4, we deduce
that the offensive k-alliance partition numbers are studied on much less graph classes contrary to
the offensive k-alliance numbers. Furthermore, we note that only the offensive partition numbers
with index k namely ψo

k(G) and ψgo
k (G) that are investigated. Between these two parameters, the

global offensive k-alliance partition number ψgo
k (G)) is the most studied one. Moreover, there are

only three graph classes which are addressed in this case and the general class is the most studied
one.

4 Powerful k-alliances in graphs

In this section, we study mathematical properties of powerful k-alliances by giving bounds and/or
exact values of several parameters studied for various graph classes. A powerful k-alliance is a
set of vertices S ⊂ V of a graph G = (V, E), which is both defensive k-alliance and offensive
(k + 2)-alliance. The case k = −1 (resp. k = 0) corresponds to the standard powerful alliances
(resp. strong powerful alliances) defined in [7, 39].

Several parameters have been defined and studied in the literature for powerful k-alliances,
one can see [7, 6, 47, 64] and others. These parameters are defined as follows: The powerful (−1)-
alliance number known as powerful alliance number ap

−1(G) (resp. powerful 0-alliance number
known as strong powerful alliance number ap

0(G)) is the minimum cardinality among all (critical)
powerful (−1)-alliances (resp. powerful 0-alliances) of G [7, 6]. The global powerful (−1)-alliance
number γp

−1(G) (resp. global powerful 0-alliance number γp
0 (G)) is the minimum cardinality among

all (critical) global powerful (−1)-alliances (resp. global powerful 0-alliances) of G [6]. The powerful
k-alliance number ap

k(G) is the minimum cardinality among all (critical) powerful k-alliances of G
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[54]. The global powerful k-alliance number γp
k(G) is the minimum cardinality among all (critical)

global powerful k-alliances of G [54].
For any graph G, we have the following relations between different powerful k-alliance numbers:

1) ap
−1(G) ≥ max{ad

−1(G), ao
−1(G)} [6];

2) γp
−1(G) ≥ max{γ(G), ap

−1(G)} [6];

3) ap
k(G) ≥ max{ad

k(G), ao
k+2(G)} [54];

4) γp
k(G) ≥ max{γ(G), ap

k(G)} [54];

5) γp
k(G) ≥ max{γd

k(G), γo
k+2(G)} [54];

6) γp
k+1(G) ≥ γp

k(G) [54].

4.1 Study of powerful k-alliance numbers for various graph classes

In this subsection, we exhibit mathematical properties of powerful k-alliances for different graph
classes. Essentially, we give bounds or exact values for powerful k-alliance numbers studied for
various graph classes.

4.1.1 General graphs

In this paragraph, we present theoretical results representing bounds for powerful k-alliance num-
bers in general graphs. Let G = (V, E) be a general graph of order n and size m.

For any connected graph G of order n ≥ 2, Brigham et al. [6] studied powerful k-alliances
and proposed a sharp upper bound for the powerful (−1)-alliance number. Thus, they used the
packing number ρ(G) which is the maximum cardinality of a packing in G (a subset P ⊂ V is
called a packing in G if for every vertex v ∈ V , |N [v] ∩ P | ≤ 1 [6, 40]). They obtained that the
powerful (−1)-alliance number is bounded by ap

−1(G) ≤ n− ρ(G).
Brigham et al. [6] established lower bounds for the global powerful (−1)-alliance number by

using the order of G, its maximum degree δ1, its minimum degree δn and its domination number
γ(G). Thus, they showed that for any graph G, its order satisfies n ≤ ( δ1+δn+2

δn+1 )γp
−1(G) which

leads to obtain that γp
−1(G) ≥ n(δn+1)

δ1+δn+2 . Furthermore, they proved that γp
−1(G) ≥ γ(G) +

⌊
δn

2

⌋
.

Moreover, they obtained a sharp upper bound for the same parameter by showing that for any
graph G with no isolated vertices, γp

−1(G) ≤ n−⌊
δn

2

⌋
. On the other hand, Rodŕıguez-Velázquez and

Sigarreta [47] gave tight lower bounds for the global powerful (−1)-alliance number and the global
powerful 0-alliance number by means of the order of a simple graph G, its size m and its spectral
radius λ. Thus, they showed that γp

−1(G) ≥
⌈

2m+n
4(λ+1)

⌉
, γp

0 (G) ≥
⌈

m+n
2λ+1

⌉
, γp

−1(G) ≥
⌈√

2m+n
2

⌉

and γp
0 (G) ≥

⌈
1+
√

1+8(n+m)

4

⌉
. Note that Rodŕıguez-Velázquez and Sigarreta [47] have presented

graphs for which these bounds are reached.
Fernau et al. [27] studied the powerful k-alliances and established lower and upper

bounds for the global powerful k-alliance number. They obtained that for any graph G,⌈√
8m+4n(k+2)+(k+1)2+k+1

4

⌉
≤ γp

k(G) ≤ n − ⌊
δn−k

2

⌋
. These bounds are also given by Sigarreta

[54] by assuming that k ∈ {1 − δn, ..., δn − 2} for the upper bound (note that these bounds are
reached, for example, for the cycle graph G = C3 for every k ∈ {−2,−1, 0}). Moreover, Brigham
and Dutton [5] obtained a lower bound for the same parameter, that is γp

k(G) ≥ ⌈
δ1+k+1

2

⌉
. By

using the spectral radius λ, Sigarreta [54] obtained that for any graph G, γp
k(G) ≥

⌈
2m+n(k+2)
4λ−2k+2

⌉
.

Yero [64] and Yero and Rodŕıguez-Velázquez [67] studied the mathematical properties of bound-
ary powerful k-alliances. They obtained that if S is a boundary powerful k-alliance in a graph
G, then

⌈
δn+k+2

2

⌉ ≤ |S| ≤ ⌊
2n−δn+k

2

⌋
. Furthermore, they showed that if S is a global bound-

ary powerful k-alliance then
⌈

2m+n(k+2)
2δ1+2

⌉
≤ |S| ≤

⌊
2m+n(k+2)

2δn+2

⌋
and

⌈
n(2δn+k+2)−2m

2δn+2

⌉
≤ |S| ≤
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⌊
n(2δ1+k+2)−2m

2δ1+2

⌋
(note that all these bounds are attained, for instance, for the complete graph

G = Kn for every k ∈ {1 − n, ..., n − 3}). By using the number of edges of G with one endpoint
in S and the other endpoint outside of S, C, they proved that if S is a global boundary powerful
k-alliance in G, with k 6= −1, then |S| = 2(m+n−2C)+nk

2(k+1) .

4.1.2 Tree graphs

We present in this part some results concerning powerful k-alliance numbers in trees. Let T =
(V, E) be a tree of order n.

Brigham et al. [6] initiated the study of powerful k-alliances in graphs and established a sharp
upper bound for the powerful (−1)-alliance number in trees. Thus, they deduced from the result
given by Meir and Moon in [40] (the domination number and the packing number of a tree are
equal) that for any tree T , ap

−1(T ) ≤ n−γ(T ). They also obtained an other sharp upper bound for
the same parameter, by proving that if T is a tree of order n and T 6= Pn, then ap

−1(T ) ≤ ⌊
n+3

2

⌋
.

On the other hand, Rodŕıguez-Velázquez and Sigarreta [43] presented bounds concerning the
cardinality of every global powerful (−1)-alliance or 0-alliance in trees. They showed that if S
is a global powerful (−1)-alliance (resp. 0-alliance) in T and the subgraph induced by S has
c connected components, then |S| ≥ ⌈

3n+8c−2
12

⌉
(resp. |S| ≥ ⌈

2n+4c−1
5

⌉
). As a consequence,

they obtained tight bounds for the global powerful (−1)-alliance number and the global powerful
0-alliance number, that are γp

−1(T ) ≥ ⌈
n+2

4

⌉
and γp

0 (T ) ≥ ⌈
2n+7

5

⌉
. Rodŕıguez-Velázquez and

Sigarreta [43] have given graphs for which these bounds are attained. Note that these two latter
bounds are also given by Sigarreta in his thesis [54].

Sigarreta [54] established a lower bound for the cardinality of every global powerful k-alliance
in trees. He showed that if S is a global powerful k-alliance in T and the subgraph 〈S〉 has c

connected components, then |S| ≥
⌈

n(k+4)+8c−2
2(5−k)

⌉
.

4.1.3 Planar graphs

In this paragraph, we put on view bounds obtained for powerful k-alliance numbers in planar
graphs. Let P = (V, E) be a planar graph of order n and size m.

Rodŕıguez-Velázquez and Sigarreta [43] studied mathematical properties of powerful k-alliances
in planar graphs and obtained tight bounds for the global powerful (−1)-alliance number and the
global powerful 0-alliance number given as follows:

i) If n > 6, then γp
−1(P ) ≥ ⌈

2m+n+48
28

⌉
.

ii) If n > 6 and P is a triangle-free graph, then γp
−1(P ) ≥ ⌈

2m+n+32
20

⌉
.

iii) If n > 4, then γp
0 (P ) ≥ ⌈

m+n+24
13

⌉
.

iv) If n > 4 and P is a triangle-free graph, then γp
0 (P ) ≥ ⌈

m+n+16
9

⌉
.

Furthermore, they showed that if S is a global powerful (−1)-alliance (resp. 0-alliance) in a general
graph G such that the subgraph 〈S〉 is planar connected with f faces, then |S| ≥

⌈
2m+n−8f+16

12

⌉

(resp. |S| ≥
⌈

m+n−4f+8
5

⌉
). Moreover, Rodŕıguez-Velázquez and Sigarreta in [43] showed that for

a global powerful (−1)-alliance (resp. 0-alliance) S in a planar graph, |S| ≥ ⌈
2m+n+48

28

⌉
(resp.

|S| ≥ ⌈
m+n+24

13

⌉
). Enciso and Dutton [21] and Enciso [20] proved that these bounds are increased

when S is an empire. Thus, they obtained that for a planar graph P with a global powerful (−1)-
alliance (resp. 0-alliance) S, if S is an empire then |S| ≥ ⌈

2m+n+24
20

⌉
(resp. |S| ≥ ⌈

m+n+12
9

⌉
).

Sigarreta in his thesis [54] studied the powerful k-alliances in planar graphs and presented some
bounds for the global powerful k-alliance number given as follows:

i) If n > 2(2− k), then γp
k(P ) ≥

⌈
2(m+24)+n(k+2)

2(13−k)

⌉
.
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ii) If n > 2(2− k) and P is a triangle-free graph, then γp
k(P ) ≥

⌈
2(m+16)+n(k+2)

2(9−k)

⌉
.

Moreover, he showed that if S is a global powerful k-alliance in a general graph G such that
the subgraph 〈S〉 is planar connected with f faces, then |S| ≥

⌈
2(m−4f+8)+n(k+2)

2(5−k)

⌉
. Note that

Sigarreta [54] have given graphs for which these bounds are attained.
Yero and Rodŕıguez-Velázquez [67] studied the boundary powerful k-alliances and proved that

if S is a global boundary powerful k-alliance in a planar connected graph with f faces, then⌈
n(k+4)+2f−4

2δ1+2

⌉
≤ |S| ≤

⌊
n(k+4)+2f−4

2δn+2

⌋
. These bounds are also given by Yero in his thesis [64].

4.1.4 Complete graphs

Let Kn = (V, E) be a complete graph of order n. We exhibit in this part some exact values
obtained for powerful k-alliance numbers in this class of graphs.

Brigham et al. [6] studied the powerful k-alliances and they obtained that the powerful (−1)-
alliance number and the global powerful (−1)-alliance number have the same exact value. Thus,
they showed that for the complete graph Kn, ap

−1(Kn) = γp
−1(Kn) =

⌈
n
2

⌉
. This value is also

obtained by Fernau et al. [27] and Sigarreta [54] for the global powerful (−1)-alliance number.
Yero in his thesis [64] and Yero and Rodŕıguez-Velázquez [67] studied the boundary powerful

k-alliances and proved that if S is a boundary powerful k-alliance in a complete graph Kn, then
|S| = ⌈

n+k+1
2

⌉
.

4.1.5 Complete bipartite graphs

Let Kr,s = (X, Y,E) be a complete bipartite graph where r (resp. s) is the cardinality of the set of
vertices X (resp. Y ). In this paragraph, we present some results obtained for powerful k-alliance
numbers in complete bipartite graphs.

Brigham et al. [6] studied the powerful k-alliances in complete bipartite graphs and they
obtained a same exact value for the powerful (−1)-alliance number and the global powerful (−1)-
alliance number. Thus, they showed that for the complete bipartite graph Kr,s, 1 ≤ r ≤ s,
ap
−1(Kr,s) = γp

−1(Kr,s) = min{r+
⌊

s
2

⌋
,
⌈

r+1
2

⌉
+

⌈
s+1
2

⌉}. Note that Fernau et al. [27] and Sigarreta
[54] also established the same value for the global powerful (−1)-alliance number.

4.1.6 Regular graphs

We give in this paragraph some results obtained for powerful k-alliance numbers in regular graphs.
We denote by Rδ = (V, E) the δ-regular graph of order n.

Brigham et al. [6] studied the powerful k-alliances in regular graphs and they obtained that
if S is a powerful (−1)-alliance of a δ-regular graph Rδ, then |∂S| ≤ |S|. Furthermore, they
established that the order of a δ-regular graph Rδ satisfies n ≤ 2γp

−1(Rδ), which leads to obtain
that the global powerful (−1)-alliance number is bounded by γp

−1(Rδ) ≥ n
2 .

Yero [64] and Yero and Rodŕıguez-Velázquez [67] studied the boundary powerful k-alliances
and showed that if S is a global boundary powerful k-alliance in a δ-regular graph, then |S| =⌈

n(δ+k+2)
2(δ+1)

⌉
. They also obtained that if Rδ is a δ-regular connected planar graph with f faces and

S is a global powerful k-alliance, then |S| = n(k+4)+2f−4
2(δ+1) . Furthermore, they showed that if S is a

global boundary powerful k-alliance in a δ-regular graph Rδ, with k 6= −1, then |S| = n(δ+k+2)−4C
2k+2

and C = n(δ2+2δ−k2−2k)
4(δ+1) , where C the number of edges of Rδ with one endpoint in S and the other

endpoint outside of S.

4.1.7 Cycle graphs

Let Cn = (V, E) be a cycle graph of order n. In this paragraph, we present some results obtained
for powerful k-alliance numbers for the class of cycle graphs.
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Brigham et al. [6] studied the powerful k-alliances in graphs and they obtained that the
powerful (−1)-alliance number and the global powerful (−1)-alliance number have the same value.
Thus, they showed that for any cycle Cn, ap

−1(Cn) = γp
−1(Cn) =

⌈
2n
3

⌉
. Moreover, Fernau et al.

[27] and Sigarreta [54] established the same value written in another form for the global powerful
(−1)-alliance number, that is γp

−1(Cn) = n− ⌊
n
3

⌋
.

4.1.8 Path graphs

Let Pn = (V, E) be a path graph of order n. We exhibit in this part some exact values obtained
for powerful k-alliance numbers in path graphs.

This class of graphs is studied by Brigham et al. [6] and they obtained that the powerful
(−1)-alliance number and the global powerful (−1)-alliance number are equal in this case. Thus,
they showed that for any path Pn, ap

−1(Pn) = γp
−1(Pn) =

⌊
2n
3

⌋
. Moreover, this exact value,

written in another form, is obtained by Fernau et al. [27] and Sigarreta [54] for the global powerful
(−1)-alliance number, that is γp

−1(Pn) = n− ⌈
n
3

⌉
.

4.1.9 Cartesian product graphs

Let Gi = (Vi, Ei) be a graph of order ni, minimum degree δ̄i and maximum degree ∆̄i, i ∈ {1, 2}.
Yero [64] and Yero and Rodŕıguez-Velázquez [70] studied the powerful k-alliances in Cartesian

product graphs and obtained some results for the associated parameters. Thus, they showed that
if Si ⊂ Vi is a powerful ki-alliance in Gi, i ∈ {1, 2}, then S1 × S2 is a powerful k-alliance in
G1 ×G2, for every k ∈ {−∆̄1 − ∆̄2, ..., min{k1 − ∆̄2, k2 − ∆̄1}}. As a consequence, they obtained
that if Gi contains powerful ki-alliances, i ∈ {1, 2}, then for every k ∈ {−∆̄1 − ∆̄2, ..., min{k1 −
∆̄2, k2 − ∆̄1}}, ap

k(G1 × G2) ≤ ap
k1

(G1)a
p
k2

(G2). Furthermore, they proved that if S1 ⊂ V1 is a
global powerful k1-alliance in G1, then S1×V2 is a global powerful k-alliance in G1×G2, for every
k ∈ {−∆̄1− ∆̄2, ..., k1− ∆̄2}. As a consequence, they obtained that if G1 contains global powerful
k1-alliances, then for every k ∈ {−∆̄1 − ∆̄2, ..., k1 − ∆̄2}, γp

k(G1 ×G2) ≤ γp
k1

(G1)n2.

Remark 5. Let us note that the powerful k-alliances were studied for the class of cubic graphs
by Sigarreta in his thesis [54]. He established some relations between γ(G) and γp

k(G), k ∈
{−3,−2,−1, 0, 1}, and gave lower bounds for γp

−1(G) and γp
0 (G).

Now, we summarize the results presented above by giving some bounds and exact values
obtained for powerful k-alliance numbers for different graph classes. These results are given in the
following table:
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Powerful k-alliance numbers
Graph
classes

a
p
−1(G) γ

p
−1(G) γ

p
0 (G) a

p
k
(G) γ

p
k
(G)

G • a
p
−1(G) ≤ n − ρ(G)

[6]

• γ
p
−1(G) ≥ n(δn+1)

δ1+δn+2
[6]
• γ

p
−1(G) ≥ γ(G) +

j
δn
2

k
[6]

• γ
p
−1(G) ≤ n −

j
δn
2

k

[6]

• γ
p
−1(G) ≥

�
2m+n
4(λ+1)

�

[47]
• γ

p
−1(G) ≥

�√
2m+n

2

�
[47]

• γ
p
0 (G) ≥l

m+n
2λ+1

m
[47]

• γ
p
0 (G) ≥

�
1+
p

1+8(n+m)
4

�

[47]

•
2
666

q
8m+4n(k+2)+(k+1)2+k+1

4

3
777
≤

γ
p
k
(G) ≤ n −

l
δn−k

2

m
[27, 54]

• γ
p
k
(G) ≥

�
δ1+k+1

2

�
[5]

• γ
p
k
(G) ≥

�
2m+n(k+2)
4λ−2k+2

�
[54]

T • a
p
−1(T ) ≤ n − γ(T )

[6]

• a
p
−1(T ) ≤

j
n+3

2

k
[6]

• |S| ≥
l
3n+8c−2

12

m

[43]

• γ
p
−1(T ) ≥

l
n+2

4

m

[43, 54]

• |S| ≥l
2n+4c−1

5

m
[43]

• γ
p
0 (T ) ≥l

2n+7
5

m
[43, 54]

• |S| ≥
�

n(k+4)+8c−2
2(5−k)

�
[54]

P • γ
p
−1(P ) ≥

l
2m+n+48

28

m
[43]

• |S| ≥l 2m+n−8f+16
12

m

[43]

• |S| ≥
l
2m+n+24

20

m

[20, 21]

• γ
p
0 (P ) ≥l

m+n+24
13

m
[43]

• |S| ≥l
m+n−4f+8

5

m

[43]
• |S| ≥l

m+n+12
9

m

[20, 21]

• γ
p
k
(P ) ≥

�
2(m+24)+n(k+2)

2(13−k)

�
[54]

• |S| ≥
�
2(m−4f+8)+n(k+2)

2(5−k)

�
[54]

Kn • a
p
−1(Kn) =

l
n
2

m
[6] • γ

p
−1(Kn) =

l
n
2

m
[6,

27, 54]
Kr,s • a

p
−1(Kr,s) =

min{r +
j

s
2

k
,
l

r+1
2

m
+

l
s+1
2

m
} [6]

• γ
p
−1(Kr,s) =

min{r +
j

s
2

k
,
l

r+1
2

m
+

l
s+1
2

m
} [6, 27, 54]

Rδ • γ
p
−1(Rδ) ≥ n

2 [6]

Cn • a
p
−1(Cn) =

l
2n
3

m
[6] • γ

p
−1(Cn) =

l
2n
3

m
[6]

• γ
p
−1(Cn) = n −

j
n
3

k

[27, 54]

Pn • a
p
−1(Pn) =

j
2n
3

k
[6] • γ

p
−1(Pn) =

j
2n
3

k
[6]

• γ
p
−1(Pn) = n −

l
n
3

m

[27, 54]
G1×G2 • a

p
k
(G1 × G2) ≤

a
p
k1

(G1)a
p
k2

(G2)

[64, 70]

• γ
p
k
(G1×G2) ≤ γ

p
k1

(G1)n2 [64, 70]

Table 6: Previous results on powerful k-alliance numbers for various graph classes

Concluding remarks 5. As we can see from Table 6, the most studied parameter is the global
powerful (−1)-alliance number (γp

−1(G)) and the least studied one is the powerful k-alliance number
(ap

k(G)). Furthermore, the general and tree graph classes are the most studied ones and the regular
graphs class is the least studied one. Moreover, some parameters are not studied for all or certain
graph classes. For example, the powerful 0-alliance number ap

0(G), the upper powerful (−1)-alliance
number Ap

−1(G), the upper powerful 0-alliance number Ap
0(G) and the upper powerful k-alliance

number Ap
k(G) are not studied for all graph classes (note that these three latter numbers which

are not defined in the literature can be similarly defined as in the cases of defensive and offensive
k-alliances). Also, the classes of bipartite graphs and line graphs are not studied for this kind
of alliances. In addition, the powerful k-alliance number ap

k(G) is studied just in the case of
Cartesian product graphs. Besides, in the regular (resp. Cartesian product) graphs class, just the
global powerful (−1)-alliance number γp

−1(G) (resp. ap
k(G) and γp

k(G)) is (resp. are) studied. On
the other hand, γp

0 (G) and γp
k(G) are not investigated for several graph classes such as the complete

and complete bipartite graphs.

4.2 Study of powerful k-alliance partition numbers

Like partitioning of graphs into defensive k-alliances or into offensive k-alliances, the partitioning
of graphs into powerful k-alliances is also studied in the literature. There are two parameters of the
partitioning of graphs into powerful k-alliances which are defined as follows: For any graph G =
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(V, E), the (global) powerful k-alliance partition number of G, (ψgp
k (G)) ψp

k(G), k ∈ {−δ1, ..., δ1 −
2}, is defined to be the maximum number of sets in a partition of V such that each set is a
(global) powerful k-alliance [64, 70]. We say that a graph G is partitionable into (global) powerful
k-alliances if (ψgp

k (G) ≥ 2) ψp
k(G) ≥ 2.

In this subsection, we present theoretical results obtained for the powerful k-alliance partition
numbers. We give bounds and/or exact values for these parameters in general graphs and Carte-
sian product graphs, together with some results concerning partitions into boundary powerful
k-alliances.

4.2.1 General graphs

Yero [64] and Yero and Rodŕıguez-Velázquez [70] studied the partitioning of graphs into global
powerful k-alliances and established several results. They showed that, if there are two different
sets in Πr(G) (a partition of a graph G into r dominating sets) such that one of them is a defensive
k-alliance and the other one is an offensive (k + 2)-alliance, then k ≤ 1 − r. From this result,
there are two direct and useful consequences [64, 70]: the first one is that for k ≥ 0, no graph
is partitionable into global powerful k-alliances; and the second one state that if a graph G is
partitionable into global powerful k-alliances, then ψgp

k (G) ≤ 1 − k. Note that this latter bound
is achieved for instance for the complete graph, which can be partitioned into two global powerful
(−1)-alliances [64, 70]. Furthermore, Yero [64] and Yero and Rodŕıguez-Velázquez [70] proved that
for a graph G of order n, minimum degree δn and maximum degree δ1, if G is partitionable into
global powerful k-alliances then ψgp

k (G) ≤
⌊

δ1+δn+2
δn+k+2

⌋
. They noted that this bound is attained,

for instance, for the complete graph G = Kn where ψgp
−1(G) = 2, or for the circulant graph

G = CR(3t, 3) for which ψgp
−4(G) = 3. Moreover, they obtained an other upper bound in terms

only of k and the order n. Thus, they showed that if G is partitionable into global powerful

k-alliances, then ψgp
k (G) ≤

⌊√
8n+(2k−1)2−2k+1

4

⌋
. This bound is attained, for instance, for the

circulant graph G = CR(10, 2) for which ψgp
−4(G) = 5 as given in [64, 70].

4.2.2 Cartesian product graphs

Yero in his thesis [64] and Yero and Rodŕıguez-Velázquez [70] studied the partitioning of Cartesian
product graphs into (global) powerful k-alliances. They showed that for a graph Gi = (Vi, Ei) of
maximum degree ∆̄i, i ∈ {1, 2}, if Gi is partitionable into ri powerful ki-alliances, then the graph
G1×G2 is partitionable into r = r1r2 powerful k-alliances, for every k ∈ {−∆̄1− ∆̄2, ..., min{k1−
∆̄2, k2 − ∆̄1}}. Furthermore, they obtained that ψp

k(G1 × G2) ≥ ψp
k1

(G1)ψ
p
k2

(G2). Moreover,
they established that if G1 is partitionable into global powerful k1-alliances, then for every k ∈
{−∆̄1− ∆̄2, ..., k1− ∆̄2}, ψgp

k (G1×G2) ≥ ψgp
k1

(G1), and they remarked that if G1 = CR(3t, 3) and
G2 = K2, then ψgp

−5(G1 ×G2) = 3 = ψgp
−4(G1).

4.2.3 Partitioning a graph into boundary powerful k-alliances

Yero [64] studied the partitioning of graphs into boundary powerful k-alliances and he established
that every graph can be partitioned into two global boundary powerful (−1)-alliances. Thus he
proved that, for a graph G = (V, E):

i) S ⊂ V is a global boundary powerful (−1)-alliance in G, if and only if, S̄ is a global boundary
powerful (−1)-alliance in G.

ii) If G can be partitioned into two global boundary powerful k-alliances, then k = −1.

Furthermore, he obtained lower and upper bounds concerning the cardinality of every global
boundary powerful (−1)-alliance in terms of the order of the graph G, its minimum degree δn

and its maximum degree δ1. Thus, he showed that if S is a global boundary powerful (−1)-
alliance in G, then

⌈
n(δn+1)
δ1+δn+2

⌉
≤ |S| ≤

⌊
n(δ1+1)
δ1+δn+2

⌋
, and he noted that if S is a global boundary
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powerful (−1)-alliance in a δ-regular graph, then |S| = n
2 . Moreover, Yero [64] proved that if

S ⊂ V is a global boundary powerful (−1)-alliance in a graph G = (V, E) and C is a cut set
with one endpoint in S and the other endpoint outside of S, then

⌈
2m+n
2δ1+2

⌉
≤ |S| ≤

⌊
2m+n
2δn+2

⌋
and

|C| = 2m+n
4 . This result leads to obtain the previous value of |S| concerning the δ-regular graph.

On the other hand, he obtained the result which shows the relationship between the algebraic
connectivity of a graph, its Laplacian spectral radius and the respective cardinalities of the two
global boundary powerful (−1)-alliances S and S̄ which form a partition of the graph. Thus,
he proved that if S ⊂ V is a global boundary powerful (−1)-alliance in G, then without loss of

generality, n
2 +

⌈√
n2(µ−1)−2nm

4µ

⌉
≤ |S| ≤ n

2 +
⌊√

n2(µ∗−1)−2nm
4µ∗

⌋
and n

2 −
⌊√

n2(µ∗−1)−2nm
4µ∗

⌋
≤

|S̄| ≤ n
2 −

⌈√
n2(µ−1)−2nm

4µ

⌉
, where µ (resp. µ∗) is the algebraic connectivity (resp. the Laplacian

spectral radius) of the graph G. Recently, Slimani and Kheddouci [60] have introduced a new
concept of saturated vertices and studied the saturated boundary k-alliances in graphs. They
have proved that S ⊂ V is a minimal global boundary powerful (−1)-alliance in G, if and only
if, S̄ is a minimal global boundary powerful (−1)-alliance in G. Furthermore, as a main result,
they have obtained tight bounds for the cardinality of every minimal global boundary powerful
(−1)-alliance in terms only of the order and the size of graph by taking the two cases where 〈S〉
is connected or not. Hence, they showed that for a graph G = (V, E) with |V | = n and |E| = m,
if S ⊂ V is a minimal global boundary powerful (−1)-alliance, then:

i) If S is connected, one has:

max{−1 +
√

1 + 4n

2
,
1 +

√
1 + 8m

4
} ≤ |S| ≤ min{2n + 1−√4n + 1

2
,
m + 3

4
}. (1)

ii) If S is not connected, the relation becomes:

max{1 +
√

4n− 7
2

,
5 +

√
8m− 7
4

} ≤ |S| ≤ min{2n + 1−√4n + 1
2

,m}. (2)

Note that several examples have been presented in [60] for which these bounds are reached. For
instance, all the bounds given in (1) are attained at the same time for the complete graph K2,
and the upper bound m given in (2) is reached when the graph G is constituted of not adjacent
edges and every edge links a vertex of S with a vertex of S̄.

Now, we summarize the results presented above by giving some bounds obtained for powerful
k-alliance partition numbers in general and Cartesian product graphs. These results are given in
the following table:

Powerful k-alliance partition numbers
Graph
classes

ψ
p
k
(G) ψ

gp
k

(G)

G • ψ
gp
k

(G) ≤ 1 − k [64, 70]

• ψ
gp
k

(G) ≤
�

δ1+δn+2
δn+k+2

�
[64, 70]

• ψ
gp
k

(G) ≤
6664
q

8n+(2k−1)2−2k+1
4

7775 [64, 70]

G1×G2 • ψ
p
k
(G1 × G2) ≥ ψ

p
k1

(G1)ψ
p
k2

(G2) [64, 70] • ψ
gp
k

(G1 × G2) ≥ ψ
gp
k1

(G1) [64, 70]

Table 7: Previous results on powerful k-alliance partition numbers for some graph classes

Concluding remarks 6. As we can see from Table 7, and comparing with Table 6, we deduce
that the powerful k-alliance partition numbers are studied on much less graph classes contrary to
the powerful k-alliance numbers. Furthermore, we note that only the powerful partition numbers
with index k namely ψp

k(G) and ψgp
k (G) that are investigated. Between these two parameters, the

global powerful k-alliance partition number ψgp
k (G) is the most studied one. Moreover, there are

only two graph classes which are addressed in this case, for the general graphs only ψgp
k (G) is

studied and for the Cartesian product graphs both ψp
k(G) and ψgp

k (G) are studied.
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5 Conclusion and discussion

Since the beginning of the last decade, when alliances in graphs were first introduced, much
research has been focussed on studying mathematical properties of various parameters of different
types of k-alliances in graphs. In this paper, we have surveyed and discussed the principal known
results obtained on defensive, offensive and powerful k-alliances by classifying them according to
the different graph classes where the parameters are investigated. From this survey, we draw the
following conclusions:

• By considering the classification criterion “graph class” in the study of the three kinds of
k-alliances, we deduce that: the most studied graph classes on which there are more results
are general, tree, planar and cartesian product graphs, and the least studied graph classes
on which there are less results are cycle, path and line graphs.

• Several k-alliance numbers are defined in the literature. Some of them are received more
attention and have been studied for various graph classes, such as γd

−1(G), γo
k(G) and γp

−1(G).
However, there are some parameters which are not studied for all graph classes, such as
Ao

1(G), Ao
2(G) and ap

0(G), and other ones are not studied for certain graph classes, such as
Ad

k(G), ao
k(G) and ap

k(G).

• The k-alliance partition numbers have been studied on much less graph classes contrary to
the k-alliance numbers. Moreover, only the partition numbers with index k are investigated
in the case of partitioning of graphs into offensive (powerful) k-alliances.

• There are more studies and then more results obtained on defensive k-alliances than on
offensive (powerful) k-alliances.

• There are remarkable relationships between the different parameters of the theory of domi-
nation and the alliances in graphs.

• Some relationships are established between the global offensive k-alliance partition number
and a coloration parameter namely the chromatic number. In this sense an extensive study
which includes other parameters can be interesting.

• There are many investigations in the sense of theoretical aspects of k-alliances, but there are
several prospects and progress to carry out in the algorithmic and computational side.

• The alliances with their important properties are used in interesting applications in several
areas. As prospects, in practice there are many problems which have specifical structures
where the mathematical properties of the alliances can be involved and contribute to solve
these problems.

• The definition of the defensive (−1)-alliance which takes into consideration the defense of
a single vertex is generalized by Brigham et al. [8] to the concept of secure sets in order
to forestall any attack on the entire alliance or any subset of the alliance. In this sense,
it would be interesting to consider k-secure sets as extensions of defensive k-alliances and
also to study the partitioning of graphs into k-secure sets. In this setting, motivations with
practical examples would be needed.
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Studi di Milano, Gargnano, Italy. Abstracts 98–101 (2008).
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[47] J.A. Rodŕıguez-Velázquez, J.M. Sigarreta, Spectral study of alliances in graphs, Discuss.
Math. Graph Theory 27 (1) (2007) 143-157.

[48] J.A. Rodŕıguez-Velázquez, I.G. Yero, J.M. Sigarreta, Defensive k-alliances in graphs, Appl.
Math. Lett. 22 (2009) 96-100.

[49] H. Seba, S. Lagraa, H. Kheddouci, Alliance-based clustering scheme for group key manage-
ment in mobile ad hoc networks, J. Supercomput. 61 (2012) 481–501.

[50] K.H. Shafique, Partitioning a graph in alliances and its application to data clustering, Ph. D.
Tesis in Computer Science, University of Central Florida, (2004).

[51] K.H. Shafique, R.D. Dutton, A tight bound on the cardinalities of maximum alliance-free and
minimum alliance-cover sets, J. Combin. Math. Combin. Comput. 56 (2006) 139-145.

[52] K.H. Shafique, R.D. Dutton, Maximum alliance-free and minimum alliance-cover sets, Congr.
Numer. 162 (2003) 139-146.

[53] K.H. Shafique, R.D. Dutton, On satisfactory partitioning of graphs, Congr. Numer. 154 (2002)
183–194.

[54] J.M. Sigarreta, Alianzas en Grafos, Ph. D. Tesis, Universidad Carlos III of Madrid, Spain,
(2007).

[55] J.M. Sigarreta, Upper k-Alliances in Graphs, Int. J. Contemp. Math. Sci. 6 (43) (2011) 2121-
2128.

[56] J.M. Sigarreta, S. Bermudo, H. Fernau, On the complement graph and defensive k-alliances,
Discrete Appl. Math. 157 (8) (2009) 1687-1695.
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