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Introduction 1.Historical view and applications of alliances

The word alliance can be defined as a union or association formed for mutual benefit, for example it can be: a formal agreement or treaty between two or more nations to cooperate for specific purposes, a merging of efforts or interests by persons, families, states, or organizations. The study of alliances in graphs is first investigated by Kristiansen et al. [START_REF] Kristiansen | Alliances in graphs[END_REF] by defining different types of alliances that have been extensively studied in the last decade. These types of alliances are called defensive alliances [START_REF] Haynes | Global defensive alliances in graphs[END_REF][START_REF] Yero | Defensive alliances in graphs: a survey[END_REF], offensive alliances [START_REF] Favaron | Offensive alliances in graphs[END_REF][START_REF] Rodríguez-Velázquez | Global offensive alliances in graphs[END_REF] and dual or powerful alliances [START_REF] Brigham | Powerful alliances in graphs[END_REF][START_REF] Brigham | A sharp lower bound on the powerful alliance number of C m × C n[END_REF]. A generalization of these alliances called k-alliance (or r-alliance) introduced by Shafique and Dutton [START_REF] Shafique | A tight bound on the cardinalities of maximum alliance-free and minimum alliance-cover sets[END_REF][START_REF] Shafique | Maximum alliance-free and minimum alliance-cover sets[END_REF] has received a special attention in recent years. In this setting, there have been definitions of many and various parameters which have been studied widely in the case of defensive (offensive, powerful) k-alliances and for different graphs classes. The study of the alliances (in its broad sense) is motivated by interesting applications in several areas. The research work of Kristiansen et al. [START_REF] Kristiansen | Alliances in graphs[END_REF] is motivated by the alliance of nations in war for mutual support. They considered two cases: the first which correspond to a defensive alliance is realized when nations are obligated to join forces if one or more of them are attacked and the second is an offensive alliance which is used as a mean of keeping the peace; as an example of illustration, the action of NATO troops in a war-torn country is given. Thus in the corresponding graph of this situation, the vertices represent the nations and the edges correspond to possible relations (of either friendship or hostility) between them. Essentially, Kristiansen et al. [START_REF] Kristiansen | Alliances in graphs[END_REF] studied the mathematical properties of defensive alliances in graphs.

Haynes et al. [START_REF] Haynes | A quantitative analysis of secondary RNA structure using domination based parameters on trees[END_REF] studied structural characteristics of a class of biomolecules in the bioinformatics arena by involving several graphical invariants based on domination numbers. In fact, they studied the applicability of graphs in the analysis of secondary RNA structure. They used graph-theoretic trees as a modeling method to represent secondary RNA motifs. Specifically, they utilized five domination parameters including the global defensive (-1)-alliance number, that are highly sensitive to the structural changes of small ordered trees, to identify which trees of orders seven and eight are RNA-like in structure. With this study, it is shown that graphical invariants, which aid in the optimization of computer and electrical networks, are useful and serve as an interesting tool for genomic and proteomic predictions.

In distributed computing, one of the central problems is how to deal with failures. Flocchini et al. [START_REF] Flocchini | Dynamic monopolies in tori[END_REF], Peleg [START_REF] Peleg | Local majorities, coalitions and monopolies in graphs: a review[END_REF], Srimani and Xu [START_REF] Srimani | Distributed protocols for defensive and offensive alliances in network graphs using self-stabilization[END_REF], and Xu and Srimani [START_REF] Xu | Self-stabilizing distributed algorithms for graph alliances[END_REF] studied the fault tolerance of distributed computing and communication networks. Generally, a distributed system is represented by a graph where the vertices represent the processors and the edges correspond to different communications between them. Thus by using the process of local majority voting in graphs, processors are partitioned into two alliances. Furthermore, Srimani and Xu [START_REF] Srimani | Distributed protocols for defensive and offensive alliances in network graphs using self-stabilization[END_REF], and Xu and Srimani [START_REF] Xu | Self-stabilizing distributed algorithms for graph alliances[END_REF] designed self-stabilizing fault tolerant distributed algorithms for the global defensive (offensive) alliances in a given arbitrary graph.

Flake et al. [START_REF] Flake | Efficient identification of web communities[END_REF] defined a community on the web as a set of web pages that link (in either direction) to more web pages in the community than to pages outside of the community. With this definition, the defensive alliances represent exactly the mathematical model of such web communities.

Szabö and Czárán [START_REF] Szabö | Defensive alliances in spatial models of cyclical population interactions[END_REF] and Kim and Liu [START_REF] Kim | Instability of defensive alliances in the predator-prey model on complex networks[END_REF] have studied defensive alliances in cyclical interaction models of six mutating species which represent generalizations of the Rock-Scissors-Paper game.

The alliances are also used in business and social networks in order to achieve common objectives by partners. In this context, Dickson and Weaver [START_REF] Dickson | R&D Alliance formation: the relationship between national R&D intensity and SME size[END_REF] studied the interaction between the firm size and the level of national R&D intensity to determine if it would be interesting for an SME (small and medium enterprise) to form a strategic alliance. Furthermore, H. Chen and T.J. Chen [START_REF] Chen | Governance structures in strategic alliances: transaction cost versus resource-based perspective[END_REF] investigated the strategic alliances between organizations by providing empirical evidence to show what kind of resources should be shared and how such resource sharing should be organized between partners.

The partitioning of a set of objects is a process which partitions these objects into subsets, so that the objects of the same group have similar characteristics, and two objects belonging to two distinct subsets are dissimilar. In fact, this process is subjective because the same set of elements should often be divided differently for various applications. It is known that the partitioning process is involved in many applications occurred in various areas such as: clustering of data, load balancing in parallel machines, image segmentation, data mining, scientific computing, VLSI design, task scheduling, parallel programming, geographical information systems, division of space air, classification of documents, etc. One of the approaches used to solve the partitioning problem is to reduce it to a problem of graphs where the objects are represented by vertices and the edges correspond to possible relationships between the objects. Although some problems try to partition the edges of a graph, we usually mean by the partition of a graph the partition of the vertices of this graph. Once the graph is obtained, the problem is to find a partition of the graph into subgraphs according to a certain criterion. However, the main question is which criterion to choose so that we obtain the "best partition"?

For example, the partition of a graph into the least number of independent sets is used to solve the chromatic number problem. On the other hand, there exist several studies on partitioning graphs into k-alliances and various theoretical results are obtained for some graphs classes in the literature. In this framework, the partitioning of graphs into defensive k-alliances is investigated by Eroh and Gero [START_REF] Eroh | Alliance partition number in graphs[END_REF][START_REF] Eroh | Global alliance partition in trees[END_REF], Haynes and Lachniet [START_REF] Haynes | The alliance partition number of grid graphs[END_REF], Yero et al. [START_REF] Yero | Partitioning a graph into defensive k-alliances[END_REF], the partitioning into offensive kalliances is the subject matter of Sigarreta et al. [START_REF] Sigarreta | Partitioning a graph into offensive k-alliances[END_REF], Yero [START_REF] Yero | Contribution to the study of alliances in graphs[END_REF], and the partitioning into powerful k-alliances is discussed in Slimani and Kheddouci [START_REF] Slimani | Saturated boundary k-alliances in graphs[END_REF], Yero and Rodríguez-Velázquez [START_REF] Yero | Partitioning a Graph into Global Powerful k-Alliances[END_REF]. In this context, it would be interesting to see how such partitioning can be of interest to solve practical problems.

Shafique [START_REF] Shafique | Partitioning a graph in alliances and its application to data clustering[END_REF] studied the partitioning of data (objects) into clusters by involving the concept of defensive 0-alliance. In general, the clusters are defined by maximizing the similarities of objects belonging to each cluster as well as the dissimilarities of objects between the clusters. Thus, there exist more bonds inside each cluster than between the clusters. He represented this situation by a graph where the vertices correspond to data and the edges symbolize the common property (similarity) that the data share. This implies that the vertices in every cluster have at least as many edges adjacent to the vertices inside the cluster as to the vertices outside it. This corresponds to the definition of defensive 0-alliance. On the basis of this, Shafique [START_REF] Shafique | Partitioning a graph in alliances and its application to data clustering[END_REF] established an approximate algorithm and applied it for different clustering applications.

In mobile ad hoc networks (MANETs), ensure confidentiality and secure communications in groups is a critical task. In this context, Seba et al. [START_REF] Seba | Alliance-based clustering scheme for group key management in mobile ad hoc networks[END_REF] proposed a fully distributed and selfstabilizing clustering algorithm for key management in MANETs by using the concept of defensive (-1)-alliance as a clustering criterion. Thus, they proposed a solution which meets the criteria of self-organization and mobility resilience. With experiments, they showed that the concept of defensive (-1)-alliance is an efficient clustering criterion for group key management in MANETs by comparing to other existing clustering schemes.

Recently, there have been two surveys in the literature on alliances: the first by Yero and Rodríguez-Velázquez [START_REF] Yero | Defensive alliances in graphs: a survey[END_REF] presents essentially results on one type of k-alliances in graphs namely those are defensive, and in the second Fernau and Rodríguez-Velázquez [START_REF] Fernau | A survey on alliances and related parameters in graphs[END_REF] have investigated the problem of several graph parameters which are known under completely different names in different areas and they have proposed a new framework called (global) (D, O)-alliances in order to unify their notations.

In this paper, we survey the vast mathematical properties of defensive, offensive and powerful k-alliances in graphs by presenting a large number of theoretical results corresponding to bounds and/or exact values obtained for the associated k-alliance (partition) numbers for various graph classes. There is an originality in our draft by surveying the most important results by classifying them firstly according to the "type of k-alliance" then by the criterion "graph class". This allows us to see how the study of various k-alliance (partition) numbers varies according to the two criteria "graph class" and "type of k-alliance". In particular, it is deduced the most/least studied graph classes (type of k-alliances) on which there are more/less results. The paper is partitioned into three principal parts: the first part given in Section 2 is devoted to the study of defensive kalliances, the second part given in Section 3 deals with the offensive k-alliances, and the third part given in Section 4 discuss the powerful k-alliances. At the end of each part, we establish a table that summarizes the principal results obtained for every k-alliance (partition) number according to the different graph classes and we discuss some of their relationships and properties. Finally, in Section 5 we summarize and draw conclusions.

Terminology and definitions

In this part, we give some terminology and definitions which will be heavily used in the rest of this paper. Let G = (V, E) be an undirected finite graph without loops and multiple edges where V denotes the vertex set and E denotes the edge set with |V | = n and |E| = m. For a nonempty subset S ⊆ V , S denotes the subgraph of G induced by S. For any vertex v ∈ V , N (v) is the open neighborhood of the vertex v, i.e. the set of vertices that are adjacent to v in G, and the closed neighborhood of v is the set

N [v] = N (v) ∪ {v}. deg S (v) = |N S (v)| is the degree of v in S with N S (v) = {u ∈ S : uv ∈ E} is the set of neighbors v has in S and N S [v] = N S (v) ∪ {v}. The open neighborhood of S is N (S) = v∈S N (v) and the closed neighborhood of S is N [S] = N (S) ∪ S.
The boundary of S is the set ∂S = N (S) -S and the complement of S in V is S = V -S. We denote the degree sequence of G by δ 1 ≥ δ 2 ≥ ... ≥ δ n . Other notations will be introduced when needed.

A set S is a dominating set if N [S] = V and it is a total dominating set or an open dominating set if N (S) = V . The minimum cardinality of a dominating set (resp. total dominating set) of G is the domination number γ(G) (resp. total domination number γ t (G)).

A non-empty set of vertices S ⊆ V is called defensive alliance if for every vertex v ∈ S,

|N [v] ∩ S| ≥ |N (v) ∩ S| or equivalently deg S (v) + 1 ≥ deg S (v).
In this case, we say that every vertex in S is defended from possible attack by vertices in S. A defensive alliance S is called strong A subset

if for every vertex v ∈ S, deg S (v) + 1 > deg S (v). S ⊂ V is called offensive alliance, if for every vertex v ∈ ∂(S), |N (v) ∩ S| ≥ |N [v] ∩ S| or equivalently deg S (v) ≥ deg S (v) +
S ⊆ V is a defensive k-alliance, with k ∈ {-δ 1 , ..., δ 1 }, if for every v ∈ S, deg S (v) ≥ deg S (v) + k. S ⊂ V is an offensive k-alliance, with k ∈ {2 -δ 1 , ..., δ 1 } if for every v ∈ ∂(S), deg S (v) ≥ deg S (v) + k. S ⊂ V is a powerful k-alliance if it
is both a defensive k-alliance and an offensive (k + 2)-alliance. Yero and Rodríguez-Velázquez [START_REF] Yero | Boundary defensive k-alliances in graphs[END_REF][START_REF] Yero | Boundary powerful k-alliances in graphs[END_REF] studied the limit case of defensive (resp. offensive and powerful) k-alliances and by considering equalities in their associated definitions they defined the so-called boundary defensive (resp. offensive and powerful) k-alliances.

Defensive k-alliances in graphs

In this section, we study mathematical properties of defensive k-alliances by giving bounds and/or exact values of several parameters studied for various graphs classes. A defensive k-alliance in a graph G = (V, E) is a set of vertices S ⊆ V satisfying the condition that every vertex in S has at least k more neighbors in S than it has outside of S. The case k = -1 (resp. k = 0) corresponds to the standard defensive alliances (resp. strong defensive alliances which is also known as a cohesive set) defined in [START_REF] Kristiansen | Alliances in graphs[END_REF].

Several parameters have been defined and studied in the literature for defensive k-alliances, one can see [START_REF] Enciso | Lower Bounds for Global Alliances of Planar Graphs[END_REF][START_REF] Haynes | Global defensive alliances in graphs[END_REF][START_REF] Kristiansen | Alliances in graphs[END_REF][START_REF] Rodríguez-Velázquez | Defensive k-alliances in graphs[END_REF][START_REF] Sigarreta | Upper k-Alliances in Graphs[END_REF][START_REF] Sigarreta | On defensive alliances and line graphs[END_REF] and others. These parameters are defined as follows: The defensive (-1)-alliance number known as defensive alliance number a d -1 (G) (resp. defensive 0alliance number known as strong defensive alliance number a d 0 (G)) is the minimum cardinality among all (critical) defensive (-1)-alliances (resp. defensive 0-alliances) of G [START_REF] Kristiansen | Alliances in graphs[END_REF]. The global defensive (-1)-alliance number γ d -1 (G) (resp. global defensive 0-alliance number γ d 0 (G)) is the minimum cardinality among all (critical) global defensive (-1)-alliances (resp. global defensive 0-alliances) of G [START_REF] Haynes | Global defensive alliances in graphs[END_REF]. The upper defensive (-1)-alliance number A d -1 (G) (resp. upper defensive 0-alliance number A d 0 (G)) is the maximum cardinality among all critical defensive (-1)-alliances (resp. defensive 0-alliances) of G [START_REF] Kristiansen | Alliances in graphs[END_REF][START_REF] Shafique | Partitioning a graph in alliances and its application to data clustering[END_REF]. The defensive k-alliance number a d k (G) is the minimum cardinality among all (critical) defensive k-alliances of G [START_REF] Shafique | Partitioning a graph in alliances and its application to data clustering[END_REF][START_REF] Shafique | Maximum alliance-free and minimum alliance-cover sets[END_REF]. The global defensive k-alliance number γ d k (G) is the minimum cardinality among all (critical) global defensive k-alliances of G [START_REF] Rodríguez-Velázquez | Global defensive k-alliances in graphs[END_REF]. The upper defensive k-alliance number A d k (G) is the maximum cardinality among all critical defensive k-alliances of G [START_REF] Shafique | Partitioning a graph in alliances and its application to data clustering[END_REF]. Now, we give some basic relations and observations which bind various parameters of defensive k-alliances. For any graph G = (V, E), we have: [START_REF] Kristiansen | Alliances in graphs[END_REF][START_REF] Shafique | Partitioning a graph in alliances and its application to data clustering[END_REF];

1) a d -1 (G) ≤ a d 0 (G) ≤ A d 0 (G) [39, 50]; 2) a d -1 (G) ≤ A d -1 (G)
3) a d -1 (G) ≤ γ d -1 (G) [9, 34]; 4) a d 0 (G) ≤ γ d 0 (G) [9, 50]; 5) a d -1 (G) = 1 ⇔ ∃ v ∈ V, deg(v) ≤ 1 [39]; 6) a d 0 (G) = 1 ⇔ G contains an isolated vertex [39]; 7) a d -1 (G) = 2 ⇔ δ n ≥ 2
and G has two adjacent vertices of degree at most 3 [START_REF] Kristiansen | Alliances in graphs[END_REF]; 8) [START_REF] Rodríguez-Velázquez | Global defensive k-alliances in graphs[END_REF][START_REF] Rodríguez-Velázquez | Defensive k-alliances in graphs[END_REF][START_REF] Yero | Partitioning a graph into defensive k-alliances[END_REF]; [START_REF] Rodríguez-Velázquez | Global defensive k-alliances in graphs[END_REF][START_REF] Yero | Partitioning a graph into defensive k-alliances[END_REF];

a d 0 (G) = 2 ⇔ δ n ≥ 1 and G has two adjacent vertices of degree at most 2 [39]; 9) a d -1 (G) ≤ a d 0 (G) ≤ γ d 0 (G) [9, 34]; 10) γ(G) ≤ γ d -1 (G) ≤ γ d 0 (G) [9, 24, 34]; 11) a d k (G) ≤ a d k+1 (G)
12) a d k (G) ≤ γ d k (G) [44, 65]; 13) γ(G) ≤ γ d k (G) ≤ γ d k+1 (G)
14) A d k (G) ≤ A d k+1 (G) [55].

Study of defensive k-alliance numbers for various graphs classes

Defensive k-alliances are extensively studied in the literature for different graphs classes. In this subsection, we present important theoretical results obtained for this type of alliance. Essentially, we give bounds or exact values established for defensive k-alliance numbers studied for various graphs classes.

General graphs

We present essential results concerning defensive k-alliances in the case of general graphs. In particular, we give bounds obtained for various defensive k-alliance numbers by using different graph parameters. Let G = (V, E) be a general graph of order n.

The study of defensive k-alliances in graphs was introduced by Kristiansen et al. [START_REF] Kristiansen | Alliances in graphs[END_REF]. They proposed some sharp bounds for the defensive (-1)-alliance number and the defensive 0-alliance number as follows: for any connected graph

G, a d -1 (G) ≤ min{n -δ n 2 , n 2 } and a d 0 (G) ≤ min{n -δn 2 , n
2 + 1} (note that these bounds are attained, for example, for the complete graph G = K n ). Rodríguez-Velázquez and Sigarreta [START_REF] Rodríguez-Velázquez | Spectral study of alliances in graphs[END_REF] studied the relationship between the (global) defensive k-alliance numbers of a graph, its algebraic connectivity (the second smallest eigenvalue of the Laplacian matrix of the graph G) and its spectral radius (the largest eigenvalue of the adjacency matrix of the graph G). They obtained lower bounds for the parameters a d -1 (G) and a d 0 (G) by using the maximum degree δ 1 and the algebraic connectivity µ. Thus they showed that for a simple graph

G, a d -1 (G) ≥ nµ n+µ , a d 0 (G) ≥ n(µ+1)
n+µ and for a simple connected graph G,

a d 0 (G) ≥ n(µ- δ 1 2
) µ (note that this latter bound is reached, for example, in the following cases given in [START_REF] Rodríguez-Velázquez | Spectral study of alliances in graphs[END_REF]: the complete graph, the Petersen graph, and the 3-cube graph). Other bounds for the same parameters are given by Araujo-Pardo and Barrière [START_REF] Araujo-Pardo | Defensive alliances in regular graphs and circulant graphs[END_REF] by using the minimum degree of the graph and its girth.

Haynes et al. [START_REF] Haynes | Global defensive alliances in graphs[END_REF] investigated the global defensive (-1)-alliance number and the global defensive 0-alliance number. They obtained sharp bounds and showed that: if G is a graph of order n, then

γ d -1 (G) ≥ √ 4n+1-1 2
and γ d 0 (G) ≥ √ n; and for any graph G with no isolated vertices and minimum degree

δ n , γ d -1 (G) ≤ n -δ n 2 and γ d 0 (G) ≤ n -δ n 2 . They also obtained that if G is a graph of order n, then γ d -1 (G) ≥ n r 2 +1
. Moreover, Haynes et al. [START_REF] Haynes | Global defensive alliances in graphs[END_REF] obtained other results for the same parameters by using the total domination number γ t (G). Thus, for the global defensive (-1)-alliance number they showed that for any graph G with

δ n ≥ 2, γ d -1 (G) ≥ γ t (G), and furthermore if δ 1 ≤ 3 then γ d -1 (G) = γ t (G).
For the global defensive 0-alliance number they showed that for any graph G with no isolated vertices, γ d 0 (G) ≥ γ t (G). On the other hand, Rodríguez-Velázquez and Sigarreta [START_REF] Rodríguez-Velázquez | Spectral study of alliances in graphs[END_REF] gave lower bounds for these parameters in terms of the order of a simple graph G, its maximum degree δ 1 and its spectral radius λ. These results are:

γ d -1 (G) ≥ n λ+2 , γ d -1 (G) ≥ 2n δ 1 +3 , γ d 0 (G) ≥ n λ+1 and γ d 0 (G) ≥ n δ 1 2

+1

. For more bounds on these parameters, one can see Favaron [START_REF] Favaron | Global alliances and independent domination in some classes of graphs[END_REF], Hsua et al. [START_REF] Hsua | Global defensive alliances in star graphs[END_REF] and Sigarreta and Rodríguez-Velázquez [START_REF] Sigarreta | On defensive alliances and line graphs[END_REF], where other concepts such as the minimum cardinality of an independent set, the dominating number, and the diameter of graph G are used. Yero et al. [START_REF] Yero | Partitioning a graph into defensive k-alliances[END_REF] presented some relations for the (global) defensive k-alliance number by considering the cases where the degrees of vertices and k are even/odd. Thus, they obtained that if every vertex of G has even degree and k is odd, k = 2l -1, then every (global) defensive (2l -1)-alliance in G is a (global) defensive (2l)-alliance and vice versa. Hence, in such a case,

a d 2l-1 (G) = a d 2l (G) and γ d 2l-1 (G) = γ d 2l (G).
Analogously, if every vertex of G has odd degree and k is even, k = 2l, then every defensive (2l)-alliance in G is a defensive (2l +1)-alliance and vice versa. Hence, in such a case,

a d 2l (G) = a d 2l+1 (G) and γ d 2l (G) = γ d 2l+1 (G)
. Rodríguez-Velázquez et al. [START_REF] Rodríguez-Velázquez | Defensive k-alliances in graphs[END_REF] and Sigarreta in his thesis [START_REF] Sigarreta | Alianzas en Grafos[END_REF] studied the defensive k-alliances and showed that for every

k ∈ {-δ n , ..., δ 1 }, the defensive k-alliance number satisfies δ n +k+2 2 ≤ a d k (G) ≤ n -δ n -k 2 , and if k ∈ {-δ n , ..., 0} one has the upper bound a d k (G) ≤ n+k+1 2
(note that these bounds are attained, for example, for the complete graph

G = K n for every k ∈ {1 -n, ..., n -1}). Moreover, for every k, r ∈ Z such that -δ n ≤ k ≤ δ 1 and 0 ≤ r ≤ k+δ n 2 , they showed that a d k-2r (G) + r ≤ a d k (G).
They also gave other bounds by involving the algebraic connectivity of G. Thus, for any connected graph

G and k ∈ {-δ n , ..., δ 1 }, a d k (G) ≥ n(µ+k+1) n+µ and a d k (G) ≥ n(µ- δ 1 -k 2 ) µ
. By using the isoperimetric number I(G) and the algebraic connectivity µ, Yero [START_REF] Yero | Contribution to the study of alliances in graphs[END_REF] and Yero et al. [START_REF] Yero | Partitioning a graph into defensive k-alliances[END_REF] obtained other bounds for the same parameter. They showed that for any graph

G if it is partitionable into defensive k-alliances, then a d k (G) ≥ I(G) + k + 1 and a d k (G) ≥ µ+2(k+1)

2

. Note that this latter bound is reached for example for the graph G = C 3 × C 3 for k = 0, given in [START_REF] Yero | Contribution to the study of alliances in graphs[END_REF][START_REF] Yero | Partitioning a graph into defensive k-alliances[END_REF], in this case µ = 3. We recall that the isoperimetric number of a graph G = (V, E) is defined as [START_REF] Fernau | Global r-alliances and total domination[END_REF] studied the global defensive k-alliances and established bounds for the global defensive k-alliance number. Thus they presented that for any graph G,

I(G) = min S⊂V :|S|≤ n 2 v∈S deg S (v) |S| or I(G) = min |E(X,Y )| min{|X|,|Y |} with X, Y ⊆ V . Fernau et al.
√ 4n+k 2 +k 2 ≤ γ d k (G) ≤ n -δ n -k 2 and γ d k (G) ≥ n δ 1 -k 2 +1
. These results are also obtained by Rodríguez-Velázquez et al. [START_REF] Rodríguez-Velázquez | Global defensive k-alliances in graphs[END_REF] and Sigarreta [START_REF] Sigarreta | Alianzas en Grafos[END_REF] by showing that these bounds are a generalization of those obtained by Haynes et al. [START_REF] Haynes | Global defensive alliances in graphs[END_REF] for γ d -1 (G) and γ d 0 (G) in the cases of general and bipartite graphs. Furthermore, Rodríguez-Velázquez et al. [START_REF] Rodríguez-Velázquez | Global defensive k-alliances in graphs[END_REF] and Sigarreta [START_REF] Sigarreta | Alianzas en Grafos[END_REF] showed that for S a global defensive k-alliance of minimum cardinality in G, if W ⊂ S is a dominating set in G then for every r ∈ Z such that 0

≤ r ≤ γ d k (G) -|W |, γ d k-2r (G) + r ≤ γ d k (G)
. By using the spectral radius λ, Sigarreta [START_REF] Sigarreta | Alianzas en Grafos[END_REF] also obtained that for every graph G, γ d k (G) ≥ n λ-k+1 . The upper defensive k-alliances have been studied by Sigarreta [START_REF] Sigarreta | Upper k-Alliances in Graphs[END_REF]. He established a bound for the upper defensive k-alliance number in terms of the order of G and its minimum degree. Thus for every k ∈ {-δ n , ..., δ 1 } and for every graph G, A d k (G) ≤ 2n-δ n +k 2

; and if every S ⊂ V such that |S| ≥ r is a defensive k-alliance, then A d k (G) ≤ r. He also gave an other upper bound by defining and using a new concept φ d k (G) which is the largest cardinality of a maximal defensive k-alliance free set. A set X ⊂ V is defensive k-alliance free, if for all defensive k-alliance S, S \ X = ∅ (X does not contain any defensive k-alliance as a subset). A defensive k-alliance free set X is maximal if for every v ∈ X, there exists S ⊆ X such that S ∪ {v} is a defensive k-alliance. Thus, for every

k ∈ {-δ 1 , ..., δ 1 } one has A d k (G) ≤ φ d k (G) + 1.
By considering the limit case of k-alliances, Yero in his thesis [START_REF] Yero | Contribution to the study of alliances in graphs[END_REF] and Yero and Rodríguez-Velázquez [START_REF] Yero | Boundary defensive k-alliances in graphs[END_REF] defined a new variant of k-alliances called boundary k-alliances. They studied mathematical properties of such alliances by obtaining in particular several bounds on the cardinality of every boundary defensive k-alliance. Thus, if S is a boundary defensive k-alliance in a graph G, then δn+k+2 2 ≤ |S| ≤ 2n-δn+k 2 (note that these two bounds are reached, for instance, for the complete graph G = K n for every k ∈ {1 -n, ..., n -1}). Furthermore, for a connected graph G, if S is a boundary defensive k-alliance in G then

n(µ- δ 1 -k 2 ) µ ≤ |S| ≤ n(µ * -δn -k 2 ) µ * and n(µ+k+2)-µ 2n ≤ |S| ≤ n -n(µ-k)-µ 2n
, where µ * is the Laplacian spectral radius (the largest Laplacian eigenvalue of the graph G).

Tree graphs

By definition, a tree T = (V, E) of order n and size m is a connected graph with m = n -1. The study of trees is particularly interesting because various applications are modeled and solved by using their properties. Thus, the study of alliances in general and defensive alliances in particular for this class of graph is important. In what follows, we present some results concerning defensive k-alliance numbers in trees.

Kristiansen et al. [START_REF] Kristiansen | Alliances in graphs[END_REF] studied the defensive k-alliances and gave an exact value for the defensive (-1)-alliance number and an upper bound for the defensive 0-alliance number. These results are: a d -1 (T ) = 1 and a d 0 (T ) ≤ n. Haynes et al. [START_REF] Haynes | Global defensive alliances in graphs[END_REF] obtained upper bounds and sharp lower bounds for the global defensive (-1)-alliance number and the global defensive 0-alliance number as follows: if T is a tree of order n, then

γ d -1 (T ) ≥ n+2 4 , γ d 0 (T ) ≥ n+2 3 , γ d -1 (T ) ≤ 3n 5
for n ≥ 4 (with equality for the latter bound if and only if T ∈ T 1 with T 1 is a special family of trees [START_REF] Haynes | Global defensive alliances in graphs[END_REF]), and γ d 0 (T ) ≤ 3n 4 for n ≥ 3 (with equality if and only if T belongs to a special family of trees T 2 [START_REF] Haynes | Global defensive alliances in graphs[END_REF]). Rodríguez-Velázquez and Sigarreta [START_REF] Rodríguez-Velázquez | Global alliances in planar graphs[END_REF] gave more general lower bounds for the same parameters by imposing a condition on the number of connected components of the subgraphs induced by the alliances. They showed that if S is a global defensive (-1)-alliance (resp. 0-alliance) in a tree T such that the subgraph S has c connected components, then |S| ≥ n+2c 4 (resp. |S| ≥ n+2c

3

). As a particular case of these results, if S is connected, they obtained lower bounds for γ d -1 (T ) and γ d 0 (T ) already proved by Haynes et al. in [START_REF] Haynes | Global defensive alliances in graphs[END_REF]. On the other hand, Chen and Chee [START_REF] Chen | A new upper bound on the global defensive alliance number in trees[END_REF] proved that for a tree T of order n ≥ 3 having s support vertices, γ d -1 (T ) ≤ n+s 2 , with equality if and only if T belongs to a special family of trees ξ [START_REF] Chen | A new upper bound on the global defensive alliance number in trees[END_REF] (we recall that a vertex of degree one is called a leaf and its neighbor is a support vertex). Bouzefrane et al. [START_REF] Bouzefrane | Global defensive alliances in trees[END_REF] showed that if T is a tree of order n ≥ 2 with l leaves and s support vertices, then γ d -1 (T ) ≥ 3n-l-s+4 8 (with equality if and only if T = P 2 or T ∈ T with T is a special family of trees [START_REF] Bouzefrane | Global defensive alliances in trees[END_REF]) and γ d 0 (T ) ≥ 3n-l-s+4 6 (with equality if and only if T belongs to a special family of trees F [START_REF] Bouzefrane | Global defensive alliances in trees[END_REF]).

Harutyunyan [START_REF] Harutyunyan | Some bounds on global alliances in trees[END_REF] studied the global defensive (-1)-alliance number for the complete t-ary tree T t,d and for its particular case the complete binary tree T d = T 2,d . A t-ary tree is a rooted tree where each vertex has at most t children. A complete t-ary tree is a t-ary tree in which all the leaves have the same depth and all the vertices except the leaves have t children; thus T t,d is the complete t-ary tree with depth d. For a complete binary tree T d of order n, Harutyunyan gave an exact value for the global defensive (-1)-alliance number :

γ d -1 (T d ) = γ d -1 (T 2,d ) = 2n 5
for any d. For complete t-ary tree T t,d , he obtained lower and upper bounds for the same parameter by means of t and d. Thus, for d ≥ 2 and t ≥ 2, we have 3 . Moreover, exact values for T t,d , t = 3 and t = 4 are given in [START_REF] Changa | Global defensive alliances of trees and Cartesian product of paths and cycles[END_REF][START_REF] Harutyunyan | Some bounds on global alliances in trees[END_REF]. On the other hand, for any tree T of order n Harutyunyan presented a bound for γ d -1 (T ) by using the global offensive (-1)-alliance number γ o -1 (T ) (that we will study in the next section). This result is γ d -1 (T ) ≤ γ o 1 (T ) + n 2 . By using the independence number β(T ) (the maximum cardinality of an independent set in T ), Chellali and Haynes [START_REF] Chellali | Global alliances and independence in trees, Discuss[END_REF] gave sharp bounds for the global defensive (-1)-alliance number and the global defensive 0-alliance number as follows: for any tree T , γ d -1 (T ) ≤ β(T ), furthermore they obtained that for every nontrivial tree T with l leaves γ d -1 (T ) ≤ n+l-1

t d-1 t-1 2 + t d-1 + t d-2 ≤ γ d -1 (T t,d ) ≤ t d-1 t-1 2 + t d-1 + t d-2 + t d-

2

; note that for l ≤ n 5 this latter bound is an improvement of the one (γ d -1 (T ) ≤ 3n 5 for n ≥ 4) given by Haynes et al. [START_REF] Haynes | Global defensive alliances in graphs[END_REF]. For the global defensive 0-alliance number they showed that if T is a tree of order n ≥ 3 with s support vertices, then γ d 0 (T ) ≤ 3β(T )-1 2 and γ d 0 (T ) ≤ β(T ) + s -1.

Favaron [START_REF] Favaron | Global alliances and independent domination in some classes of graphs[END_REF] compared the global defensive (-1)-alliance number and the global defensive 0alliance number to the independent domination number i. He obtained bounds in the forms i(T ) ≤ f (γ d -1 (T )) and i(T ) ≤ g(γ d 0 (T )) for special families of trees, where f and g are functions. Rodríguez-Velázquez and Sigarreta [START_REF] Rodríguez-Velázquez | Global defensive k-alliances in graphs[END_REF] and Sigarreta [START_REF] Sigarreta | Alianzas en Grafos[END_REF] considered global defensive kalliances and they obtained a lower bound for the cardinality of every global defensive k-alliance in trees, by imposing a condition on the number of connected components of the subgraphs induced by the k-alliances. Thus, if S is a global defensive k-alliance in T such that the subgraph S has c connected components, then |S| ≥ n+2c 3-k (note that the authors gave two unusual graphs for which this bound is reached). As a particular case of this result, if S is connected, Rodríguez-Velázquez and Sigarreta [START_REF] Rodríguez-Velázquez | Global defensive k-alliances in graphs[END_REF] and Sigarreta [START_REF] Sigarreta | Alianzas en Grafos[END_REF] obtained lower bounds for γ d -1 (T ) and γ d 0 (T ) already proved by Haynes et al. in [START_REF] Haynes | Global defensive alliances in graphs[END_REF]. Furthermore, as a consequence of this same result, they obtained that for every tree T of order n, γ d k (T ) ≥ n+2 3-k . This latter bound is attained for k ∈ {-4, -3, -2, 0, 1} in the case of G = K 1,4 as given in [START_REF] Rodríguez-Velázquez | Global defensive k-alliances in graphs[END_REF][START_REF] Sigarreta | Alianzas en Grafos[END_REF].

Planar graphs

We say that a graph is planar if one can draw it in the plan so that its edges do not cross. In this paragraph, we put on view the essential results obtained on defensive k-alliance parameters for this type of graphs. Let P = (V, E) be a planar graph of order n.

A global alliance S is said to be an empire if with respect to a planar embedding of G, each connected component of S can be enclosed by a closed Jordan curve -a "wall" surrounding a fortress, where the region outside of each Jordan curve contains all vertices of S. Enciso and Dutton [START_REF] Enciso | Lower Bounds for Global Alliances of Planar Graphs[END_REF] and Enciso [START_REF] Enciso | Alliances in Graphs: Parameterized Algorithms and on Partitioning Series-Parallel Graphs[END_REF] used this concept and showed that for a planar graph P where S ⊆ V is a global defensive (-1)-alliance (resp. global defensive 0-alliance) of P , if S is an empire then |S| ≥ n+6 6 (resp. |S| ≥ n+6

5

). Rodríguez-Velázquez and Sigarreta [START_REF] Rodríguez-Velázquez | Global alliances in planar graphs[END_REF] presented tight bounds in planar graphs for the global defensive (-1)-alliance number and the global defensive 0-alliance number according to the order n as follows: . Note that, they

i) If n > 6, then γ d -1 (P ) ≥ n+12 8 . ii) If n >
presented several examples of graphs for which all the above bounds are reached. On the other hand, Rodríguez-Velázquez and Sigarreta [START_REF] Rodríguez-Velázquez | Global defensive k-alliances in graphs[END_REF] and Sigarreta [START_REF] Sigarreta | Alianzas en Grafos[END_REF] presented tight lower bounds for the global defensive k-alliance number. They showed that for any planar graph P of order n: . Note that, Rodríguez-Velázquez and Sigarreta [START_REF] Rodríguez-Velázquez | Global defensive k-alliances in graphs[END_REF] and Sigarreta [START_REF] Sigarreta | Alianzas en Grafos[END_REF] presented examples of graphs where all these bounds are attained.

i) If n > 2(2 -k), then γ d k (P ) ≥ n+12 7-k . ii) If n > 2(2 -
Yero [START_REF] Yero | Contribution to the study of alliances in graphs[END_REF] and Yero and Rodríguez-Velázquez [START_REF] Yero | Boundary defensive k-alliances in graphs[END_REF] studied the boundary defensive k-alliances. They showed that if S is a boundary defensive k-alliance in a general graph G such that S is planar connected with f faces then

|S| = C+4-2f 2-k for k = 2, and |S| ≤ √ 16-8f +(n+k-2) 2 +n+k-2 2
, where C is the number of edges of G with one endpoint in S and the other endpoint outside of S.

Note that this latter bound is tight and it is attained for example for the complete graph G = K 5 where any subset S of G of cardinality four is a boundary defensive 2-alliance and S ∼ = K 4 as given in [START_REF] Yero | Contribution to the study of alliances in graphs[END_REF][START_REF] Yero | Boundary defensive k-alliances in graphs[END_REF]. Furthermore, they presented lower and upper bounds for |S| according to the value of k. Thus, they proved that for a boundary defensive k-alliance S in a general graph G such that S is planar connected with

f > 2 faces, if k ∈ {5 -δ 1 , ..., δ 1 } (resp. k ∈ {5 -δ n , ..., δ 1 }) then |S| ≥ 4f -8 δ 1 +k-4 (resp. |S| ≤ 4f -8
δ n +k-4 ).

Complete graphs

Let K n = (V, E) be a complete graph of order n. In this part, we exhibit some exact values obtained for defensive k-alliance numbers in complete graphs. Kristiansen et al. [START_REF] Kristiansen | Alliances in graphs[END_REF] investigated the defensive k-alliances and obtained exact values for the defensive (-1)-alliance number and the defensive 0-alliance number as follows:

a d -1 (K n ) = n 2
and a d 0 (K n ) = n 2 + 1. Haynes et al. [START_REF] Haynes | Global defensive alliances in graphs[END_REF] studied the global defensive k-alliances and established exact values for the global defensive (-1)-alliance number and the global defensive 0-alliance number. These results are:

γ d -1 (K n ) = n+1 2 and γ d 0 (K n ) = n+1 2 .
Rodríguez-Velázquez and Sigarreta [START_REF] Rodríguez-Velázquez | Global defensive k-alliances in graphs[END_REF], Rodríguez-Velázquez et al. [START_REF] Rodríguez-Velázquez | Defensive k-alliances in graphs[END_REF] and Sigarreta [START_REF] Sigarreta | Alianzas en Grafos[END_REF] considered the (global) defensive k-alliances and obtained an exact value for the (global) defensive k-alliance number. Thus, they showed that for every

k ∈ {1 -n, ..., n -1}, a d k (K n ) = γ d k (K n ) = n+k+1 2
. Sigarreta [START_REF] Sigarreta | Upper k-Alliances in Graphs[END_REF] studied the upper defensive k-alliance number and obtained the same value for this parameter as well, i.e. [START_REF] Yero | Contribution to the study of alliances in graphs[END_REF] and Yero and Rodríguez-Velázquez [START_REF] Yero | Boundary defensive k-alliances in graphs[END_REF] studied the boundary defensive k-alliances and proved that the cardinality of every boundary defensive k-alliance S in the complete graph is |S| = n+k+1 2 .

A d k (K n ) = n+k+1 2 . Yero

Bipartite graphs and complete bipartite graphs

A graph is bipartite if its vertices can be divided into two sets X and Y so that every edge of the graph connects a vertex in X to a vertex in Y . Let B = (X, Y, E) be a bipartite graph of order n. K r,s is the complete bipartite graph where r (resp. s) is the cardinality of the set X (resp. Y ).

Kristiansen et al. [START_REF] Kristiansen | Alliances in graphs[END_REF] studied the defensive k-alliances and established exact values for the defensive (-1)-alliance number and the defensive 0-alliance number in complete bipartite graphs. So they obtained that for 2

≤ r ≤ s, a d -1 (K r,s ) = r 2 + s 2 and a d 0 (K r,s ) = r 2 + s 2 .
Haynes et al. [START_REF] Haynes | Global defensive alliances in graphs[END_REF] investigated the global defensive k-alliances and obtained sharp lower bounds for the global defensive (-1)-alliance number and the global defensive 0-alliance number in bipartite graphs γ d -1 (B) ≥ 2n δ1+3 and γ d 0 (B) ≥ 2n δ1+2 . Furthermore, they presented exact values for the same parameters in complete bipartite graphs as follows:

γ d -1 (K 1,s ) = s 2 + 1, γ d -1 (K r,s ) = r 2 + s 2 if r, s ≥ 2, and γ d 0 (K r,s ) = r 2 + s 2 .
Favaron [START_REF] Favaron | Global alliances and independent domination in some classes of graphs[END_REF] compared the global defensive (-1)-alliance number and the global defensive 0-alliance number to the independent domination number i. He obtained bounds in the forms i(B) ≤ f (γ d -1 (B)) and i(B) ≤ g(γ d 0 (B)) for special families of bipartite graphs, where f and g are functions.

Sigarreta [START_REF] Sigarreta | Upper k-Alliances in Graphs[END_REF] studied the mathematical properties of upper defensive k-alliances in graphs and presented some results for the upper defensive k-alliance number in complete bipartite graph K r,s where r ≥ s. Thus, he proved that:

A d k (K r,s ) = 1, for k ∈ {-r, ..., -s}; A d k (K r,s ) = r+k 2 + s+k 2 , for k ∈ {-1, 0, ..., s -1}; and A d k (K r,s ) = r + s -r-k 2
, for k ∈ {s, ..., r -1}.

Regular graphs

A graph of which all the vertices have the same degree is known as regular and if the common degree is δ then it is said that the graph is δ-regular. In this paragraph, we give some bounds or exact values obtained for defensive k-alliance numbers concerning this class of graphs. For this, we denote by R δ = (V, E) the δ-regular graph of order n.

In the literature, the alliance numbers of δ-regular graphs are known only for small degrees. Kristiansen et al. [START_REF] Kristiansen | Alliances in graphs[END_REF] and Araujo-Pardo and Barrière [START_REF] Araujo-Pardo | Defensive alliances in regular graphs and circulant graphs[END_REF] presented some exact values for the defensive (-1)-alliance number, the defensive 0-alliance number, the upper defensive (-1)-alliance number and the upper defensive 0-alliance number in δ-regular graphs. According to the value of δ and by using the concept of girth (the length of a smallest cycle in a graph) and lc(R δ ) (the maximum length of an induced cycle in the graph), they obtained the results given as follows:

i) a d -1 (R 1 ) = A d -1 (R 1 ) = 1 and a d 0 (R 1 ) = A d 0 (R 1 ) = 2. ii) a d -1 (R 2 ) = A d -1 (R 2 ) = a d 0 (R 2 ) = A d 0 (R 2 ) = 2. iii) a d -1 (R 3 ) = A d -1 (R 3 ) = 2, a d 0 (R 3 ) = girth(R 3 ) and A d 0 (R 3 ) = lc(R 3 ). iv) a d -1 (R 4 ) = a d 0 (R 4 ) = girth(R 4 ) and A d -1 (R 4 ) = A d 0 (R 4 ) = lc(R 4 ). v) a d -1 (R 5 ) = girth(R 5 ) and A d -1 (R 5 ) = lc(R 5
). Haynes et al. [START_REF] Haynes | Global defensive alliances in graphs[END_REF] studied the global defensive k-alliances and gave a lower bound for the global defensive (-1)-alliance number in 4-regular graph that is

γ d -1 (R 4 ) ≥ n 3 .
Note that this bound is also true for cubic graphs as mentioned in [START_REF] Haynes | Global defensive alliances in graphs[END_REF].

Yero [START_REF] Yero | Contribution to the study of alliances in graphs[END_REF] and Yero and Rodríguez-Velázquez [START_REF] Yero | Boundary defensive k-alliances in graphs[END_REF] studied the boundary defensive k-alliances. They showed that for k ∈ {5 -δ, ..., δ}, if S is a boundary defensive k-alliance in δ-regular graph such that S is planar connected with f faces, then |S| = 4f -8 δ+k-4 , and

C = 2(δ-k)(f -2) δ+k-4
, where C is the number of edges of the graph with one endpoint in S and the other endpoint outside of S.

Cycle graphs

In this paragraph, we exhibit exact values obtained for defensive k-alliance numbers for this class of graphs. Let C n = (V, E) be a cycle graph of order n.

Kristiansen et al. [START_REF] Kristiansen | Alliances in graphs[END_REF] investigated the defensive k-alliances and showed that the different defensive k-alliance numbers, the defensive (-1)-alliance number, the defensive 0-alliance number, the upper defensive (-1)-alliance number and the upper defensive 0-alliance number, have the same exact value which is equal to 2. Thus,

a d -1 (C n ) = a d 0 (C n ) = A d -1 (C n ) = A d 0 (C n ) = 2.
Haynes et al. [START_REF] Haynes | Global defensive alliances in graphs[END_REF] studied the global defensive k-alliances and proved that in a cycle graph of order n ≥ 3 the global defensive (-1)-alliance number and the global defensive 0-alliance number are equal to the total domination number. Thus,

γ d -1 (C n ) = γ d 0 (C n ) = γ t (C n ).

Path graphs

Let P n = (V, E) be a path graph of order n. Kristiansen et al. [START_REF] Kristiansen | Alliances in graphs[END_REF] showed that for any path graph P n , the defensive (-1)-alliance number satisfies a d -1 (P n ) = 1 and the defensive 0-alliance number verify a d 0 (P n ) = 2. They also proved that for every path P n with n ≥ 4 the upper defensive (-1)alliance number and the upper defensive 0-alliance number are equal to the same value. Thus,

A d -1 (P n ) = A d 0 (P n ) = 2 for n ≥ 4.
Haynes et al. [START_REF] Haynes | Global defensive alliances in graphs[END_REF] studied the global defensive k-alliances in paths and obtained some results for the global defensive (-1)-alliance number and the global defensive 0-alliance number. Thus, for any path P n with n ≥ 3 they proved that the global defensive 0-alliance number is equal to the total domination number, i.e. γ d 0 (P n ) = γ t (P n ). Furthermore, for the global defensive (-1)alliance number, they showed that:

for n ≥ 2, γ d -1 (P n ) = γ t (P n ) unless n ≡ 2(mod 4), in which case γ d -1 (P n ) = γ t (P n ) -1.

Line graphs

A line graph L(G) of a graph G is obtained by associating a vertex with each edge of the graph and connecting two vertices with an edge if and only if the corresponding edges in G meet at one or both endpoints. In this part, we present theoretical results concerning defensive k-alliance parameters in line graphs. Let G = (V, E) be a graph of size m and degree sequence

δ 1 ≥ δ 2 ≥ ... ≥ δ n . Let L(G) be the line graph of G.
Sigarreta and Rodríguez-Velázquez [START_REF] Sigarreta | On defensive alliances and line graphs[END_REF] studied mathematical properties of the defensive (-1)alliance number, the defensive 0-alliance number, the global defensive (-1)-alliance number and the global defensive 0-alliance number in line graphs. They obtained bounds for a d -1 (L(G)) and a d 0 (L(G)) in terms of the maximum degree of G (δ 1 ), its minimum degree (δ n ) and its second minimum degree (δ n-1 ) as follows:

δ n +δ n-1 2 ≤ a d 0 (L(G)) ≤ δ 1 , δ n +δ n-1 -1 2 ≤ a d -1 (L(G)) ≤ δ 1 (note that all these bounds are reached, for instance, in the case of G = C 4 with a d -1 (L(C 4 )) = a d 0 (L(C 4 )) = 2). Moreover, if G has a unique vertex of maximum degree then the upper bound becomes a d -1 (L(G)) ≤ δ 1 -1. They also showed that if G is a δ-regular graph with δ > 0 then a d -1 (L(G)) = a d 0 (L(G)) = δ.
Furthermore, for a simple graph G, Sigarreta and Rodríguez-Velázquez [START_REF] Sigarreta | On defensive alliances and line graphs[END_REF] gave bounds for γ d -1 (L(G)) and γ d 0 (L(G)) by means of the maximum degrees δ 1 and δ 2 of G and its size m. These bounds are:

γ d -1 (L(G)) ≥ 2m δ 1 +δ 2 +1 , γ d 0 (L(G)) ≥ 2m δ 1 +δ 2 , and if m > 6 then γ d -1 (L(G)) ≥ √ m + 4 -1 .
Rodríguez-Velázquez et al. [START_REF] Rodríguez-Velázquez | Defensive k-alliances in graphs[END_REF] and Sigarreta [START_REF] Sigarreta | Alianzas en Grafos[END_REF] studied the defensive k-alliances and obtained bounds for the defensive k-alliance number in L(G). They showed that for every k ∈ {2 -

δ 1 -δ 2 , ..., δ 1 + δ 2 -2}, a d k (L(G)) ≥ δ n +δ n-1 +k 2
. Moreover, they proved that for every k ∈ {2(1 -δ 1 ), ..., 0}, a d k (L(G)) ≤ δ 1 + k 2 ; note that this upper bound is attained if G is a δ-regular graph [START_REF] Rodríguez-Velázquez | Defensive k-alliances in graphs[END_REF][START_REF] Sigarreta | Alianzas en Grafos[END_REF]. Furthermore, Sigarreta [START_REF] Sigarreta | Alianzas en Grafos[END_REF] established an other lower bound by involving the algebraic connectivity µ l of line graph L(G). He proved that the defensive k-alliance number is bounded by

a d k (L(G)) ≥ m(µ l - δ 1 +δ 2 -2-k 2 ) µ l .
Fernau et al. [START_REF] Fernau | Global r-alliances and total domination[END_REF], Rodríguez-Velázquez and Sigarreta [START_REF] Rodríguez-Velázquez | Global defensive k-alliances in graphs[END_REF] and Sigarreta in his thesis [START_REF] Sigarreta | Alianzas en Grafos[END_REF] presented a lower bound for the global defensive k-alliance number in L(G) by using the maximum degrees δ 1 and δ 2 of G and its size m. Thus they obtained that

γ d k (L(G)) ≥ m δ 1 +δ 2 -2-k 2 +1
. Moreover, Sigarreta [START_REF] Sigarreta | Alianzas en Grafos[END_REF] established two other lower bounds for γ d k (L(G)). In fact, he obtained that for all graph G of size m and degree sequence

δ 1 ≥ δ 2 ≥ ... ≥ δ n , γ d k (L(G)) ≥ m √ (δ 1 +δ 2 -2)(δ 1 +δ 3 -2)-k+1
; Furthermore, if there exist in G two non adjacent vertices whose degrees are δ 1 and δ 2 then

γ d k (L(G)) ≥ m δ1+δ2-k-1 .

Cartesian product graphs

Given two graphs

G 1 = (V 1 , E 1 ) and G 2 = (V 2 , E 2 ) with the sets of vertices V 1 = {v 1 , v 2 , ..., v n 1 } and V 2 = {u 1 , u 2 , ..., u n2 } respectively, the Cartesian product of G 1 and G 2 is the graph G 1 ×G 2 = (V, E), where V = V 1 × V 2 and two vertices (v i , u j ) and (v k , u l ) are adjacent in G 1 × G 2 if and only if "v i = v k and (u j , u l ) ∈ E 2 " or "(v i , v k ) ∈ E 1 and u j = u l ".
Let G i be a graph of order n i , minimum degree δi and maximum degree ∆i , i ∈ {1, 2}. Kristiansen et al. [START_REF] Kristiansen | Alliances in graphs[END_REF] studied the defensive k-alliances in Cartesian product graphs and obtained bounds for the defensive (-1)-alliance number and the defensive 0-alliance number as follows:

a d -1 (G 1 × G 2 ) ≤ min{a d -1 (G 1 )a d 0 (G 2 ), a d 0 (G 1 )a d -1 (G 2 )} and a d 0 (G 1 × G 2 ) ≤ a d 0 (G 1 )a d 0 (G 2 ).
Chang et al. [START_REF] Changa | Global defensive alliances of trees and Cartesian product of paths and cycles[END_REF] obtained a lower bound for the global defensive (-1)-alliance number of a general graph. They showed that if G is a graph of order n and maximum degree δ 1 , then

γ d -1 (G) ≥ 2n δ 1 +3 2
. As a consequence they established a lower bound for the global defensive (-1)-alliance number of the Cartesian product of paths and cycles. Thus, if

G i = P n i or C n i for i = 1, 2, then γ d -1 (G 1 × G 2 ) ≥ n 1 n 2 3
. Yero in his thesis [START_REF] Yero | Contribution to the study of alliances in graphs[END_REF] and Yero et al. [START_REF] Yero | Partitioning a graph into defensive k-alliances[END_REF] studied defensive k-alliances in Cartesian product graphs and gave some results for the defensive k-alliance number in

G 1 × G 2 . They showed that if S 1 is a defensive k 1 -alliance in G 1 and S 2 is a defensive k 2 -alliance in G 2 , then S 1 × S 2 is a defensive (k 1 + k 2 )-alliance in G 1 × G 2 and a d k1+k2 (G 1 × G 2 ) ≤ a d k1 (G 1 )a d k2 (G 2 )
; note that this bound is a general case of the results obtained by Kristiansen et al. [START_REF] Kristiansen | Alliances in graphs[END_REF]. They also obtained that

a d k-s (G 1 × G 2 ) ≤ min{a d k (G 1 ), a d k (G 2 )} where s ∈ Z such that max{ ∆1 , ∆2 } ≤ s ≤ ∆1 + ∆2 + k.
On the other hand, Yero [START_REF] Yero | Contribution to the study of alliances in graphs[END_REF] [START_REF] Yero | Contribution to the study of alliances in graphs[END_REF] and Yero et al. [START_REF] Yero | Partitioning a graph into defensive k-alliances[END_REF] studied global defensive k-alliances in Cartesian product graphs and presented some bounds for the global defensive k-alliance number in G 1 × G 2 . Thus, they obtained that if G 1 contains a global defensive k 1 -alliance, then for every integer

obtained that if G 1 × G 2 contains defensive k-alliances, then G i contains defensive (k -∆j )-alliances, with i, j ∈ {1, 2}, i = j, and as a consequence a d k (G 1 × G 2 ) ≥ max{a d k-∆2 (G 1 ) , a d k-∆1 (G 2 )}. Yero
k 2 ∈ {-∆2 , ..., δ2 }, G 1 × G 2 contains a global defensive (k 1 + k 2 )-alliance and γ d k1+k2 (G 1 × G 2 ) ≤ γ d k1 (G 1 )n 2 . And if G 2 contains a global defensive k 2 -alliance, then for every integer k 1 ∈ {-∆1 , ..., δ1 }, G 1 × G 2 contains a global defensive (k 1 + k 2 )-alliance and γ d k1+k2 (G 1 × G 2 ) ≤ γ d k2 (G 2 )n 1 . Remark 1.
Let us note that i) the defensive k-alliances were studied in the literature for other graph classes such as star graphs, cubic graphs and circulant graphs. For more details, the reader can refer to [START_REF] Araujo-Pardo | Defensive alliances in regular graphs and circulant graphs[END_REF][START_REF] Fernau | Global r-alliances and total domination[END_REF][START_REF] Haynes | Global defensive alliances in graphs[END_REF][START_REF] Hsua | Global defensive alliances in star graphs[END_REF][START_REF] Rodríguez-Velázquez | Global defensive k-alliances in graphs[END_REF][START_REF] Sigarreta | Alianzas en Grafos[END_REF].

ii) some results for the defensive k-alliance number a d k (G) in the case of complement graphs are given by Sigarreta et al. [START_REF] Sigarreta | On the complement graph and defensive k-alliances[END_REF]. Now, we summarize the results presented above by giving some bounds and exact values obtained for various parameters of defensive k-alliances for different graph classes. These results are given in the two following tables: Remark 2. The defensive (-1)-alliances as defined in the literature take into consideration the defense of a single vertex. In order to forestall any attack on the entire alliance or any subset of the alliance, Brigham et al. [START_REF] Brigham | Security in graphs[END_REF] proposed a model that take over this situation. Thus, they introduced the so-called secure sets as a generalization of the concept of defensive (-1)-alliances. Security and secure sets are studied in the literature and for more details one can refer to [START_REF] Brigham | Security in graphs[END_REF][START_REF] Dutton | On a graph's security number[END_REF][START_REF] Dutton | Bounds on a graph's security number[END_REF] Rad and Rezazadeh [42] established bounds only for ât (G) and a ot (G).

Defensive alliance numbers Graph classes a d -1 (G) a d 0 (G) γ d -1 (G) γ d 0 (G) A d -1 (G) A d 0 (G) G • a d -1 (G) ≤ min{n - δ n 2 , n 2 } [39] • a d -1 (G) ≥ nµ n+µ [47] • a d 0 (G) ≤ min{n - δn 2 , n 2 + 1} [39] • a d 0 (G) ≥ n(µ+1) n+µ [47] • a d 0 (G) ≥       n(µ- δ 1 2 ) µ       [47] • γ d -1 (G) ≥ √ 4n+1-1 2 [34] • γ d -1 (G) ≤ n - δ n 2 [34] • γ d -1 (G) ≥ n r 2 +1 [34] • γ d -1 (G) ≥ γ t (G) [34] • γ d -1 (G) ≥ n λ+2 [47] • γ d -1 (G) ≥ 2n δ 1 +3 [47] • γ d 0 (G) ≥ √ n [34] • γ d 0 (G) ≤ n - δn 2 [34] • γ d 0 (G) ≥ γ t (G) [34] • γ d 0 (G) ≥ n λ+1 [47] • γ d 0 (G) ≥       n δ 1 2 +1       [47] T • a d -1 (T ) = 1 [39] • a d 0 (T ) ≤ n [39] • γ d -1 (T ) ≥ n+2 4 [34] • γ d -1 (T ) ≤ 3n 5 [34] • |S| ≥ n+2c 4 [43] • γ d -1 (T ) ≤ n+s 2 [15] • γ d -1 (T ) ≥ 3n-l-s+4 8 [4] • γ d -1 (T d ) = γ d -1 (T 2,d ) = 2n 5 [33] • t d-1 t-1 2 + t d-1 + t d-2 ≤ γ d -1 (T t,d ) ≤ t d-1 t-1 2 +t d-1 +t d-2 + t d-3 [33] • γ d -1 (T ) ≤ β(T ) [13] • γ d -1 (T ) ≤ n+l-1 2 [13] • γ d 0 (T ) ≥ n+2 3 [34] • γ d 0 (T ) ≤ 3n 4 [34] • |S| ≥ n+2c 3 [43] • γ d 0 (T ) ≥ 3n-l-s+4 6 [4] • γ d 0 (T ) ≤ 3β(T )-1 2 [13] • γ d 0 (T ) ≤ β(T ) + s - 1 [13] P • |S| ≥ n+6 6 [20, 21] • γ d -1 (P ) ≥ n+12 8 [43] • |S| ≥ n-2f +4 4 [43] • |S| ≥     σ-7+ (σ-7) 2 +4(12+n) 2     [43] • |S| ≥ n+6 5 [20, 21] • γ d 0 (P ) ≥ n+12 7 [43] • |S| ≥ n-2f +4 3 [43] K n • a d -1 (K n ) = n 2 [39] • a d 0 (K n ) = n 2 + 1 [39] • γ d -1 (K n ) = n+1 2 [34] • γ d 0 (K n ) = n+1 2 [34] • B • Kr,s • a d -1 (K r,s ) = r 2 + s 2 [39] • a d 0 (K r,s ) = r 2 + s 2 [39] • γ d -1 (B) ≥ 2n δ 1 +3 [34] • γ d -1 (K 1,s ) = s 2 + 1 [34] • γ d -1 (Kr,s) = r 2 + s 2 [34] • γ d 0 (B) ≥ 2n δ 1 +2 [34] • γ d 0 (Kr,s) = r 2 + s 2 [34] R δ • a d -1 (R δ ) = δ, δ = 1 or 2 [1, 39] • a d -1 (R 3 ) = 2 [1, 39] • a d -1 (R δ ) = girth(R δ ), δ = 4 or 5 [1, 39] • a d 0 (R δ ) = 2, δ = 1 or 2 [1, 39] • a d 0 (R δ ) = girth(R δ ), δ = 3 or 4 [1, 39] • γ d -1 (R 4 ) ≥ n 3 [34] • A d -1 (R δ ) = δ, δ = 1 or 2 [1] • A d -1 (R 3 ) = 2 [1, 39] • A d -1 (R δ ) = lc(R δ ), δ = 4 or 5 [1, 39] • A d 0 (R δ ) = 2, δ = 1 or 2 [1] • A d 0 (R δ ) = lc(R δ ), δ = 3 or 4 [1, 39] Cn • a d -1 (Cn ) = 2 [39] • a d 0 (Cn ) = 2 [39] • γ d -1 (Cn) = γ t (Cn) [34] • γ d 0 (Cn ) = γ t (Cn ) [34] • A d -1 (Cn) = 2 [39] • A d 0 (Cn ) = 2 [39] P n • a d -1 (P n ) = 1 [39] • a d 0 (P n ) = 2 [39] • γ d -1 (P n ) = γ t (P n ) [34] • γ d 0 (P n ) = γ t (P n ) [34] • A d -1 (P n ) = 2 [39] • A d 0 (P n ) = 2 [39] L(G) • δ n +δ n-1 -1 2 ≤ a d -1 (L(G)) ≤ δ 1 [57] • δ n +δ n-1 2 ≤ a d 0 (L(G)) ≤ δ 1 [57] • γ d -1 (L(G)) ≥ 2m δ 1 +δ 2 +1 [57] • γ d -1 (L(G)) ≥ √ m + 4 -1 [57] • γ d 0 (L(G)) ≥ 2m δ 1 +δ 2 [57] G 1 × G 2 • a d -1 (G 1 × G 2 ) ≤ min{a d -1 (G 1 )a d 0 (G 2 ), a d 0 (G 1 )a d -1 (G 2 )} [39] • a d 0 (G 1 × G 2 ) ≤ a d 0 (G 1 )a d 0 (G 2 ) [39] • γ d -1 (G 1 × G 2 ) ≥ n 1 n 2 3 with G i = P n i or C n i for i = 1, 2, [10]
a d k (G) γ d k (G) A d k (G) G • δ n +k+2 2 ≤ a d k (G) ≤ n - δ n -k 2 [48, 54] • a d k (G) ≤ n+k+1 2 [48, 54] • a d k-2r (G) + r ≤ a d k (G) [48, 54] • a d k (G) ≥ n(µ+k+1) n+µ [48, 54] • a d k (G) ≥       n(µ- δ 1 -k 2 ) µ       [48, 54] • a d k (G) ≥ I(G) + k + 1 [64, 65] • a d k (G) ≥ µ+2(k+1) 2 [64, 65] • 4n+k 2 +k 2 ≤ γ d k (G) ≤ n - δn-k 2 [27, 44, 54] • γ d k (G) ≥       n δ 1 -k 2 +1       [27, 44, 54] • γ d k-2r (G) + r ≤ γ d k (G) [44, 54] • γ d k (G) ≥ n λ-k+1 [54] • A d k (G) ≤ 2n-δ n +k 2 [55] • A d k (G) ≤ r [55] • A d k (G) ≤ φ d k (G) + 1 [55] T • |S| ≥ n+2c 3-k [44, 54] • γ d k (T ) ≥ n+2 3-k [44, 54] P • γ d k (P ) ≥ n+12 7-k [44, 54] • |S| ≥ n-2f +4 3-k [44, 54] K n • a d k (K n ) = n+k+1 2 [48, 54] • γ d k (K n ) = n+k+1 2 [44, 54] • A d k (K n ) = n+k+1 2 [55] • B • K r,s • A d k (K r,s ) = 1 [55] • A d k (K r,s ) = r+k 2 + s+k 2 [55] • A d k (Kr,s) = r + s -r-k 2 [55] R δ C n P n L(G) • a d k (L(G)) ≥ δ n +δ n-1 +k 2 [48, 54] • a d k (L(G)) ≤ δ 1 + k 2 [48, 54] • a d k (L(G)) ≥       m(µ l - δ 1 +δ 2 -2-k 2 ) µ l       [54] • γ d k (L(G)) ≥       m δ 1 +δ 2 -2-k 2 +1       [27, 44, 54] • γ d k (L(G)) ≥ m (δ 1 +δ 2 -2)(δ 1 +δ 3 -2)-k+1 [54] • γ d k (L(G)) ≥ m δ 1 +δ 2 -k-1 [54] G 1 × G 2 • a d k 1 +k 2 (G 1 × G 2 ) ≤ a d k 1 (G 1 )a d k 2 (G 2 ) [64, 65] • a d k-s (G 1 × G 2 ) ≤ min{a d k (G 1 ), a d k (G 2 )} [64, 65] • a d k (G 1 × G 2 ) ≥ max{a d k-∆2 (G 1 ), a d k-∆1 (G 2 )} [64] • γ d k 1 +k 2 (G 1 × G 2 ) ≤ γ d k 1 (G 1 )n 2 [64, 65] • γ d k 1 +k 2 (G 1 × G 2 ) ≤ γ d k 2 (G 2 )n 1 [64, 65]

They investigated the (strong) open defensive (resp. offensive) alliances by defining parameters called (strong) open defensive (resp. offensive) alliance number denoted by (â

t (G)) a t (G) (resp. (â ot (G)) a ot (G)). Since a t (G) ∼ = a d 0 (G) and âot (G) ∼ = a o 1 (G),

Study of defensive k-alliance partition numbers for some graph classes

The partitioning of graphs into k-alliances is a process which partitions the set of vertices of a graph into subsets, so that each subset constitutes a k-alliance. The problem of partitioning a graph into defensive 0-alliances is introduced and studied by Gerber and Kobler [START_REF] Gerber | Algorithmic approach to the satisfactory graph partitioning problem[END_REF] and Shafique and Dutton [START_REF] Shafique | On satisfactory partitioning of graphs[END_REF], and is referred to as "Satisfactory Graph Partitioning Problem (SGP)". Thereafter, Shafique [START_REF] Shafique | Partitioning a graph in alliances and its application to data clustering[END_REF] investigated this partitioning problem and its application to data clustering. Moreover, Seba et al. [START_REF] Seba | Alliance-based clustering scheme for group key management in mobile ad hoc networks[END_REF] studied the partitioning of graphs into defensive (-1)-alliances and its application in mobile ad hoc networks (MANETs). Some parameters have been defined and studied in the literature for the partitioning into defensive k-alliances, these parameters are defined as follows: For any graph G = (V, E), the (global) defensive (-1)-alliance partition number of G,

(ψ gd -1 (G)) ψ d -1 (G)
, is defined to be the maximum number of sets in a partition of V such that each set of the partition is a (global) defensive (-1)-alliance [START_REF] Eroh | Global alliance partition in trees[END_REF][START_REF] Haynes | The alliance partition number of grid graphs[END_REF].

The (global) defensive k-alliance partition number of G, (ψ gd k (G)) ψ d k (G), k ∈ {-δ 1 , ..., δ n }
is defined to be the maximum number of sets in a partition of V such that each set of the partition is a (global) defensive k-alliance [START_REF] Yero | Contribution to the study of alliances in graphs[END_REF]. We say that G is partitionable into (global

) defensive k-alliances if (ψ gd k (G) ≥ 2) ψ d k (G) ≥ 2.
Concerning the defensive k-alliance partition number, Yero et al. [START_REF] Yero | Partitioning a graph into defensive k-alliances[END_REF] have given examples of extreme cases as follows: ψ d -δ 1 (G) = n where each set composed of one vertex is a defensive (-δ 1 )-alliance, and ψ d δ (G) = 1 for the case of a connected δ-regular graph where V is the only defensive δ-alliance.

In this subsection, we study mathematical properties of the (global) defensive (-1)-alliance partition number and the (global) defensive k-alliance partition number by presenting important theoretical results obtained for these parameters. Essentially, we give bounds or exact values for defensive k-alliance partition numbers studied for some graph classes.

General graphs

Eroh and Gera [START_REF] Eroh | Alliance partition number in graphs[END_REF] studied the basic properties of the defensive (-1)-alliance partition number by presenting general bounds by means of the minimum degree, the order and the girth of graph G. For a connected graph G of order n ≥ 3, they obtained sharp bounds given as follows:

1 ≤ ψ d -1 (G) ≤ n + 3 2 - √ 1+4n 2
. Furthermore, they gave upper bounds by involving the minimum degree and the girth of G. Thus for a graph G having minimum degree δ n , then

ψ d -1 (G) ≤ n δ n +1 2
, and if G is a graph with girth(G) ≥ 3 and

δ n ≥ 4, then ψ d -1 (G) ≤ n girth(G)
. On the other hand, Eroh and Gera [START_REF] Eroh | Global alliance partition in trees[END_REF] established an upper sharp bound for the global defensive (-1)-alliance partition number in a connected graph G having minimum degree δ n . Thus, they proved that ψ gd -1 (G) ≤ 1 + δn 2 . Yero [START_REF] Yero | Contribution to the study of alliances in graphs[END_REF] and Yero et al. [START_REF] Yero | Partitioning a graph into defensive k-alliances[END_REF] presented some relations for the (global) defensive k-alliance partition number by considering the cases where the degrees of vertices and k are even/odd. Thus, they obtained that if every vertex of G has even degree and k is odd, k = 2l -1, then every (global) defensive (2l-1)-alliance in G is a (global) defensive (2l)-alliance and vice versa. Hence, in such a case, k (G) and ψ gd k (G) given by Yero [START_REF] Yero | Contribution to the study of alliances in graphs[END_REF] and Yero et al. [START_REF] Yero | Partitioning a graph into defensive k-alliances[END_REF] is

ψ d 2l-1 (G) = ψ d 2l ( 
γ d k (G)ψ gd k (G) ≤ n.
By combining this relation and the lower bound obtained by Rodríguez-Velázquez and Sigarreta [START_REF] Rodríguez-Velázquez | Global defensive k-alliances in graphs[END_REF],

γ d k (G) ≥ n δ 1 -k 2 +1
, Yero [START_REF] Yero | Contribution to the study of alliances in graphs[END_REF] and Yero et al. [START_REF] Yero | Partitioning a graph into defensive k-alliances[END_REF] 

(G) ≤ √ k 2 +4n-k 2 and ψ gd k (G) ≤ δn-k+2 2 .
These latter bounds are attained, for instance, in the following cases given in [START_REF] Yero | Contribution to the study of alliances in graphs[END_REF][START_REF] Yero | Partitioning a graph into defensive k-alliances[END_REF]:

ψ gd -1 (K 4 × C 4 ) = 4, ψ gd 0 (K 3 × C 4 ) = 3, ψ gd 1 (K 2 × C 4 ) = 2 and ψ gd 1 (P tr) = 2
, where P tr denotes the Petersen graph. They also proved that for every

k ∈ {1 -δ n , ..., δ n } if ψ gd k (G) ≥ 2, then γ d k (G) + ψ gd k (G) ≤ n+4 2 .
By involving the algebraic connectivity µ, Yero [START_REF] Yero | Contribution to the study of alliances in graphs[END_REF] and Yero et al. [START_REF] Yero | Partitioning a graph into defensive k-alliances[END_REF] showed that if any graph G is partitionable into global defensive k-alliances, then

ψ gd k (G) ≤ δ 1 + 1 -µ 2 -k .
The authors in [START_REF] Yero | Contribution to the study of alliances in graphs[END_REF][START_REF] Yero | Partitioning a graph into defensive k-alliances[END_REF] gave an example of equality for this latter bound when the graph G = C 3 ×C 3 for k = 0, in this case µ = 3. They obtained an other bound for the same invariant by using an other parameter of the graph G which is the isoperimetric number I(G) = min

S⊂V :|S|≤ n 2 v∈S deg S (v) |S| .
Thus, they proved that for any graph G, if G is partitionable into global defensive k-alliances, then

ψ gd k (G) ≤ δ 1 + 1 -I(G) -k.

Tree graphs

Eroh and Gera [START_REF] Eroh | Alliance partition number in graphs[END_REF] obtained upper and lower sharp bounds for the defensive (-1)-alliance partition number in trees. Thus, they showed that for a tree T of order n ≥ 3,

ψ d -1 (T ) ≤ 3n 4 + 1 2 .
Moreover, if T is a tree of order n ≥ 3 and diameter D ≥ 2 then ψ d -1 (T ) ≥ D 2 + 1. Furthermore, they proved that if T is a binary tree with a maximum matching M (a matching is a subset M ⊂ E such that:

u ∩ v = ∅ for each u, v ∈ M ), then ψ d -1 (T ) ≥ n -|M |.
On the other hand, Eroh and Gera [START_REF] Eroh | Global alliance partition in trees[END_REF] showed that in a tree T of order n ≥ 3, the global defensive (-1)-alliance partition number is bounded by 1 ≤ ψ gd -1 (T ) ≤ 2.

Regular graphs

Eroh and Gera [START_REF] Eroh | Alliance partition number in graphs[END_REF] studied the defensive (-1)-alliance partition number in regular graphs and obtained some upper bounds and an exact value for this parameter. Thus, for a δ-regular graph

R δ of order n, ψ d -1 (R δ ) ≤ n δ+1 2 , if furthermore δ ≥ 3 and girth(R δ ) ≥ 5, then ψ d -1 (R δ ) ≤ n 1+(girth(R δ )-2) δ-3 2
. As particular case, for a connected 3-regular graph having a maximum

matching M , ψ d -1 (R 3 ) = |M |.

Cartesian product graphs

Haynes and Lachniet [START_REF] Haynes | The alliance partition number of grid graphs[END_REF] studied the defensive (-1)-alliance partition number of grid graphs P r × P c and showed that if 4 ≤ r ≤ c, then

ψ d -1 (P r × P c ) = r-2 2 c-2 2
+ r + c -2. Yero [START_REF] Yero | Contribution to the study of alliances in graphs[END_REF] and Yero et al. [START_REF] Yero | Partitioning a graph into defensive k-alliances[END_REF] studied the defensive k-alliance partition number in Cartesian product graphs and they proved that for any graphs G 1 and G 2 , if there exist a partition of

G i into defensive k i -alliances, i ∈ {1, 2}, then there exists a partition of G 1 × G 2 into defensive (k 1 + k 2 )-alliances and ψ d k 1 +k 2 (G 1 × G 2 ) ≥ ψ d k 1 (G 1 )ψ d k 2 (G 2 )
. Moreover, for any graphs G i of order n i and maximum degree ∆i , i ∈ {1, 2}, they also showed that if s ∈ Z such that max{ ∆1 , ∆2 } ≤ [START_REF] Yero | Contribution to the study of alliances in graphs[END_REF] and Yero et al. [START_REF] Yero | Partitioning a graph into defensive k-alliances[END_REF] proved that if G i is partitioned into global defensive k i -alliances, i ∈ {1, 2}, then the global defensive k-alliance partition number of G 1 ×G 2 is bounded by

s ≤ ∆1 + ∆2 + k, then ψ d k-s (G 1 × G 2 ) ≥ max{n 2 ψ d k (G 1 ), n 1 ψ d k (G 2 )}. Furthermore, Yero
ψ gd k 1 +k 2 (G 1 × G 2 ) ≥ max{ψ gd k 1 (G 1 ), ψ gd k 2 (G 2 )}.
Moreover, they presented a relation between the global defensive (k 1 + k 2 )-alliance number of G 1 × G 2 and the global defensive k i -alliance partition number of G i , i ∈ {1, 2}. Thus, they obtained that for a graph G i of order n i , i ∈ {1, 2}, if

ψ gd ki (G) ≥ 1 then γ d k 1 +k 2 (G 1 × G 2 ) ≤ n 1 n 2 max i∈{1,2} {ψ gd k i (G i )} .

Partitioning a graph into boundary defensive k-alliances

Yero [START_REF] Yero | Contribution to the study of alliances in graphs[END_REF] supposed G = (V, E) a graph and Π d r (G) = {S 1 , S 2 , ..., S r } a partition of V into r boundary defensive k-alliances and obtained tight bounds for r. Thus, he showed that if G can be partitioned into r boundary defensive k-alliances, then 2n 2n-δ n +k ≤ r ≤ 2n δ n +k+2 (note that the complete graph K n can be partitioned into r = 2n n+k+1 boundary defensive k-alliances [START_REF] Yero | Contribution to the study of alliances in graphs[END_REF]). He also presented other tight bounds for r by using the algebraic connectivity µ and the Laplacian spectral radius µ * , these bounds are:

2µ * 2µ * -δ n +k ≤ r ≤ 2µ 2µ-δ 1 +k
. An example where these bounds are reached is the complete graph G = K n as mentioned in [START_REF] Yero | Contribution to the study of alliances in graphs[END_REF]. Furthermore, he proved that for a graph G = (V, E) and C ⊂ E a cut set partitioning V into two boundary defensive k-alliances S and S, where

k = δ 1 and k = δ n , then 2m-kn 2(δ 1 -k) ≤ |S| ≤ 2m-kn 2(δ n -k)
and |C| = 2m-kn 4 (note that for a δ-regular graph |S| = n 2 and |C| = n(δ-k)

4
as given in [START_REF] Yero | Contribution to the study of alliances in graphs[END_REF]). On the other hand, Yero [START_REF] Yero | Contribution to the study of alliances in graphs[END_REF] showed that if {X, Y } is a partition of V into two boundary defensive k-alliances in G, then without loss of generality, n(kn-2m+nµ) 4µ

+ n 2 ≤ |X| ≤ n(kn-2m+nµ * ) 4µ * + n 2 and n 2 -n(kn-2m+nµ * ) 4µ * ≤ |Y | ≤ n 2 -n(kn-2m+nµ) 4µ
. Now, we summarize the results presented above by giving some bounds and exact values obtained for defensive k-alliance partition numbers for some graph classes. These results are given in the following table:

Defensive k-alliance partition numbers Graph classes ψ d -1 (G) ψ gd -1 (G) ψ d k (G) ψ gd k (G) G • 1 ≤ ψ d -1 (G) ≤ n + 3 2 - √ 1+4n 2 [22] • ψ d -1 (G) ≤     n δ n +1 2     [22] • ψ d -1 (G) ≤ n girth(G) [22] • ψ gd -1 (G) ≤ 1 + δ n 2 [23] • a d k (G)ψ d k (G) ≤ n [64, 65] • ψ d k (G) ≤    2n δn +k+2 , δn + k even, 2n δ n +k+3 , δ n + k odd.
[64, 65]

• γ d k (G)ψ gd k (G) ≤ n [64, 65] • ψ gd k (G) ≤ δ 1 -k 2 + 1 [64, 65] • ψ gd k (G) ≤     k 2 +4n-k 2     [64, 65] • ψ gd k (G) ≤ δ n -k+2 2 [64, 65] • γ d k (G) + ψ gd k (G) ≤ n+4 2 [64, 65] • ψ gd k (G) ≤ δ 1 + 1 - µ 2 -k [64, 65] • ψ gd k (G) ≤ δ 1 + 1 -I(G) -k [64, 65] T • ψ d -1 (T ) ≤ 3n 4 + 1 2 [22] • ψ d -1 (T ) ≥ D 2 + 1 [22] • ψ d -1 (T ) ≥ n -|M | [22] • 1 ≤ ψ gd -1 (T ) ≤ 2 [23] R δ • ψ d -1 (R δ ) ≤     n δ+1 2     [22] • ψ d -1 (R δ ) ≤ n 1+(girth(R δ )-2) δ-3 2 [22] • ψ d -1 (R 3 ) = |M | [22] G 1 × G 2 • ψ d -1 (Pr × Pc ) = r-2 2 c-2 2 + r + c -2 [36] • ψ d k 1 +k 2 (G 1 × G 2 ) ≥ ψ d k 1 (G 1 )ψ d k 2 (G 2 ) [64, 65] • ψ d k-s (G 1 × G 2 ) ≥ max{n 2 ψ d k (G 1 ), n 1 ψ d k (G 2 )} [64, 65] • ψ gd k 1 +k 2 (G 1 × G 2 ) ≥ max{ψ gd k 1 (G 1 ), ψ gd k 2 (G 2 )} [64, 65]
Table 3: Previous results on defensive k-alliance partition numbers for some graph classes Concluding remarks 2. As we can see from Table 3, and comparing with Tables 1 and2, we deduce that the defensive k-alliance partition numbers are studied on much less graph classes contrary to the defensive k-alliance numbers. For the studied graph classes (general, tree, regular, and Cartesian product graphs) the most studied parameter is the defensive (-1)-alliance partition number (ψ d -1 (G)) and the least studied one is the global defensive (-1)-alliance partition number (ψ gd -1 (G)). Furthermore, the general graph class is the most studied one and the regular graph class is the least studied one. Moreover, for the tree and regular graphs classes all the defensive k-alliance partition numbers with index k namely ψ d k (G) and ψ gd k (G) are not studied.

Offensive k-alliances in graphs

In this section, we study mathematical properties of offensive k-alliances by giving bounds and/or exact values of several parameters studied for various graph classes. An offensive k-alliance in a graph G = (V, E) is a set of vertices S ⊂ V with the property that every vertex in the boundary of S has at least k more neighbors in S than it has outside of S. The case k = 1 (resp. k = 2) corresponds to the standard offensive alliances (resp. strong offensive alliances) defined in [START_REF] Favaron | Offensive alliances in graphs[END_REF][START_REF] Kristiansen | Alliances in graphs[END_REF]. Several parameters have been defined and studied in the literature for offensive k-alliances, one can see [START_REF] Favaron | Global alliances and independent domination in some classes of graphs[END_REF][START_REF] Favaron | Offensive alliances in graphs[END_REF][START_REF] Fernau | Offensive r-alliances in graphs[END_REF][START_REF] Rodríguez-Velázquez | Global alliances in planar graphs[END_REF][START_REF] Sigaretta | On the global offensive alliance number of a graph[END_REF][START_REF] Yero | Computing global offensive alliances in Cartesian product graphs[END_REF] [START_REF] Fernau | Global r-alliances and total domination[END_REF][START_REF] Fernau | Offensive r-alliances in graphs[END_REF]. Now, we give some basic relations and observations which bind various invariants of offensive k-alliances for any graph G. [START_REF] Fernau | Offensive r-alliances in graphs[END_REF][START_REF] Sigarreta | Alianzas en Grafos[END_REF][START_REF] Yero | Contribution to the study of alliances in graphs[END_REF].

1) a o 1 (G) ≤ a o 2 (G) ≤ A o 2 (G) [39, 50]; 2) a o 1 (G) ≤ A o 1 (G) [39, 50]; 3) a o 1 (G) ≤ γ o 1 (G) [45]; 4) a o 2 (G) ≤ γ o 2 (G) [45]; 5) γ(G) ≤ γ o 1 (G) ≤ γ o 2 (G) [24]; 6) a o k (G) ≤ a o k+1 (G) [28]; 7) a o k (G) ≤ γ o k (G) [28, 54, 64]; 8) γ(G) ≤ γ o k (G) ≤ γ o k+1 (G)

Study of offensive k-alliance numbers for various graph classes

Like defensive k-alliances the offensive k-alliances are studied in the literature for different graph classes. In this subsection, we present important theoretical results obtained for this type of alliance. We give bounds or exact values established for offensive k-alliance numbers studied for various graph classes.

General graphs

In what follows, we present some theoretical results which exhibit various bounds for offensive k-alliance numbers in the case of general graphs. Let G = (V, E) be a general graph of order n and size m. Favaron et al. [START_REF] Favaron | Offensive alliances in graphs[END_REF] explored the elementary properties of the offensive k-alliance numbers and they obtained bounds for the offensive 1-alliance number and the offensive 2-alliance number in general graphs. Thus they showed that:

δ n +1 2 ≤ a o 1 (G) ≤ γ(G)+n 2 and a o 2 (G) > δ n +1 2 ; if every vertex of G has odd degree then a o 1 (G) ≤ n 2 ; if n ≥ 2 then a o 1 (G) ≤ 2n 3
, and if n ≥ 3 then a o 2 (G) ≤ 5n 6 . Moreover, they established that if δ n ≥ 2 then this latter bound becomes a o 2 (G) ≤ 3n 4 . Rodríguez-Velázquez and Sigarreta [START_REF] Rodríguez-Velázquez | Global offensive alliances in graphs[END_REF] studied the global offensive k-alliances and presented several tight bounds for the global offensive 1-alliance number and the global offensive 2-alliance number in terms of several parameters of graph G. They showed that for all connected graph G of order n ≥ 2, the global offensive 1-alliance number is bounded upperly by:

γ o 1 (G) ≤ 2n 3 , γ o 1 (G) ≤ γ(G)+n 2 , γ o 1 (G) ≤ n(2µ * -δ n ) 2µ * and γ o 1 (G) ≤ min{n -β(G), n+β(G) 2 }
, where γ(G) (resp. µ * and β(G)) denotes the domination number (resp. Laplacian spectral radius and independence number) of G. Note that, these bounds are attained, for instance, for the cocktail-party graph [START_REF] Rodríguez-Velázquez | Global offensive alliances in graphs[END_REF]. Moreover, they presented an other upper bound for γ o 1 (G) in the case of any connected graph G by means of its order and its maximum degree δ 1 , that is

G = K 6 -F ∼ = K 2,2,2 where n = µ * = 6, δ n = 4, β(G) = γ(G) = 2 and γ o 1 (G) = 4
γ o 1 (G) ≤ 2n-δ1 2
. On the other hand, Rodríguez-Velázquez and Sigarreta [START_REF] Rodríguez-Velázquez | Global offensive alliances in graphs[END_REF] obtained tight upper bounds for the global offensive 2-alliance number by proving that for all connected graph G of order n:

γ o 2 (G) ≤ n+γ 2 (G) 2
, and

in addition if δ n ≥ 2 then γ o 2 (G) ≤ n -β(G) and γ o 2 (G) ≤ 5n 6
(γ 2 (G) denotes the 2-domination number of G which is the minimum cardinality of a two dominating set; this latter is a dominating set where every vertex in S is adjacent to at least two vertices in S). These previous results on global offensive k-alliances are also given by Sigarreta and Rodríguez-Velázquez [START_REF] Sigaretta | On the global offensive alliance number of a graph[END_REF]. Note that to prove some of these results Rodríguez-Velázquez and Sigarreta [START_REF] Rodríguez-Velázquez | Global offensive alliances in graphs[END_REF][START_REF] Sigaretta | On the global offensive alliance number of a graph[END_REF] used a new technique with respect to the one used by Favaron et al. [START_REF] Favaron | Offensive alliances in graphs[END_REF] in their proof. Furthermore, Rodríguez-Velázquez and Sigarreta [START_REF] Rodríguez-Velázquez | Global offensive alliances in graphs[END_REF][START_REF] Sigaretta | On the global offensive alliance number of a graph[END_REF] obtained tight lower bounds for γ o 1 (G) and γ o 2 (G) in terms of the order and the size of graph G, as follows:

γ o 1 (G) ≥ 3n- √ 9n 2 -8n-16m 4 and γ o 2 (G) ≥ 3n+1- √ 9n 2 -10n-16m+1 4
. By involving the maximum degree of G, these bounds are improved by the same authors to obtain:

γ o 1 (G) ≥ 2m+n 3δ1+1 and γ o 2 (G) ≥ 2(m+n) 3δ1+2
(note that these two latter bounds are reached, for instance, in the case of the 3-cube graph

G = K 2 × K 2 × K 2 , where γ o 1 (G) = γ o 2 (G) = 4
as given in [START_REF] Rodríguez-Velázquez | Global offensive alliances in graphs[END_REF][START_REF] Sigaretta | On the global offensive alliance number of a graph[END_REF]). Moreover, by using the Laplacian spectral radius µ * and the minimum degree of G, Rodríguez-Velázquez and Sigarreta [START_REF] Rodríguez-Velázquez | Global offensive alliances in graphs[END_REF][START_REF] Rodríguez-Velázquez | Spectral study of alliances in graphs[END_REF][START_REF] Sigaretta | On the global offensive alliance number of a graph[END_REF] presented other tight lower bounds for the same parameters:

γ o 1 (G) ≥ n µ * δ n +1 2 and γ o 2 (G) ≥ n µ * ( δ n 2 + 1)
. For these two latter bounds, if G is the Petersen graph, then µ * = 5, γ o 1 (G) ≥ 4 and γ o 2 (G) ≥ 6 [START_REF] Rodríguez-Velázquez | Global offensive alliances in graphs[END_REF][START_REF] Rodríguez-Velázquez | Spectral study of alliances in graphs[END_REF][START_REF] Sigaretta | On the global offensive alliance number of a graph[END_REF].

On the other hand, Rodríguez-Velázquez and Sigarreta [START_REF] Rodríguez-Velázquez | Spectral study of alliances in graphs[END_REF] gave other lower bounds for the same parameters. They showed that for a simple graph of order n, size m and maximum degree δ 1 , the global offensive 1-alliance number (resp. global offensive 2-alliance number ) of G is bounded by

γ o 1 (G) ≥ (2n+δ1+1)- √ (2n+δ1+1) 2 -8(2m+n) 4 (resp. γ o 2 (G) ≥ (2n+δ1+2)- √ (2n+δ1+2) 2 -16(m+n) 4
).

Note that, this bound on γ o 1 (G) (resp. on γ o 2 (G)) is tight in the case of the complete graph K n and the complete bipartite graph K 3,6 (resp. the complete bipartite graph K 3,3 ) [START_REF] Rodríguez-Velázquez | Spectral study of alliances in graphs[END_REF].

In [START_REF] Sigaretta | On the global offensive alliance number of a graph[END_REF], Sigarreta and Rodríguez-Velázquez studied the offensive k-alliances with connected subgraphs and showed that for all minimal global offensive 1-alliance (resp. 2-alliance) S of G such that S is connected, |S| ≥ 3n-2 δ1+3 (resp. |S| ≥ 4n-2 δ1+4 ) (note that these bounds are attained, for example, for the cycle graph

G = C 3 , with γ o 1 (C 3 ) = γ o 2 (C 3 ) = 2).
Other upper bounds for the global offensive 1-alliance number and the global offensive 2-alliance number are given by Harutyunyan [START_REF] Harutyunyan | Global Offensive Alliances in Graphs and Random Graphs[END_REF].

Fernau et al. [START_REF] Fernau | Offensive r-alliances in graphs[END_REF] and Sigarreta [START_REF] Sigarreta | Alianzas en Grafos[END_REF] studied the (global) offensive k-alliance number and they showed that for any simple graph G and for all k ∈ {1, ..., δ n } one has

γ o k (G) ≤ n(2k+1) 2k+2
, and for any graph G and for every k ∈ {2 -δ n , ..., δ n } one has

δ n +k 2 ≤ a o k (G) ≤ γ o k (G) ≤ n -δ n -k+2
2 (note that these latter bounds are attained for every k in the case of the complete graph K n as mentioned in [START_REF] Fernau | Offensive r-alliances in graphs[END_REF][START_REF] Sigarreta | Alianzas en Grafos[END_REF]). Furthermore, Fernau et al. [START_REF] Fernau | Global r-alliances and total domination[END_REF][START_REF] Fernau | Offensive r-alliances in graphs[END_REF] obtained lower and upper bounds for γ o k (G) by using the k-domination number γ k (G) of a simple graph G and its Laplacian spectral radius µ * , that are

n µ * δn+k 2 ≤ γ o k (G) ≤ γ k (G)+n 2
. On the other hand, Sigarreta [START_REF] Sigarreta | Alianzas en Grafos[END_REF] obtained two lower bounds for γ o k (G) by means of the order of graph G, its size and its maximum degree. These bounds are:

γ o k (G) ≥ 2m+kn 3δ 1 +k and γ o k (G) ≥ (2n+δ 1 +k)- √ (2n+δ 1 +k) 2 -8(2m+kn) 4 .
Yero and Rodríguez-Velázquez [START_REF] Yero | Boundary powerful k-alliances in graphs[END_REF] studied the mathematical properties of boundary powerful k-alliances and obtained that if S is a boundary offensive k-alliance in a graph G, then δ n +k 2 ≤ |S| ≤ 2n-δ n +k-2 2 (note that these bounds are attained, for instance, for the complete graph G = K n for every k ∈ {3 -n, ..., n -1}).

Tree graphs

In this paragraph, we put on view some results concerning offensive k-alliance numbers in trees. Let T = (V, E) be a tree of order n.

Favaron et al. [START_REF] Favaron | Offensive alliances in graphs[END_REF] studied the offensive k-alliances and explored upper bounds for the offensive 1-alliance number and the offensive 2-alliance number in trees. Thus, they obtained that for any tree of n vertices, a o 1 (T ) ≤ n 2 and a o 2 (T ) ≤ 3n 4 . For the first bound, the equality is obtained for the path and the only other examples of equality are K 1,3 with one edge subdivided once, and K 1,4 with two edges each subdivided once [START_REF] Favaron | Offensive alliances in graphs[END_REF].

Rodríguez-Velázquez and Sigarreta [START_REF] Rodríguez-Velázquez | Global alliances in planar graphs[END_REF] studied the global k-alliances in planar graphs and presented some results for global offensive k-alliance numbers in trees. They obtained that if S is a global offensive 2-alliance in a tree such that the subgraph S has c connected components, then |S| ≥ n -c + 1. Furthermore, they showed that if S is a global offensive 1-alliance (resp. 2-alliance) in T such that S is a forest with c connected components then |S| ≥ 3(n-c)+1 4 (resp.

|S| ≥ 4n-3c+1 5

). Moreover, Bouzefrane and Chellali [START_REF] Bouzefrane | On the global offensive alliance number of a tree[END_REF] showed that for a tree T of order n ≥ 3 with l leaves and s support vertices, the global offensive 1-alliance number is bounded lowerly by γ o 1 (T ) ≥ n-l+s+1
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(with equality if and only if T belongs to a special family of trees F [START_REF] Bouzefrane | On the global offensive alliance number of a tree[END_REF]). They also proved that if T ∈ F then γ o 1 (T ) = γ(T ). On the other hand, Favaron [START_REF] Favaron | Global alliances and independent domination in some classes of graphs[END_REF] compared the global offensive 1-alliance number and the global offensive 2-alliance number to the independent domination number i. He was interested in the existence of bounds in the forms γ o 1 (T ) ≤ f (i(T )) and i(T ) ≤ g(γ o 2 (T )) where f and g are functions. Thus, he obtained that for every tree T (resp. every tree T of order n ≥ 2),

γ o 1 (T ) ≤ 2i(T ) -1 (resp. i(T ) ≤ γ o 2 (T ) -1)
, and these bounds are sharp.

Harutyunyan [START_REF] Harutyunyan | Some bounds on global alliances in trees[END_REF] studied the global offensive k-alliances in complete t-ary trees and presented an exact value for the global offensive 1-alliance number. Thus, they showed that for the complete t-ary tree T t,d with depth d ≥ 1, γ o 1 (T t,d ) = n t+1 . On the other hand, Chellali [START_REF] Chellali | Trees with equal global offensive k-alliance and k-domination numbers[END_REF] studied the offensive k-alliances in trees and proved that if k ≥ 2 and T belongs to a special family of trees F k , then γ o k (T ) = γ k (T ), with γ k (T ) is the kdomination number of T . Moreover, Chellali and Volkmann [START_REF] Chellali | Global offensive k-alliance in bipartite graphs[END_REF] obtained an other exact value for the global offensive k-alliance number of any tree T of the family F k by involving the cardinality of L σ (T ) which is the set of vertices having degree at most σ -1. Thus, they showed that if

T ∈ F k , then γ o k (T ) = n+|L σ (T )| 2
. Furthermore, Sigarreta [START_REF] Sigarreta | Alianzas en Grafos[END_REF] presented a lower bound for the cardinality of every global offensive k-alliance. He proved that if S is a global offensive k-alliance in a tree T such that the subgraph S is a forest with c connected components, then |S| ≥ n(k+2)-3c+1 k+3 .

Planar graphs

In this part, we present results concerning global offensive k-alliances in planar graphs. Let P = (V, E) be a planar graph of order n.

Rodríguez-Velázquez and Sigarreta [START_REF] Rodríguez-Velázquez | Global alliances in planar graphs[END_REF] studied the global offensive k-alliances in planar graphs and showed that, for a planar graph P of order n > 2, if S is a global offensive 1-alliance (resp. 2-alliance) in P such that the subgraph S has c connected components then |S| ≥ n-2c+4 3 (resp. |S| ≥ n-c+2 2 ). Moreover, for a planar graph P of order n, they proved that if S is a global offensive 1-alliance (resp. 2-alliance) in P such that the minimum degree of S is at least σ then |S| ≥ n(σ-1)+4 σ+1 (resp. |S| ≥ nσ+4 σ+2 ). Furthermore, Rodríguez-Velázquez and Sigarreta [START_REF] Rodríguez-Velázquez | Global alliances in planar graphs[END_REF] obtained other lower bounds for the cardinality of S which can be a global offensive 1-alliance or 2-alliance by using the number of faces of S . Thus, they proved that, for a planar graph of order n, if S is a global offensive 1-alliance (resp. 2-alliance) in P such that the subgraph S is connected and has f faces, then

|S| ≥ n+2f 3 (reps. |S| ≥ n+f 2 ).
Sigarreta [START_REF] Sigarreta | Alianzas en Grafos[END_REF] considered the global offensive k-alliances and obtained lower bounds concerning the cardinality of every global offensive k-alliance in planar graphs. Thus, he showed that if S is a global offensive k-alliance in a planar graph P of order n with k ∈ {1, 2, ..., δ 1 } (resp. k ∈ {0, 1, ..., δ 1 }) such that the subgraph S has c connected components (resp. S is connected

with f faces), then |S| ≥ nk+2(2-c) k+2 (resp. |S| ≥ nk+2f k+2
). Furthermore, he presented a lower bound for the global offensive k-alliance number, that is for a planar graph P of order n and size m, if P contains a global offensive k-alliance of minimum cardinality greater than two, then γ o k (P ) ≥ 2m-n(6-k)+24 6+k .

Complete graphs

We exhibit in this paragraph some exact values obtained for offensive k-alliance numbers in complete graphs. Let K n = (V, E) be a complete graph of order n.

Favaron et al. [START_REF] Favaron | Offensive alliances in graphs[END_REF] studied the offensive k-alliances and established exact values for the offensive 1-alliance number and the offensive 2-alliance number in complete graphs. Thus, they obtained that for n ≥ 1,

a o 1 (K n ) = n 2 and a o 2 (K n ) = n+1 2 .
Note that these values are examples of equality in bounds given in Section 3.1.1 obtained for general graphs by Favaron et al. [START_REF] Favaron | Offensive alliances in graphs[END_REF], that are a o 1 (G) ≥ δn+1 2 and a o 2 (G) > δn+1 2 . Fernau et al. [START_REF] Fernau | Offensive r-alliances in graphs[END_REF] obtained an exact value for the offensive k-alliance number in complete graphs, that is for every

k ∈ {3 -n, ..., n -1}, a o k (K n ) = n+k-1 2
. It is clear, in this case, that every offensive k-alliance is global and every vertex-set of cardinality n+k-1 2 is a global offensive k-alliance. Thus, as given by Bermudo et al. [START_REF] Bermudo | On global offensive kalliances in graphs[END_REF],

γ o k (K n ) = n+k-1 2 .

Bipartite graphs and complete bipartite graphs

In this part, we present theoretical results representing bounds or exact values concerning offensive k-alliance numbers in bipartite graphs and complete bipartite graphs. Let B = (X, Y, E) be a bipartite graph of order n, and K r,s be a complete bipartite graph. Favaron et al. [START_REF] Favaron | Offensive alliances in graphs[END_REF] studied the offensive k-alliances and presented some exact values for the offensive 1-alliance number and the offensive 2-alliance number in complete bipartite graphs. Thus, they obtained that:

• for 1 ≤ r ≤ s, a o 1 (K r,s ) = r+1 2 ; • for 2 ≤ r ≤ s, a o 2 (K r,s ) = r 2 + 1 , but a o 2 (K 1,s ) = s 2 + 1 .
Note that these values are examples of equality in bounds given in Section 3.1.1 obtained for general graphs by Favaron et al. [START_REF] Favaron | Offensive alliances in graphs[END_REF], that are

a o 1 (G) ≥ δn+1 2 and a o 2 (G) > δn+1 2 .
Sigarreta and Rodríguez-Velázquez [START_REF] Sigaretta | On the global offensive alliance number of a graph[END_REF] studied the global offensive k-alliances and established an upper bound for the global offensive 1-alliance number in bipartite graphs. Thus, they obtained that for all nontrivial bipartite graph, γ o 1 (B) ≤ n 2 . Note that this bound is an improvement of the one given by Rodríguez-Velázquez and Sigarreta [START_REF] Rodríguez-Velázquez | Global offensive alliances in graphs[END_REF] for general graphs (γ o 1 (G) ≤ 2n 3 ) in the case of bipartite graphs. Moreover, the same authors in [START_REF] Rodríguez-Velázquez | Offensive alliances in cubic graphs[END_REF] proved that this bound is an exact value for the global offensive 2-alliance number in the case of bipartite cubic graphs, that is γ o 2 (B) = n 2 . On the other hand, Chellali [START_REF] Chellali | Offensive alliances in bipartite graphs[END_REF] obtained other bounds for γ o 1 (B) and γ o 2 (B). Thus, he showed that for every bipartite graph B without isolated vertices, having l vertices of degree one (and s support vertices),

γ o 2 (B) ≤ n+l 2 (and γ o 1 (B) ≤ n-l+s 2
). By using L σ (B) (the set of vertices having degree at most σ -1), Chellali and Volkmann [START_REF] Chellali | Global offensive k-alliance in bipartite graphs[END_REF] established a bound for the global offensive k-alliance number in bipartite graphs. They proved that for an integer σ ≥ 1, one has

γ o k (B) ≤ n+|L σ (B)| 2
. On the other hand, Bermudo et al. [START_REF] Bermudo | On global offensive kalliances in graphs[END_REF] and Yero [START_REF] Yero | Contribution to the study of alliances in graphs[END_REF] gave bounds for the same parameter in complete bipartite graphs. Thus, they showed that for a complete bipartite graph K r,s with s ≤ r and for every k ∈ {2 -r, ..., r} :

i) If k ≥ s + 1, then γ o k (K r,s ) = r. ii) If k ≤ s and r+k 2 + s+k 2 ≥ s, then γ o k (K r,s ) = s. iii) If -s < k ≤ s and r+k 2 + s+k 2 < s, then γ o k (K r,s ) = r+k 2 + s+k 2 . iv) If k ≤ -s and r+k 2 + s+k 2 < s, then γ o k (K r,s ) = min{s, 1 + r+k 2 }.

Regular graphs

We present in this paragraph some results obtained for offensive k-alliance numbers in regular graphs. We denote by R δ = (V, E) the δ-regular graph of order n. Rodríguez-Velázquez and Sigarreta [START_REF] Rodríguez-Velázquez | Offensive alliances in cubic graphs[END_REF] studied mathematical properties of the global offensive k-alliance numbers of cubic graphs and presented lower and upper bounds for the global offensive 1-alliance number in δ-regular graphs. Thus, they showed that for all δ-regular graph R δ of order n and odd degree δ, n(δ+1)

3δ+1 ≤ γ o 1 (R δ ) ≤ n 2 .
In the case of regular graphs of odd degree, this upper bound is an improvement of the one given by Rodríguez-Velázquez and Sigarreta [START_REF] Rodríguez-Velázquez | Global offensive alliances in graphs[END_REF] for general graphs (γ o 1 (G) ≤ 2n 3 ). The same authors in [START_REF] Sigaretta | On the global offensive alliance number of a graph[END_REF] established an upper bound for the global offensive 2-alliance number in 3-regular connected graph, that is γ o 2 (R 3 ) ≤ 3n 4 . Bermudo et al. [START_REF] Bermudo | On global offensive kalliances in graphs[END_REF] and Yero [START_REF] Yero | Contribution to the study of alliances in graphs[END_REF] investigated the relationships between global offensive kalliances and some characteristic sets of a graph including r-dependent sets. They obtained an exact value for the offensive k-alliance number in δ-regular graphs, with δ > 0, by using a parameter of graphs, which is the maximum cardinality of an r-dependent set α r (R δ ) (For a graph G = (V, E), a set S ⊆ V is an r-dependent set in G if the maximum degree of every vertex in the subgraph S induced by S is at most r i.e. deg S (v) ≤ r, ∀ v ∈ S). Thus, they showed that for

every k ∈ {1, ..., δ}, γ o k (R δ ) = n -α δ-k 2 (R δ ).

Cycle graphs

Let C n = (V, E) be a cycle graph of order n. In this part, we exhibit some results obtained for offensive k-alliance numbers in this class of graphs. Favaron et al. [START_REF] Favaron | Offensive alliances in graphs[END_REF] studied the offensive k-alliances and they obtained that the offensive 1alliance number and the offensive 2-alliance number have the same value. Thus, they esatblished that for n ≥ 3,

a o 1 (C n ) = a o 2 (C n ) = n 2 .
The problem of finding the global offensive k-alliance number is N P -complete. Even so, for some graphs it is possible to obtain this number [START_REF] Bermudo | On global offensive kalliances in graphs[END_REF][START_REF] Yero | Contribution to the study of alliances in graphs[END_REF]. For instance, the family of the complete graphs, the cycle graphs and the path graphs. Thus, Bermudo et al. [START_REF] Bermudo | On global offensive kalliances in graphs[END_REF] and Yero [START_REF] Yero | Contribution to the study of alliances in graphs[END_REF] obtained exact values for the global offensive k-alliance number in cycle graphs for small specific values of k, in terms only of the order of graph, that is

γ o k (C n ) = n 3 for k = 0, n 2
for k = 1, 2.

Path graphs

Let P n = (V, E) be a path graph of order n. Favaron et al. [START_REF] Favaron | Offensive alliances in graphs[END_REF] studied the offensive k-alliances and established exact values for the offensive 1-alliance number and the offensive 2-alliance number.

Thus they obtained that for n ≥ 1, a o 1 (P n ) = n 2 and a o 2 (P n ) = n 2 + 1. Bermudo et al. [START_REF] Bermudo | On global offensive kalliances in graphs[END_REF] and Yero [START_REF] Yero | Contribution to the study of alliances in graphs[END_REF] studied the global offensive k-alliances and presented exact values for the global offensive k-alliance number in path graphs for small specific values of k. Thus,

they obtained that γ o k (P n ) = n 3 for k = 0, n 2 + k -1 for k = 1, 2.

Line graphs

In this part, we exhibit some results obtained for offensive k-alliance numbers in line graphs. Let G = (V, E) be a graph and L(G) its associated line graph.

Sigarreta [START_REF] Sigarreta | Alianzas en Grafos[END_REF] studied the offensive k-alliances and obtained a lower bound for the global offensive k-alliance number in the line graph L(G). Thus, from a bound obtained for general graphs (that is γ o k (G) ≥ 2m+kn 3δ 1 +k ), he deduced that for a graph G of size m having a degree sequence

δ 1 ≥ δ 2 ≥ ... ≥ δ n , γ o k (L(G)) ≥     n i=1 δ 2 i +m(k-2) 3(δ1+δ2-2)+k    
. Furthermore, Fernau et al. [START_REF] Fernau | Offensive r-alliances in graphs[END_REF] and Sigarreta [START_REF] Sigarreta | Alianzas en Grafos[END_REF] presented a lower bound for γ o k (L(G)) where G is a δ-regular graph. Thus, they showed that if L(G) is a line graph of a δ-regular graph G of order n, then

γ o k (L(G)) ≥ n 4 2(δ-1)+k 2
. On the other hand, Sigarreta [START_REF] Sigarreta | Alianzas en Grafos[END_REF] deduced that if G is a cubic graph of order n then 3n

4 ≤ γ o 2 (L(G)) = γ o 1 (L(G)) ≤ n.
Note that these latter bounds are tight. For example, Sigarreta [START_REF] Sigarreta | Alianzas en Grafos[END_REF] mentioned that the upper one is reached in the case of the complete graph K 4 : γ o 1 (L(K 4 )) = 4 = n. Moreover, in the case of the complete bipartite graph K 3,3 , he obtained that γ o 1 (L(K 3,3 )) = 5 and for the lower bound

9 2 ≤ γ o 1 (L(K 3,3 )).

Cartesian product graphs

Let G i = (V i , E i ) be a graph of order n i , minimum degree δi and maximum degree ∆i , i ∈ {1, 2}. Yero and Rodríguez-Velázquez [START_REF] Yero | Computing global offensive alliances in Cartesian product graphs[END_REF] obtained various closed formulas for the global offensive 1-alliance number of several families of Cartesian product graphs, given as follows:

• For any graphs G 1 and G 2 , γ o 1 (G 1 × G 2 ) ≥ 1 2 max{γ(G 1 )γ o 1 (G 2 ), γ o 1 (G 1 )γ(G 2 )}.
Moreover, if G 1 has an efficient dominating set (S is an efficient dominating set if each vertex in S is adjacent to exactly one vertex in S), then

γ o 1 (G 1 × G 2 ) ≥ γ(G 1 )γ o 1 (G 2 ). • Let P n be a path graph of order n. For every graph G of minimum degree δ ≥ 1, γ o 1 (G×P n ) ≥ (n-1)γ o 1 (G) 2 + δ 2 .
• Let C n be a cycle graph of order n. For every graph

G, γ o 1 (G × C n ) ≥ nγ o 1 (G) 2 . • If B i is a connected bipartite graph of order n i , i ∈ {1, 2}, then γ o 1 (B 1 × B 2 ) ≤ n1n2 2 . • The global offensive 1-alliance number of bamboo graph K r × P t is γ o 1 (K r × P t ) = rt 2 .
• For any complete graph K r and any path graph

P t , γ o 1 (K r × P t ) ≥ γ o 1 (K r )γ o 1 (P t ). • If G 1 is a graph partitionable into two global offensive 1-alliances X 1 and X 2 and G 2 is a graph partitionable into two global offensive 2-alliances Y 1 and Y 2 , then γ o 1 (G 1 × G 2 ) ≤ |X 1 ||Y 1 | + |X 2 ||Y 2 |. • For any torus graph C r × C t , γ o 1 (C r × C t ) ≥ γ o 1 (C r )γ o 1 (C t ). • The global offensive 1-alliance number of the graph K r × C t is γ o 1 (K r × C t ) = rt 2 .
• For any path graph P r and any cycle graph

C t , γ o 1 (P r × C t ) ≥ γ o 1 (P r )γ o 1 (C t ).
• Let r and t be two positive integers. If r, t have the same parity, then γ o 1 (K r × K t ) = rt 2 , and if r and t have different parity then rt(r+t-1)

2(r+t) ≤ γ o 1 (K r × K t ) ≤ rt 2 . Moreover, for any complete graphs γ o 1 (K r × K t ) ≥ γ o 1 (K r )γ o 1 (K t ). • Let P r × P t be a grid graph.
If r and t are even, then γ o 1 (P r × P t ) = rt 2 . If r is even and t is odd, then γ o 1 (P r × P t ) = r(t-1) 2 + r 3 . If r and t are odd, then (r-1)(t-1)

2 + r 3 + t 3 ≤ γ o 1 (P r × P t ) ≤ r(t-1) 2 + r 3 .
Yero in his thesis [START_REF] Yero | Contribution to the study of alliances in graphs[END_REF] obtained bounds for the offensive k-alliance number in Cartesian product graphs. He showed that:

i) If S i is an offensive k i -alliance in G i = (V i , E i ), i ∈ {1, 2}, then, for k = min{k 2 -∆1 , k 1 -∆2 }, S 1 × S 2 is an offensive k-alliance in G 1 × G 2 . ii) If S 1 × S 2 is an offensive k-alliance in G 1 × G 2 , with S i ⊂ V i , i ∈ {1, 2}, then S 1 is an offensive (k + δ2 )-alliance in G 1 and S 2 is an offensive (k + δ1 )-alliance in G 2 , moreover, k ≤ min{ ∆1 -δ2 , ∆2 -δ1 }.
As consequence, he obtained that for every

k ≤ min{k 1 -∆2 , k 2 -∆1 }, a o k (G 1 × G 2 ) ≤ a o k1 (G 1 )a o k2 (G 2 )
. Note that there is equality for the graph [START_REF] Yero | Contribution to the study of alliances in graphs[END_REF]. On the other hand, Yero [START_REF] Yero | Contribution to the study of alliances in graphs[END_REF] studied the global offensive k-alliance number in Cartesian product graphs and he showed that:

C 4 × K 4 , that is a o -3 (C 4 × K 4 ) = 2 = a o 0 (C 4 )a o 1 (K 4 )
(a) If S is a global offensive k-alliance in G 1 , then S × V 2 is a global offensive (k -∆2 )-alliance in G 1 × G 2 . (b) If S ×V 2 is a global offensive k-alliance in G 1 ×G 2 , then S is a global offensive (k+ δ2 )-alliance in G 1 , moreover, k ≤ ∆1 -δ2 .
As consequence, he obtained that for any graph G 1 and any graph G 2 of order n 2 and maximum degree ∆2 ,

γ o k-∆2 (G 1 × G 2 ) ≤ n 2 γ o k (G 1 )
. Furthermore, he established that the result given in (a) above can be simplified in the case of G 2 is a regular graph. In fact, for

G 2 = (V 2 , E 2 ) a δ-regular graph, a set S is a global offensive k-alliance in G 1 if and only if S × V 2 is a global offensive (k -δ)-alliance in G 1 × G 2 .
Remark 4. Let us note that the offensive k-alliances were studied in the literature for other graph classes such as star graphs and cubic graphs [START_REF] Favaron | Global alliances and independent domination in some classes of graphs[END_REF][START_REF] Rodríguez-Velázquez | Offensive alliances in cubic graphs[END_REF][START_REF] Yero | Computing global offensive alliances in Cartesian product graphs[END_REF]. Now, we summarize the results presented above by giving some bounds and exact values obtained for various offensive k-alliance numbers for different graph classes. These results are given in the following table:

Offensive k-alliance numbers Graph classes a o 1 (G) a o 2 (G) γ o 1 (G) γ o 2 (G) a o k (G) γ o k (G) G • δ n +1 2 ≤ a o 1 (G) ≤ γ(G)+n 2 [25] • a o 1 (G) ≤ 2n 3 [25] • a o 2 (G) > δn+1 2 [25] • a o 2 (G) ≤ 5n 6 [25] • a o 2 (G) ≤ 3n 4 [25] • γ o 1 (G) ≤ 2n 3 [45, 58] • γ o 1 (G) ≤ γ(G)+n 2 [45, 58] • γ o 1 (G) ≤ n(2µ * -δn ) 2µ * [45, 58] • γ o 1 (G) ≤ min{n - β(G), n+β(G) 2 } [45, 58] • γ o 1 (G) ≤ 2n-δ 1 2 [45, 58] • γ o 1 (G) ≥     3n-9n 2 -8n-16m 4     [45, 58] • γ o 1 (G) ≥ 2m+n 3δ 1 +1 [45, 58] • γ o 1 (G) ≥ n µ * δ n +1 2 [45, 47 , 58] 
• |S| ≥ 3n-2 δ 1 +3 [58] • γ o 2 (G) ≤ n+γ 2 (G) 2 [45, 58] • γ o 2 (G) ≤ n -β(G) [45, 58] • γ o 2 (G) ≤ 5n 6 [45, 58] • γ o 2 (G) ≥     3n+1-9n 2 -10n-16m+1 4     [45, 58] • γ o 2 (G) ≥ 2(m+n) 3δ 1 +2 [45, 58] • γ o 2 (G) ≥ n µ * ( δ n 2 + 1)
[45, 47, 58]

• |S| ≥ 4n-2 δ 1 +4 [58] • δ n +k 2 ≤ a o k (G) ≤ n - δ n -k+2 2 [28, 54] • δ n +k 2 ≤ γ o k (G) ≤ n - δn-k+2 2 [28, 54] • γ o k (G) ≤ n(2k+1) 2k+2 [28, 54] • n µ * δn+k 2 ≤ γ o k (G) ≤ γ k (G)+n 2 [27, 28] • γ o k (G) ≥ 2m+kn 3δ 1 +k [54] T • a o 1 (T ) ≤ n 2 [25]
• a o 2 (T ) ≤ 3n 4

[25]

• |S| ≥ 3(n-c)+1 4 [43] • γ o 1 (T ) ≥ n-l+s+1 3 [3] • γ o 1 (T ) = γ(T ) [3] • γ o 1 (T ) ≤ 2i(T ) -1 [24] • γ o 1 (T t,d ) = n t+1 [33] • |S| ≥ n -c + 1 [43] • |S| ≥ 4n-3c+1 5 [43] • i(T ) ≤ γ o 2 (T ) -1 [24] • γ o k (T ) = γ k (T ) [12] • γ o k (T ) = n+|L σ (T )| 2 [14] • |S| ≥ n(k+2)-3c+1 k+3 [54] P • |S| ≥ n-2c+4 3 [43] • |S| ≥ n(σ-1)+4 σ+1 [43] • |S| ≥ n+2f 3 [43] • |S| ≥ n-c+2 2 [43] • |S| ≥ nσ+4 σ+2 [43] • |S| ≥ n+f 2 [43] • |S| ≥ nk+2(2-c) k+2 [54] • |S| ≥ nk+2f k+2 [54] • γ o k (P ) ≥ 2m-n(6-k)+24 6+k [54] Kn • a o 1 (Kn) = n 2 [25] • a o 2 (Kn) = n+1 2 [25] • a o k (Kn ) = n+k-1 2 [28] • γ o k (Kn) = n+k-1 2 [2,
28] 

• B • K r,s • a o 1 (K r,s ) = r+1 2 [25] • a o 2 (K r,s ) = r 2 + 1 [25] • a o 2 (K 1,s ) = s 2 + 1 [25] • γ o 1 (B) ≤ n 2 [58] • γ o 1 (B) ≤ n-l+s 2 [11] • γ o 2 (B) = n 2 [46] • γ o 2 (B) ≤ n+l 2 [11] • γ o k (B) ≤ n+|Lσ (B)| 2 [14] • γ o k (K r,s ) = r [2, 64] • γ o k (K r,s ) = s [2, 64] • γ o k (Kr,s) = r+k 2 + s+k 2 [2, 64] • γ o k (K r,s ) = min{s, 1 + r+k 2 } [2, 64] R δ • n(δ+1) 3δ+1 ≤ γ o 1 (R δ ) ≤ n 2 [46] • γ o 2 (R 3 ) ≤ 3n 4 [58] • γ o k (R δ ) = n - α δ-k 2 (R δ ) [2, 64] C n • a o 1 (C n ) = n 2 [25] • a o 2 (C n ) = n 2 [25] • γ o k (C n ) = n 3 , k = 0 n 2 , k = 1, 2 [2, 64] P n • a o 1 (P n ) = n 2 [25] • a o 2 (P n ) = n 2 + 1 [25] • γ o k (P n ) = n 3 , k = 0 n 2 + k -1, k = 1, 2 [2, 64] L(G) • γ o k (L(G)) ≥        n i=1 δ 2 i +m(k-2) 3(δ 1 +δ 2 -2)+k        [54] • γ o k (L(G)) ≥ n 4 2(δ-1)+k 2 [28, 54] G 1 × G 2 • γ o 1 (G 1 × G 2 ) ≥ 1 2 max{γ(G 1 )γ o 1 (G 2 ), γ o 1 (G 1 )γ(G 2 )} [68] • γ o 1 (B 1 × B 2 ) ≤ n 1 n 2 2 [68] • γ o 1 (Kr × P t ) ≥ γ o 1 (K r )γ o 1 (P t ) [68] • γ o 1 (C r × C t ) ≥ γ o 1 (Cr )γ o 1 (C t ) [68] • γ o 1 (P r × C t ) ≥ γ o 1 (P r )γ o 1 (C t ) [68] • γ o 1 (Kr × K t ) ≥ γ o 1 (Kr )γ o 1 (K t ) [68] • a o k (G 1 × G 2 ) ≥ a o k 1 (G 1 )a o k 2 (G 2 ) [64] • γ o k-∆2 (G 1 × G 2 ) ≥ n 2 γ o k (G 1 ) [64]

Study of offensive k-alliance partition numbers

Like the partitioning of graphs into defensive k-alliances the partitioning into offensive k-alliances is also studied in the literature. There are two parameters of the partitioning of graphs into offensive k-alliances which are defined as follows: for any graph G = (V, E), the (global) offensive k-alliance

partition number of G, (ψ go k (G)) ψ o k (G), k ∈ {2 -δ 1 , ..., δ 1 }
, is defined to be the maximum number of sets in a partition of V such that each set is (a global offensive) an offensive k-alliance [START_REF] Yero | Contribution to the study of alliances in graphs[END_REF]. We say that G is partitionable into (global

) offensive k-alliances if (ψ go k (G) ≥ 2) ψ o k (G) ≥ 2.
Note that if every vertex of G has even degree and k is odd, or every vertex of G has odd degree and k is even, then every (global) offensive k-alliance in G is an offensive (a global offensive) (k +1)-alliance and vice versa. Hence, in such a case, [START_REF] Sigarreta | Partitioning a graph into offensive k-alliances[END_REF][START_REF] Yero | Contribution to the study of alliances in graphs[END_REF]. In this subsection, we study the mathematical properties of the offensive k-alliance partition numbers. In particular, we exhibit bounds and/or exact values obtained for the (global) offensive k-alliance partition number for some graph classes.

ψ o k (G) = ψ o k+1 (G) and ψ go k (G) = ψ go k+1 (G)

General graphs

Sigarreta et al. [START_REF] Sigarreta | Partitioning a graph into offensive k-alliances[END_REF] and Yero [START_REF] Yero | Contribution to the study of alliances in graphs[END_REF] studied the partitioning of graphs into (global) offensive k-alliances and obtained several results. Using the relation between the offensive k-alliance number and the offensive k-alliance partition number (a o k (G)ψ o k (G) ≤ n), they established that lower bounds on a o k (G) lead to upper bounds on ψ o k (G). For example, from the lower bound given by Fernau et al. in [START_REF] Fernau | Offensive r-alliances in graphs[END_REF], that is

a o k (G) ≥ δ n +k 2 , they obtained that ψ o k (G) ≤ 2n δn+k , δ n + k even, 2n δ n +k+1 , δ n + k odd.
Note that this bound is attained, for instance, for every δ-regular graph, δ ≥ 1, by taking k = 2 -δ. In such a case, each vertex is an offensive (2 -δ)-alliance and ψ o k (G) = n as illustrated in [START_REF] Sigarreta | Partitioning a graph into offensive k-alliances[END_REF][START_REF] Yero | Contribution to the study of alliances in graphs[END_REF]. Analogously, by using the relation between the global offensive k-alliance number and the global offensive k-alliance partition number, that is [START_REF] Sigarreta | Partitioning a graph into offensive k-alliances[END_REF] and Yero [START_REF] Yero | Contribution to the study of alliances in graphs[END_REF] established that lower bounds on γ o k (G) lead to upper bounds on ψ go k (G). Thus, from the lower bound presented by Bermudo et al. in [START_REF] Bermudo | On global offensive kalliances in graphs[END_REF], that is γ o k (G) ≥ 2m+kn 3δ 1 +k , they obtained that the global offensive k-alliance partition number is bounded upperly by

γ o k (G)ψ go k (G) ≤ n, Sigarreta et al.
ψ go k (G) ≤ n 2m+kn 3δ 1 +k
. This bound is attained, for instance, for the circulant graph CR(n, 2) for k = -2, and if n = 3j it is also attained for k ∈ {-1, 0} as mentioned in [START_REF] Sigarreta | Partitioning a graph into offensive k-alliances[END_REF][START_REF] Yero | Contribution to the study of alliances in graphs[END_REF]. On the other hand, they showed that if a graph G is partitionable into global offensive k-alliances, then

i) ψ go k (G) ≤ 2m-n(k-4) 2n . ii) ψ go k (G) ≤ δ n -k+4 2 . iii) ψ go k (G) ≤ 4-k+ √ k 2 +2(δ n -k) 2 .
Sigarreta et al. [START_REF] Sigarreta | Partitioning a graph into offensive k-alliances[END_REF] and Yero [START_REF] Yero | Contribution to the study of alliances in graphs[END_REF] also obtained that for any graph G of order n and size m,

ψ go k (G) ≤ 6m+nk 2m+nk
, and they noted that this bound is attained for the circulant graph CR(5n, 2), where ψ go -2 (G) = 5. Moreover, they established bounds for the cardinality of sets belonging to a partition. Thus, they showed that if S belongs to a partition of G into global offensive kalliances, then n(2δ n -δ 1 +k) [START_REF] Sigarreta | Partitioning a graph into offensive k-alliances[END_REF][START_REF] Yero | Contribution to the study of alliances in graphs[END_REF]. Furthermore, they proved that for a graph G with Laplacian spectral radius µ * , if S belongs to a partition of G into global offensive k-alliances with

δ 1 +2δ n +k ≤ |S| ≤
-δ n ≤ k ≤ µ * -δ n , then n 2 -n 2 (µ * -k)-2nm 4µ * ≤ |S| ≤ n 2 + n 2 (µ * -k)-2nm 4µ *
. Note that these bounds are attained for the complete graph K n with n is even and k = 1. In this case K n is partitioned into two global offensive 1-alliances of cardinality n 2 as discussed in [START_REF] Sigarreta | Partitioning a graph into offensive k-alliances[END_REF][START_REF] Yero | Contribution to the study of alliances in graphs[END_REF].

Cartesian product graphs

Let G i = (V i , E i ) be a graph of order n i , i ∈ {1, 2}. Sigarreta et al. [START_REF] Sigarreta | Partitioning a graph into offensive k-alliances[END_REF] and Yero [START_REF] Yero | Contribution to the study of alliances in graphs[END_REF] studied the partitioning of Cartesian product graphs into offensive k-alliances and obtained that if

G i = (V i , E i
) is a graph of minimum degree δi and maximum degree ∆i , i ∈ {1, 2} and S i is an offensive

k i -alliance in G i , i ∈ {1, 2}, then, for k = min{k 2 -∆1 , k 1 -∆2 }, S 1 × S 2 is an offensive k-alliance in G 1 × G 2 . Thus, they deduced that a partition Π o ri (G i ) = {S (i) 1 , S (i) 2 , ..., S (i) ri } of G i into r i offensive k i -alliances, i ∈ {1, 2}, induces a partition of G 1 × G 2 into r 1 r 2 offensive k-alliances, with k = min{k 2 -∆1 , k 1 -∆2 }.
This partition is formally illustrated by the following matrix given in [START_REF] Sigarreta | Partitioning a graph into offensive k-alliances[END_REF][START_REF] Yero | Contribution to the study of alliances in graphs[END_REF]:

Π o r 1 r 2 (G 1 × G 2 ) =            S (1) 1 × S (2) 1 • • • S (1) 1 × S (2) r 2 S (1) 2 × S (2) 1 • • • S (1) 2 × S (2) r 2 . . . . . . . . . 

S

(1)

r 1 × S (2) 1 • • • S (1)
r 1 × S (2) r 2            .
As consequence, Sigarreta et al. [START_REF] Sigarreta | Partitioning a graph into offensive k-alliances[END_REF] and Yero [START_REF] Yero | Contribution to the study of alliances in graphs[END_REF] established that for any graph G i of maximum degree ∆i , i ∈ {1, 2}, and for every k

≤ min{k 1 -∆2 , k 2 -∆1 }, ψ o k (G 1 × G 2 ) ≥ ψ o k1 (G 1 )ψ o k2 (G 2
), and they noted that for the particular case of the graph

C 4 × K 4 , ψ o -3 (C 4 × K 4 ) = 8 = 4 • 2 = ψ o 0 (C 4 )ψ o 1 (K 4
). For the global offensive k-alliance partition number, Sigarreta et al. [START_REF] Sigarreta | Partitioning a graph into offensive k-alliances[END_REF] and Yero [START_REF] Yero | Contribution to the study of alliances in graphs[END_REF] showed that for

G i = (V i , E i ) a graph of order n i and Π go ri (G i ) a partition of G i into r i global offensive k i -alliances, i ∈ {1, 2}, if x i = min S∈Π go r i (G i ) {|S|} and k ≤ min{k 1 , k 2 }, then i) γ o k (G 1 × G 2 ) ≤ min{n 2 x 1 , n 1 x 2 }; ii) ψ go k (G 1 × G 2 ) ≥ max{ψ go k 1 (G 1 ), ψ go k 2 (G 2 )}. They mentioned that if G i is partitionable into global offensive k i -alliances, for k i ≥ 1 and i ∈ {1, 2}, the bound concerning the global offensive k-alliance partition number is attained for 1 ≤ k ≤ min{k 1 , k 2 }, where ψ go k (G 1 ×G 2 ) = 2 = max{2, 2} = max{ψ go k1 (G 1 ), ψ go k2 (G 2 )}.
Moreover, Sigarreta et al. [START_REF] Sigarreta | Partitioning a graph into offensive k-alliances[END_REF] and Yero [START_REF] Yero | Contribution to the study of alliances in graphs[END_REF] deduced that if a graph G i of order n i is partitionable into global offensive

k i -alliances, i ∈ {1, 2}, then for k ≤ min{k 1 , k 2 }, γ o k (G 1 × G 2 ) ≤ n 1 n 2 max{ψ go k 1 (G1),ψ go k 2 (G2)} . Example of equality is obtained in [59, 64] for C 4 × K 2 , i.e. γ o 1 (C 4 × K 2 ) = 4.2 max{ψ go 1 (C4),ψ go 1 (K2)} = 4.

Circulant graphs -CR(n, 2)

Let Z n be the additive group of integers modulo n and let M ⊂ Z n such that, i ∈ M if and only if -i ∈ M . A graph G = (V, E) can be constructed as follows, the vertices of V are the elements of Z n and (i, j) is an edge in E if and only if j -i ∈ M . This graph is called a circulant of order n and it is denoted by CR(n, M ). The set M is called the set of generators of the circulant graph. With this notation, a cycle graph is CR(n, {-1, 1}) and the complete graph is CR(n, Z n ).

Yero [START_REF] Yero | Contribution to the study of alliances in graphs[END_REF] in his thesis studied the partitioning of circulant graphs of type CR(n, 2) = CR(n, {-2, -1, 1, 2}) into global offensive k-alliances and obtained some theoretical results. He established two partitions of CR(n, 2) as follows: if n is even, Π go 2 (CR(n, 2)) = {{1, 3, 5, ..., n -1}, {2, 4, 6, ..., n}} is a partition of CR(n, 2) into global offensive 0-alliances, moreover, if n = 4j, Π go 4 (CR(n, 2)) = {{1, 5, ..., n -3}, {2, 6, ..., n -2}, {3, 7, ..., n -1}, {4, 8, ..., n}} is a partition of CR(n, 2) into global offensive (-2)-alliances.

Furthermore, Yero [START_REF] Yero | Contribution to the study of alliances in graphs[END_REF] considered the circulant graph G = CR(n, 2) and proved that:

i) Any dominating set in G is a global offensive (-2)-alliance.
ii) G is not partitionable into global offensive 3-alliances or global offensive 4-alliances.

iii)

ψ go 1 (G) = ψ go 2 (G) = 2 if and only if n = 4j. iv) ψ go -1 (G) = ψ go 0 (G) = 3 if and only if n = 3j. v) ψ go -2 (G) = n n 5
.

3.2.4

Relations between ψ go k (G) and k Sigarreta et al. [START_REF] Sigarreta | Partitioning a graph into offensive k-alliances[END_REF] and Yero [START_REF] Yero | Contribution to the study of alliances in graphs[END_REF] studied relations between ψ go k (G) and k and they first obtained that, for any graph G without isolated vertices, there exists k ∈ {0, ..., δ n } such that G is partitionable into global offensive k-alliances. As a consequence, they deduced that any graph without isolated vertices is partitionable into global offensive 0-alliances. Furthermore, they showed that if a graph is partitionable into r ≥ 3 global offensive k-alliances, then k ≤ 3 -r. From this latter result, they obtained an interesting consequence which state that if G is partitionable into global offensive k-alliances for k ≥ 1, then ψ go k (G) = 2. Moreover, for a graph G without isolated vertices, they deduced that if k ∈ {2 -δ 1 , ..., 0} then the global offensive k-alliance partition number is bounded by 2 ≤ ψ go k (G) ≤ 3 -k. Note that, for the complete graph K n , ψ go 0 (K n ) = 2 and for the cycle graph C 3n , n ≥ 1, ψ go 0 (C 3n ) = 3 [START_REF] Sigarreta | Partitioning a graph into offensive k-alliances[END_REF][START_REF] Yero | Contribution to the study of alliances in graphs[END_REF]. On the other hand, Yero [START_REF] Yero | Contribution to the study of alliances in graphs[END_REF] proved that if G is a graph of order n such that ψ go k (G) > 2, then for every l ∈ {1, ..., ψ go k (G) -2}, there exists a subgraph, G l , of G of order n(G l ) ≤ n -lγ o k (G) such that ψ go l+k (G l ) + l ≥ ψ go k (G).

Partition number and chromatic number

Motivated by the lower and upper bounds given for ψ go k (G) in Subsubsection 3.2.4, that is if k ∈ {2 -δ 1 , ..., 0} then 2 ≤ ψ go k (G) ≤ 3 -k, Sigarreta et al. [START_REF] Sigarreta | Partitioning a graph into offensive k-alliances[END_REF] and Yero [START_REF] Yero | Contribution to the study of alliances in graphs[END_REF] studied the limit cases ψ go 0 (G) = 2 and ψ go 0 (G) = 3. Essentially, in this study they established relationships that exist between the chromatic number of G, χ(G), and ψ go 0 (G). Given a positive integer t, a t-dependent set in G is a set of vertices of G such that no vertex in the set is adjacent to more than t vertices of the set. Thus, a 0-dependent set in G is simply an independent set of vertices in G. Sigarreta et al. [START_REF] Sigarreta | Partitioning a graph into offensive k-alliances[END_REF] and Yero [START_REF] Yero | Contribution to the study of alliances in graphs[END_REF] showed that, any set belonging to a partition of a graph into r ≥ 3 global offensive k-alliances is a (-k)-dependent set. Moreover, they noted that if k = 0 in this result, then r = 3 and as a consequence, every set in a partition into three global offensive 0-alliances is an independent set, and also if ψ go 0 (G) = 3 then χ(G) ≤ 3. A trivial example of graph where ψ go 0 (G) = 3 and χ(G) = 3 is the cycle graph C 3 , and a graph where ψ go 0 (G) = 3 and χ(G) = 2 is the cycle graph C 6 [START_REF] Sigarreta | Partitioning a graph into offensive k-alliances[END_REF][START_REF] Yero | Contribution to the study of alliances in graphs[END_REF]. Sigarreta et al. [START_REF] Sigarreta | Partitioning a graph into offensive k-alliances[END_REF] and Yero [START_REF] Yero | Contribution to the study of alliances in graphs[END_REF] also obtained that if G is a non bipartite graph and ψ go 0 (G) = 3, then χ(G) = 3, and they mentioned that the complete graph K n with n ≥ 4 is an example of graph where χ(G) > 3 and ψ go 0 (G) = 2. Moreover, they deduced that for any graph G without isolated vertices and χ(G) > 3, ψ go 0 (G) = 2. On the other hand, they have given another sufficient condition for the global offensive 0-alliance partition number to be 2, that is for any graph G without isolated vertices containing a vertex of odd degree, it is satisfied ψ go 0 (G) = 2. Sigarreta et al. [START_REF] Sigarreta | Partitioning a graph into offensive k-alliances[END_REF] and Yero [START_REF] Yero | Contribution to the study of alliances in graphs[END_REF] remarked that this latter result is equivalent to saying that if ψ go 0 (G) = 3, then every vertex in G has even degree. As a consequence of this, for k odd, every partition of G into (global) offensive k-alliances is a partition of G into (global) offensive (k + 1)-alliances and vice versa. This latter leads to obtain that, if ψ go 0 (G) = 3 and k is odd, then [START_REF] Sigarreta | Partitioning a graph into offensive k-alliances[END_REF][START_REF] Yero | Contribution to the study of alliances in graphs[END_REF]. Now, we summarize the results presented above by giving some bounds obtained for offensive k-alliance partition numbers for general, circulant and Cartesian product graph classes. These results are given in the following table :   Offensive k-alliance partition numbers Graph classes

a o k (G) = a o k+1 (G), γ o k (G) = γ o k+1 (G), ψ o k (G) = ψ o k+1 (G) and ψ go k (G) = ψ go k+1 (G)
ψ o k (G) ψ go k (G) G • a o k (G)ψ o k (G) ≤ n [59, 64] • ψ o k (G) ≤    2n δ n +k , δn + k even, 2n δn+k+1 
, δn + k odd.

[59, 64] 

• γ o k (G)ψ go k (G) ≤ n [59, 64] • ψ go k (G) ≤       n 2m+kn 3δ 1 +k       [59, 64] • ψ go k (G) ≤ 2m-n(k-4) 2n [59, 64] • ψ go k (G) ≤ δ n -k+4 2 [59, 64] • ψ go k (G) ≤     4-k+ k 2 +2(δn-k) 2     [59, 64] • ψ go k (G) ≤ 6m+nk 2m+nk [59, 64] • n(2δ n -δ 1 +k) δ 1 +2δn+k ≤ |S| ≤ 2nδ 1 δ 1 +2δn +k [59, 64] • n 2 - n 2 (µ * -k)-2nm 4µ * ≤ |S| ≤ n 2 + n 2 (µ * -k)-2nm 4µ * [59, 64] • ψ go k (G) = 2 [59, 64] • 2 ≤ ψ go k (G) ≤ 3 -k [59, 64] G 1 × G 2 • ψ o k (G 1 × G 2 ) ≥ ψ o k 1 (G 1 )ψ o k 2 (G 2 ) [59, 64] • ψ go k (G 1 × G 2 ) ≥ max{ψ go k 1 (G 1 ), ψ go k 2 (G 2 )} [59, 64] G = CR(n, 2) • ψ go 1 (G) = ψ go 2 (G) = 2 [64] • ψ go -1 (G) = ψ go 0 (G) = 3 [64] • ψ go -2 (G) =     n n 5     [64]

Powerful k-alliances in graphs

In this section, we study mathematical properties of powerful k-alliances by giving bounds and/or exact values of several parameters studied for various graph classes. A powerful k-alliance is a set of vertices S ⊂ V of a graph G = (V, E), which is both defensive k-alliance and offensive (k + 2)-alliance. The case k = -1 (resp. k = 0) corresponds to the standard powerful alliances (resp. strong powerful alliances) defined in [START_REF] Brigham | A sharp lower bound on the powerful alliance number of C m × C n[END_REF][START_REF] Kristiansen | Alliances in graphs[END_REF].

Several parameters have been defined and studied in the literature for powerful k-alliances, one can see [START_REF] Brigham | A sharp lower bound on the powerful alliance number of C m × C n[END_REF][START_REF] Brigham | Powerful alliances in graphs[END_REF][START_REF] Rodríguez-Velázquez | Spectral study of alliances in graphs[END_REF][START_REF] Yero | Contribution to the study of alliances in graphs[END_REF] and others. These parameters are defined as follows: The powerful (-1)alliance number known as powerful alliance number a p -1 (G) (resp. powerful 0-alliance number known as strong powerful alliance number a p 0 (G)) is the minimum cardinality among all (critical) powerful (-1)-alliances (resp. powerful 0-alliances) of G [START_REF] Brigham | A sharp lower bound on the powerful alliance number of C m × C n[END_REF][START_REF] Brigham | Powerful alliances in graphs[END_REF]. The global powerful (-1)-alliance number γ p -1 (G) (resp. global powerful 0-alliance number γ p 0 (G)) is the minimum cardinality among all (critical) global powerful (-1)-alliances (resp. global powerful 0-alliances) of G [START_REF] Brigham | Powerful alliances in graphs[END_REF]. The powerful k-alliance number a p k (G) is the minimum cardinality among all (critical) powerful k-alliances of G [START_REF] Sigarreta | Alianzas en Grafos[END_REF]. The global powerful k-alliance number γ p k (G) is the minimum cardinality among all (critical) global powerful k-alliances of G [START_REF] Sigarreta | Alianzas en Grafos[END_REF].

For any graph G, we have the following relations between different powerful k-alliance numbers:

1) a p -1 (G) ≥ max{a d -1 (G), a o -1 (G)} [6]; 2) γ p -1 (G) ≥ max{γ(G), a p -1 (G)} [6]; 3) a p k (G) ≥ max{a d k (G), a o k+2 (G)} [54]; 4) γ p k (G) ≥ max{γ(G), a p k (G)} [54]; 5) γ p k (G) ≥ max{γ d k (G), γ o k+2 (G)} [54]; 6) γ p k+1 (G) ≥ γ p k (G) [54].

Study of powerful k-alliance numbers for various graph classes

In this subsection, we exhibit mathematical properties of powerful k-alliances for different graph classes. Essentially, we give bounds or exact values for powerful k-alliance numbers studied for various graph classes.

General graphs

In this paragraph, we present theoretical results representing bounds for powerful k-alliance numbers in general graphs. Let G = (V, E) be a general graph of order n and size m.

For any connected graph G of order n ≥ 2, Brigham et al. [START_REF] Brigham | Powerful alliances in graphs[END_REF] studied powerful k-alliances and proposed a sharp upper bound for the powerful (-1)-alliance number. Thus, they used the packing number ρ(G) which is the maximum cardinality of a packing in G (a subset [START_REF] Brigham | Powerful alliances in graphs[END_REF][START_REF] Meir | Relations between packing and covering numbers of a tree[END_REF]). They obtained that the powerful (-1)-alliance number is bounded by a p -1 (G) ≤ n -ρ(G). Brigham et al. [START_REF] Brigham | Powerful alliances in graphs[END_REF] established lower bounds for the global powerful (-1)-alliance number by using the order of G, its maximum degree δ 1 , its minimum degree δ n and its domination number γ(G). Thus, they showed that for any graph G, its order satisfies n ≤ ( δ 1 +δ n +2 δn+1 )γ p -1 (G) which leads to obtain that γ p -1 (G) ≥ n(δ n +1) δ 1 +δ n +2 . Furthermore, they proved that γ p -1 (G) ≥ γ(G) + δn 2 . Moreover, they obtained a sharp upper bound for the same parameter by showing that for any graph G with no isolated vertices, γ p -1 (G) ≤ n-δ n 2 . On the other hand, Rodríguez-Velázquez and Sigarreta [START_REF] Rodríguez-Velázquez | Spectral study of alliances in graphs[END_REF] gave tight lower bounds for the global powerful (-1)-alliance number and the global powerful 0-alliance number by means of the order of a simple graph G, its size m and its spectral radius λ. Thus, they showed that

P ⊂ V is called a packing in G if for every vertex v ∈ V , |N [v] ∩ P | ≤ 1
γ p -1 (G) ≥ 2m+n 4(λ+1) , γ p 0 (G) ≥ m+n 2λ+1 , γ p -1 (G) ≥ √ 2m+n 2 and γ p 0 (G) ≥ 1+ √ 1+8(n+m) 4
. Note that Rodríguez-Velázquez and Sigarreta [START_REF] Rodríguez-Velázquez | Spectral study of alliances in graphs[END_REF] have presented graphs for which these bounds are reached. Fernau et al. [START_REF] Fernau | Global r-alliances and total domination[END_REF] studied the powerful k-alliances and established lower and upper bounds for the global powerful k-alliance number. They obtained that for any graph G, √

8m+4n(k+2)+(k+1) 2 +k+1 4 ≤ γ p k (G) ≤ n -δn-k 2
. These bounds are also given by Sigarreta [START_REF] Sigarreta | Alianzas en Grafos[END_REF] by assuming that k ∈ {1 -δ n , ..., δ n -2} for the upper bound (note that these bounds are reached, for example, for the cycle graph G = C 3 for every k ∈ {-2, -1, 0}). Moreover, Brigham and Dutton [START_REF] Brigham | Bounds on powerful alliance numbers[END_REF] obtained a lower bound for the same parameter, that is γ p k (G) ≥ δ1+k+1

2

. By using the spectral radius λ, Sigarreta [START_REF] Sigarreta | Alianzas en Grafos[END_REF] obtained that for any graph G, γ p k (G) ≥ 2m+n(k+2) 4λ-2k+2

.

Yero [START_REF] Yero | Contribution to the study of alliances in graphs[END_REF] and Yero and Rodríguez-Velázquez [START_REF] Yero | Boundary powerful k-alliances in graphs[END_REF] studied the mathematical properties of boundary powerful k-alliances. They obtained that if S is a boundary powerful k-alliance in a graph G, then δn+k+2 2 ≤ |S| ≤ 2n-δn+k 2 . Furthermore, they showed that if S is a global boundary powerful k-alliance then 2m+n(k+2)

2δ 1 +2 ≤ |S| ≤ 2m+n(k+2) 2δ n +2
and n(2δn+k+2)-2m

2δ n +2 ≤ |S| ≤ n(2δ 1 +k+2)-2m 2δ 1 +2
(note that all these bounds are attained, for instance, for the complete graph G = K n for every k ∈ {1 -n, ..., n -3}). By using the number of edges of G with one endpoint in S and the other endpoint outside of S, C, they proved that if S is a global boundary powerful k-alliance in G, with k = -1, then |S| = 2(m+n-2C)+nk 2(k+1) .

Tree graphs

We present in this part some results concerning powerful k-alliance numbers in trees. Let T = (V, E) be a tree of order n.

Brigham et al. [START_REF] Brigham | Powerful alliances in graphs[END_REF] initiated the study of powerful k-alliances in graphs and established a sharp upper bound for the powerful (-1)-alliance number in trees. Thus, they deduced from the result given by Meir and Moon in [START_REF] Meir | Relations between packing and covering numbers of a tree[END_REF] (the domination number and the packing number of a tree are equal) that for any tree T , a p -1 (T ) ≤ n-γ(T ). They also obtained an other sharp upper bound for the same parameter, by proving that if T is a tree of order n and T = P n , then a p -1 (T ) ≤ n+3 2 . On the other hand, Rodríguez-Velázquez and Sigarreta [START_REF] Rodríguez-Velázquez | Global alliances in planar graphs[END_REF] presented bounds concerning the cardinality of every global powerful (-1)-alliance or 0-alliance in trees. They showed that if S is a global powerful (-1)-alliance (resp. 0-alliance) in T and the subgraph induced by S has c connected components, then |S| ≥ 3n+8c-2 12 (resp. |S| ≥ 2n+4c-1

5

). As a consequence, they obtained tight bounds for the global powerful (-1)-alliance number and the global powerful 0-alliance number, that are γ p -1 (T ) ≥ n+2 4 and γ p 0 (T ) ≥ 2n+7

5

. Rodríguez-Velázquez and Sigarreta [START_REF] Rodríguez-Velázquez | Global alliances in planar graphs[END_REF] have given graphs for which these bounds are attained. Note that these two latter bounds are also given by Sigarreta in his thesis [START_REF] Sigarreta | Alianzas en Grafos[END_REF].

Sigarreta [START_REF] Sigarreta | Alianzas en Grafos[END_REF] established a lower bound for the cardinality of every global powerful k-alliance in trees. He showed that if S is a global powerful k-alliance in T and the subgraph S has c connected components, then |S| ≥ n(k+4)+8c-2 2(5-k) .

Planar graphs

In this paragraph, we put on view bounds obtained for powerful k-alliance numbers in planar graphs. Let P = (V, E) be a planar graph of order n and size m.

Rodríguez-Velázquez and Sigarreta [START_REF] Rodríguez-Velázquez | Global alliances in planar graphs[END_REF] studied mathematical properties of powerful k-alliances in planar graphs and obtained tight bounds for the global powerful (-1)-alliance number and the global powerful 0-alliance number given as follows: ). Moreover, Rodríguez-Velázquez and Sigarreta in [START_REF] Rodríguez-Velázquez | Global alliances in planar graphs[END_REF] showed that for a global powerful (-1)-alliance (resp. 0-alliance) S in a planar graph, |S| ≥ 2m+n+48 28 (resp. |S| ≥ m+n+24

i) If n > 6, then γ p -1 (P ) ≥ 2m+n+48 28 . ii) If n >

13

). Enciso and Dutton [START_REF] Enciso | Lower Bounds for Global Alliances of Planar Graphs[END_REF] and Enciso [START_REF] Enciso | Alliances in Graphs: Parameterized Algorithms and on Partitioning Series-Parallel Graphs[END_REF] proved that these bounds are increased when S is an empire. Thus, they obtained that for a planar graph P with a global powerful (-1)alliance (resp. 0-alliance) S, if S is an empire then |S| ≥ 2m+n+24 20 (resp. |S| ≥ m+n+12

9

). Sigarreta in his thesis [START_REF] Sigarreta | Alianzas en Grafos[END_REF] studied the powerful k-alliances in planar graphs and presented some bounds for the global powerful k-alliance number given as follows:

i) If n > 2(2 -k), then γ p k (P ) ≥ 2(m+24)+n(k+2) 2(13-k)
.

ii) If n > 2(2 -k) and P is a triangle-free graph, then γ p k (P ) ≥ 2(m+16)+n(k+2) 2(9-k)

.

Moreover, he showed that if S is a global powerful k-alliance in a general graph G such that the subgraph S is planar connected with f faces, then |S| ≥ 2(m-4f +8)+n(k+2) 2(5-k)

. Note that Sigarreta [START_REF] Sigarreta | Alianzas en Grafos[END_REF] have given graphs for which these bounds are attained.

Yero and Rodríguez-Velázquez [START_REF] Yero | Boundary powerful k-alliances in graphs[END_REF] studied the boundary powerful k-alliances and proved that if S is a global boundary powerful k-alliance in a planar connected graph with f faces, then

n(k+4)+2f -4 2δ 1 +2 ≤ |S| ≤ n(k+4)+2f -4 2δ n +2
. These bounds are also given by Yero in his thesis [START_REF] Yero | Contribution to the study of alliances in graphs[END_REF].

Complete graphs

Let K n = (V, E) be a complete graph of order n. We exhibit in this part some exact values obtained for powerful k-alliance numbers in this class of graphs. Brigham et al. [START_REF] Brigham | Powerful alliances in graphs[END_REF] studied the powerful k-alliances and they obtained that the powerful (-1)alliance number and the global powerful (-1)-alliance number have the same exact value. Thus, they showed that for the complete graph

K n , a p -1 (K n ) = γ p -1 (K n ) = n 2 .
This value is also obtained by Fernau et al. [START_REF] Fernau | Global r-alliances and total domination[END_REF] and Sigarreta [START_REF] Sigarreta | Alianzas en Grafos[END_REF] for the global powerful (-1)-alliance number.

Yero in his thesis [START_REF] Yero | Contribution to the study of alliances in graphs[END_REF] and Yero and Rodríguez-Velázquez [START_REF] Yero | Boundary powerful k-alliances in graphs[END_REF] studied the boundary powerful k-alliances and proved that if S is a boundary powerful k-alliance in a complete graph K n , then |S| = n+k+1 2 .

Complete bipartite graphs

Let K r,s = (X, Y, E) be a complete bipartite graph where r (resp. s) is the cardinality of the set of vertices X (resp. Y ). In this paragraph, we present some results obtained for powerful k-alliance numbers in complete bipartite graphs.

Brigham et al. [START_REF] Brigham | Powerful alliances in graphs[END_REF] studied the powerful k-alliances in complete bipartite graphs and they obtained a same exact value for the powerful (-1)-alliance number and the global powerful (-1)alliance number. Thus, they showed that for the complete bipartite graph

K r,s , 1 ≤ r ≤ s, a p -1 (K r,s ) = γ p -1 (K r,s ) = min{r + s 2 , r+1 2 + s+1 2 }.
Note that Fernau et al. [START_REF] Fernau | Global r-alliances and total domination[END_REF] and Sigarreta [START_REF] Sigarreta | Alianzas en Grafos[END_REF] also established the same value for the global powerful (-1)-alliance number.

Regular graphs

We give in this paragraph some results obtained for powerful k-alliance numbers in regular graphs. We denote by R δ = (V, E) the δ-regular graph of order n.

Brigham et al. [START_REF] Brigham | Powerful alliances in graphs[END_REF] studied the powerful k-alliances in regular graphs and they obtained that if S is a powerful (-1)-alliance of a δ-regular graph R δ , then |∂S| ≤ |S|. Furthermore, they established that the order of a δ-regular graph R δ satisfies n ≤ 2γ p -1 (R δ ), which leads to obtain that the global powerful (-1)-alliance number is bounded by γ p -1 (R δ ) ≥ n 2 . Yero [START_REF] Yero | Contribution to the study of alliances in graphs[END_REF] and Yero and Rodríguez-Velázquez [START_REF] Yero | Boundary powerful k-alliances in graphs[END_REF] studied the boundary powerful k-alliances and showed that if S is a global boundary powerful k-alliance in a δ-regular graph, then |S| = n(δ+k+2) 2(δ+1)

. They also obtained that if R δ is a δ-regular connected planar graph with f faces and

S is a global powerful k-alliance, then |S| = n(k+4)+2f -4 2(δ+1)
. Furthermore, they showed that if S is a

global boundary powerful k-alliance in a δ-regular graph R δ , with k = -1, then |S| = n(δ+k+2)-4C 2k+2 and C = n(δ 2 +2δ-k 2 -2k) 4(δ+1)
, where C the number of edges of R δ with one endpoint in S and the other endpoint outside of S.

Cycle graphs

Let C n = (V, E) be a cycle graph of order n. In this paragraph, we present some results obtained for powerful k-alliance numbers for the class of cycle graphs. Brigham et al. [START_REF] Brigham | Powerful alliances in graphs[END_REF] studied the powerful k-alliances in graphs and they obtained that the powerful (-1)-alliance number and the global powerful (-1)-alliance number have the same value. Thus, they showed that for any cycle

C n , a p -1 (C n ) = γ p -1 (C n ) = 2n 3 .
Moreover, Fernau et al. [START_REF] Fernau | Global r-alliances and total domination[END_REF] and Sigarreta [START_REF] Sigarreta | Alianzas en Grafos[END_REF] established the same value written in another form for the global powerful (-1)-alliance number, that is γ p -1 (C n ) = n -n 3 .

Path graphs

Let P n = (V, E) be a path graph of order n. We exhibit in this part some exact values obtained for powerful k-alliance numbers in path graphs. This class of graphs is studied by Brigham et al. [START_REF] Brigham | Powerful alliances in graphs[END_REF] and they obtained that the powerful (-1)-alliance number and the global powerful (-1)-alliance number are equal in this case. Thus, they showed that for any path P n , a p -1 (P n ) = γ p -1 (P n ) = 2n 3 . Moreover, this exact value, written in another form, is obtained by Fernau et al. [START_REF] Fernau | Global r-alliances and total domination[END_REF] and Sigarreta [START_REF] Sigarreta | Alianzas en Grafos[END_REF] for the global powerful (-1)-alliance number, that is γ p -1 (P n ) = n -n 3 .

Cartesian product graphs

Let G i = (V i , E i ) be a graph of order n i , minimum degree δi and maximum degree ∆i , i ∈ {1, 2}. Yero [START_REF] Yero | Contribution to the study of alliances in graphs[END_REF] and Yero and Rodríguez-Velázquez [START_REF] Yero | Partitioning a Graph into Global Powerful k-Alliances[END_REF] studied the powerful k-alliances in Cartesian product graphs and obtained some results for the associated parameters. Thus, they showed that if

S i ⊂ V i is a powerful k i -alliance in G i , i ∈ {1, 2}, then S 1 × S 2 is a powerful k-alliance in G 1 × G 2 , for every k ∈ {-∆1 -∆2 , ..., min{k 1 -∆2 , k 2 -∆1 }}. As a consequence, they obtained that if G i contains powerful k i -alliances, i ∈ {1, 2}, then for every k ∈ {-∆1 -∆2 , ..., min{k 1 - ∆2 , k 2 -∆1 }}, a p k (G 1 × G 2 ) ≤ a p k 1 (G 1 )a p k 2 (G 2 ). Furthermore, they proved that if S 1 ⊂ V 1 is a global powerful k 1 -alliance in G 1 , then S 1 × V 2 is a global powerful k-alliance in G 1 × G 2 , for every k ∈ {-∆1 -∆2 , ..., k 1 -∆2 }. As a consequence, they obtained that if G 1 contains global powerful k 1 -alliances, then for every k ∈ {-∆1 -∆2 , ..., k 1 -∆2 }, γ p k (G 1 × G 2 ) ≤ γ p k1 (G 1 )n 2 . Remark 5.
Let us note that the powerful k-alliances were studied for the class of cubic graphs by Sigarreta in his thesis [START_REF] Sigarreta | Alianzas en Grafos[END_REF]. He established some relations between γ(G) and γ p k (G), k ∈ {-3, -2, -1, 0, 1}, and gave lower bounds for γ p -1 (G) and γ p 0 (G). Now, we summarize the results presented above by giving some bounds and exact values obtained for powerful k-alliance numbers for different graph classes. These results are given in the following table: [START_REF] Yero | Contribution to the study of alliances in graphs[END_REF][START_REF] Yero | Partitioning a Graph into Global Powerful k-Alliances[END_REF] Table 6: Previous results on powerful k-alliance numbers for various graph classes Concluding remarks 5. As we can see from Table 6, the most studied parameter is the global powerful (-1)-alliance number (γ p -1 (G)) and the least studied one is the powerful k-alliance number (a p k (G)). Furthermore, the general and tree graph classes are the most studied ones and the regular graphs class is the least studied one. Moreover, some parameters are not studied for all or certain graph classes. For example, the powerful 0-alliance number a p 0 (G), the upper powerful (-1)-alliance number A p -1 (G), the upper powerful 0-alliance number A p 0 (G) and the upper powerful k-alliance number A p k (G) are not studied for all graph classes (note that these three latter numbers which are not defined in the literature can be similarly defined as in the cases of defensive and offensive k-alliances). Also, the classes of bipartite graphs and line graphs are not studied for this kind of alliances. In addition, the powerful k-alliance number a p k (G) is studied just in the case of Cartesian product graphs. Besides, in the regular (resp. Cartesian product) graphs class, just the global powerful (-1)-alliance number γ p -1 (G) (resp. a p k (G) and γ p k (G)) is (resp. are) studied. On the other hand, γ p 0 (G) and γ p k (G) are not investigated for several graph classes such as the complete and complete bipartite graphs.

Powerful k-alliance numbers Graph classes a p -1 (G) γ p -1 (G) γ p 0 (G) a p k (G) γ p k (G) G • a p -1 (G) ≤ n -ρ(G) [6] • γ p -1 (G) ≥ n(δ n +1) δ 1 +δ n +2 [6] • γ p -1 (G) ≥ γ(G) + δ n 2 [6] • γ p -1 (G) ≤ n - δn 2 [6] • γ p -1 (G) ≥ 2m+n 4(λ+1) [47] • γ p -1 (G) ≥ √ 2m+n 2 [47] • γ p 0 (G) ≥ m+n 2λ+1 [47] • γ p 0 (G) ≥ 1+ 1+8(n+m) 4 [47] •     8m+4n(k+2)+(k+1) 2 +k+1 4     ≤ γ p k (G) ≤ n - δn -k 2 [27, 54] • γ p k (G) ≥ δ 1 +k+1 2 [5] • γ p k (G) ≥ 2m+n(k+2) 4λ-2k+2 [54] T • a p -1 (T ) ≤ n -γ(T ) [6] • a p -1 (T ) ≤ n+3 2 [6] • |S| ≥ 3n+8c-2 12 [43] • γ p -1 (T ) ≥ n+2 4 [43, 54] • |S| ≥ 2n+4c-1 5 [43] • γ p 0 (T ) ≥ 2n+7 5 [43, 54] • |S| ≥ n(k+4)+8c-2 2(5-k) [54] P • γ p -1 (P ) ≥ 2m+n+48 28 [43] • |S| ≥ 2m+n-8f +16 12 [43] • |S| ≥ 2m+n+24 20 [20, 21] • γ p 0 (P ) ≥ m+n+24 13 [43] • |S| ≥ m+n-4f +8 5 [43] • |S| ≥ m+n+12 9 [20, 21] • γ p k (P ) ≥ 2(m+24)+n(k+2) 2(13-k) [54] • |S| ≥ 2(m-4f +8)+n(k+2) 2(5-k) [54] K n • a p -1 (K n ) = n 2 [6] • γ p -1 (K n ) = n 2 [6, 27, 54] K r,s • a p -1 (K r,s ) = min{r + s 2 , r+1 2 + s+1 2 } [6] • γ p -1 (K r,s ) = min{r + s 2 , r+1 2 + s+1 2 } [6, 27, 54] R δ • γ p -1 (R δ ) ≥ n 2 [6] C n • a p -1 (C n ) = 2n 3 [6] • γ p -1 (C n ) = 2n 3 [6] • γ p -1 (Cn) = n -n 3 [27, 54] Pn • a p -1 (Pn ) = 2n 3 [6] • γ p -1 (Pn ) = 2n 3 [6] • γ p -1 (P n ) = n -n 3 [27, 54] G 1 × G 2 • a p k (G 1 × G 2 ) ≤ a p k 1 (G 1 )a p k 2 (G 2 ) [64, 70] • γ p k (G 1 × G 2 ) ≤ γ p k 1 (G 1 )n 2

Study of powerful k-alliance partition numbers

Like partitioning of graphs into defensive k-alliances or into offensive k-alliances, the partitioning of graphs into powerful k-alliances is also studied in the literature. There are two parameters of the partitioning of graphs into powerful k-alliances which are defined as follows: For any graph G = (V, E), the (global) powerful k-alliance partition number of G, (ψ gp k (G)) ψ p k (G), k ∈ {-δ 1 , ..., δ 1 -2}, is defined to be the maximum number of sets in a partition of V such that each set is a (global) powerful k-alliance [START_REF] Yero | Contribution to the study of alliances in graphs[END_REF][START_REF] Yero | Partitioning a Graph into Global Powerful k-Alliances[END_REF]. We say that a graph G is partitionable into (global) powerful k-alliances if (ψ gp k (G) ≥ 2) ψ p k (G) ≥ 2. In this subsection, we present theoretical results obtained for the powerful k-alliance partition numbers. We give bounds and/or exact values for these parameters in general graphs and Cartesian product graphs, together with some results concerning partitions into boundary powerful k-alliances.

General graphs

Yero [START_REF] Yero | Contribution to the study of alliances in graphs[END_REF] and Yero and Rodríguez-Velázquez [START_REF] Yero | Partitioning a Graph into Global Powerful k-Alliances[END_REF] studied the partitioning of graphs into global powerful k-alliances and established several results. They showed that, if there are two different sets in Π r (G) (a partition of a graph G into r dominating sets) such that one of them is a defensive k-alliance and the other one is an offensive (k + 2)-alliance, then k ≤ 1 -r. From this result, there are two direct and useful consequences [START_REF] Yero | Contribution to the study of alliances in graphs[END_REF][START_REF] Yero | Partitioning a Graph into Global Powerful k-Alliances[END_REF]: the first one is that for k ≥ 0, no graph is partitionable into global powerful k-alliances; and the second one state that if a graph G is partitionable into global powerful k-alliances, then ψ gp k (G) ≤ 1 -k. Note that this latter bound is achieved for instance for the complete graph, which can be partitioned into two global powerful (-1)-alliances [START_REF] Yero | Contribution to the study of alliances in graphs[END_REF][START_REF] Yero | Partitioning a Graph into Global Powerful k-Alliances[END_REF]. Furthermore, Yero [START_REF] Yero | Contribution to the study of alliances in graphs[END_REF] and Yero and Rodríguez-Velázquez [START_REF] Yero | Partitioning a Graph into Global Powerful k-Alliances[END_REF] proved that for a graph G of order n, minimum degree δ n and maximum degree δ 1 , if G is partitionable into global powerful k-alliances then ψ gp k (G) ≤ δ1+δn+2 δn+k+2 . They noted that this bound is attained, for instance, for the complete graph G = K n where ψ gp -1 (G) = 2, or for the circulant graph G = CR(3t, 3) for which ψ gp . This bound is attained, for instance, for the circulant graph G = CR(10, 2) for which ψ gp -4 (G) = 5 as given in [START_REF] Yero | Contribution to the study of alliances in graphs[END_REF][START_REF] Yero | Partitioning a Graph into Global Powerful k-Alliances[END_REF].

Cartesian product graphs

Yero in his thesis [START_REF] Yero | Contribution to the study of alliances in graphs[END_REF] and Yero and Rodríguez-Velázquez [START_REF] Yero | Partitioning a Graph into Global Powerful k-Alliances[END_REF] studied the partitioning of Cartesian product graphs into (global) powerful k-alliances. They showed that for a graph G i = (V i , E i ) of maximum degree ∆i , i ∈ {1, 2}, if G i is partitionable into r i powerful k i -alliances, then the graph G 1 × G 2 is partitionable into r = r 1 r 2 powerful k-alliances, for every k ∈ {-∆1 -∆2 , ..., min{k 1 -∆2 , k 2 -∆1 }}. Furthermore, they obtained that ψ p k (G 1 × G 2 ) ≥ ψ p k1 (G 1 )ψ p k2 (G 2 ). Moreover, they established that if G 1 is partitionable into global powerful k 1 -alliances, then for every k ∈ {-∆1 -∆2 , ..., k 1 -∆2 }, ψ gp k (G 1 × G 2 ) ≥ ψ gp k 1 (G 1 ), and they remarked that if G 1 = CR(3t, 3) and G 2 = K 2 , then ψ gp -5 (G 1 × G 2 ) = 3 = ψ gp -4 (G 1 ).

Partitioning a graph into boundary powerful k-alliances

Yero [START_REF] Yero | Contribution to the study of alliances in graphs[END_REF] studied the partitioning of graphs into boundary powerful k-alliances and he established that every graph can be partitioned into two global boundary powerful (-1)-alliances. Thus he proved that, for a graph G = (V, E): i) S ⊂ V is a global boundary powerful (-1)-alliance in G, if and only if, S is a global boundary powerful (-1)-alliance in G.

ii) If G can be partitioned into two global boundary powerful k-alliances, then k = -1.

Furthermore, he obtained lower and upper bounds concerning the cardinality of every global boundary powerful (-1)-alliance in terms of the order of the graph G, its minimum degree δ n and its maximum degree δ 1 . Thus, he showed that if S is a global boundary powerful (-1)alliance in G, then n(δ n +1) δ 1 +δ n +2 ≤ |S| ≤ n(δ 1 +1) δ 1 +δ n +2 , and he noted that if S is a global boundary powerful (-1)-alliance in a δ-regular graph, then |S| = n 2 . Moreover, Yero [START_REF] Yero | Contribution to the study of alliances in graphs[END_REF] proved that if S ⊂ V is a global boundary powerful (-1)-alliance in a graph G = (V, E) and C is a cut set with one endpoint in S and the other endpoint outside of S, then 2m+n 2δ1+2 ≤ |S| ≤ 2m+n 2δn+2 and |C| = 2m+n 4 . This result leads to obtain the previous value of |S| concerning the δ-regular graph. On the other hand, he obtained the result which shows the relationship between the algebraic connectivity of a graph, its Laplacian spectral radius and the respective cardinalities of the two global boundary powerful (-1)-alliances S and S which form a partition of the graph. Thus, he proved that if S ⊂ V is a global boundary powerful (-1)-alliance in G, then without loss of (2)

Note that several examples have been presented in [START_REF] Slimani | Saturated boundary k-alliances in graphs[END_REF] for which these bounds are reached. For instance, all the bounds given in (1) are attained at the same time for the complete graph K 2 , and the upper bound m given in (2) is reached when the graph G is constituted of not adjacent edges and every edge links a vertex of S with a vertex of S. Now, we summarize the results presented above by giving some bounds obtained for powerful k-alliance partition numbers in general and Cartesian product graphs. These results are given in the following table: 

Conclusion and discussion

Since the beginning of the last decade, when alliances in graphs were first introduced, much research has been focussed on studying mathematical properties of various parameters of different types of k-alliances in graphs. In this paper, we have surveyed and discussed the principal known results obtained on defensive, offensive and powerful k-alliances by classifying them according to the different graph classes where the parameters are investigated. From this survey, we draw the following conclusions:

• By considering the classification criterion "graph class" in the study of the three kinds of k-alliances, we deduce that: the most studied graph classes on which there are more results are general, tree, planar and cartesian product graphs, and the least studied graph classes on which there are less results are cycle, path and line graphs.

• Several k-alliance numbers are defined in the literature. Some of them are received more attention and have been studied for various graph classes, such as γ d -1 (G), γ o k (G) and γ p -1 (G). However, there are some parameters which are not studied for all graph classes, such as • There are more studies and then more results obtained on defensive k-alliances than on offensive (powerful) k-alliances.

A o 1 (G), A o 2 (G)
• There are remarkable relationships between the different parameters of the theory of domination and the alliances in graphs.

• Some relationships are established between the global offensive k-alliance partition number and a coloration parameter namely the chromatic number. In this sense an extensive study which includes other parameters can be interesting.

• There are many investigations in the sense of theoretical aspects of k-alliances, but there are several prospects and progress to carry out in the algorithmic and computational side.

• The alliances with their important properties are used in interesting applications in several areas. As prospects, in practice there are many problems which have specifical structures where the mathematical properties of the alliances can be involved and contribute to solve these problems.

• The definition of the defensive (-1)-alliance which takes into consideration the defense of a single vertex is generalized by Brigham et al. [START_REF] Brigham | Security in graphs[END_REF] to the concept of secure sets in order to forestall any attack on the entire alliance or any subset of the alliance. In this sense, it would be interesting to consider k-secure sets as extensions of defensive k-alliances and also to study the partitioning of graphs into k-secure sets. In this setting, motivations with practical examples would be needed.

2 ,

 2 G) and ψ gd 2l-1 (G) = ψ gd 2l (G). Analogously, if every vertex of G has odd degree and k is even, k = 2l, then every defensive (2l)-alliance in G is a defensive (2l + 1)-alliance and vice versa. Hence, in such a case,ψ d 2l (G) = ψ d 2l+1 (G)and ψ gd 2l (G) = ψ gd 2l+1 (G). Furthermore, they established a relation between the defensive k-alliance numbers a d k (G) and ψ d k (G) by showing that their product is bounded by the order of graph, that is a d k (G)ψ d k (G) ≤ n. From this relation, they deduced that the lower bounds on a d k (G) lead to upper bounds on ψ d k (G). For example, from the lower bound given for a d k (G) by Rodríguez-Velázquez et al. [48], a d k (G) ≥ δ n +k+2 they concluded that the defensive k-alliance partition number is bounded upperly by ψ d k (G) ≤ 2n δ n +k+2 , δ n + k even, 2n δn+k+3 , δ n + k odd. Like the defensive k-alliance partition number, the global defensive k-alliance partition number is obtained from the relation between γ d k (G) and ψ gd k (G), and lower bounds of γ d k (G). The relation between γ d

  and others. These parameters are defined as follows: The offensive 1-alliance number known as offensive alliance number a o 1 (G) (resp. offensive 2-alliance number known as strong offensive alliance number a o 2 (G)) is the minimum cardinality among all (critical) offensive 1-alliances (resp. offensive 2-alliances) of G [25, 39]. The global offensive 1alliance number γ o 1 (G) (resp. global offensive 2-alliance number γ o 2 (G)) is the minimum cardinality among all (critical) global offensive 1-alliances (resp. global offensive 2-alliances) of G [45]. The upper offensive 1-alliance number A o 1 (G) (resp. upper offensive 2-alliance number A o 2 (G)) is the maximum cardinality among all critical offensive 1-alliances (resp. offensive 2-alliances) of G [39]. The offensive k-alliance number a o k (G) is the minimum cardinality among all (critical) offensive k-alliances of G [51, 52]. The global offensive k-alliance number γ o k (G) is the minimum cardinality among all (critical) global offensive k-alliances of G

2nδ1 δ 1

 1 +2δ n +k . These bounds are reached for the circulant graph CR(n, 2) which contains a partition into two global offensive 0-alliances S and S, such that |S| = n 3 and | S| = 2n 3

- 4 (

 4 G) = 3. Moreover, they obtained an other upper bound in terms only of k and the order n. Thus, they showed that if G is partitionable into global powerful k-alliances, then ψ gp k (G) ≤ √ 8n+(2k-1) 2 -2k+1 4

  and a p 0 (G), and other ones are not studied for certain graph classes, such asA d k (G), a o k (G) and a p k (G).• The k-alliance partition numbers have been studied on much less graph classes contrary to the k-alliance numbers. Moreover, only the partition numbers with index k are investigated in the case of partitioning of graphs into offensive (powerful) k-alliances.
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  1. In this case, we say that every vertex in ∂(S) is vulnerable to possible attack by vertices in S. An offensive alliance S is called strong if for every vertex v ∈ ∂(S), deg S (v) > deg S (v) + 1. The alliances that are both defensive and offensive are called powerful alliances. That is, S ⊂ V is a powerful alliance if for every vertex v ∈ N [S], |N [v] ∩ S| ≥ |N [v] ∩ S|. An alliance S of any type (defensive, offensive or powerful) is called global if S is a dominating set, and it is called critical or minimal if no proper subset of S is an alliance of the same type.

Table 1 :

 1 Previous results on defensive k-alliance numbers for various graph classes, with k ∈ {-1, 0}

	Defensive k-alliance numbers

Table 2 :

 2 Furthermore, the general and tree graph classes are the most studied ones and the cycle and path graph classes are the least studied ones. Moreover, some parameters are not studied for certain graph classes. For example for the planar graphs class, several defensive k-alliance numbers are not studied such as a d

	-1 (P ), a d k (P ) and A d k (P ). Besides, for the regular graphs class, all the defensive k-alliance numbers with index k namely a d k (R δ ), γ d k (R δ ) and A d k (R δ ) are not studied. However, the upper defensive k-alliance numbers are not studied for several graph
	classes. In particular, for A d k (G) just some results are given in the case of general and complete (bipartite) graph classes.

Previous results on defensive k-alliance numbers for various graph classes

Concluding remarks 1. As we can see from Tables

1 and 2

, the defensive k-alliance numbers are studied for various graph classes. From this, we note that the most studied parameter is the global defensive (-1)-alliance number (γ d -1 (G)) and the least studied one is the upper defensive k-alliance number (A d k (G)).

  obtained that the global defensive k-alliance They established other bounds for the global defensive k-alliance partition number. Thus, they showed that for every graph G partitionable into global defensive k-alliances, ψ gd k

	partition number is bounded upperly by ψ gd k (G) ≤ δ1-k 2	+ 1.

Table 4 :

 4 alliance number (γ o k (G)) and the least studied one is the offensive k-alliance number (a o k (G)). Furthermore, the general and tree graph classes are the most studied ones and the line graphs class is the least studied one. Moreover, some parameters are not studied for all or certain graph classes. For example, the upper offensive 1-alliance number A o 1 (G) and the upper offensive 2alliance number A o 2 (G) are not studied for all graph classes. Besides, for the line graphs class, only the global offensive k-alliance number γ o k (L(G)) is investigated. However, for the global offensive 2-alliance number γ o 2 (G) there is no result in the case of cycle, path and Cartesian product graph classes.

Previous results on offensive k-alliance numbers for various graph classes

Concluding remarks 3. As we can see from Table

4

, the most studied parameter is the global offensive k-

Table 5 :

 5 Previous results on offensive k-alliance partition numbers for some graph classesConcluding remarks 4. As we can see from Table5, and comparing with Table4, we deduce that the offensive k-alliance partition numbers are studied on much less graph classes contrary to the offensive k-alliance numbers. Furthermore, we note that only the offensive partition numbers with index k namely ψ o k (G) and ψ go k (G) that are investigated. Between these two parameters, the global offensive k-alliance partition number ψ go k (G)) is the most studied one. Moreover, there are only three graph classes which are addressed in this case and the general class is the most studied one.

  [START_REF] Brigham | Powerful alliances in graphs[END_REF] and P is a triangle-free graph, then γ p

		-1 (P ) ≥ 2m+n+32 20	.
	iii) If n > 4, then γ p 0 (P ) ≥ m+n+24 13	.
	iv) If n > 4 and P is a triangle-free graph, then γ p 0 (P ) ≥ m+n+16 9	.
	Furthermore, they showed that if S is a global powerful (-1)-alliance (resp. 0-alliance) in a general
	graph G such that the subgraph S is planar connected with f faces, then |S| ≥ 2m+n-8f +16 12
	(resp. |S| ≥ m+n-4f +8 5	

  (resp. µ * ) is the algebraic connectivity (resp. the Laplacian spectral radius) of the graph G. Recently, Slimani and Kheddouci[START_REF] Slimani | Saturated boundary k-alliances in graphs[END_REF] have introduced a new concept of saturated vertices and studied the saturated boundary k-alliances in graphs. They have proved that S ⊂ V is a minimal global boundary powerful (-1)-alliance in G, if and only if, S is a minimal global boundary powerful (-1)-alliance in G. Furthermore, as a main result, they have obtained tight bounds for the cardinality of every minimal global boundary powerful (-1)-alliance in terms only of the order and the size of graph by taking the two cases where S is connected or not. Hence, they showed that for a

	generality, n 2 +	n 2 (µ-1)-2nm 4µ	≤ |S| ≤ n 2 +	n 2 (µ * -1)-2nm 4µ *	and n 2 -	n 2 (µ * -1)-2nm 4µ *	≤
	| S| ≤ n 2 -	n 2 (µ-1)-2nm 4µ , where µ max{ -1 + √ 1 + 4n 2 , 1 +	√ 1 + 8m 4	} ≤ |S| ≤ min{	2n + 1 -2 √ 4n + 1	,	m + 3 4	}.	(1)
	ii) If S is not connected, the relation becomes:
			max{	1 +	√ 4n -7 2	,	5 +	√ 8m -7 4	} ≤ |S| ≤ min{	2n + 1 -2 √ 4n + 1	, m}.

graph G = (V, E) with |V | = n and |E| = m, if S ⊂ V is a minimal global boundary powerful (-1)-alliance, then: i) If S is connected, one has:

Table 7 :

 7 Previous results on powerful k-alliance partition numbers for some graph classesConcluding remarks 6. As we can see fromTable 7, and comparing with Table 6, we deduce that the powerful k-alliance partition numbers are studied on much less graph classes contrary to the powerful k-alliance numbers. Furthermore, we note that only the powerful partition numbers with index k namely ψ p k (G) and ψ gp k (G) that are investigated. Between these two parameters, the global powerful k-alliance partition number ψ gp k (G) is the most studied one. Moreover, there are only two graph classes which are addressed in this case, for the general graphs only ψ gp

k (G) is studied and for the Cartesian product graphs both ψ p k (G) and ψ gp k (G) are studied.