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Maxime Salvoa, Jérôme Sercombea, Jean-Claude Ménardb, Jérôme Juliena,
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Abstract

This work presents an experimental characterization of uranium dioxide
(UO2) in compression under Reactivity Initiated Accident (RIA) conditions.
Pellet samples were tested at four temperatures (1100, 1350, 1550 and 1700◦C)
and at a strain rate varying over 4 decades (10−4 - 10−3 - 10−2 - 10−1/s). The
experimental results show that the stress-strain curves cannot be fitted with
a unique power law as it is the case at smaller strain rates (10−9 − 10−5/s).
A strain-hardening also appears in most of the tests. The microstructural
observations show a pronounced evolution of the porosity at the pellet cen-
ter during the tests. A hyperbolic sine model which accounts for volume
variations (pore compressibility) was therefore proposed to describe the be-
haviour of UO2 on a large range of temperatures (1100-1700◦C) and strain
rates (10−9-10−1/s). The Finite Element simulations of the compression tests
lead to results (maximum stress, axial and hoop strain distribution, poros-
ity distribution) in good agreement with the measurements. The model was
then assessed on a database of more than two hundred creep tests.

Introduction

The Reactivity Initiated Accident (RIA) scenario postulates the ejection of
a control rod bundle with a very fast increase of power in the neighbouring
fuel rods (Energy deposition ∼ 100 cal/g UO2 in 30-70 ms). In the 1990s,
the use of Mixed OXide fuel (MOX) and of high burnup fuels in reactors led
to the development of experimental programs to determine the impact of a
RIA on these products [Fuketa et al., 2001, Schmitz and Papin, 1999,Papin
et al., 2007].

The interpretation of RIA tests relies on the development of computer
codes able to reproduce the thermomechanical behaviour of fuel rods during
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the transient [Geelhood, 2010, Papin et al., 2007, Romano et al., 2006, Ser-
combe et al., 2010,Suzuki et al., 2006]. To improve the codes, it is essential
to have behaviour models and failure criteria for the cladding [Cazalis et al.,
2007] as well as for the fuel. The development of constitutive models for
the fuel should be based on a laboratory characterization under appropriate
conditions: temperature 1000-2700◦C, strain rates up to 1/s.

The mechanical behaviour of UO2 at high temperatures (1000− 2000◦C)
has been extensively studied by creep experiments [Dherbey et al., 2002,
Guérin, 1975,Monerie and Gatt, 2006,Radford and Terwilliger, 1975,Sauter
and Leclercq, 2003,Seltzer et al., 1971]. Two creep deformation mechanisms
have been identified depending on the stress and temperature level [Seltzer
et al., 1971,Ashby, 1972] : diffusion creep and dislocation creep. These mech-
anisms are generally described by power-laws with Arrhenius temperature-
dependent terms. Diffusion creep is dominant in the low stress-region. The
strain rate varies linearly with the stress and is proportional to the recipro-
cal of the grain size squared. Dislocation creep is dominant at high stresses.
The strain rate varies as stress to the power 3 to 8 and is generally indepen-
dent of grain size. Recently, these creep mechanisms have been embedded in
a three-dimensional macroscopic formulation where the volume variation of
the material is taken into account [Monerie and Gatt, 2006].

Contrary to the low strain rate domain characterized by creep tests, little
is known on the behaviour of uranium dioxide at high strain rates. The few
experimental studies available show that the two creep deformation mecha-
nisms are no longer adequate when the strain rates exceed 10−3/s [Guérin,
1975, Roberts, 1974, Tachibana et al., 1976]. In this paper, the definition
of a constitutive model for uranium dioxide suitable for a broad range of
strain rates (10−9 − 10−1/s) and temperatures (1100− 1700◦C) is presented.
The results from a dedicated series of strain-rate controlled compression tests
at high temperatures are first detailed. The evolution of the specimen mi-
crostructure is assessed by Scanning Electron Microscopy (SEM). Finite El-
ement simulations of the strain-rate controlled tests and of more than 200
creep tests are then analyzed to assess the performance of the constitutive
model.

1 Experiments

1.1 Characterization of test samples

The samples used in this study are commercial uranium dioxide sintered
cylindrical pellets of approximately 8.2 mm in diameter (d0) and 12 mm in

2



height (h0). The sintering process ensured that the Oxygen/Uranium ratio
was close to 2 (stoichiometry). Hydrostatic weighing in alcohol was used
to estimate the relative density of the material (theoretical density 10.96
g/cm3): 96.4% on average with a standard deviation of 0.3%.

Some samples were then sawed, the surfaces coated with an epoxy resin
and polished prior to their observations by Scanning Electron Microscopy
(SEM), see Figure 1. The polishing roughness is gradually decreased to 0.25
µm (diamond pastes) and there is a final step involving a colloidal solution of
silica (0.04 µm). This careful polishing of the cross-section aims at limiting
as much as possible the damage of the samples during the preparation.

From the SEM images, the average grain size was manually found close
to 9 µm (calculated as the average of the grains situated on 4 intersecting
lines). The commercial software ProAnalysis® was used to estimate the pore
size distribution from the images. First, the grey images were reprocessed
to generate binary images where pores appear white and the matrix black.
By estimating the number of white pixels and the total number of pixels,
the surface porosity of the material was assessed. The pore size distribution
was obtained by converting each white zone into an equivalent disk with a
specific diameter.

The surface porosity appeared fairly uniform in the samples. On average,
it reached 5.2% with a standard deviation of 0.6%. Half of the pore volume
was formed of pores with a diameter less than 3 µm. These fine pores were
mostly located in the grains. The larger pores were in majority at the grain
boundaries. The maximum pore size observed on the micrograph of Figure 1
is ∼30 µm, consistent with the maximum grain size. The statistics are based
on six measures performed on two different samples. The observation area
(500 µm by 750 µm) is important compared to the maximum grain and pore
size (∼ 30 µm).

1.2 Test matrix and procedure

The testing equipment is shown schematically in Figure 2. Mechanical tests
on the fuel pellets have been performed with an Instron 1185 compression test
machine with a maximum load capacity of 50 kN. The compression machine
is equipped with an oven able to heat the fuel to a maximum temperature of
1800◦C. The gas composition in the oven is controlled (95% Ar, 5% H2) in
order to prevent any stoichiometry change during the tests.

The focus of this work being strain rate effects, strain-rate driven tests
have been carried out on the pellet samples. In the tests, the displacement
rate of the cross head is kept constant until a final discharge. The tests were
performed at four prescribed temperatures: 1100, 1350, 1550 and 1700◦C.

3



At each temperature, four samples were tested with a displacement rate
increased by decades from a minimum of 0.1 mm/min until a maximum of 100
mm/min (leading to a corresponding strain rates between 10−4/s and 10−1/s).
Some of the tests were doubled or tripled to check the reproductibility.

The testing procedure reads as follows. First, the sample is placed be-
tween the two tungsten end-plates, see Figure 2, right. A small load not
exceeding 250 N (5 MPa) is then applied. The gas composition in the oven is
checked. The temperature is then increased manually until it reaches 200◦C.
This manual step is followed by a ramp at 20 ◦C/min until the prescribed
temperature. These conditions are maintained 2 hours in order to guaranty a
uniform temperature in the sample. The strain rate-driven loading sequence
is then applied.

During the test, the speed of the cross-head is regulated and the contraction-
elongation of the pellet is measured continuously by two extensometers in
contact with the lower and upper Tungsten plates. From these measure-
ments, the true strain εzz of the pellet is calculated according to equation
1 where the deformed height of the pellet is considered (h = h0 + ∆h with
∆h the variation in height). The axial stress σzz is estimated from the force
F measured by the load cell and from the non-deformed diameter d0 of the
pellet, see equation 2. Significant friction occurs at pellet ends which makes
section growth unlikely.

εzz = ln

(
h

h0

)
(1)

σzz = − 4F

πd20
(2)

2 Test results

2.1 Stress-Strain curves

Figure 3 illustrates the (axial) stress-strain curves obtained at the strain rates
10−3/s and 10−1/s and at all the temperatures. The general tendency for a
given strain rate is a decrease of the measured stress with temperature as
expected in strain-rate driven tests [Guérin, 1975,Tachibana et al., 1976]. A
strain hardening conversely proportional to the temperature, i.e., dσ/dε =
f(1/T ), is also apparent. In most of the tests, the axial strain reached 20%
with no apparent damage of the samples. At 1100◦C however, the tests were
interrupted because of the development of axial cracks.
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Figure 4 illustrates the (axial) stress-strain curves obtained at the two
temperatures 1350 and 1700◦C and at all the strain rates. The general ten-
dency for a given temperature is an increase of the stress with the strain
rate. A strain hardening increasing with the strain rate is also observed.
This hardening is usually attributed to an increase of the sample diameter
during the test [Guérin, 1975].

2.2 Macroscopic evolution

The importance of temperature and strain rate with respect to the samples’
damage was clearly seen in these test series. Short axial cracks (1-3 mm long,
see Figure 5) were observed on the pellets tested at 1350◦C at the highest
strain rates (10−2 and 10−1/s) and on all the pellets tested at 1100◦C. No
damage was observed during the other tests: 1350◦C and 10−4-10−3/s, 1550
and 1700◦C. Due to friction at pellet ends, the samples showed a barrel shape
with significant diameter increase at mid-height, see Figure 5. The post-test
diameter of the pellets d(z) was systematically measured at ten regularly
spaced points along three generatrices. The hoop strain axial profile εθθ(z)
was then estimated according to :

εθθ(z) = ln

(
d(z)

d0

)
(3)

A fit of the diameter axial profile with a quadratic function was then used
to estimate the post-test average diameter of the pellet dav and the volume
variation ∆V/V . Excellent correlation coefficients (> 0.99) were obtained
when fitting the diameter axial profiles due to the nearly perfect symmetry
of the deformation with respect to the mid-pellet plane. This indicates that
the positioning of the sample and the parallelism of the upper and lower
tungsten rods during the tests were correct.

In Figure 6, the maximum and average residual hoop strains (calculated
from Equation 3 with the maximum and average diameters) are plotted in
function of the residual axial strains. The latter are not identical in all
the tests. At 1100◦C, the tests were usually interrupted earlier to avoid
dispersion of the samples after cracking. In most of the tests however, the
residual axial strains exceeded 15%. The linear fit of the average hoop versus
axial strains leads a correlation coefficient very close to 1 (0.9977). In theory,
in an isotropic incompressible material subjected to a uniaxial compression,
one should have εrr/εzz = εθθ/εzz = −0.5. A small deviation from −0.5 is
observed in Figure 6 since the slope of the linear regression equals −0.4784.
This indicates that the volume of the samples decreased during the tests.
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The relative density of the pellets was systematically measured by hy-
drostatic weighing in alcohol before and after the tests. Before testing, the
average relative density was 96.4% with a standard deviation of 0.3%. The
densities of the samples loaded at 1550 and 1700◦C was found relatively in-
dependent of temperature and strain rate. On average, it was close to 97.4%
with a standard deviation less than 0.1%. It indicates that the volume of the
samples was significantly reduced (≃ 1%) during the tests. More scatter was
found concerning the densities of the samples loaded at 1100 and 1350◦C. No
clear trend with the strain rate could be seen. However, the average densities
were close to the initial density of the samples (96.4%) indicating that the
volume had not been affected too much by the tests.

2.3 Microstructure evolution

SEM image analyses were performed on all the tested samples to study the
evolution of the microstructure. The technique is described in Section 1.1.
The samples were cut along the (r, z) plane. Three different locations were
considered for SEM : the center of the pellet, the periphery of the pellet at
mid-height, the upper extremity of the pellet. The evolution of the mea-
sured surface porosity with the strain rate is given in Figure 7 for all the
temperatures.

The results show that the pore volume evolves differently during the test
depending on the location. At the top of the pellet, the porosity appears
fairly independent of the strain rate and of the temperature but presents a
considerable scatter (3.5-4.8%). Most of the values are within twice the stan-
dard deviation (0.6%) associated with the pre-test porosity (average 5.2%).

At the periphery of the sample, the post-test porosity is fairly constant
whatever the test conditions with an average value close to 3.9%. It indicates
that some pore volume was lost during the thermal and loading sequences.

The microstructure of the pellet center is also modified during the tests.
First, the measured surface porosities are always less than 4%. They also
seem to increase with the strain rate. The evolution with temperature is less
obvious. At 10−4/s, the average porosity is equal to 2.4%. Slightly greater
average values (2.8 - 3%) are obtained at the other strain rates. These results
show that the porosity at the center of the specimen was considerably reduced
during the tests (by 1 - 2%). The pore size distributions of Figure 8 confirm
this evolution. Most of the pores in diameter greater than 4 µm disappeared
during the tests at 1700◦C. The evolution of the grain size is furthermore
presented in Figure 9. Consistent with the pore evolution, a flattening of
the grains apparently took place at the pellet center, but not at the pellet
periphery and top extremity. The arrow on the right of Figure 9 gives the
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compression axis and the direction in which the grain diameter has decreased.
These results show that the densification of the samples measured by hy-

drostatic weighing in alcohol is not homogeneous but preferentially occurred
at the center of the pellet. As shown later, this is due to the non-homogeneous
stress distribution in the pellet resulting from friction at pellet ends. It may
be noticed that the grain boundaries were uncracked in spite of the high
level of strain (20%) at the end of the tests. This is surprising since grain
boundary cracking related to sliding at the grain interfaces has been observed
after creep tests performed at similar temperatures and strain levels [Dher-
bey et al., 2002]. The lack of grain boundary fragmentation in our tests
is certainly due to the accommodation of stresses by pore compression and
grain plasticity. The samples tested by Dherbey et al. [Dherbey et al., 2002]
were significantly denser than ours (relative density of more than 98%) and
hence probably less prone to stress accomodation by pore compression.

2.4 Power-law fit

The strains of uranium dioxide during creep tests, bending tests or strain-rate
driven tests are usually described by power laws of the following form:

ε̇ = Kσne−
Q
RT (4)

where K is a constant, σ the applied stress, n the stress exponent, Q an
activation energy, T the temperature and R = 8.314 kJ/mol/K the universal
gas constant. K, Q and n depend on the stress level and hence on the creep
mechanism considered (diffusion or dislocation creep). A review of current
values for these parameters was done by Seltzer [Seltzer et al., 1971] and
more recently by Monerie and Gatt [Monerie and Gatt, 2006].

In our experiments, the pronounced hardening requires the definition of
an arbitrary stress level if one wants to apply a power law. In the following
interpretation of the test data, the value of the stress at a strain of 2% was
used to calculate the parameters of the power law. The stress exponent n is
deduced for each temperature from Figure 10 where the stresses at 2% strain
are plotted in function of the strain rate (log-log scale). The linear regressions
did not all lead to the same value of n regardless of the temperature but to
exponents between 16 and 25. Similar values have already been obtained in
tests performed at moderate to high strain rates, i.e., 10−3-10−2/s [Guérin,
1975,Tachibana et al., 1976]. They are far from the 3 to 7 exponents identified
from creep or bending tests. These high values show that the material tends
to be less viscous as the strain rate increases.

To estimate the activation energy Q, we plot ln ε̇/σn versus 1/RT as
shown in Figure 11. A stress exponent n of 18 is used. The slope of the
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linear regression gives an activation energy of 549 kJ/mol. Values of the
same order were already obtained ( [Guérin, 1975] 462 kJ/mol, [Dherbey
et al., 2002] 524 kJ/mol, [Bohaboy et al., 1969] 552 kJ/mol) from creep or
strain-rate driven tests. They are usually attributed to a dislocation creep
mechanism [Seltzer et al., 1971] which is consistent with the high stress (> 60
MPa) and temperature level in our tests. They are close to the activation
energy of uranium self-diffusion (Q = 577 kJ/mol).

These results confirm that a single power law is not adequate to model
the strains of uranium dioxide over the whole range of strain rates it can
encounter during a RIA. As suggested by several authors, the stress exponent
n ∼ 16 − 25 obtained at high strain rates and high stresses might be the
signature of a Peierls mechanism with no specific microstructural features
[Nadeau, 1969,Tachibana et al., 1976,Canon et al., 1971].

In the next Section, we will introduce a constitutive model able to describe
UO2 behaviour in the moderate to high strain rate range.

3 Modelling and simulation

3.1 Constitutive model

In 2002, Dherbey et al. [Dherbey et al., 2002] proposed an alternative model
for uranium dioxide creep, based on a unique hyperbolic sine law. The orig-
inal idea came from the fact that diffusion creep was not present in coarse
grain samples (grain size 36 µm). The usual separation in two creep mech-
anisms appeared therefore more apparent than real. With the hyperbolic
sine law, they were able to reproduce their data over the whole range of
stresses (10-80 MPa) and temperatures (1365 - 1575◦C) considered. Re-
cently, Soulacroix et al. [Soulacroix et al., 2013] successfully used a similar
function to fit the test data of Guérin [Guérin, 1975] and particularly the
strain rate dependency.

In 2006, Monerie and Gatt [Monerie and Gatt, 2006] introduced material
volume variation in the standard two power laws model. The hollow sphere
model of Michel and Suquet [Michel and Suquet, 1992] was considered to
account for pore compressibility. The formulation of the model is based on
the definition of a quadratic macroscopic potential Ψ dependent on the first
and second invariants of the stress tensor.

In our experiments, a non constant stress exponent n and densification
(negative pore volume evolution) were simultaneously observed. We therefore
propose here to use a hyperbolic sine law to cover a large stress-strain rate
domain and add pore compressibility. To this end, the following macroscopic
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potential is defined:

Ψ(σm, σeq, f) = σ0Ke−
Q
RT cosh

(
Σ

σ0

)
(5)

where Σ =
√

ασm
2 + βσeq

2 is an equivalent stress which depends on
the hydrostatic stress σm = 1

3
σ : 1 and on the second invariant of the

stress tensor σeq =
√

3
2
s : s (with σ the stress tensor, 1 the unit tensor and

s = σ− σm1 the deviatoric stress tensor). f is the porosity volume fraction.
The two parameters α(f) and β(f) define the relative contribution of the
hydrostatic σm and of the deviatoric stresses σeq to the strain rate. σ0 and
K are constant parameters. Q is the activation energy. The macroscopic
viscoplastic strain rate tensor ε̇vp is given as follows by the derivation of
equation 5 with respect to stress:

ε̇vp =
∂Ψ

∂σ
= Ke−

Q
RT sinh

(
Σ

σ0

)(
1

3
α
σm

Σ
1+

3

2
β
s

Σ

)
(6)

As proposed by Monerie and Gatt [Monerie and Gatt, 2006], the following
mass balance is used to describe porosity volume fraction evolution:

ḟ = (1− f)ε̇vp : 1 = (1− f)Ke−
Q
RT sinh

(
Σ

σ0

)
α
σm

Σ
(7)

3.2 Parameters identification

The model is completely defined if the five parameters K, Q, σ0, α and β are
known. A rough estimation can be obtained assuming that the compression
tests led to a homogeneous stress state in the samples and that most of the
prescribed strain is viscoplastic (neglecting elastic strains). In this case, the
stress tensor has one component σzz = −σ with σ > 0 the magnitude of the
axial stress (σm = −1

3
σ and σeq = σ). By simple mathematics, one can show

that the axial strain rate ε̇zz is related as follows to the stress σ:

ε̇zz ≈ ε̇vpzz = −K
α + β√
1
9
α + β

e−
Q
RT sinh

σ
√

1
9
α + β

σ0

 (8)

In a first approximation, the pore compressibility can also be neglected (α = 0
and β = 1) leading to the following simple expression:

ε̇zz = −Ke−
Q
RT sinh

(
σ

σ0

)
(9)
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From the tests results presented in Section 2 (stress at 2% strain, tempera-
ture, strain rate), the three parameters K, σ0 and Q of Equation 9 can be
readily obtained using a standard Excel spreadsheet with a numerical solver.
The initialization of the parameters is based on an exponential fit of the
strain rate - stress datapoints (σ0 ≈ 6 MPa) and on the activation energy
obtained previously from the power law fit (≈ 500 kJ/mol). In Figure 12,
the calculated versus experimental stresses are plotted. The dotted lines in-
dicate the ±10 MPa interval. With K = 29130/s, σ0 = 5 MPa and Q = 482
kJ/mol, most of the calculated stresses fall in the ±10 MPa interval (Figure
12 top). Only the 1100◦C data points are out of the domain. This partic-
ular behaviour at low temperatures and high stresses has been ascribed by
Dherbey and al. [Dherbey et al., 2002] to an additional sort of barrier to
the movement of dislocations, i.e., a Peierls force or lattice resistance [Ashby,
1972]. It can be accounted for in the model by a slight modification of the
activation energy Q with temperature:

Q = max(482; 876− 0.0025T ) kJ/mol (10)

Figure 12 (bottom) shows the satisfactory agreement between calculated and
experimental stresses obtained with this expression for the activation energy.
At 1100◦C, Q = 546 kJ/mol. This value remains consistent with a disloca-
tion based creep mechanism (Q = 480 - 580 kJ/mol as discussed in section
2.4). The extrapolation of Equations 9 and 10 to smaller temperatures leads
to increasing stresses with decreasing temperatures, as obtained in the ex-
periments of Guérin [Guérin, 1975] (600, 800, 900 and 1100◦C). At 25◦C, a
maximum stress ∼ 1000 MPa is calculated, consistent with the compression
strength of non heated uranium dioxide measured by Igata and Domoto [Igata
and Domoto, 1973].

The two remaining coefficients α and β can be estimated by analogy
with the compressibility included in the power law model of Monerie and
Gatt [Monerie and Gatt, 2006]. Assuming again that the compression test
led to a uniform stress state in the samples but this time without neglecting
pore compressibility, equation 7 reduces to:

ḟ = −(1− f)K
α√

1
9
α + β

e−
Q
RT sinh

σ
√

1
9
α + β

σ0

 (11)

Comparing this expression to equation 8 for the strain rate leads to:

ḟ = (1− f)
α

α + β
ε̇zz (12)
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The rate of porosity evolution in a compression test depends directly on the
applied strain rate (neglecting elastic strains).

The formulation proposed by Monerie and Gatt [Monerie and Gatt, 2006]
is based on a micro-macro approach. Uranium dioxide is considered as an
incompressible isotropic matrix with randomly distributed pores. The com-
pressibility of the pores explains the volume variation of the material at the
macroscopic scale. The behaviour of the incompressible matrix is described
by power laws similar to equation 4. The hollow sphere model of Michel
and Suquet [Michel and Suquet, 1992] is used to define the parameters of
the macroscopic potential from which the viscoplastic strain rate tensor is
derived. The equivalent stress Σ in their model takes the following form:

Σ =

√
9

4
Aσm

2 +Bσeq
2 (13)

where A and B are given in function of the porosity f and of the stress
exponent n of the power law by:

A(f) =
(
n
(
f− 1

n − 1
))− 2n

n+1
(14)

B(f) =

(
1 +

2

3
f

)
(1− f)−

2n
n+1 (15)

The parameters A(f) and B(f) ensure that the incompressible viscoplastic
behaviour of the matrix is recovered when the porosity tends to zero (A(f) →
0 when f → 0 and B(f) → 1 when f → 0). The formalism proposed
by Monerie and Gatt [Monerie and Gatt, 2006] leads, in case of a uniaxial
compression test, to the following expression for the porosity evolution rate:

ḟ = (1− f)
A

A+ 4
9
B
ε̇zz (16)

The comparison of equations 12 and 16 shows that the compressible hyper-
bolic sine and power law models will give a similar porosity evolution rate
(in uniaxial compression) if :

α

β
=

9

4

A

B
(17)

Thus, any combination of (α,β) parameters that satisfies condition 17 is
suitable. In the simulations that follow, we chose α = 9

4
A(f) and β = B(f)

with a stress exponent n = 6. A value of 6.2 was used by Dherbey [Dherbey
et al., 2002] to fit their test data at high stress level.
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3.3 Numerical implementation

The hyperbolic sine model was readily implemented using a code generator
called MFront which is developed by the CEA. MFront allows the user to
write constitutive equations in a way which is very similar to their mathe-
matical expressions, notably by providing an appropriate tensorial formal-
ism [Helfer et al., 2009]. MFront turns the user’s behaviour implementation
into optimised C++ sources which can be plugged into several mechani-
cal solvers. The simulations reported in this paper were performed using
Cast3M, the CEA finite element solver [Cast3m, 2010].

The constitutive equations are written using the standard small-strain
formalism based on an additive partitioning of the total strain into an elastic
and a viscoplastic part:

σ = C : εe = C : (ε− εvp) (18)

where C is the fourth order elastic tensor and εe the elastic strain tensor.
An implicit numerical scheme is used to solve the system with the main
unknowns as the six components of the elastic strain tensor, the equivalent
viscoplastic strain defined by εvp : εvp and the porosity f .

The system of equations 6, 7 and 18 has been solved in finite strain
computations using two distinct approaches:

- a hypoelastic eulerian formulation provided by the Cast3M finite element
solver. Cast3M implementation is close to the one described by Simo and
Hugues [Simo and Hughes, 1998] ;

- the lagrangian logarithmic strains proposed by Miehe and al. [Miehe et al.,
2002] and provided by MFront. This approach is consistent with the defi-
nition of the strains given earlier in this paper.

For the creep tests with monotonic loading considered here, these two ap-
proaches were found to give similar results, a fact also reported by Doghri
[Doghri, 2000] in another context.

3.4 Simulation of strain rate driven tests

As discussed in Section 2, the stress state in the samples tested in compression
is far from being uniaxial. Friction at the upper and lower ends tends to
generate a three-dimensional stress state. As a consequence, densification
was observed preferentially at the samples’ core. The important axial and
hoop strains reached during the tests suggest that structural non linearities
(large deformations) might be of importance when analysing the results.
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The mesh and boundary conditions used in the simulations are presented
in Figure 13. Only half of the pellet is meshed with quadratic elements as-
suming two-dimensional axisymmetry. The upper and lower tungsten plates
are not directly taken into account. The strong friction at pellet ends is
described by the boundary conditions: the radial displacement of the upper
and lower surface is forbidden. Structural behaviour is taken into account
by using the large displacements scheme of Cast3M [Cast3m, 2010]. A con-
stant axial displacement rate between 0.01 and 100 mm/s (depending on the
test simulated) is then prescribed on the upper surface of the pellet. The
maximum prescribed axial displacement matches the experimental value to
ease the comparison of residual strains. The thermal strains are taken into
account prior to the displacement-driven phase. They are substracted at the
end of the simulation.

The modulus of elasticity E and Poisson ratio ν considered in the sim-
ulations are based on Martin et al. [Martin, 1989]. They are expressed in
function of the temperature T (in K) and of the porosity f as follows:

E = (1− 2.5f)(226.93− 1.5399× 10−2T − 9.597× 10−6T 2) (19)

E is given in GPa. ν is constant and equal to 0.3. The initial porosity
of uranium dioxide considered in the simulations was based on the average
relative density measured prior to testing: f0 = 0.036.

Figure 14 shows the experimental and simulated stress-strain curves for
all the tests. The model reproduces correctly the strain rate and temperature
dependency. The apparent strain hardening during the tests is partly recov-
ered in the simulations. The calculated slope of the stress-strain curves tends
to increase with the strain rate and decrease with temperature. These results
are consistent with the experimental curves. The magnitude of strain hard-
ening is however not well caught at high stresses (high strain rates and low
temperatures). Material plastic hardening rather than structural hardening
could be at the origin of these differences.

Figure 15 gives the calculated and measured axial diameter profiles of
the pellets at the end of all the tests. The barrel shape of the pellet is well
reproduced in the simulation owing to the boundary conditions on the top
and bottom surfaces. The magnitude of diameter increase during the tests
is also well captured in the simulations.

Figure 16 illustrates the calculated distribution of axial-hoop strains, of
axial-hoop stresses, of the second stress invariant and of the porosity during
the test at 1700◦C and 10−3/s. As expected from the barrel shape, there is a
pronounced axial gradient in the axial and hoop strains distribution (εzz(z)
and εθθ(z)). While the radial and axial deformations of the upper and lower
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parts of the pellet are small, the axial and hoop strains in the central part
of the pellet reach −28% and 17%, respectively. These values have to be
compared to the average axial and hoop strains at mid-pellet height: −18%
and 13% respectively. A radial gradient is also apparent in Figure 16. The
axial and hoop strains tend to decrease when approaching the periphery of
the pellet.

A radial gradient in axial stress is also apparent at mid-pellet height, see
Figure 16. The periphery is less stressed (-50 MPa) than the center (-80
MPa). The distribution of hoop stress is different. The top and bottom
parts of the pellet are mostly in compression due to the radial constraint. At
mid-height, the pellet periphery is surprisingly in tension (20 MPa). These
tensile hoop stresses are due to the non uniform densification. In fact, the
densification of the material is stronger at the pellet center than at the pellet
periphery. This radial densification gradient is similar to a thermal gradient
where the shrinkage of the pellet center is hindered by the pellet periphery.
In consequence, hoop tensile stresses appear on the external pellet surface.

The reduction of the porosity is controlled by the equivalent stress Σ, see
equation 7, and so by the first and second invariants of the stress tensor.
However, the contribution of the second invariant to porosity evolution is
more important (β is close to 1 while α is less than 0.01). As seen in Figure
16, the second invariant presents radial and axial gradients with minima at
the top and bottom of the pellet and a maximum at the pellet center. The
periphery lies in between. The reduction of the porosity is therefore faster
at the pellet center. Figure 17 gives the calculated porosities of the samples
after testing. At the top of the pellet, the residual porosity is equal to the
pre-test porosity (3.6%). At the pellet periphery, the residual porosity is
close to 2.9%. At the pellet center, it goes down to 2%. It appears that the
reduction in porosity is less important at 1100◦C in particular when the tests
were stopped at a low strain level (6%). The general trends obtained from
the simulations are in good agreement with the evolution of the measured
surface porosities of Figure 7.

3.5 Simulation of Creep tests

In the previous Section (3.4), it has been checked that the model was able to
reproduce the behaviour of a single uranium dioxide material at strain rates
between 10−4 and 10−1/s.

To assess the validity of the model at lower strain rates, the creep test
database available at the CEA has been simulated. It contains 231 tests
performed on uranium dioxide pellets with a grain diameter between 5 and
70 µm and an initial porosity between 1 and 6%. The applied stress in the
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creep tests is in the interval 20-80 MPa, the test temperature within 1300-
1700◦C. The tests resulted in stationary creep strain rates, i.e., constant
strain rates, between 10−9 and 10−4/s.

The model of Section 3.1 was slightly modified to account for the variation
in grain size of the pellet materials. The following function for K was used
to describe the increase of stationary creep rates with the grain size:

K = K0e
−γ

d−d0 (20)

with K0 = 77400/s and γ = 5.277 µm two constant parameters and d0 = 4.6
µm a reference grain diameter. The mechanism behind the grain size de-
pendency of uranium dioxide creep is still a matter of discussion [Gao et al.,
2010]. At high stresses and temperature, the creep strain rate is usually con-
sidered independent of grain size [Seltzer et al., 1971] or an increasing func-
tion of the grain size (Monerie and Gatt used a d2 dependency for uranium
dioxides with 4.5 ≤ d ≤ 26 µm [Monerie and Gatt, 2006]). The extensive
database of the CEA, where uranium dioxides with grain size up to 70 µm
have been tested, showed that the expected increase of the creep stationary
strain rate with grain size was actually limited. In consequence, an exponen-
tial increasing function with upper limit K0 is proposed here to model the
grain size dependency of uranium dioxide creep.

The mesh and boundary conditions of Figure 13 were also used in the
creep test simulations. The measured stationary creep strain rates were used
to define the prescribed axial displacement rates (knowing the initial height
of the pellets). The axial stresses reached in the simulations just after the
elastic part of the stress-strain curves are compared in Figure 18 to the
stresses applied in the creep tests. More than 80% of the calculated stresses
lie in the confidence interval of ±10 MPa. The smaller stresses which corre-
spond to small strain rates are well captured by the model showing that both
the diffusion and dislocation creep regimes can be correctly assessed with a
hyperbolic sine model [Dherbey et al., 2002].

Conclusions

In this paper, a three-dimensional model was proposed to describe the be-
haviour of uranium dioxide in compression. A dedicated series of compression
tests was first realized to obtain data at high strain rates (10−4 − 10−1/s).
The general trends were of an increasing axial stress with the strain rate and
of a decreasing axial stress with the temperature (1100-1700◦C). The post-
test SEM image analyses and density measurements revealed a pronounced
densification mostly at the pellet center.
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A hyperbolic sine model accounting for porosity evolution was proposed
to describe the experimental data over the whole range of strain rates and
temperatures considered. The Finite Element simulations of the tests showed
a good agreement with the measures in terms of stress-strain curves, post-test
axial diameter profiles, porosity evolution at the pellet center, periphery and
top. The model was then checked against a database of 231 high temperature
creep tests (1300-1700◦C) performed on uranium dioxide materials with 4-70
µm grain diameters and 1-6% porosity. The model was able to predict in
more than 80% of the cases, and within a margin of ±10 MPa, the applied
stress for a given stationary creep strain rate.

The proposed model covers therefore a wide range of strain rates (10−9−
10−1/s), stresses (20 − 250 MPa) and temperatures (1100 − 1700◦C) that
makes its use possible in fuel performance codes dedicated to normal, off-
normal (power ramps) or accidental conditions.

Acknowledgements

The authors would like to thank Julian Soulacroix and Bruno Michel from
the CEA for fruitful discussions on the model.

16



References

[Ashby, 1972] Ashby, M. F. (1972). A first report on deformation-mechanism
maps. Acta Metallurgica, 20(7):887–897.

[Bohaboy et al., 1969] Bohaboy, P. E., Asamoto, R. R., and Conti, A. E.
(1969). Compressive creep characteristics of stoichiometric uranium diox-
ide. Technical Report GEAP–10054, General Electric Co., Sunnyvale,
Calif. Breeder Reactor Development Operation.

[Canon et al., 1971] Canon, R. F., Roberts, J. T. A., and Beals, R. J. (1971).
Deformation of UO2 at high temperatures. Journal of the American Ce-
ramic Society, 54(2):105–112.

[Cast3m, 2010] Cast3m (2010). http://www-cast3m.cea.fr.

[Cazalis et al., 2007] Cazalis, B., Desquines, J., Poussard, C., Petit, M.,
Monerie, Y., Bernaudat, C., Yvon, P., and Averty, X. (2007). The prome-
tra program : Fuel cladding mechanical behavior under high strain rate.
Nuclear technology, 157(3):215–229.

[Dherbey et al., 2002] Dherbey, F., Louchet, F., Mocellin, A., and Leclercq,
S. (2002). Elevated temperature creep of polycrystalline uranium dioxide:
from microscopic mechanisms to macroscopic behaviour. Acta Materialia,
50(6):1495–1505.

[Doghri, 2000] Doghri, I. (2000). Mechanics of deformable solids: linear,
nonlinear, analytical, and computational aspects. Springer, Berlin; New
York.

[Fuketa et al., 2001] Fuketa, T., Sasajima, H., and Sugiyama, T. (2001). Be-
havior of high-burnup PWR fuels with low-tin zircaloy-4 cladding under
reactivity-initiated-accident conditions. Nuclear technology, 133(1):50–62.

[Gao et al., 2010] Gao, J.-C., Wang, L.-F., Wang, Y., and Wu, S.-F. (2010).
High-temperature creep properties of uranium dioxide pellet. Transactions
of Nonferrous Metals Society of China, 20(2):238–242.

[Geelhood, 2010] Geelhood, K. (2010). Modeling high burnup RIA tests with
FRAPTRAN. In TopFuel 2010, Orlando, Florida, USA.
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Figure 1: Geometry of the samples and microstructure before testing (SEM).
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Figure 2: Schematic representation of the testing equipment.
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Figure 5: Shape of uncracked and cracked tested samples.
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Figure 9: Microstructure of the pellet periphery, center and top after the test
at 1550◦C and 10−4/s.
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Figure 14: Calculated (L3F) and measured (EXP) stress-strain curves in all
the tests.
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Figure 15: Calculated (L3F) and measured (EXP) diameter axial profiles
after all the tests.
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Figure 16: Isovalues of hoop and axial strains, hoop and axial stresses, second
stress invariant and porosity in the pellet tested at 1700◦C and 10−3/s.
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Figure 17: Calculated porosities after the tests at the top, center and pe-
riphery of the samples.
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Figure 18: Calculated and measured creep stresses in 231 creep tests.
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