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Abstract

Supplying modern water systems in smart cities requires the ability to monitor water quality in the production plants and the

distribution network. Protection against accidental or intentional events is usually based on an Early Warning Detection System

(EWDS) to minimize the impact of any contamination [1]. A major issue is positioning online sensors along the water distribution

network to ensure the best protection at minimum cost. Several contributions for tackling such problem have been proposed during

the last decade, including a scientific challenge comparing 14 methodologies [2] and two reviews of about 150 articles [3,4].

Currently there is no consensus about algorithms or design objectives to use, and such a problem is NP-hard [5,6]. In this paper,

a greedy approach is proposed to near-optimally solve the sensor placement problem dealing with large-scale water systems. This

methodology is designed to integrate both the specificity of the studied network (expert/prior knowledge) and flexibility related to

the uncertainty of the nature, time, and duration of contamination injections. The method is illustrated to minimize the expected

fraction of the exposed population on the largest network in France (about 100,000 nodes, 600,000 connections, above 8,000 km of

pipes). Costly approaches in terms of computation time, such as MIP (Mixed-Integer Programming) and exhaustive search cannot

scale to large networks. A sensitivity analysis is presented using the greedy approach on a sub-network which leads to choose

the number of sufficient contamination simulations and the concentration threshold used to detect contaminations. The extensive

experiments allow us to highlight the effectiveness and the rapidity of the proposed approach.
c© 2015 The Authors. Published by Elsevier Ltd.
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1. Introduction

The monitoring of Drinking Water Distribution Systems (DWDS) deals with the automatic surveillance of produc-

tion plants and the distribution network in order to minimize the impact of any accidental or malicious contamination.

In fact, these first infrastructures are usually monitored by sensors that were already deployed in pre-existing installa-

∗ Corresponding author. Tel. : +33 1 55 67 66 82.

E-mail address: nicolas.cheifetz@veolia.com

© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the Scientific Committee of CCWI 2015

http://crossmark.crossref.org/dialog/?doi=10.1016/j.proeng.2015.08.977&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.proeng.2015.08.977&domain=pdf


948   Nicolas Cheifetz et al.  /  Procedia Engineering   119  ( 2015 )  947 – 952 

tions of water utilities. On the other hand, the detection of any injection into the network remains a very challenging

problem due to the size and complexity of large scale WDN. Indeed, the placement of an “optimal” sensor network

providing the best possible sensing quality is a combinatorial optimization problem that has been proven to be NP-hard

[5,6]. In other words, it is unlikely that the exact solution will be found efficiently by any current algorithm.

Such sensing problem received significant interest over the last decade including a benchmark challenge (the

Battle of the Water Sensor Networks, BWSN) comparing 14 methodologies [2]. Note that a greedy-like algorithm

with lazy evaluations obtained the highest score (number of non-dominated solutions) at the BWSN challenge. A

large variety of approaches have been proposed to locate sensors including single/multi objective optimizations,

exact/suboptimal/expert methods (e.g. resp. mixed-integer programs, heuristics, human judgments) with performance

guarantees or not, perfect sensors (accurate and reliable) or not, robust optimization (worst case contaminations) or

minimization of the expected impact, etc. The interested reader can refer to reviews comprised of about 150 articles

[3,4]. In this article, we are interested in the placement of quality sensors to ensure the best protection at minimum

cost. Nevertheless, there is no clear consensus about algorithms or design objectives to use. At least four questions

have to be addressed to design a sensor deployment [7] : What objective function(s) should be optimized ? How many

sensors are required ? Should the worst or the average impact of (malicious or accidental) contaminations be mini-

mized ? How scalable is the placement optimizer ? In this work, we present an efficient and flexible methodology to

place about 100 sensors minimizing the average impact on population.

Within the framework of the project SMaRT-OnlineWDN[8], Veolia Eau d’Ile de France participated to the design

and evaluated the performance of a methodology to deploy sensors onto the drinking distribution network of Syndicat

des Eaux d’Ile de France (SEDIF). The next section describes the proposed methodology based on a greedy algorithm

to perform the placement of quality sensors. The third section presents the results gained on the SEDIF network which

is the largest WDN in France and one of the largest in Europe. A sensitivity analysis provides indications to choose

the number of sufficient contamination simulations and the concentration threshold used to detect contaminations.

Finally, some conclusions are drawn in section 4.

2. Placement of quality sensors

A large number of performance objectives have been proposed to quantify the effectiveness of the placement so-

lutions [2,4]. Some criteria aim to facilitate the procedure of decontamination such as the minimization of the conta-

minated network water volume or the minimization of the contaminated network pipe surface, which are computed

before any sensor detection [9]. The minimization of the public health impacts is a global objective usually well ac-

cepted by the scientific community [3]. In this work, the minimization of the population exposed to contaminations

is illustrated in subsection 3.2. Note that the proposed methodology gives the opportunity to optimize different crite-

ria that can be computed based on the occurrence of contamination incidents on the distribution network, assuming

certain structural property in order to preserve near-optimal performance.

2.1. Characterization of the contamination impact

The contamination impact is quantified using an extensive number of contaminant injections simulated by tools of

hydraulic modeling such as the well-known EPANET or Porteau (available at http://porteau.irstea.fr/). For

each simulated contamination, a substance is injected from a single node belonging to a hydraulic model and then, the

contamination is detected when the substance dose is above a given threshold at a sensor location. We are considering

the problem of locating sensors in order to minimize the average impact upon a set of contaminations which lead to

the detection of random or accidental contamination events. We are not interested in minimizing the worst impact of

possible events because we consider the worst-case scenario subjectives and changing events can imply the variation of

the contaminant characteristics or the sensor network setup. Indeed, it can be seen that a sensor placement minimizing

the average impact outperforms worst-case designs when contamination conditions change [10].

In this article, the set of simulated contaminations represents the key information in order to optimize a sensor

placement upon a distribution network. Contamination scenarios were randomly generated, such as :
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• Simulation duration : a few days is enough to avoid the influence of initial conditions on the solution

• Nature of the injected substance : a conservative contaminant is chosen for its stronger impact with respect to

the concentration such that the dilution will be induced only by mixing at nodes

• Time and duration of injection : uniformly random between 0 and 24 hours

• Localization of the injection : uniformly random among nodes of the hydraulic model

The estimation of the two following conditions is studied in subsection 3.3 using a sensitive analysis. Nevertheless,

we provide some indications to tune these two conditions used in subsection 3.2 :

• Number of simulations : this number is set according to the convergence of the objective function(s) ; as an upper

bound, we chose empirically a ratio of about three model nodes for each contamination

• Contamination detection : an event is detected when the concentration of the injected substance is above a given

threshold ; we chose empirically a threshold of 10−2 with an injection of 100

In this work, contamination injections were simulated using the modeling tool called Synergi Water R© (DNV GL).

After an extensive number of simulated injections following the previous indications, all the relevant information

regarding the contaminations is aggregated into a single matrix of contaminations per hydraulic model. It can be seen

as a tridimensional matrix Mi, j,k used to compute the objective function(s), where i denotes a node of the hydraulic

model, j refers to a simulated contamination and k indicates a certain feature (e.g. duration since the injection time,

cumulative sum of affected population at each exposed node over time, etc.) for the computation of certain criterion.

Note that undetected contaminations are taken into account : every criterion is still computed as the values by the end

of the simulation in order to penalize these incidents that are not detected. Furthermore, this matrix of contaminations

is sparse due to the limited number of exposed nodes per simulated contamination. Then, this matrix can be effi-

ciently parsed to perform relevant evaluations of exposed nodes and exploit some structural property of the objective

function(s) that is briefly presented in the next subsection.

2.2. Incremental methodology for sensor positionning

In addition to the impact estimation, this flexible method can handle certain expert knowledge to promote or oppose

some regions of the water distribution network. The first expert priors deal with the specificities of our deployed quality

sensors 1 : the sensors are exclusively placed onto nodes considering that its adjacent pipes have a nominal diameter

neither too small nor too large, the water velocity cannot be too low (no underestimation of the chlorine concentration)

and there is no reversal of the flow direction. Moreover, the goal of the following constraints is to speed up the

optimization process : sensors can only be placed onto “super nodes” using some graph decomposition techniques

(nodes in the core subgraph with degrees of at least two) [11], and the pre-equipped nodes are not evaluated during

the optimization. In addition to these inclusive/exclusive constraints, our methodology can easily penalize (without

excluding) some potential locations of nodes by adding a regularization term to the objective function(s).

The sensing optimization problem addressed in this article aims to find a set of sensors that minimizes a single cost

function. The formulation of such problem is NP-hard [5,6] and we propose an intuitive greedy algorithm to solve

it. This procedure is simply described by selecting iteratively a single location based on the set of sensors previously

selected. Such iterative heuristic is fast in practice and finds near-optimal solutions in theory [5] with the optimization

of certain submodular cost function. Indeed, the next section of this article presents an optimization study minimizing

the expected population exposed to contaminations. Such submodular cost function has a diminishing returns effect

[5] which means that adding a sensor to a large set of sensors provides less information than adding it to a smaller set.

Without loss of generality, the greedy algorithm would perform well with other submodular functions such as time to

detection, etc.

The next section presents the obtained results for the placement of quality sensors on a large scale water distribution

network in France.

1 Sensors KAPTATM 3000 measuring active chlorine, temperature, conductivity and pressure ; these probes were developed within the framework

of the European project called SecurEau [9].
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3. Experiments on a large scale water distribution network

3.1. Experimental framework

The SEDIF gather 149 municipalities around Paris (France) and distributes every day about 750,000 m3 to more

than 4 millions of inhabitants based on 3 production plants. The distribution network is more than 8,000 km of pipes

and can be represented by 11 hydraulic models with various sizes. The ultimate goal is to deploy about 200 quality

sensors (cf. footnote1) onto this network and we propose to solve a sensor placement problem in each hydraulic model.

A first deployment of about 100 sensors was performed by hydraulic expert knowledge and one hydraulic network was

fully equipped as a test-bench within the SMaRT-OnlineWDN project [8]. Then, the goal of this study is to optimize

the placement of the last 100 remaining sensors among more than 100,000 nodes spread over 10 hydraulic models.

Table 1 summarizes the deployed sensor network among each hydraulic model independently. It is worth noting that

the number of sensors has been set regarding to the number of nodes composing each hydraulic model, and that more

sensors are required for models 1, 5, 8 and 9 due to their sizes.

Table 1. Description of the 10 hydraulic models and the deployment setup.

Hydraulic model 1 2 3 4 5 6 7 8 9 10
∑

Nodes 18,942 4,066 2,843 2,371 16,787 5,514 1,819 33,278 14,250 3,344 103,214

Edges 23,655 4,791 3,195 2,705 19,493 6,137 2,171 39,646 16,395 4,124 122,312

Tanks 8 1 2 2 4 4 1 7 10 3 42

Pumps 1 0 0 0 0 0 0 0 3 0 4

Existing
18 0 3 2 15 9 2 25 20 4 98

sensors

Deployed
34 6 8 6 27 12 7 44 45 9 198

sensors

Simulated
5,500 1,500 1,000 1,000 4,500 1,500 500 9,500 4,000 1,000 30,000

contaminations

In this work, the public health impact of contaminations is evaluated using the two performance criteria that are

defined bellow, given δ a set of sensors and the index j of a contamination simulation :

• Fraction of exposed population (EP)

EP(δ) =
# connections at exposed nodes in simulation j
# connections into the current hydraulic model

(1)

where an exposed node is some node with a significant contaminant concentration occurring at a time before any

detection of the current contamination

• Detection delay (DD)

DD(δ) = min
d∈δ

t j(d) (2)

where t j(d) is the duration between the injection time and the time of detection by sensor d

Let us recall that we are interested by the averaged impact of contaminations which means that the previous crite-

ria will be evaluated as averages over all the simulated contaminations. And in order to compare the performance

improvements for each criteria, these are normalized by the situation with no sensors deployed into the network.

The following subsections present the optimization results by minimizing the average fraction of exposed popu-

lation. The criteria are normalized such as more the results are good, the more criteria values are high. The next

subsections illustrate the deployed sensor network onto the SEDIF network and the performance of the proposed

method for incremental sensor placement.
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3.2. Results on the SEDIF network

We use the greedy algorithm for positioning 100 sensors spread over 10 hydraulic models by minimizing the ave-

rage fraction of exposed population. Table 2 presents the resulting performance with two normalized criteria (defined

in the last subsection) to maximize. The total optimization time was less than half an hour using a standard com-

puter running Win7 with a processor i5-3230M (dual cores, 2.60GHz) and 8 Go RAM. The optimized criterion EP

is improved up to 90% with the situation of no deployed sensors for each hydraulic model. The performance of the

pre-existing sensor network was between 0% and 70%. Note that the placement of a large number of sensors does not

necessarily imply a better performance as illustrated by the model 4. This can be explained by a long residence time

inside the studied network.

Table 2. Evaluation of the deployed sensors using performance criteria. The meaning of the normalized criteria is as follows : EP=average fraction

of exposed population, and DD=average detection delay.

Normalized Sensor Model Model Model Model Model Model Model Model Model Model

criteria network 1 2 3 4 5 6 7 8 9 10

EP (%)
Existing 70.25 0.00 42.87 63.87 72.54 60.78 20.91 70.19 49.29 31.93

Deployed 89.29 84.02 81.33 88.59 90.98 81.36 73.80 88.46 83.44 72.96

DD (%)
Existing 42.40 0.00 20.33 44.88 32.53 38.51 16.81 39.66 32.32 29.24

Deployed 57.30 58.79 61.97 61.68 59.08 58.93 49.68 53.88 66.18 63.20

3.3. Sensitivity analysis

This subsection summarizes a sensitivity analysis for sensor placement on the hydraulic model n˚5 (with 15 preexis-

ting sensors) by minimizing the average fraction of exposed population. Figures 1 and 2 represent mean curves of the

normalized criteria EP (a) and DD (b) according to various settings : based on 10 matrices of 4,500 random conta-

minations, the concentration threshold vary from 10−4 to 10 (Figure 1), and with a concentration threshold of 10−2,

the number of simulations per contamination matrix vary from 10 to 45,000 (Figure 2). We are interested in the shape

of the mean trajectories computed for each criteria. A poor precision with high concentration threshold leads to un-

derestimate the criteria, especially with criterion DD and a concentration of 10−2 is seen as sufficient (Figure 1). On

the other hand, the criteria are overestimated with few simulations and about 1,000 simulations is seen as sufficient

(Figure 2). Note that the standard deviation is usually higher with few placed sensors, a high concentration and a

small number of simulations. We can observe a certain stability of the optimized criterion and the greedy behavior

especially from both Figures with sufficient simulations and a proper detection threshold.
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Figure 1. Performance criteria comparison of different detection thresholds, so-called prec, on hydraulic model n˚5. For each sensor placement,

the concentration threshold vary from 10−4 to 10 with concentration injection of 100.
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Figure 2. Performance criteria comparison of different numbers of contamination simulation, so-called size, on hydraulic model n˚5. For each

sensor placement, the number of simulation vary from 10 to 45, 000.

4. Conclusions and prospects

This article presents a global methodology for sensor placement using a greedy algorithm. This approach is flexible

integrating various expert knowledge and the optimization is near-optimal with certain objective-function. This effi-

cient method allowed us to perform sensor placements in reasonable time on a large scale water distribution network

with about 100,000 nodes. A sensitive analysis is described to choose the concentration threshold for detection and the

amount of contaminations to simulate. Further research will be addressed through the upcoming ResiWater project.
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