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A criterion for p-henselianity in characteristic p

Zoé Chatzidakis∗and Milan Perera

Abstract

Let p be a prime. In this paper we give a proof of the following
result: A valued field (K, v) of characteristic p > 0 is p-henselian if
and only if every element of strictly positive valuation if of the form
xp − x for some x ∈ K.

Preliminaries

Throughout this paper, all fields have characteristic p > 0. First we recall
some definitions and notations. Let Ov := {x ∈ K | v(x) ≥ 0} be the
valuation ring associated with v. It is a local ring, and Mv := {x ∈ K |
v(x) > 0} is its maximal ideal. Let Kv := Ov/Mv = {a = a+Mv | a ∈ Ov}
be the residue field (or K when there is no danger of confusion). We let K(p)
denote the compositum of all finite Galois extensions of K of degree a power
of p.

A valued field (K, v) is p-henselian if v extends uniquely to K(p). Equiva-
lently (see [1], Thm 4.3.2), if it satisfies a restricted version of Hensel’s lemma
(which we call p-Hensel lemma) : K is p-henselian if and only if every poly-
nomial P ∈ Ov[X ] which splits in K(p) and with residual image in Kv[X ]
having a simple root α in Kv, has a root a in Ov with a = α. Furthermore,
another result (see [1], Thm 4.2.2) shows that (K, v) is p-henselian if and
only if v extends uniquely to every Galois extension of degree p.

The aim of this note is to give a complete proof of the following result:

Theorem. Let (K, v) be a valued field. (K, v) is p-henselian if and only if

Mv ⊆ {xp − x | x ∈ K}.

∗Partially supported by ANR-13-BS01-0006

1



This result was announced in [3], Proposition 1.4, however the proof was not
complete. The notion of p-henselianity is important in the study of fields
with definable valuations, and in particular it is important to show that the
property of p-henselianity is an elementary property of valued fields.

The proof we give is elementary, and uses extensively pseudo-convergent
sequences and their properties. Recall that a sequence {aρ}ρ<κ ∈ Kκ indexed
by an ordinal κ is said to be pseudo-convergent if for all α < β < γ < κ :

v(aβ − aα) < v(aγ − aβ). (1)

A pseudo-convergent sequence {aρ}ρ<κ is called algebraic if there is a
polynomial P in K[X ] such that v

(

P (aα)
)

< v
(

P (aβ)
)

ultimately for all
α < β, i.e:

∃λ < κ∀α, β < κ (λ < α < β) ⇒ v
(

P (aα)
)

< v
(

P (aβ)
)

. (2)

Otherwise, it is called transcendental.
We assume familiarity with the properties of pseudo-convergent sequences,

see [2] for more details, and in particular Theorem 3, Lemmas 4 and 8.

Proof of the theorem

First, we prove a lemma in order to restrict our study to immediate exten-
sions:

Observation. Let (K, v) be a valued field and (L,w) be a Galois extension

of degree a prime ℓ. Then, if (L,w)/(K, v) is residual or ramified, w is the

unique extension of v to L.

Proof. The fundamental equality of valuation theory (see [1], Thm 3.3.3)
tells us that if L is a Galois extension of K, then

[L : K] = e(L/K)f(L/K)gd (3)

where e(L/K) is the ramification index, f(L/K) the residue index, g the
number of extensions of v to L and d, the defect, is a power of p.

Thus, as ℓ is a prime, if e(L/K)f(L/K) > 1, then necessarily g = d = 1,
and in particular, v has a unique extension to L.
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Now, let us prove the result announced in the preliminaries:

Theorem. Let (K,Ov) be a valued field of characteristic p. Then, (K,Ov)
is p-henselian if and only if Mv ⊆ K(p) := {xp − x | x ∈ K}.

Proof. The forward direction is an immediate application of the p-Hensel
Lemma.
Conversely, assume that Mv ⊆ K(p) := {xp − x | x ∈ K}. Every Galois
extension of K of degree p is an Artin-Schreier extension, i.e is generated
over K by a root a of a polynomial Xp −X − b = 0, with b ∈ K \K(p). The
previous observation gives us the result when K(a)/K is not immediate. Let
L be an immediate Galois extension of degree p and ṽ an extension of v to
L (hence with the same value group Γ and residue field L = K as K). We
can write L = K(a) where ap − a = b ∈ K \K(p).

Step 1: (Claim) The set C = {v(xp − x − b) | x ∈ K} = v
(

K(p) − b
)

is
contained in Γ<0 and has no last element.

First observe that C ⊆ Γ≤0 : if v(cp − c − b) > 0, then the equation
Xp −X + (cp − c− b) has a root in K, so that (a− c) ∈ K: contradiction.
Let γ ∈ Γ, d ∈ K such that v(dp − d − b) = γ. As L/K is immediate
there is c ∈ K such that ṽ

(

a − (d + c)
)

> ṽ(a − d). If ṽ(a − d) = 0 then
ṽ
(

a− (d + c)
)

> 0 and
(

(d+ c)p − (d+ c)− b
)

= (d + c− a)p − (d + c− a)
in Mv, which as above give a contradiction. Hence ṽ(a − d) < 0, and from
dp − d − b = (d − a)p − (d − a), we deduce that γ = pṽ(a − d) < 0, and

v
(

(d+ c)p − (d+ c)− b
)

= p
(

ṽ
(

a− (d+ c)
)

)

> γ. This shows the claim.

Step 2: We extract a strictly well-ordered increasing and cofinal sequence
from C. If we write P (X) := Xp −X − b, we get a sequence {aρ}ρ<κ in K
such that the sequence {v

(

P (aρ)
)

}ρ<κ is stricly increasing and cofinal in C.
Thus, the sequence {P (aρ)}ρ<κ is pseudo-convergent (with 0 one of its limits).
As v

(

P (aα)
)

< 0, we have v(aβ − aα) = 1
p
v
(

P (aα)
)

= γα for α < β < κ.

Thus, the sequence {aρ}ρ<κ is also pseudo-convergent. Furthermore, {aρ}ρ<κ

has no limit in K: if l ∈ K is a limit of {aρ}ρ<κ then P (l) is a limit of
{P (aρ)}ρ<κ. As {v

(

P (aρ)
)

}ρ<κ is cofinal in C, v
(

P (l)
)

would be a maximal
element of C: contradiction.

Step 3: (Claim) Let P0(X) ∈ K[X ], and assume that v
(

P0(aα)
)

is strictly
increasing ultimately. Then deg

(

P0(X)
)

≥ p.
We take such a P0 of minimal degree, assume this degree is n < p, and will
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derive a contradiction. One consequence of Lemma 8 in [2] is that:

v
(

P0(aρ)
)

= δ′ + γρ ultimately for ρ < κ (4)

where δ′ is the ultimate valuation of P ′
0(aρ) and γρ is the valuation of (aσ−aρ)

for ρ < σ < κ (which does not depend on σ as {aρ}ρ<κ is pseudo-convergent).
We write P (X) =

∑m

i=0 hi(X)P0(X)i with deg(hi) < n, ∀i ∈ {1, . . . , m}.
Then, {hi(aρ)}ρ<κ is ultimately of constant valuation, and we let λi be this
valuation. As {aρ}ρ<κ has no limit in K, it is easy to see that n > 1, so that
m < p. By Lemma 4 in [2], there is an integer i0 ∈ {1, . . . , m} such that we
have ultimately:

∀i 6= i0 (λi + iδ′) + iγρ > (λi0 + i0δ
′) + i0γρ. (5)

Then, ultimately:

pγρ = v
(

P (aρ)
)

= v
(

m
∑

i=0

hi(aρ)P0(aρ)
i
)

= λi0 + i0(δ
′ + γρ). (6)

Thus, we have ultimately (p−i0)γρ = λi0+ i0δ
′. As p > m ≥ i0, the left hand

side of the equation increases strictly monotonically with ρ. But the right
hand side is constant: it has no dependence in ρ! We have a contradiction,
thus n = p.

Step 4: Clearly, {aρ}ρ<κ is of algebraic type. By Theorem 3 in [2], if a∞ is a
root of P , we get an immediate extension (L′, v′) = (K(a∞), v′). Let a∞ = a,
we have (K(a), v′) isomorphic to (K(a), ṽ). Thus:

∀Q ∈ Kp[X ] ṽ
(

Q(a)
)

= v′
(

Q(a)
)

= v
(

Q(aρ)
)

ultimately (7)

This shows the uniqueness of ṽ and concludes the proof of the theorem.
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