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Abstract 

The proper estimation and regular update of model parameters is crucial for the actuality of a mathematical simulation model 
representing the hydraulics and water quality of a real physical water distribution system. Especially, when the model is running 
online, uncertainties in model parameters can result in large discrepancies between model predictions and behavior of the real 
system. Therefore, adequate techniques for data acquisition, maintenance and update of model parameters have to be developed. 
In what follows the “parameterization” of a hydraulic online simulation model is described including the classification of 
parameters regarding data source, update cycles and function in the model. The parameterization framework was developed to 
benefit the modeling of water critical infrastructure systems. 
© 2015 The Authors. Published by Elsevier Ltd. 
Peer-review under responsibility of the Scientific Committee of CCWI 2015. 
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1. Introduction 

Driving online hydraulic simulations of water distribution systems in real-time or in replay mode requires within 
the simulator the integration of measurements and operational data that are continuously collected in the real 
physical system and transferred to a central SCADA (Supervisory Control And Data Acquisition) system [1]. 
Hydraulic simulation is especially important in the context of monitoring and modeling of critical infrastructure 
systems [2]. In the following document real-time measurements and operational data are denoted by “online data”. 
In addition, the term “model parameters” refers to values of the hydraulic simulation model that are assumed to be 
known for the calculation and serve as boundary conditions for the system of differential algebraic equations or 
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describe the (constant) physical properties of the components of the model. Consequently, the model parameters can 
be subdivided into “physical parameters“ such as pipe diameter, roughness and elevation of nodes and “operational 
parameters”, for instance valve states, pump speeds and, of course, the water demand representing the timely 
changing load of the system. The following table shows the different classes of parameters and the associated rate of 
change: 

     Table 1. Classification of model parameters 

Parameter class Change 
rate 

Description Examples 

Physical network 
parameters  

Slow 

(month to 
years) 

Describe the physical properties of the network elements such 
as pipes, pumps, valves and control devices. These properties 
normally change slowly in time. Some of them cannot be 
directly identified and need to be calibrated. For example, 
dependent on the pipe material and water quality, 
deterioration of pipes results in increased roughness values 
and reduced inner diameters caused by growing incrustations. 
However, these changes develop over years. In the online use 
case it is assumed that the model has been calibrated in 
advance and that slowly changing parameters have been 
properly identified and remain constant during the entire 
simulation period. 

network topology, 

diameter, roughness and length of 
pipes,  

elevations, 

physical properties of valves and 
control devices 

 

Remote controlled 
operational state 
parameters 

Fast 

(multiple 
changes 
per day) 

Operational parameters, like the previously described 
physical parameters, are assumed to be known in the 
hydraulic network calculations (boundary conditions). 
However, they are not constant but continuously updated. 
Their states are continuously monitored in the SCADA 
system.  

operational states of valves, 

pump status (on/off) and speed,  

set values and state of remote controlled 
control devices, 

tank water level as initial conditions 

Not remote 
controlled 
operational state 
parameters 

Medium 

(weeks to 
month) 

The values of non-remote controlled operational state 
parameters are more difficult to estimate since their current 
state is not transferred to the SCADA system and must be 
sometimes updated in the model by hand. Often this 
information is not available. 

state of gate valves that are closed for 
rehabilitation works 

Load parameters Continuous  In general, the actual demand distribution is not known. The 
nodal demands in the model are based on meter readings that 
are carried out from time to time (months to year). The proper 
estimation of nodal demands is crucial for the results of the 
online simulations. For the hydraulic calculations the demand 
is normally assumed to be known. However, in dependency 
of the kind of modelling the demand can be used as fixed 
parameter (DDM: Demand Driven Modelling) or as an upper 
threshold (PDM: Pressure-Dependent Modelling). 

Domestic demands, 

Industrial demands 

 

 
In what follows the process of choosing the parameters of the mathematical model is called “parameterization”. 

This consists of two steps. In the first (offline) step the components that are important for drawing a reliable picture 
of the real system are identified including: pipes and their characteristics, network topology, elevations, control 
devices and pumps with their corresponding physical properties and operational modes, valves and hydrants location 
and the customer repartition and behavior including average consumption. Measurement data of the past are 
typically used for a first offline calibration of model parameters. In the second (online) step the model is confronted 
with “online” data from the SCADA system (SCADA: Supervisory Control and Data Acquisition). In this context, 
the measurements and operational data of devices are subdivided into three groups. The first group includes 
operational states of devices (valves states, rotational speed of pumps) that can be directly transferred to the 
corresponding parameter of the model. The second group concerns measurements that are used as boundary 
conditions in the model like tank inflows and water levels. Group one and two are the driving parameters of the 
model (actuators). The third group consists of measurements that can be used only indirectly for the online 
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calibration of the model or for comparison of measurements and calculation results (sensors). Examples are pressure 
heads at nodes and zone inflows that are used for adjusting the parameters that cannot be observed directly and are 
subject to uncertainty like demand values. As a refinement, water quality sensors are distinguished from hydraulic 
measurements.  

Before the mathematical model of water supply systems is discussed in more detail in the following section, the 
relationship between online data and the hydraulic model is shown in Fig. 1. On the top is the hydraulic model that 
in the first level below is subdivided into state variables and model parameters. The state variables include amongst 
others link flows and nodal pressures. As described before, the model parameters can be further subdivided into 
physical properties that describe the topology and asset characteristics of the system, operational data (remote 
controlled and not remote controlled operations) and the system load. The connection of the hydraulic model with 
the online data consists of remote controlled operations (pumps on/off, valve closure, …) and measurements. 

The data that control the hydraulic model (used as parameters) are called actuators, and the data that are used for 
comparison between calculation results and measurements are called sensors (see Fig. 1 from bottom). Both are 
continuously updated by the SCADA system and available normally on an OPC Server. It is important to note that 
only actuators can be directly triggered in the model. The sensor data are redundant with the calculation results. 
They serve as estimates for the quality of the online calculation model and cannot be triggered directly. The 
difference between measurements and calculation results can be used for adjustment of other model parameters 
(model calibration). In the online case this is only foreseen for a special class of parameters – the nodal demands 
(see arrow from sensors to demands in Fig. 2).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Overview of model parameters, state variables and online data including their dependencies. 

2. Mathematical Model 

2.1. Overview 

With the previously described grouping of parameters the calculation of the network hydraulics can be described 
by a functional relationship as a mapping of load and operational parameters on state variables. In a general 
formulation, the dynamic hydraulic calculation can be described as an Initial-Boundary Value Problem (IBVP) of a 
system of Differential Algebraic Equations (DAEs). Different simplification levels of the original formulation result 
in different modelling levels ranging from water hammer to steady-state calculation. For online simulations of large 
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distribution systems an appropriate modelling techniques are the Rigid Water Column Model (RWCM or slow 
transient model) and the Extended Period Simulation (EPS or quasi steady-state formulation). For the latter, instead 
of solving the original IBVP a series of steady-state problems is solved neglecting the inertia terms in the more 
general system of equations of the RWCM. The only remaining time dependent differential equation in EPS is used 
for updating the water level in tanks. As shown in the introduction the terms of the mathematical model 
(independently from the actual modelling level) can be subdivided into parameters and state variables.  For a water 
supply system model the most important parameters are:  

Constant model parameters:  
• Network topology; 
• Pipe and valve characteristics; 
• Elevations; 
• Base demand.  
Boundary conditions varying over time:  
• Water level in reservoirs; 
• Nodal demands; 
• Fixed input flows. 
Initial values (for t = 0): 
• Water level in tanks; 
• Water quality. 
Operational data (varying over time, including integer values)  
• Pump states; 
• Pump speeds; 
• Valve states; 
• Rules and set values of local automation; 
• Set values and state of control devices such as flow and pressure control valves. 
The following Table 2 and Table 3 give an overview of model parameters that are part of common SCADA 

systems and how they are considered in the mathematical model.  

     Table 2. Measurements used as model parameters (received from SCADA) 

Measurements Type Remark 

nodal pressure sensor quality of results of online model, calibration 

link flow rate sensor quality of results of online model, calibration 

 actuator lumped demand factor of supply zone 

tank water level actuator initial condition for transient model 

 sensor control value during subsequent time steps. Cumulative nature singles out 
discrepancies between model and reality 

reservoir or resource head actuator boundary condition for head 

water quality indicator sensor quality of results of online model, calibration 

dosage actuator input of substance 

     Table 3. Operations and control information used as model parameters (received from SCADA) 

Type of information Type Remark 

valve state actuator separation of pressure zones 

pump state actuator pumps should operate during low electricity demand times 

pump speed actuator adjustment of pump curve to demand 

control device set values actuator some modern control devices don’t have fixed set points but can be adjusted to 
current conditions 
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The mathematical problem of simulating the hydraulic behavior of water supply systems can be modelled as an 
initial boundary value problem for a system of differential algebraic equations. With the (not correct) assumptions of 
incompressibility of water and an infinite Young’s modulus for the pipe material the DAE system includes only 
ordinary differential equations (water hammer theory is excluded in this case -> RWCM).  

Initial values have to be defined for the water level in tanks and concentration of water quality parameters at 
nodes. The boundary conditions describe the given timely changing values for a certain set of nodes such as pressure 
heads at reservoirs, withdrawal at demand nodes and concentration at water quality sources. 

2.2. Slow transient or rigid water column model 

The rigid water column model for water supply models consists of the following system of differential algebraic 
equations (for the notation please see the Appendix): 
                                              
                                                                    
                 

                    (1) 
The static or only slowly changing parameters (blue) include pipe properties like length, diameter and roughness 

(  and also head loss function h(q) which includes the diameter and the roughness of the pipe), network topology 
( , ) and the geometry of storage tanks ( ). The head loss function is violet (composition of red and blue 
parameters) since it includes, in addition to the slowly changing pipe properties, also roughness and minor losses of 
valves that can result from maintenance work in the field. The remaining parameters refer to the boundary 
conditions (red) reservoir heads ( ), the nodal demands ( ) and the initial value for the tank water levels 
( ), which is needed only at the beginning of the simulation time. The decision variables (hydraulic state variables) 
are marked in green color. 

It must be noted that the above system is a strong simplification of real water distribution networks that include 
also a number of pumps, remote controlled valves and other control devices. Control devices and pumps impact the 
head loss (or head gain) of a link. Therefore the equation in the first line of equation (1) could be extended to: 

                          (2) 
Here, the head loss function is subdivided into one part for pipes (index P) including manually operated gate 

valves and one part for other control devices and pumps (index CD) that are remote controlled from a SCADA 
system. Consequently, the first part remains violet as explained above and the second is red referring to the control 
devices ability to change their operational states by remote control on a regular base. For more advanced 
applications of the RWCM see for example [3] and [4].  

3. Model parameters  

3.1. Identification of model parameters 

For the parameterization of the online model the availability of data must be considered. Measurements 
commonly include hydraulic state variables such as flow rates, pressure heads, and water level in tanks. In addition, 
operational state variables for remote controlled devices can be received from SCADA system: valve states, pump 
states (on/off), pump speed, set points of control devices (set pressures for pressure control devices and set flows for 
flow control devices). Nowadays, more and more water quality sensors that measure standard water quality 
parameters such as conductivity, pH, temperature, etc. are installed in the field and integrated within the SCADA 
system.  

The comparison of SCADA variables with the system of equations shows that operational states can be directly 
used as boundary conditions or for modification of the nonlinear head loss (head gain) equation (defined as 
actuators). In contrast, only few of the measurements can be used as actuators: only tank water levels as initial 
condition and reservoir water levels as pressure boundary condition. In general, measurement data for nodal 
pressures and flows are sensors in the sense of the online simulation because they refer to state variables of the 
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hydraulic simulation model. That means that they are not fixed parameters of the model rather than being calculation 
results. Yet, sensor data are very important for monitoring the quality of the online calculation results. If there are 
too large discrepancies there must be something wrong with the model assumptions expressed by the model 
parameters. 

A special class of model parameters are the nodal demands. In general, the current actual demands are not 
available as real time measurements. However, demand meter readings are carried out by most of the utilities on a 
regular time scheme, say for example every half year or every year or using a rolling time schedule. In this case, as 
measurements only average values are available. In order to adjust the demand parameters to current conditions 
demand factors are applied. In offline planning models daily factors referring to the time of the year and the week 
day are distinguished from hourly factors representing the daily peak demand times and low demand times during 
night hours. The situation distinguishes if an online model is used. In this case, normally real time measurements of 
the total inflow into the system are available. If the system is subdivided into pressure zones sometimes more 
detailed measurements that reflect the actual demand of the particular supply zones can be used. Therefore, a 
common supply factor can be calculated for the smallest units and be applied to all the nodes in this sub network.  

Using this technique flow measurements are not only sensors but in some way also actuators (for the zone 
demand). They are still sensors since having more than one inflow into the zone the calculated flows can still differ 
from the measurements. Possibly reasons are manifold in this case. Wrong assumptions about pipe properties such 
as diameter and roughness and state of gate valves are only few of them.  

Static parameters: 
The identification of static and slowly changing network parameters is strongly related to the creation of the 

water supply network model from reference data systems and model calibration for both water quality and hydraulic 
parameters [5]. The process of setting up the model starts with the adaption of the data describing the pipes and 
system layout that are mostly available from Geographic Information Systems (GIS). Efficient data interfaces are 
needed to allow the transfer of information from one system to the other without loss. Due to different requirements 
also adaption of network topology and automatized failure handling may be required. For example, often house 
connection pipes end at distribution pipes in the GIS and are not topologically connected.  

Dynamically changing parameters: 
Dynamically changing parameters include system operations and load. The latter will be treated separately in the 

following paragraph. Operational parameters refer to decisions on the state of control devices, pumps and valves that 
are often made by individuals in the control room and based on their experience. The online model can deal only 
with remote controlled operations since other data, such as gate valve states that are changed by technical staff in the 
field, are not transferred in real-time to the operating system. This, actually, can cause severe problems for the 
accuracy of the online simulation model.  

Load or special dynamically changing parameters: 
Special kind of time-varying parameters are network demands. In general, there exist two different kind of 

modelling: demand driven modelling where the withdrawals are assumed to be fixed and pressure driven modelling 
where the actual withdrawals are a nonlinear function of the current pressure. In the latter case the user demands 
serve as upper threshold for the withdrawal.  

State variables 
The state variables are calculated by the model for a given set of model parameters. Once the operational 

decisions are made by the system operator and the load is applied to the model, then the state variables can be 
calculated from the model equations. Dependent on the kind of the mathematical model the results (state variables) 
are uniquely determined by the model equations or there might by multiple solutions that describe the current 
operational state. Assuming a strictly convex problem with non-empty feasible sets for the state variables there 
exists always a unique solution. In some special cases, the operational conditions can be selected in such a way that 
a unique (stable) solution does not exist. As result the system might be in an unstable state that should be 
imperatively avoided.  
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3.2. Update of dynamically changing parameters 

The update cycles of model data depend on the IT-equipment and the workflow of the utility. Usually, the update 
intervals increase with increasing effort (see Fig. 2). This is especially true for data that are not monitored in the 
SCADA systems and subject to manipulations by network operators. As an example the state of gate valves that are 
closed during rehabilitation works can be mentioned.  

The actuality of SCADA data is dependent on the kind of data transmission. Whereas operational data and 
measurements of important operational stations (pump stations, storage tank, water treatment plans) are normally 
connected via data cables the measurements that are gathered in the field are often transferred by mobile phone 
networks (GPRS technology). In this case, the lifetime of the battery and the cost are strongly dependent on the 
frequency for data transmission. Therefore common time intervals range from minutes to one day.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Typical update cycles of model data originating from different sources (logarithmic scale) 

The data update for non-remote controlled control devices and valve states poses particular difficulties for the 
online model. Often, the information is reported on paper sheets and not communicated to a central data 
management system. The risk of losing the information is high. Wrong assumptions of valve states highly impact 
the accuracy of online simulation results. In addition, closed valves that are assumed to be open can also lead to 
severe consequences for example in case of a fire. The performance of fire hydrants is reduced in such a case and 
can prevent efficient firefighting measures. Therefore, care and attention should be given to an adequate 
management on the information about valve states. The technical base already exits. For example modern GIS 
systems come with mobile phone integration. Using this technique the operator can pass the information about valve 
state changes on side to a central GIS database. From there the information could be transferred to the online model.  

However, in reality most of the GIS systems in use are not connected to an online system. The creation and 
update of a hydraulic simulation model is still costly in terms of labor and time. Therefore, the update frequency of 
GIS data in the hydraulic simulation models is pretty large (models are normally updated on an annual base or even 
longer). There are different reasons causing this situation: 

 GIS data often do not have the quality that is needed for the simulation model. Therefore more or less 
time-consuming repair mechanisms have to be applied. 

 The size of the GIS-models is too big for the simulation model. Aggregation and skeletonization, 
however, result in losing the one to one relationship between GIS data and model data. As a consequence 
the differential update of single features is almost impossible and often a completely new creation of the 
simulation model from the source data is required.  
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4. Summary and Conclusions 

Online simulation, either in real time or in replay mode, of the hydraulics and water quality of drinking water 
networks requires the availability of measurement data and operational data of the real physical system. There exist 
different ways of dealing with information gathered in the field and every utility has developed its own approach.  

No general existing approach for implementation and parameterization of online simulation model including data 
acquisition for development of the offline hydraulic simulation model and its connection to live data for 
measurements and operational data can be identified. The different underlying IT-infrastructures of the water supply 
utilities have to be taken into account as well as number and quality of available offline and online data. 
Additionally, a proper work plan for the creation of hydraulic online simulation should take into account the 
individual requirements of the utility as well as technical, financial and human resources.  

The quality of both online and offline model parameters is crucial for the validity and significance of the 
calculation results. Due to improved sensors and methods for data transmission the real-time data are often less 
critical than the data that is typically treated as offline information. The long update cycles of GIS data sets and less 
reliable documentation and availability of operational states of non-remote controlled valves and control devices 
highly affect the quality of the results. More work has to be done on improving data update techniques from 
reference data systems such as GIS and CMS (Content Management Systems). The absence of standards in offline 
data models complicates the development of general interfaces. In contrast, for the exchange of live data the OPC 
standard has been established allowing a fast connection between the hydraulic online simulation models and the 
SCADA system of the utility by using an OPC client integrated within the software for hydraulic calculations.  
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Appendix A. Notation 

 : diagonal matrix, .  and  are the length and the diameter of pipe i. 
 : -vector of flows, vector of time derivatives of flows 

 : link - node incidence matrix reduced to junction nodes 
 : link - node incidence matrix reduced to tank nodes  
 : link - node incidence matrix reduced to reservoir nodes  

HD : -vector of unknown nodal heads 
 : -vector of head losses of links as a (nonlinear) function of link flows 

 : -vector of water level changes in tanks (time derivatives of tank node heads)  
  : diagonal matrix with  . is the cross section of tank i. 

  : n-vector of flows leaving or entering the system at junction nodes  
D : -vector of demands or fixed input flows 

  : -sub vector of  where entries refer to nodes with pressure boundary condition  
R : -vector of given pressure heads  

  : -vector of initial water level in tanks 
 : total number of links 

 : total number of junction nodes 
 : number of reservoirs 
 : total number of demand and fixed input flow nodes 
 : number of tanks 
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