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Abstract. All the known approximations of π(n) for finite values of n are derived from real-valued functions that are asymptotic to π(x), such as x logex , Li(x) and Riemann's function R(x) = ∞ n=1 µ(n)

(n) li(x 1/n ). The degree of approximation for finite values of n is determined only heuristically, by conjecturing upon an error term in the asymptotic relation that can be seen to yield a closer approximation than others to the actual values of π(n) for computable values of n. None of these can, however, claim to estimate π(n) uniquely for all values of n. We show that statistically the probability of n being a prime is

π( √ j) i=1 (1 -1 p i
), and that statistically the expected value of the number π(n) of primes less than or equal to n is given uniquely by

n j=1 π( √ j) i=1 (1 -1 p i
) for all values of n. We then demonstrate how this yields elementary probability-based proofs of the Prime Number Theorem, Dirichlect's Theorem, and the Twin-Prime Conjecture.

Introduction

"Prime numbers are the most basic objects in mathematics. They also are among the most mysterious, for after centuries of study, the structure of the set of prime numbers is still not well understood. Describing the distribution of primes is at the heart of much mathematics...". 1

In the first half of this investigation we address the thesis that what makes the distribution of primes 'mysterious', and difficult to engage with for emerging scholars, is a curious-apparently implicitreluctance to define prime probability statistically; an issue which may need to be addressed more extensively elsewhere.

In the second half, we explore the structure of divisibility (and, ipso facto, of primality) 2 , and statistically define the probability of a number being prime.

We then show how this yields elementary (and unexpectedly related) probability-based proofsderived from first principles-of fundamental prime properties such as the Prime Number Theorem, Dirichlect's Theorem, the Twin Prime Conjecture and the P vN P problem. 3 1. Introduction 2

1. Introduction

1.A. The functions π(x) and x logex : A historical perspective

To place this investigation in an appropriate historical perspective, we note that Adrien-Marie Legendre and Carl Friedrich Gauss are reported 4 to have independently conjectured in 1796 that, if π(x) denotes the number of primes less than x, then π(x) is asymptotically equivalent to x logex . Around 1848/1850, Pafnuty Lvovich Chebyshev proved that π(x)

x logex , and confirmed that if π(x)/ x logex has a limit, then it must be 1 5 .

Fig. 1: The asymptotic behaviour of the primes Fig. 1: Graph showing ratio of the prime-counting function π(x) to two of its approximations, x ln x and Li(x). As x increases (note x axis is logarithmic), both ratios tend towards 1. The ratio for x ln x converges from above very slowly, while the ratio for Li(x) converges more quickly from below. 6 The question of whether π(x)/ x logex has a limit at all, or whether it oscillates, was answered-it has a limit-first by Jacques Hadamard and Charles Jean de la Vallée Poussin independently in 1896, using advanced argumentation involving functions of a complex variable 7 ; and again independently by Paul Erdös and Atle Selberg 8 in 1949/1950, using only elementary-but still abstruse-methods without involving functions of a complex variable.

1.B. A better approximation to π(x): The integral Li(x)

We also note that, reportedly 9 : "In a handwritten note on a reprint of his 1838 paper 'Sur l'usage des séries infinies dans la théorie des nombres', which he mailed to Carl Friedrich Gauss, Peter Gustav Lejeune Dirichlect conjectured (under a slightly different form appealing to a series rather than an integral) that an even better approximation to π(x) is given by the offset logarithmic integral Li(x) defined by: based proofs are shown to be both simple and capable of being taught to, and reproduced by, any interested first-year undergraduate student of mathematics, or even a GCSE A level+ amateur enthusiast, with a spirit of enquiry. See §7., Appendix IV for the resources needed by a reader for following, and reproducing, the proofs of this paper.

Li(x) =

x 2 1 loget .dt = li(x) -li(2)." 10 We further note that in 1889 Jean de la Vallée Poussin proved 11 (cf. Fig. 1): ". . . that Li(x) represents π(x) more exactly than x logex and its remaining approximations We note that all the known approximations of π(n) for finite values of n are derived from realvalued functions that are asymptotic to π(x), such as x logex , Li(x) and Riemann's function

R(x) = ∞ n=1 µ(n) (n) li(x 1/n
). The degree of approximation for finite values of n is determined only heuristically, by conjecturing upon an error term in the asymptotic relation that can be seen to yield the closest approximation upon comparison with the actual values of π(n) for computable values of n (eg. Fig. 2). (n) li(x 1/n ). 12 The question remains:

• Is there a function which best approximates π(n) for all values of n?

1.D. Is there a unique function which best approximates π(n) for all values of n?

In this investigation we shall answer the above question affirmatively by: 10 Where li(x) =

x 0 1 loget .dt. 11 [Di52], p.440.

• first, defining the statistical probability of an integer n being a prime; and

• second, showing that the statistically expected distribution of the primes-and hence the best approximation for π(n) for all finite n-is given by the unique statistical prime counting function (cf. Fig. 3):

π L (n) = n j=1 π( √ j) i=1 (1 -1 p i
).

Fig. 3: Statistically expected distribution of the primes ).

We shall then demonstrate how this yields elementary, probability-based, proofs of the Prime Number Theorem, Dirichlect's Theorem, and the Twin-Prime Conjecture.

2. The curious reluctance to define prime probability statistically 2.A. Prime probability: conventional wisdom Now, the explicit thesis of this investigation is that lack of recognition of π L (n) as the prime counting function for the number of primes ≤ n is, apparently, reflection of a curious-albeit implicitreluctance to accept a statistical definition of prime probability as legitimate.

For instance, conventional number-theory wisdom appears to be that the distribution of primes suggested by the Prime Number Theorem 14 , π(n) ∼ n logen , is such that the probability P(n ∈ {p}) of an integer n being a prime p can only be heuristically estimated as 1 logen 15 ; apparently reflecting an implicit faith in G. H. Hardy and J. E. Littlewood's 1922 dictum that 16 : "Probability is not a notion of pure mathematics, but of philosophy or physics".

It is a dictum that can reasonably be taken by the laity to suggest, with some authority, that the statistical probability P(n ∈ {p}) of an integer n being a prime p is also not capable of being welldefined statistically 17 independently of the Theorem.

2.B. Statistical probability that a prime p divides n

However, such a conclusion would be misleading, since any lay investigation of such a probability from first principles:

(1) would begin naturally by considering if, and only if, conditions for i to be a divisor of n;

(2) would move fairly straightforwardly to an elementary residue function such as r i (n) 18 , defined (Definition 1) for all n ≥ 2 and all i ≥ 2 by:

n + r i (n) ≡ 0 (mod i) where i > r i (n) ≥ 0 since r i (n) = 0 if, and only if, i is a divisor of n;
(3) would then (Theorem 3.3) note for any i ≥ 2 that:

M i = {(0, 1, 2, . . . , i -1), r i (n), 1 i }
is a probability model 19 for the values of r i (n) for n ≥ 2;

(4) which would further imply:

(i) first (Corollary 3.4) that, by the standard definition of the statistical probability P(e) of an event e 20 , the probability P(p|n) that r p (n) = 0-whence the prime p divides n-is:

P(p|n) = 1 p
and that the probability P(p | n) that r p (n) = 0-whence the prime p does not divide n-is:

P(p | n) = 1 -1 p
since the p numbers 0, 1, . . . , (p -1) are all incongruent and form a complete system of residues 21 ;

(ii) second (Lemma 3.5) that:

(a) the product of the individual probability that r p i (n) = 0-whence the prime p i divides the integer n-and the individual probability that r p j (n) = 0-whence the prime p j = p i divides n-is:

P(p i |n).P(p j |n) = 1 p i . 1 p j
17 See, for instance, [St02], Chapter 2, p.9, Theorem (sic) 2.1! 18 Depicted graphically in §5., Appendix II(A), Fig. 6. (b) the joint probability P(p i |n ∩ p j |n) that r p i (n) = 0 and r p j (n) = 0whence both the primes p i = p j divide the integer n-is:

P(p i |n ∩ p j |n) = 1 p i .p j
since the p i .p j numbers v.p i + u.p j , where p i > u ≥ 0 and p j > v ≥ 0, are also all incongruent and form a complete system of residues 22 ;

(iii) and third (Theorem 3.8) that the prime divisors of any integer n are thus mutually independent by the standard definition of the 'mutual independence' of two events e 1 and e 2 23 .

2.C. Statistical probability of n being a prime

Since it is easily shown that n is a prime if, and only if, it is not divisible by any prime p ≤ √ n, it would immediately then follow:

(i) first (Theorem 3.11) that the statistical probability of n being a prime p is given 24 by the prime probability function (cf. Fig. 4):

P(n ∈ {p}) = π( √ n) i=1 (1 -1 p i ) ∼ 2e -γ logen , 25
where 2.e -λ ≈ 1.12292 . . .; 26 

(x) = (x -p 2 n ) n i=1 (1 -1 p i ) + n-1 j=1 (p 2 j+1 -p 2 j ) j i=1 (1 -1 p i
) + 2 (see Fig. 5).

22 Ibid., p.52, Theorem 59. 23 See §4., Appendix I; also [Ko56], Chapter VI, §1, Definition 1, p.57 and §2, p.58; see also [Ka59], p.54.

24 Compare [HL23], pp.36-37. 25 The asymptotic equivalence follows by Mertens's Theorem p≤x (1 (ii) and second that (Theorem 3.13), by the Law of Large Numbers 27 , the expected value 28 of the number π(n) of primes less than or equal to n is (Definition 4) the prime counting function π L (n) (cf. Fig. 5), such that: 

-1 p ) ∼ e -λ logex , [
π(n) ∼ π L (n) = n j=1 π( √ j) i=1 (1 -1 p i ).
(x) = π L (x) = (x -p 2 n ) n i=1 (1 -1 p i ) + n-1 j=1 (p 2 j+1 -p 2 j ) j i=1 (1 -1 p i ) + 2 in the interval (p 2 n , p 2 n+1 ). Note that the gradient in the interval (p 2 n , p 2 n+1 ) is n i=1 (1 -1 p i
).

2.D. The anomaly in approximating π(n) heuristically: conventional wisdom

However conventional number theory wisdom-whilst reasonably conceding 29 that the heuristic probability of an integer n being prime could also be naïvely assumed as

√ n i=1 (1-1 p i
)-seems to unreasonably argue against such naïvety, by concluding that the number π(n) of primes less than or equal to n suggested by such probability would then be approximated by the heuristic prime counting function:

π H (n) = n j=1 π( √ n) i=1 (1 -1 p i ) = n. π( √ n) i=1 (1 -1 p i
) ∼ 2.e -γ n logen . For instance, Hardy and Littlewood note that: "In the first place we observe that any formula in the theory of primes, deduced from considerations of probability, is likely to be erroneous in just this way. Consider, for example, the problem 'what is the chance that a large number n should be prime?' We know that the answer is that the chance is approximately 1 log n .

Now the chance that n should not be divisible by any prime less than a fixed x is asymptotically equivalent to 27 See §4., Appendix I; also [Ko56], Chapter VI, §3, p.61. 28 See §4., Apendix II. Compare also [HL23], pp.36-37. See also §6., Appendix III for the expected values π L (n), and the actual values π(n), for 4 ≤ n ≤ 1500.

29 [Gr95], p.13.

<x

(1 -1 )

and it would be natural to infer 1 that the chance required is asymptotically equivalent to

< √ x (1 - 1 ) But < √ x (1 - 1 ) ∼ 2e -C log n
and our inference is incorrect, to the extent of a factor 2e -C .

1 One might well replace < √ x by < x, in which case we should obtain a probability half as large. This remark is in itself enough to show the unsatisfactory character of the argument." . . . pp.36-37, G.H Hardy and J.E. Littlewood, Some problems of 'partitio numerorum:' III: On the expression of a number as a sum of primes, Acta Mathematica, December 1923, Volume 44, pp.1-70. Now, even if we ignore the incongruity of treating x as 'fixed ', the 'character ' of the argument in Hardy and Littlewood's footnoted remark can be considered 'unsatisfactory' only if we conflate necessity with sufficiency!

Otherwise, what we ought to reasonably conclude from the argument is that: Lemma 2.1. Whilst the statistical probability that n should not be divisible by any prime less than

x is <x (1 -1 ) if x ≤ √ n, it is defined by < √ n (1 -1 )-and not by <x (1 -1 )-if x > √ n.
Proof : We shall show in §3.A. of this investigation that whilst-if x > √ n-the terms of the former product do, those of the latter product do not, define the statistical probabilities of the necessary and sufficient-mutually independent-conditions that jointly define the primality of n under the probability model (see §3.B.):

M i = {(0, 1, 2, . . . , i -1), r i (n), 1 i }.
Moreover, the argument that we may treat π H (n) as a heuristic approximation to π(n) is 'unreasonable' since an apparent anomaly does, then, surface when we express π(n) and the function π H (n) in terms of the number of primes determined by each function respectively in each interval (p 2 n , p 2 n+1 ) as follows:

π(p 2 n+1 ) = n j=1 (π(p 2 j+1 ) -π(p 2 j )) + π(p 2 1 ) π H (p 2 n+1 ) = p 2 n+1 . π( p 2 n+1 ) i=1 (1 -1 p i ) = ( n j=1 (p 2 j+1 -p 2 j ) + p 2 1 ). n i=1 (1 -1 p i ) = n j=1 (p 2 j+1 . n i=1 (1 -1 p i ) -p 2 j . n i=1 (1 -1 p i )) + p 2 1 . n i=1 (1 -1 p i )
Reason: By Corollary 3.13, π L (n) is the expected value of π(n), and, for any given k > 1:

π L (p 2 k+1 ) -π L (p 2 k ) > 0 as n → ∞;
whilst, for any given k > 1 30 :

p 2 k+1 . n i=1 (1 -1 p i ) -p 2 k . n i=1 (1 -1 p i ) → 0 as n → ∞.
More specifically, by Corollary 3.13 and Mertens' Theorem 31 , the expected value of the number of primes between the prime squares p 2 k and p 2 k+1 (see Fig. 4), for any k > 1, is given by:

π(p 2 k+1 ) -π(p 2 k ) ∼ π L (p 2 k+1 ) -π L (p 2 k ) as k → ∞ π L (p 2 k+1 ) -π L (p 2 k ) = (p 2 k+1 -p 2 k ). k i=1 (1 -1 p i ) ≥ ((p k + 2) 2 -p 2 k ). k i=1 (1 -1 p i ) ≥ 4(p k + 1). k i=1 (1 -1 p i ) ∈ O( p k logep k ) as k → ∞ → ∞ as k → ∞
So, if we were to contrarily accept both π L (n) and π H (n) as prime counting functions, then the anomaly noted by Hardy and Littlewood would, indeed, follow from the Prime Number Theorem π(n) ∼ n logen , since π H (n) ∼ 2.e -γ n logen ! Brocard's conjecture: We note without further comment that Brocard's conjecture:

π(p 2 k+1 ) -π(p 2 k ) ≥ 4
would follow if we could show that, for k > 1, the difference between π(n) and π L (n) is always less than 4(p k + 1). k i=1 (1 -

1 p i ) + 1. 32
2.E. The 'second' Hardy-Littlewood conjecture concerning prime density

We next note that the 'heuristic' definition of the probability of a number being prime, albeit discounted by Hardy and Littlewood as 'unsatisfactory', is not only justifiable statistically (as shown in §3.D.), but that Definition 4 immediately implies:

Theorem 2.2. π L (m + n) ≤ π L (m) + π L (n) for all integers m, n ≥ 2 Proof : The m terms of the summation π L (m) = m j=1 π( √ j) i=1 (1 -1 p i ) are identical to the first m terms of π L (m + n) = m+n j=1 π( √ j) i=1 (1 -1 p i ); whilst the k th term π( √ k) i=1 (1 -1 p i ) of π L (n) is greater than the corresponding (m + k) th term π( √ m+k) i=1 (1 -1 p i ) of π L (m + n) for m ≥ 1, k ≥ 1 33 .
We further have, by the Law of Large Numbers, that:

Corollary 2.3. π(m + n) ≤ π(m) + π(n) as m → ∞ 30
Compare with what appears to be a similar argument in [St02], Chapter 2, p.9, Theorem (sic) 2.1. 31 i.e., p≤x (1 -1 p ) ∼ e -λ logex , [HW60], Theorem 429, p.351. 32 cf. Wikipedia: Brocard's conjecture. 33 As is graphically obvious from Fig. 4.

The significance of Theorem 2.2 is seen if we compare: (i) Theorem 2.2 with the definition of the 'second' Hardy-Littlewood 1923 conjecture in Richards 34 concerning the estimated density of primes as: 'π(x + y) ≤ π(x) + π(y) for all integers x, y ≥ 2' where the author claims: "We show that this assertion is probably false";

(ii) and Corollary 2.3 with the original conjecture 35 , where Hardy and Littlewood define:

" (x) = lim n→∞ (π(n + x) -π(n))"
and remark that: "It is plain that the determination of a lower bound for (x) is a problem of exceptional depth. . . . The problem of an upper bound has greater possibilities. . . . An examination of the primes less than 200 suggests forcibly that: (x) ≤ π(x) (x ≥ 2)".

An elementary probability-based approach to estimating prime counting functions statistically

In the rest of this investigation we demonstrate the far-reaching significance of defining the statistical probability of n being a prime by giving elementary probability-based proofs that:

(i) The Prime Number Theorem: First, by the Law of Large Numbers, we have π(x) ∼ π L (x) since p 2 n+1 -p 2 n → ∞ (Corollary 3.13). Second, we note the function π L (x)/ x logex is differentiable in the interval (p 2 n , p 2 n+1 ) with derivative (π L (x)/ x logex ) ∈ o(1) (Lemma 3.15). We conclude that both π L (x)/ x logex and π(x)/ x logex do not oscillate as x → ∞.

Chebyshev's Theorem 36 , π(x)

x logex , then yields the Prime Number Theorem (Theorem 3.16): π(x) ∼ x logex .

(ii) Dirichlect's Theorem: By the Law of Large Numbers, the expected value of the number π (a,d) (n) of Dirichlect primes of the form a + m.d which are less than or equal to n, where a, d are co-prime and 1 ≤ a < d = q

α 1 1 .q α 2 2 . . . q α k k (q i prime)
, is given by the Dirichlect prime counting function π D (n) (Definition 6), such that:

π (a,d) (n) ∼ π D (n) = k i=1 1 q α i i . k i=1 (1 -1 q i ) -1 .π L (n) → ∞.
(iii) Twin Prime Theorem: By the Law of Large Numbers, the expected value of the number π 2 (n) of twin primes ≤ n is given by the twin-prime counting function:

π T (n) = n j=1 P(j ∈ {p} ∩ j + 2 ∈ {p}).
We conclude that there are infinitely many twin primes since we show that (Corollary 3.34):

π 2 (n) ∼ π T (n) ∼ e -2γ . n log 2 e n
.

3.A. The residues r i (n).

We begin by formally defining the residues r i (n) for all n ≥ 2 and all i ≥ 2 as below 37 :

Definition 1. n + r i (n) ≡ 0 (mod i) where i > r i (n) ≥ 0.
Since each residue r i (n) cycles over the i values (i -1, i -2, . . . , 0), these values are all incongruent and form a complete system of residues 38 mod i.

It immediately follows that:

Lemma 3.1. r i (n) = 0 if, and only if, i is a divisor of n.

3.B. The probability model

M i = {(0, 1, 2, . . . , i -1), r i (n), 1 i }
By the standard definition of the probability P(e) of an event e 39 , we have by Lemma 3.1 that:

Lemma 3.2. For any n ≥ 2, i ≥ 2 and any given integer i > u ≥ 0:

• the probability P(r i (n) = u) that r i (n) = u is 1 i ; • u=i-1 u=0 P(r i (n) = u) = 1; • and the probability P(r i (n) = u) that r i (n) = u is 1 -1 i .
By the standard definition of a probability model 40 , we conclude that:

Theorem 3.3. For any i ≥ 2, M i = {(0, 1, 2, . . . , i -1), r i (n), 1 i } is a probability model for the values of r i (n).

Corollary 3.4. For any n ≥ 2 and any prime p ≥ 2, the probability P(r p (n) = 0) that r p (n) = 0, and that p divides n, is 1 p ; and the probability P(r p (n) = 0) that r p (n) = 0, and that p does not divide n, is 1 -1 p .

We also note the standard definition 41 : Definition 2. Two events e i and e j are mutually independent for i = j if, and only if, P(e i ∩ e j ) = P(e i ).P(e j ). 37 The residues ri(n) can also be graphically displayed variously as shown in the Appendix II in §5.. 38 [HW60], p.49. 39 See §4., Appendix I; also [Ko56], Chapter I, §1, Axiom III, pg.2. 40 See §4., Appendix I. 41 See §4., Appendix I; also [Ko56], Chapter VI, §1, Definition 1, pg.57 and §2, pg.58.

3.C. The prime divisors of any integer n are mutually independent

We then have that:

Lemma 3.5. If p i and p j are two primes where i = j then, for any n ≥ 2, we have:

P((r p i (n) = u) ∩ (r p j (n) = v)) = P(r p i (n) = u).P(r p j (n) = v)
where p i > u ≥ 0 and p j > v ≥ 0.

Proof : The p i .p j numbers v.p i + u.p j , where p i > u ≥ 0 and p j > v ≥ 0, are all incongruent and form a complete system of residues 42 mod (p i .p j ). Hence:

P((r p i (n) = u) ∩ (r p j (n) = v)) = 1 p i .p j
By Lemma 3.2:

P(r p i (n) = u).P(r p j (n) = v) = ( 1 p i )( 1 p j
).

The lemma follows.

If u = 0 and v = 0 in Lemma 3.5, so that both p i and p j are prime divisors of n, we immediately conclude by Definition 2 that:

Corollary 3.6. P((r p i (n) = 0) ∩ (r p j (n) = 0)) = P(r p i (n) = 0).P(r p j (n) = 0).

We can also express this as:

Corollary 3.7. P(p i |n ∩ p j |n) = P(p i |n).P(p j |n).

We thus conclude that:

Theorem 3.8. The prime divisors of any integer n are mutually independent.

3.C.a. Integer Factorising cannot be polynomial-time

We digress briefly from our investigation of prime counting functions to note that Theorem 3.8 immediately yields the actively pursued 43 (although prima facie unconnected) computational complexity consequence that no deterministic algorithm 44 can compute a factor of any randomly given integer n in polynomial time 45 ! We note the standard definition 46 : Definition 3. A deterministic algorithm computes a number-theoretical function f (n) in polynomialtime if there exists k such that, for all inputs n, the algorithm computes f (n) in ≤ (log e n) k + k steps.

It then follows from Theorem 3.8 that:

Corollary 3.9. Any deterministic algorithm that always computes a prime factor of n cannot be polynomial-time.

Proof : Any computational process that successfully identifies a prime divisor of n must necessarily appeal to at least one logical operation for identifying such a factor.

Since n is a prime if, and only if, it is not divisible by any prime p ≤ √ n, and n may be the square of a prime, it follows from Theorem 3.8 that we necessarily require at least one logical operation for each prime p ≤ √ n in order to logically determine whether p is a prime divisor of n.

Since the number of such primes is of the order O(n/log e n), the number of computations required by any deterministic algorithm that always computes a prime factor of n cannot be polynomial-time-i.e. of order O((log e n) c ) for any c-in the length of the input n. The corollary follows.

3.D. The statistical probability P(n ∈ {p}) that n is a prime

Since n is a prime if, and only if, it is not divisible by any prime p ≤ √ n, it follows immediately from Lemma 3.2 and Lemma 3.5 that: Lemma 3.10. For any n ≥ 2, the probability P(n ∈ {p}) of an integer n being a prime p is the probability that

r p i (n) = 0 for any 1 ≤ i ≤ k if p 2 k ≤ n < p 2 k+1 .
By Corollary 3.4 we can express this by the statistical prime probability function (graphically illustrated in §2.C., Fig. 4) 47 :

Theorem 3.11. P(n ∈ {p}) = π( √ n) i=1 (1 -1 p i ) ∼ 2e -γ logen .
It immediately follows that, for any m > π( √ n):

Corollary 3.12.

P(n ∈ {p}) > m i=1 (1 -1 p i ).

3.E. The statistical prime counting function π L (n)

It now follows from Theorem 3.11 that, since p 2 n+1 -p 2 n → ∞ as n → ∞, by the Law of Large Numbers 48 , the expected value 49 of the number π(n) of primes less than or equal to n is given by the prime counting function (graphically illustrated in §2.C., Fig. 5): Gr95], p.13). 48 See §4., Appendix I; also [Ko56], Chapter VI, §3, p.61; [El79b], pp.52-57. 49 See §4., Apendix III. Compare also [HL23], pp.36-37.

Definition 4. π L (n) = n j=1 π( √ j) i=1 (1 -1 p i ). Corollary 3.13. π(n) ∼ π L (n). 47 We note that Ltn→∞logen. π( √ n) i=1 (1 -1 p i ) = 2.e -λ ≈ 1.12292 . . . ([

3.F. The interval (p 2

n , p 2 n+1 )

It also follows immediately from the definition of π(x) as the number of primes less than or equal to x that:

Lemma 3.14.

π( √ x) i=1 (1 -1 p i ) = π( √ x+1) i=1 (1 -1 p i ) for p 2 n ≤ x < p 2 n+1 .
We can also generalise the number-theoretic function of Definition 4 as the real-valued function:

Definition 5. π L (x) = π L (p 2 n ) + (x -p 2 n ) n i=1 (1 -1 p i ) for p 2 n ≤ x < p 2 n+1 .
We note that the graph of

π L (x) in the interval (p 2 n , p 2 n+1 ) for n ≥ 1 is now a straight line with gradient n i=1 (1 -1 p i
), as illustrated in §2.C., Fig. 5 where we defined π L (x) equivalently by:

π L (x) = (x) = (x -p 2 n ) n i=1 (1 -1 p i ) + n-1 j=1 (p 2 j+1 -p 2 j ) j i=1 (1 -1 p i ) + 2 3.G. The function π L (x)/ x logex We consider next the function π L (x)/ x logex in the interval (p 2 n , p 2 n+1 ): π L (x)/ x logex = (π L (p 2 n ) + (x -p 2 n ) n i=1 (1 -1 p i ))/ x logex This now yields the derivative (π L (x). logex x ) in the interval (p 2 n , p 2 n+1 ) as: π L (x).( logex x ) + (π L (x)) . logex x (π L (p 2 n ) + (x -p 2 n ) n i=1 (1 -1 p i )).( logex x ) + (π L (p 2 n ) + (x -p 2 n ) n i=1 (1 -1 p i )) . logex x (π L (p 2 n ) + (x -p 2 n ) n i=1 (1 -1 p i )).( 1 x 2 -logex x 2 ) + ( n i=1 (1 -1 p i )). logex x
Since p 2 n ≤ x < p 2 n+1 and π L (x) ∼ π(x) by the Law of Large Numbers, by Mertens' 50 and Chebyshev's Theorems we can express the above as:

∼ (π L (p 2 n ) + e -γ (x-p 2 n ) logen ).( 1 x 2 -logex x 2 ) + e -γ .logex x.logen ∼ ( π L (p 2 n ) x + e -γ logen (1 - p 2 n x )). (1-logex) x + e -γ .logex x.logen ∼ ( π L (p 2 n ) p 2 n . p 2 n x + e -γ
logen (1 -

p 2 n x )). (1-2.logep n ) p 2 n + 2.e -γ .logep n p 2 n .logen
Since each term → 0 as n → ∞, we conclude that the function π L (x)/ x logex does not oscillate but tends to a limit as x → ∞ since:

Lemma 3.15. (π L (x)/ x logex ) ∈ o(1).

3.H. An elementary probability-based proof of the Prime Number Theorem

The above now yields an elementary probability-based proof that:

Theorem 3.16. π(x) ∼ x/log e x Proof : By Lemma 3.15 (π L (x)/ x logex ) ∈ o(1); whence the function π L (x)/ x logex does not oscillate but tends to a limit as x → ∞.

Since p 2

n+1 -p 2 n → ∞ as n → ∞, and π(x) ∼ π L (x) by the Law of Large Numbers, the theorem follows from Chebyshev's Theorem that π(x) x/log e x.

3.I. Primes in an arithmetic progression

We consider next Dirichlect's Theorem, which is the assertion that if a and d are co-prime and 1 ≤ a < d, then the arithmetic progression a+m.d, where m ≥ 1, contains an infinitude of (Dirichlect) primes.

We first note that Lemma 3.5 can be extended to prime powers in general 51 : Lemma 3.17. If p i and p j are two primes where i = j then, for any n ≥ 2, α, β ≥ 1, we have:

P((r p α i (n) = u) ∩ (r p β j (n) = v)) = P(r p α i (n) = u).P(r p β j (n) = v) where p α i > u ≥ 0 and p β j > v ≥ 0. Proof : The p α i .p β j numbers v.p α i + u.p β j
, where p α i > u ≥ 0 and p β j > v ≥ 0, are all incongruent and form a complete system of residues 52 mod (p α i .p β j ). Hence:

P((r p α i (n) = u) ∩ (r p β j (n) = v)) = 1 p α i .p β j
By Lemma 3.2:

P(r p α i (n) = u).P(r p β j (n) = v) = ( 1 p α i )( 1 p β j ).
The lemma follows.

If u = 0 and v = 0 in Lemma 3.17, so that both p i and p j are prime divisors of n, we immediately conclude by Definition 2 that:

Corollary 3.18. P((r p α i (n) = 0) ∩ (r p β j (n) = 0)) = P(r p α i (n) = 0).P(r p j β (n) = 0).
We can also express this as:

Corollary 3.19. P(p α i |n ∩ p β j |n) = P(p α i |n).P(p β j |n).
We thus conclude that:

Theorem 3.20. For any two primes p = q and natural numbers n, α, β ≥ 1, whether or not p α divides n is independent of whether or not q β divides n.

51 Hint: The following arguments may be easier to follow if we visualise the residues rpα i (n) and r p β i (n) as they would occur in §5., Fig. 6 and Fig. 7. 52 [HW60], p.52, Theorem 59.

3.I.a. The probability that n is a prime of the form a + m.d

We note next that:

Lemma 3.21. For any co-prime natural numbers 1 ≤ a < d = q

α 1 1 .q α 2 2 . . . q α k k
where:

q 1 < q 2 < . . . < q k are primes and α 1 , α 2 . . . α k ≥ 1 are natural numbers;

the natural number n is of the form a + m.d for some natural number m ≥ 1 if, and only if:

a + r q α i i (n) ≡ 0 (mod q α i i ) for all 1 ≤ i ≤ k
where 0 ≤ r i (n) < i is defined for all i > 1 by:

n + r i (n) ≡ 0 (mod i) . Proof : First, if n is of the form a + m.d for some natural number m ≥ 1, where 1 ≤ a < d = q α 1 1 .q α 2 2 . . . q α k k , then: n ≡ a (mod d) and : n + r q α i i (n) ≡ 0 (mod q α i i ) f or all 1 ≤ i ≤ k whence : a + r q α i i (n) ≡ 0 (mod q α i i ) f or all 1 ≤ i ≤ k Second: If : a + r q α i i (n) ≡ 0 (mod q α i i ) f or all 1 ≤ i ≤ k and : n + r q α i i (n) ≡ 0 (mod q α i i ) f or all 1 ≤ i ≤ k then : n -a ≡ 0 (mod q α i i ) f or all 1 ≤ i ≤ k whence : n ≡ a (mod d)
The Lemma follows.

By Lemma 3.2, it follows that:

Corollary 3.22. The probability that a + r

q α i i (n) ≡ 0 (mod q α i i ) for any 1 ≤ i ≤ k is 1 q α i i
.

By Theorem 3.20, it further follows that:

Corollary 3.23. The joint probability that a + r

q α i i (n) ≡ 0 (mod q α i i ) for all 1 ≤ i ≤ k is k i=1 1 q α i i .
We conclude by Lemma 3.21 that:

Corollary 3.24. The probability that n is of the form a+m.d for some natural number m ≥ 1, where

1 ≤ a < d = q α 1 1 .q α 2 2 . . . q α k k is k i=1 1 q α i i .

It follows that:

Corollary 3.25. The probability P(n ∈ {p} ∩ n ∈ {a + m.d}) that n is a Dirichlect prime of the form a + m.d for some natural number m ≥ 1, where 1 ≤ a < d = q

α 1 1 .q α 2 2 . . . q α k k is: k i=1 1 q α i i . k i=1 (1 -1 q i ) -1 .P(n ∈ {p}).
Proof : Since a, d are co-prime, we have by Lemma 3.21 that if n is of the form a + m.d for some natural number m ≥ 1, where 1 ≤ a < d = q

α 1 1 .q α 2 2 . . . q α k k , we have that: n ≡ a (mod q i ) f or all 1 ≤ i ≤ k whilst : n + r i (n) ≡ 0 (mod i) f or all 1 ≤ i whence : a + r q i (n) ≡ 0 (mod q i ) f or all 1 ≤ i ≤ k r q i (n) = 0 f or all 1 ≤ i ≤ k and : q i | n f or all 1 ≤ i ≤ k
Hence, if n is of the form a + m.d for some natural number m ≥ 1, where 1 ≤ a < d = q

α 1 1 .q α 2 2 . . . q α k k
and (a, d) = 1, the probability that q i |n for all 1 ≤ i ≤ k is 1.

By Lemma 3.10, Theorem 3.11 and Theorem 3.20, the probability that any n ≥ q 2 k is a Dirichlect prime of the form a + m.d is thus:

k i=1 1 q α i i . 2≤p≤ √ n p =q i f or1≤i≤k (1 -1 p ) = k i=1 1 q α i i . k i=1 (1 -1 q i ) -1 . 2≤p≤ √ n (1 -1 p ) = k i=1 1 q α i i . k i=1 (1 -1 q i ) -1 . π( √ n) j=1 (1 -1 p j ) = k i=1 1 q α i i . k i=1 (1 -1 q i ) -1 .P(n ∈ {p})
The Corollary follows.

3.I.b. An elementary probability-based proof of Dirichlect's Theorem

It further follows from Theorem 3.11 that, since p 2 n+1 -p 2 n → ∞ as n → ∞, by the Law of Large Numbers 53 the expected value of the number π (a,d) (n) of Dirichlect primes, of the form a + m.d for some natural number m ≥ 1 and 1 ≤ a < d = q

α 1 1 .q α 2 2 . . . q α k k ,
that are less than or equal to any n ≥ q 2 k is given by the Dirichlect prime counting function:

Definition 6. π D (n) = n l=1 ( k i=1 1 q α i i . k i=1 (1 -1 q i ) -1 .P(l ∈ {p})).
We conclude that:

Lemma 3.26. π (a,d) (n) ∼ π D (n) → ∞ as n → ∞.
Proof : If a, d are co-prime and 1 ≤ a < d = q

α 1 1 .q α 2 2 . . . q α k k , we have for any n ≥ q 2 k :
53 See §4., Appendix I; also [Ko56], Chapter VI, §3, pg. 61.

π D (n) = n l=1 ( k i=1 1 q α i i . k i=1 (1 -1 q i ) -1 .P(l ∈ {p})) = k i=1 1 q α i i . k i=1 (1 -1 q i ) -1 .π L (n) = k i=1 1 q α i i . k i=1 (1 -1 q i ) -1 . n l=1 π( √ l) j=1 (1 -1 p j ) ≥ k i=1 1 q α i i . k i=1 (1 -1 q i ) -1 .n. π( √ n) j=1 (1 -1 p j )
The lemma follows since, by Mertens' Theorem, p≤x (1 -1 p ) ∼ e -λ logex , we have that:

n. π( √ n) j=1 (1 -1 p j ) ∼ 2e -γ n loge(n) → ∞ as n → ∞.
We conclude by the Law of Large Numbers when applied to the interval,

p 2 n+1 -p 2 n → ∞ as n → ∞, that:
Theorem 3.27. There are an infinity of primes in any arithmetic progression a + m.d where (a, d) = 1 54 .

3.J. An elementary probability-based proof that there are infinitely many twinprimes

We next note that, by Theorem 3.11, we can define the twin-prime counting function π T (n), which gives the expected value of the number π 2 (n) of twin primes (p i , p i+1 = p i + 2) for 3 ≤ p i ≤ n as:

Definition 7. π T (n) = n j=1 P(j ∈ {p} ∩ j + 2 ∈ {p})
In order to estimate π T (n), we first define: Definition 8. An integer n is a TW integer if, and only if,

r p i (n) = 0 and r p i (n) = 2 for all 1 ≤ i ≤ π( √ n).
Since n is a prime if, and only if, it is not divisible by any prime p ≤ √ n, we then have that:

Lemma 3.28. If n is a TW integer, then n is a prime.

Proof : The lemma follows immediately from Definition 8, Definition 1 and Lemma 3.1.

Lemma 3.29. If n is a TW integer, then n + 2 is either a prime or p 2 π( √ n)+1
. Proof : By Definition 8 and Definition 1:

r p i (n) = 2 f or all 1 ≤ i ≤ π( √ n) n + 2 = λ.i f or all 2 ≤ i ≤ p π( √ n) , λ ≥ 1 Hence, if n + 2 is divisible by p π( √ n)+1 , then n + 2 = p 2 π( √ n)+1
; else it is a prime. Since each residue r i (n) cycles over the i values (i -1, i -2, . . . , 0), these values are all incongruent and form a complete system of residues mod i. It thus follows from Definition 8 and Section 3.B. that the probability of n ≥ 9 being a TW integer is:

Lemma 3.30. P(n ∈ {TW}) = π( √ n) i=2 (1 -2 p i
).

The number π TW (n) of TW integers ≥ 9 but ≤ n is thus:

Lemma 3.31. π TW (n) = n j=9 π( √ j) i=2 (1 -2 p i
).

Since the number of TW integers such that n

+ 2 = p 2 π( √ n)+1 is not more than π( √ n), it also follows that, for n ≥ 9: Lemma 3.32. π T (n) ≥ n j=9 π( √ j) i=2 (1 -2 p i ) -π( √ n).
We further note that:

Theorem 3.33. π T (n) → ∞ as n → ∞.
Proof : We have by Lemma 3.32 that, for n ≥ 9:

π T (n) ≥ (n -9). π( √ n) i=2 (1 -2 p i ) -π( √ n) ≥ (n -9). π( √ n) i=2 (1 -1 p i )(1 -1 (p i -1) ) -π( √ n) ≥ (n -9). π( √ n) i=2 (1 -1 p i )(1 -1 p i-1 ) -π( √ n) ≥ (n -9). π( √ n) i=2 (1 -1 p i-1 ) 2 -π( √ n) ≥ (n -9). n i=1 (1 -1 p i ) 2 -π( √ n)
Now, by Chebyshev's and Mertens' Theorems, we have that:

(n -9). n i=1 (1 -1 p i ) 2 -π( √ n) ∼ (n -9).( e -γ logen ) 2 -π( √ n) ∼ e -2γ . n log 2 e n -9e -2γ log 2 e n -O( √ n logen ) → ∞ as n → ∞ The theorem follows. Since p 2 n+1 -p 2 n → ∞ as n → ∞, it follows by the Law of Large Numbers that π 2 (n) ∼ π T (n) ∼ π T W (n).
We conclude that there are infinitely many twin primes, and that 55 :

Corollary 3.34. π 2 (n) ∼ e -2γ . n log 2 e n .
3.K. The Generalised Prime Counting Function:

n j=1 π( √ j) i=a (1 -b p i )
We note that the argument of Theorem 3.33 in §3.J. is a special case of the limiting behaviour of the Generalised Prime Counting Function

n j=1 π( √ j) i=a (1 -b p i
), which estimates the number of integers ≤ n such that there are b values that cannot occur amongst the residues r p i (n) for a ≤ i ≤ π( √ j) 56 :

55 Where e -2γ = 0.3152373316 . . .; compare [HW60], p.371, §22.20: 

π 2 (n) ∼ 2C2. n
n j=1 π( √ j) i=a (1 -b p i ) → ∞ as n → ∞ if p a > b ≥ 1.
Proof : For p a > b ≥ 1, we have that:

n j=1 π( √ j) i=a (1 -b p i ) ≥ n j=p 2 a π( √ j) i=a (1 -b p i ) ≥ n j=p 2 a π( √ n) i=a (1 -b p i ) ≥ (n -p 2 a ). π( √ n) i=a (1 -b p i ) ≥ (n -p 2 a ). n i=a (1 -b p i )
The theorem follows if:

log e (n -p 2 a ) + n i=a log e (1 -b p i ) → ∞ (i)
We note first the standard result for |x| < 1 that:

log e (1 -x) = -∞ m=1 x m m
For any p i > b ≥ 1, we thus have:

log e (1 -b p i ) = -∞ m=1 (b/p i ) m m = -b p i -∞ m=2 (b/p i ) m m
Hence:

n i=a log e (1 -b p i ) = -n i=a ( b p i ) -n i=a ( ∞ m=2 (b/p i ) m m ) (ii) We note next that, for all i ≥ a: c < (1 -b p a ) → c < (1 -b p i )
It follows for any such c that:

∞ m=2 (b/p i ) m m ≤ ∞ m=2 ( b p i ) m = (b/p i ) 2 1-b/p i ≤ b 2 c.p 2 i Since: ∞ i=1 1 p 2 i = O(1)
it further follows that: Probability model58 : A probability model is a mathematical representation of a random phenomenon. It is defined by its sample space, events within the sample space, and probabilities associated with each event.

n i=a ( ∞ m=2 (b/p i ) m m ) ≤ n i=a ( b 2 c.p 2 i ) = O(1) ( 
• The sample space S for a probability model is the set of all possible outcomes.

• An event A is a subset of the sample space S.

• A probability is a numerical value assigned to a given event A.

Distribution Function59 : Let X be a random variable which denotes the value of the outcome of a certain experiment, and assume that this experiment has only finitely many possible outcomes. Let Ω be the sample space of the experiment (i.e., the set of all possible values of X, or equivalently, the set of all possible outcomes of the experiment). A distribution function for X is a real-valued function m whose domain is Ω and which satisfies:

1. m(ω) ≥ 0, for all ω ∈ n, and

2. ω∈Ω m(ω) = 1.
For any subset E of Ω, we define the probability of E to be the number P (E) given by

P (E) = ω∈E m(ω)
Some notations60 : Let A and B be two sets. Then the union of A and B is the set

A ∪ B = {x | x ∈ A or x ∈ B}
The intersection of A and B is the set

A ∩ B = {x | x ∈ A and x ∈ B}
The difference of A and B is the set

A -B = {x | x ∈ A and x / ∈ B}
The set A is a subset of B, written A ⊂ B, if every element of A is also an element of B. Finally, the complement of A is the set

A = {x | x ∈ Ω and x / ∈ A}.
Mutual Independence 61 : A set of events {A 1 , A 2 , . . . , A n } is said to be mutually independent if for any subset {A i , A j , . . . , A m } of these events we have

P (A i ∩ A j ∩ . . . ∩ A m ) = P (A i )P (A j ) . . . P (A m ),
or equivalently, if for any sequence A 1 , A 2 , . . . , A n with A j = A j or A j ,

P (A i ∩ A j ∩ . . . ∩ A m ) = P (A i )P (A j ) . . . P (A m ).
Expected Value 62 : Let X be a numerically-valued discrete random variable with sample space Ω and distribution function m(x). The expected value E(X) is defined by:

E(X) = x∈Ω xm(x),
provided this sum converges absolutely. We often refer to the expected value as the mean, and denote E(X) by µ for short. If the above sum does not converge absolutely, then we say that X does not have an expected value.

Law of Large Numbers 63 : Let X 1 , X 2 , . . . , X n be an independent trials process, with finite expected value µ = E(X j ) and finite variance σ 2 = V (X j ). Let S n = X 1 + X 2 + . . . + X n . Then for any > 0,

P (| Sn n -µ| ≥ ) → 0
as n → ∞. Equivalently,

P (| Sn n -µ| < ) → 1
as n → ∞. 

Appendix II: The residue function r i (n)

We graphically illustrate how the residues r i (n) occur naturally as values of:

A A: The natural-number based residue functions R i (n)

The residues r i (n) can be defined for all n ≥ 1 as the values of the natural-number based residue functions R i (n), defined for all i ≥ 1 as below in Fig. 6. We note that each function R i (n) cycles through the values (i -1, i -2, . . . , 0) with period i. Function:

R 1 n R 2 n R 3 n R 4 n R 5 n R 6 n R 7 n R 8 n R 9 n R 10 n R 11 n . . . R n n
n = 1 0 1 2 3 4 5 6 7 8 9 10 . . . n-1 n = 2 0 0 1 2 3 4 5 6 7 8 9 . . . n-2 n = 3 0 1 0 1 2 3 4 5 6 7 8 . . . n-3 n = 4 0 0 2 0 1 2 3 4 5 6 7 . . . n-4 n = 5 0 1 1 3 0 1 2 3 4 5 6 . . . n-5 n = 6 0 0 0 2 4 0 1 2 3 4 5 . . . n-6 n = 7 0 1 2 1 3 5 0 1 2 3 4 . . . n-7 n = 8 0 0 1 0 2 4 6 0 1 2 3 . . . n-8 n = 9 0 1 0 3 1 3 5 7 0 1 2 . . . n-9 n = 10 0 0 2 2 0 2 4 6 8 0 1 . . . n-10 n = 11 0 1 1 1 4 1 3 5 7 9 0 . . . n-11 n r 1 n r 2 n r 3 n r 4 n r 5 n r 6 n r 7 n r 8 n r 9 n r 10 n r 11 n . . . 0 Fig. 6: The natural-number based residue functions Ri(n)

B: The natural-number based residue sequences E(n)

The above residues r i (n) can also be viewed alternatively as values of the associated residue sequences,

E(n) = {r i (n) : i ≥ 1}
, defined for all n ≥ 1, as illustrated below in Fig. 7.

We note that:

• The sequences highlighted in red identify a prime 64 p (since r i (p) = 0 for 1 < i < p);

• The 'boundary' residues r 1 (n) = 0 and r n (n) = 0 are identified in cyan.

64 Conventionally defined as integers that are not divisible by any smaller integer other than 1.

Fig. 7: The natural-number based residue sequences E(n)

Function: R 1 n R 2 n R 3 n R 4 n R 5 n R 6 n R 7 n R 8 n R 9 n R 10 n R 11 n . . . R n n
E(1): 0 1 2 3 4 5 6 7 8 9 10 . . . n-1 E(2): 0 0 1 2 3 4 5 6 7 8 9 . . . n-2 E(3): 0 1 0 1 2 3 4 5 6 7 8 . . . n-3 E(4): 0 0 2 0 1 2 3 4 5 6 7 . . . n-4 E(5):

0 1 1 3 0 1 2 3 4 5 6 . . . n-5 E(6): 0 0 0 2 4 0 1 2 3 4 5 . . . n-6 E(7): 0 1 2 1 3 5 0 1 2 3 4 . . . n-7 E(8): 0 0 1 0 2 4 6 0 1 2 3 . . . n-8 E(9): 0 1 0 3 1 3 5 7 0 1 2 . . . n-9 E(10): 0 0 2 2 0 2 4 6 8 0 1 . . . n-10 E(11): 0 1 1 1 4 1 3 5 7 9 0 . . . n-11 . . .

E(n):

r 1 n r 2 n r 3 n r 4 n r 5 n r 6 n r 7 n r 8 n r 9 n r 10 n r 11 n . . . 0 . . . 

E N (1): 0 E N (2): 0 0 E N (3): 0 1 0 E N (4): 0 0 2 0 E N (5): 0 1 1 3 0 E N (6): 0 0 0 2 4 0 E N (7): 0 1 2 1 3 5 0 E N ( 
8): 0 0 1 0 2 4 6 0 E N (9): 0 1 0 3 1 3 5 7 0 E N (10): 0 0 2 2 0 2 4 6 8 0 E N (11): 0 1 1 1 4 1 3 5 7 9 0 . . . E N (n): r 1 n r 2 n r 3 n r 4 n r 5 n r 6 n r 7 n r 8 n r 9 n r 10 n r 11 n . . . 0 . . . We give below in Fig. 9 the output for 2 ≤ n ≤ 31 of a prime-number based algorithm E Q that computes the values q i (n) = r p i (n) of the sequence E P (n) for only each prime 2 ≤ p i ≤ n for any given n. E P (2): 0 E P (3): 1 0 E P (4): 0 2 E P (5): 1 1 0 E P (6): 0 0 4 E P (7): 1 2 3 0 E P (8): 0 1 2 6 E P (9): 1 0 1 5 E P (10): 0 2 0 4 E P (11): 1 1 4 3 0 E P (12): 0 0 3 2 10 E P (13): 1 2 2 1 9 0 E P (14): 0 1 1 0 8 12 E P (15): 1 0 0 6 7 11 E P (16): 0 2 4 5 6 10 E P (17): 1 1 3 4 5 9 0 E P (18): 0 0 2 3 4 8 16 E P (19): 1 2 1 2 3 7 15 0 E P (20): 0 1 0 1 2 6 14 18 E P (21): 1 0 4 0 1 5 13 17 E P (22): 0 2 3 6 0 4 12 16 E P (23): 1 1 2 5 10 3 11 15 0 E P (24): 0 0 1 4 9 2 10 14 22 E P (25): 1 2 0 3 8 1 9 13 21 E P (26): 0 1 4 2 7 0 8 12 20 E P (27): 1 0 3 1 6 12 7 11 19 E P (28): 0 2 2 0 5 11 6 10 18 E P (29): 1 1 1 6 4 10 5 9 17 0 E P (30): 0 0 0 5 3 9 4 8 16 28 E P (31): 1 2 4 4 2 8 3 7 15 27 0 . . . E P (n): q 1 n q 2 n q 3 n q 4 n q 5 n q 6 n q 7 n q 8 n q 9 n q 10 n q 11 n . . . 0 . . . 

(n) = r p i (n) : 1 ≤ i ≤ π(n)} is shown only partially, partly in cyan) and E Q (whose output q i (n) = {r p i (n) : 1 ≤ i ≤ π( √ n)}
is highlighted in black and red, the latter indicating the generation of a prime sequence and, ipso facto, definition of the corresponding prime 65 . 

Q 1 n Q 2 n Q 3 n Q 4 n Q 5 n Q 6 n Q 7 n Q 8 n Q 9 n Q 10 n Q 11 n . . . E Q (2): 0 (Prime by definition) E Q (3): 1 0 E Q (4): 0 2 E Q (5): 1 1 0 E Q (6): 0 0 4 E Q (7): 1 2 3 0 E Q (8): 0 1 2 6 E Q (9): 1 0 1 5 E Q (10): 0 2 0 4 E Q (11): 1 1 4 3 0 E Q (12): 0 0 3 2 10 E Q (13): 1 2 2 1 9 0 E Q (14): 0 1 1 0 8 12 E Q (15)
: 1 0 0 6 7 11 E Q (16): 0 2 4 5 6 10 E Q (17): 1 1 3 4 5 9 0 E Q (18): 0 0 2 3 4 8 16 E Q (19): 1 2 1 2 3 7 15 0 E Q (20): 0 1 0 1 2 6 14 18 E Q (21): 1 0 4 0 1 5 13 17 E Q (22): 0 2 3 6 0 4 12 16 E Q (23): 1 1 2 5 10 3 11 15 0 E Q (24): 0 0 1 4 9 2 10 14 22 E Q (25): 1 2 0 3 8 1 9 13 21 E Q (26): 0 1 4 2 7 0 8 12 20 E Q (27): 1 0 3 1 6 12 7 11 19 E Q (28): 0 2 2 0 5 11 6 10 18 E Q (29): 1 1 1 6 4 10 5 9 17 0 E Q (30): 0 0 0 5 3 9 4 8 16 28 E Q (31): 1 2 4 4 2 8 3 7 15 27 0 E Q (32): 0 1 3 3 1 7 2 6 14 26 30 E Q (33): 1 0 2 2 0 6 1 5 13 25 29 E Q (34): 0 2 1 1 10 5 0 4 12 24 28 E Q (35): 1 1 0 0 9 4 16 3 11 23 27 E Q (36): 0 0 4 6 8 3 15 2 10 22 26 E Q (37): 1 2 3 5 7 2 14 1 9 21 25 E Q (38): 0 1 2 4 6 1 13 0 8 20 24 E Q (39): 1 0 1 3 5 0 12 18 7 19 23 65 For informal reference and perspective, formal definitions of both the prime-number based algorithms E P and E Q are given in this work in progress Factorising all m ≤ n is of order Θ( n i=2 π(

√ i)).
E Q (40): 0 2 0 2 4 12 11 17 6 18 22 E Q (41): 1 1 4 1 3 11 10 16 5 17 21 E Q (42): 0 0 3 0 2 10 9 15 4 16 20 E Q (43): 1 2 2 6 1 9 8 14 3 15 19 E Q (44): 0 1 1 5 0 8 7 13 2 14 18 E Q (45): 1 0 0 4 10 7 6 12 1 13 17 E Q (46): 0 2 4 3 9 6 5 11 0 12 16 E Q (47): 1 1 3 2 8 5 4 10 22 11 15 E Q (48): 0 0 2 1 7 4 3 9 21 10 14 E Q (49): 1 2 1 0 6 3 2 8 20 9 13 E Q (50): 0 1 0 6 5 2 1 7 19 8 12 E Q (51): 1 0 4 5 4 1 0 6 18 7 11 E Q (52): 0 2 3 4 3 0 16 5 17 6 10 E Q (53): 1 1 2 3 2 12 15 4 16 5 9 E Q (54): 0 0 1 2 1 11 14 3 15 4 8 E Q (55): 1 2 0 1 0 10 13 2 14 3 7 E Q (56): 0 1 4 0 10 9 12 1 13 2 6 E Q (57): 1 0 3 6 9 8 11 0 12 1 5 E Q (58): 0 2 2 5 8 7 10 18 11 0 4 E Q (59): 1 1 1 4 7 6 9 17 10 28 3 E Q (60): 0 0 0 3 6 5 8 16 9 27 2 E Q (61): 1 2 4 2 5 4 7 15 8 26 1 E Q (62): 0 1 3 1 4 3 6 14 7 25 0 E Q (63): 1 0 2 0 3 2 5 13 6 24 30 E Q (64): 0 2 1 6 2 1 4 12 5 23 29 E Q (65): 1 1 0 5 1 0 3 11 4 22 28 E Q (66): 0 0 4 4 0 12 2 10 3 21 27 E Q (67): 1 2 3 3 10 11 1 9 2 20 26 E Q (68): 0 1 2 2 9 10 0 8 1 19 25 E Q (69): 1 0 1 1 8 9 16 7 0 18 24 E Q (70): 0 2 0 0 7 8 15 6 22 17 23 E Q (71): 1 1 4 6 6 7 14 5 21 16 22 E Q (72): 0 0 3 5 5 6 13 4 20 15 21 E Q (73): 1 2 2 4 4 5 12 3 19 14 20 E Q (74): 0 1 1 3 3 4 11 2 18 13 19 E Q (75): 1 0 0 2 2 3 10 1 17 12 18 E Q (76): 0 2 4 1 1 2 9 0 16 11 17 E Q (77): 1 1 3 0 0 1 8 18 15 10 16 E Q (78): 0 0 2 6 10 0 7 17 14 9 15 E Q (79): 1 2 1 5 9 12 6 16 13 8 14 E Q (80): 0 1 0 4 8 11 5 15 12 7 13 E Q (81): 1 0 4 3 7 10 4 14 11 6 12 E Q (82): 0 2 3 2 6 9 3 13 10 5 11 E Q (83): 1 1 2 1 5 8 2 12 9 4 10 E Q (84): 0 0 1 0 4 7 1 11 8 3 9 E Q (85): 1 2 0 6 3 6 0 10 7 2 8 E Q (86): 0 1 4 5 2 5 16 9 6 1 7 E Q (87): 1 0 3 4 1 4 15 8 5 0 6 E Q (88): 0 2 2 3 0 3 14 7 4 28 5 E Q (89): 1 1 1 2 10 2 13 6 3 27 4 E Q (90): 0 0 0 1 9 1 12 5 2 26 3 E Q (91): 1 2 4 0 8 0 11 4 1 25 2 E Q (92): 0 1 3 6 7 12 10 3 0 24 1 E Q (93): 1 0 2 5 6 11 9 2 22 23 0 E Q (94): 0 2 1 4 5 10 8 1 21 22 30 E Q (95): 1 1 0 3 4 9 7 0 20 21 29 E Q (96): 0 0 4 2 3 8 6 18 19 20 28 E Q (97): 1 2 3 1 2 7 5 17 18 19 27 E Q (98): 0 1 2 0 1 6 4 16 17 18 26 E Q (99): 1 0 1 6 0 5 3 15 16 17 25 E Q (100): 0 2 0 5 10 4 2 14 15 16 24 E Q (101): 1 1 4 4 9 3 1 13 14 15 23 E Q (102): 0 0 3 3 8 2 0 12 13 14 22 E Q (103): 1 2 2 2 7 1 16 11 12 13 21 E Q (104): 0 1 1 1 6 0 15 10 11 12 20 E Q (105): 1 0 0 0 5 12 14 9 10 11 19 E Q (106): 0 2 4 6 4 11 13 8 9 10 18 E Q (107): 1 1 3 5 3 10 12 7 8 9 17 E Q (108): 0 0 2 4 2 9 11 6 7 8 16 E Q (109): 1 2 1 3 1 8 10 5 6 7 15 E Q (110): 0 1 0 2 0 7 9 4 5 6 14 E Q (111): 1 0 4 1 10 6 8 3 4 5 13 E Q (112): 0 2 3 0 9 5 7 2 3 4 12 E Q (113): 1 1 2 6 8 4 6 1 2 3 11 E Q (114): 0 0 1 5 7 3 5 0 1 2 10 E Q (115): 1 2 0 4 6 2 4 18 0 1 9 E Q (116): 0 1 4 3 5 1 3 17 22 0 8 E Q (117): 1 0 3 2 4 0 2 16 21 28 7 E Q (118): 0 2 2 1 3 12 1 15 20 27 6 E Q (119): 1 1 1 0 2 11 0 14 19 26 5 E Q (120): 0 0 0 6 1 10 16 13 18 25 4 E Q (121): 1 2 4 5 0 9 15 12 17 24 3 . . . E Q (n): q 1 n q 2 n q 3 n q 4 n q 5 n q 6 n q 7 n q 8 n q 9 n q 10 n q 11 n . . . . . . Prime: p 1 p 2 p 3 p 4 p 5 p 6 p 7 p 8 p 9 p 10 p 11 . . . p n . . . Divisor: 2 3 5 7 11 13 17 19 23 29 31 . . . p n . . . The following table gives the statistically expected values π L

(n) = n j=1 π( √ j)
i=1 (1 -1/p j ), and the actual values π(n), of the primes less than or equal to n for 4 ≤ n ≤ 1500. 
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  . Known approximations of π(n) for finite values of n

Fig. 2 :

 2 Fig.2: The distribution of the primes

Fig. 2 :

 2 Fig.2: The above graph compares the actual number π(x) (red) of primes ≤ x with the distribution of primes as estimated variously by the functions Li(x) (blue), R(x) (black), and x logex (green), where R(x) is Riemann's function ∞ n=1

Fig. 3 :

 3 Fig.3: The above graph compares the statistically expected values (red) vs actual values (blue) of π(n) for 4 ≤ n ≤ 1500 13 , where the statistically expected value π L (n) of π(n) is n j=1

Fig. 4 :

 4 Fig.4: The graph of y = π( √ x) i=1 (1 -1 p i )

Fig. 5 :Fig. 5 :

 55 Fig.5: The graph of y = (x) = π L (x)

  log 2 e n , where C2 = p≥3 p(p-2) (p-1) 2 ≈ 0.66016181584 . . .. 56 Thus b = 1 yields an estimate for the number of primes ≤ n, and b = 2 an estimate for the number of TW primes (Definition 8) ≤ n.Theorem 3.35.

  iii) From the standard result 57 : p≤x 1 p = log e log e x + O(1) + o(1) it then follows that: .(log e log e n + O(1) + o(1)) -O(1) The theorem follows since: log e (n -p 2 a ) -b.(log e log e n + O(1) + o(1)) -O(1) → ∞ and so: log e (n -p 2 a ) + n i=a log e (1 -b p i ) → ∞ 4. Appendix I: Definitions of some terms and concepts of Probability Theory

:

  The natural-number based residue functions R i (n); B: The natural-number based residue sequences E(n); and as the output of: C: The natural-number based algorithm E N ; D: The prime-number based algorithm E P ; E: The prime-number based algorithm E Q .

Fig. 6 :

 6 Fig.6: The natural-number based residue functions R i (n)

Fig. 7 :

 7 Fig.7: The natural-number based residue sequences E(n)

Fig. 8 :

 8 Fig.8: The output of the natural-number based algorithm E N
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 8 Fig.8: The output of the natural-number based algorithm E N

Fig. 9 :

 9 Fig.9: The output of the prime-number based algorithm E P

Fig. 9 :

 9 Fig.9: The output of the prime-number based algorithm E P E: The output of the prime-number based algorithms E P and E Q We give below in Fig.10 the output for 2 ≤ n ≤ 121 of the two prime-number based algorithms E P (whose output {q i (n) = r p i (n) : 1 ≤ i ≤ π(n)} is shown only partially, partly in cyan) and E Q (whose

Fig. 10 :

 10 Fig.10: The output of the prime-number based algorithms E P and E Q

Fig. 10 :

 10 Fig.10: The output of the prime-number based algorithms E P and E Q

cf. How Many Primes Are There? In The Prime Pages. Retrieved 10:29, September 27, 2015, from: https://primes.utm.edu/howmany.html.
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[START_REF] Hardy | An Introduction to the Theory of Numbers[END_REF], p.351, Theorem 427.

cf. http://www.stat.yale.edu/Courses/1997-98/101/probint.htm.

Excerpted from [GS97], Chapter 1, §1.2, p.19.

Excerpted from[START_REF] Grinstead | Introduction to Probability[END_REF], Chapter 1, §1.2, p.21.
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Appendix IV: Resources

The only resources needed by a reader for following, and reproducing, the proofs of this paper are knowledge of: Ideally, all the lemmas, theorems and corollaries of the paper could be given as exercises to students in any introductory course or textbook on the Theory of Numbers.

The thesis of the paper for a student of Number Theory is that all the known functions such as x/log e x, Li(x), and Riemann's R(x) are only proven to be asymptotically equivalent to π(x) (Fig. 2). There can be many such functions. However, none of them can claim to yield a mathematically unique estimate of π(n) for finite values of n.