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&
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prime counting functions non-heuristically

Bhupinder Singh Anand
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Abstract. The reluctance to define the probability of a number being prime non-heuristically is curious, since we can define
the residues i > ri(n) ≥ 0 for all n ≥ 2 and all i ≥ 2 such that ri(n) = 0 if, and only if, i is a divisor of n, and show:

(i) that Mi = {(0, 1, 2, . . . , i − 1), ri(n), 1
i
} is a probability model for ri(n); and (ii) that the joint non-heuristic probability

P(rp
i
(n) = 0 ∩ rp

j
(n) = 0) of two primes pi 6= pj dividing any integer n is the product P(rp

i
(n) = 0).P(rp

j
(n) = 0).

We conclude that the non-heuristic probability of n being a prime p is given by the non-heuristic prime probability function

P(n ∈ {p}) =
∏π(

√
n)

i=1 (1− 1
pi

) ∼ 2e−γ

logen
. By the Law of Large Numbers, the number π(n) of primes less than or equal to n is therefore

non-heuristically approximated by πL (n) =
∑n
j=1

∏π(
√
j)

i=1 (1 − 1
pi

). We show that, in the interval (p2
n
, p2

n+1
), the non-heuristic

approximation πL (x) of π(x) is a straight line with gradient
∏n
i=1(1 − 1

pi
); and that the function πL (x)/ x

logex
is differentiable

with derivative (πL (x)/ x
logex

)′ ∈ o(1). We conclude by the Law of Large Numbers that π(x) ∼ πL (x) since p2
n+1
− p2

n
→∞; and

that both πL (x)/ x
logex

and π(x)/ x
logex

do not oscillate as x→∞. Chebyshev’s Theorem, π(x) � x
logex

, then yields an elementary

probability-based proof of the Prime Number Theorem π(x) ∼ x
logex

. We also give an elementary probability-based proof that

the number π
(a,d)

(n) of Dirichlect primes of the form a + m.d which are less than or equal to n, where a, d are co-prime and

1 ≤ a < d = q
α
1

1 .q
α
2

2 . . . q
α
k

k (qi prime), is non-heuristically approximated by the non-heuristic Dirichlect prime counting function

πD (n) =
∏k
i=1

1

q
α
i

i

.
∏k
i=1(1− 1

q
i

)−1.πL (n)→∞. We finally give an elementary probability-based proof that the number π2 (n) of

twin primes ≤ n is approximated by the non-heuristic twin-prime counting function πT (n) =
∑n
j=1 P(j ∈ {p} ∩ j+ 2 ∈ {p}); and

conclude by the Law of Large Numbers that there are infinitely many twin primes since we show that π2 (n) ∼ πT (n) ∼ e−2γ . n

log
2
en

.
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1. The curious reluctance to define prime probability non-heuristically

1.A. Conventional wisdom

Conventional number-theory wisdom appears to be that the distribution of primes suggested by the
Prime Number Theorem, π(n) ∼ n

logen
, is such that the probability P(n ∈ {p}) of an integer n being

a prime p can only be heuristically estimated as 1
logen

; apparently reflecting an implicit faith in G. H.

Hardy and J. E. Littlewood’s 1922 dictum that1:

“Probability is not a notion of pure mathematics, but of philosophy or physics”.

It is a dictum that can reasonably be taken by the laity to suggest, with some authority, that the
specific probability P(n ∈ {p}) of an integer n being a prime p is also not capable of being well-defined
non-heuristically2 independently of the Theorem.

1.B. Defining prime divisibility non-heuristically

However, what intrigues about the conventional perspective of the cognoscenti is that any lay inves-
tigation of such a probability from first principles:

(1) would begin naturally by considering if, and only if, conditions for i to be a divisor of n;

(2) would move fairly straightforwardly to an elementary residue function such as ri(n)3, defined
(Definition 1) for all n ≥ 2 and all i ≥ 2 by:

n+ ri(n) ≡ 0 (mod i) where i > ri(n) ≥ 0

since ri(n) = 0 if, and only if, i is a divisor of n;

(3) would then (Theorem 2.3) note for any i ≥ 2 that:

Mi = {(0, 1, 2, . . . , i− 1), ri(n), 1
i }

1[Gr95], p.19, fn.16 and p.20; see also [HL23], fn.4 on p.37, for the origin of the quote (courtesy Prof. Andrew
Granville).

2See, for instance, [St02], Chapter 2, p.9, Theorem (sic) 2.1.
3Depicted graphically in §4., Appendix II(A), Fig.3.
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is a probability model4 for the values of ri(n) for n ≥ 2;

(4) which would further imply:

(i) first (Corollary 2.4) that, by the standard definition of the probability P(e) of an event
e5, the non-heuristic probability P(p|n) that rp(n) = 0—whence the prime p divides n—is:

P(p|n) = 1
p

and the non-heuristic probability P(p 6 | n) that rp(n) 6= 0—whence the prime p does not
divide n—is:

P(p 6 | n) = 1− 1
p

since the p numbers 0, 1, . . . , (p − 1) are all incongruent and form a complete system of
residues6;

(ii) second (Lemma 2.5) that:

(a) the product of the individual non-heuristic probability of rpi(n) = 0—
whence the prime pi divides the integer n—and the individual non-heuristic
probability that rpj (n) = 0—whence the prime pj 6= pi divides n—is:

P(pi|n).P(pj |n) = 1
pi
. 1
pj

(b) the joint non-heuristic probability P(pi|n ∩ pj |n) of rpi(n) = 0 and rpj (n) =
0—whence both the primes pi 6= pj divide the integer n—is:

P(pi|n ∩ pj |n) = 1
pi.pj

since the pi.pj numbers v.pi + u.pj , where pi > u ≥ 0 and pj > v ≥ 0, are also
all incongruent and form a complete system of residues7;

(iii) and third (Theorem 2.8) that the prime divisors of any integer n are thus mutually
independent by the standard definition of the ‘mutual independence’ of two events e1 and
e2

8.

1.C. Defining prime probability non-heuristically

Now what intrigues is that, since n is a prime if, and only if, it is not divisible by any prime p ≤
√
n,

it would immediately then follow:

(i) first (Theorem 2.11) that the non-heuristic probability of n being a prime p is given9 by the
non-heuristic prime probability function (cf. Fig.1 below):

4See §3., Appendix I.
5See §3., Appendix I; also [Ko56], Chapter I, §1, Axiom III, p.2.
6[HW60], p.49.
7Ibid., p.52, Theorem 59.
8See §3., Appendix I; also [Ko56], Chapter VI, §1, Definition 1, p.57 and §2, p.58; see also [Ka59], p.54.
9Compare [HL23], pp.36-37.
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P(n ∈ {p}) =
∏π(

√
n)

i=1 (1− 1
pi

) ∼ 2e−γ

logen
,

where 2.e−λ ≈ 1.12292 . . .10;

Fig.1: The graph of y =
∏π(

√
x)

i=1 (1− 1
pi

)

Fig.1: Graph of y =
∏π(

√
x)

i=1 (1− 1
pi

). The dotted rectangles represent (p2
j+1
− p2

j
)
∏j
i=1(1− 1

pi
) for j ≥ 1. Figures

within boxes are values of the corresponding function within the interval (p2
j
, p2

j+1
) for j ≥ 2. The area under the

curve is u(x) = (x− p2
n

)
∏n
i=1(1− 1

pi
) +

∑n−1
j=1 (p2

j+1
− p2

j
)
∏j
i=1(1− 1

pi
) + 2 (see Fig.2).

(ii) and second that (Theorem 2.13), by the Law of Large Numbers11, a non-heuristic estimate12 of
the number π(n) of primes less than or equal to n is (Definition 4) the non-heuristic prime counting
function πL(n) (cf. Fig.2 below), such that:

π(n) ∼ πL(n) =
∑n

j=1

∏π(
√
j)

i=1 (1− 1
pi

).

10[Gr95], p.13.
11See §3., Appendix I; also [Ko56], Chapter VI, §3, p.61.
12i.e. ‘expected value’: see §3., Apendix II. Compare also [HL23], pp.36-37.
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Fig.2: The graph of y = u(x) = πL(x)

Fig.2: Graph of y = u(x) = πL (x) = (x− p2
n

)
∏n
i=1(1− 1

pi
) +

∑n−1
j=1 (p2

j+1
− p2

j
)
∏j
i=1(1− 1

pi
) + 2 in the interval (p2

n
, p2

n+1
).

Note that the gradient in the interval (p2
n
, p2

n+1
) is

∏n
i=1(1− 1

pi
).

1.D. An intriguing anomaly concerning prime counting functions

However conventional number theory wisdom—whilst reasonably conceding13 that the heuristic prob-

ability of an integer n being prime could also be näıvely assumed as
∏√n
i=1(1− 1

pi
)—seems to unreason-

ably argue against such näıvety, by concluding that the number π(n) of primes less than or equal to n
suggested by such probability would then be approximated by the heuristic prime counting function:

πH (n) =
∑n

j=1

∏π(
√
n)

i=1 (1− 1
pi

) = n.
∏π(

√
n)

i=1 (1− 1
pi

) ∼ 2.e−γn
logen

.

For instance, Hardy and Littlewood note that:

“In the first place we observe that any formula in the theory of primes, deduced from
considerations of probability, is likely to be erroneous in just this way. Consider, for
example, the problem ‘what is the chance that a large number n should be prime?’ We
know that the answer is that the chance is approximately 1

log n .

Now the chance that n should not be divisible by any prime less than a fixed x is asymp-
totically equivalent to

∏
$<x

(1− 1

$
)

13[Gr95], p.13.
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and it would be natural to infer1 that the chance required is asymptotically equivalent to

∏
$<
√
x

(1− 1

$
)

But

∏
$<
√
x

(1− 1

$
) ∼ 2e−C

log n

and our inference is incorrect, to the extent of a factor 2e−C .

1 One might well replace $ <
√
x by $ < x, in which case we should obtain a probability half as large. This remark

is in itself enough to show the unsatisfactory character of the argument.”

. . . pp.36-37, G.H Hardy and J.E. Littlewood, Some problems of ‘partitio numerorum:’ III: On the expression of a
number as a sum of primes, Acta Mathematica, December 1923, Volume 44, pp.1-70.

However, even if we ignore the incongruity of treating x as ‘fixed ’, the ‘character ’ of the argument
in Hardy and Littlewood’s footnoted remark can be considered ‘unsatisfactory ’ only if we conflate
necessity with sufficiency!

Otherwise, what we ought to reasonably conclude from the argument is that:

Lemma 1.1. Whilst the joint non-heuristic probability that n should not be divisible by any prime $
less than x is

∏
$<x(1− 1

$ ) if x ≤
√
n, it is defined by

∏
$<
√
n(1− 1

$ )—and not by
∏
$<x(1− 1

$ )—if

x >
√
n.

Proof : We shall show in §2.A. of this investigation that whilst—if x >
√
n—the terms of the

former product do, those of the latter product do not, non-heuristically define the probabilities of
the necessary and sufficient—mutually independent—conditions that jointly define the primality of
n under the probability model (see §2.B.):

• Mi = {(0, 1, 2, . . . , i− 1), ri(n), 1
i }. �

Moreover, the argument that we may treat πH (n) as a heuristic approximation to π(n) is ‘unreason-
able’ since an apparent anomaly does, then, surface when we express π(n) and the function πH (n) in
terms of the number of primes determined by each function respectively in each interval (p2

n
, p2

n+1
)

as follows:

π(p2
n+1

) =
∑n

j=1(π(p2
j+1

)− π(p2
j
)) + π(p2

1
)

πH (p2
n+1

) = p2
n+1

.
∏π(

√
p2
n+1

)

i=1 (1− 1
pi

)

= (
∑n

j=1(p2
j+1
− p2

j
) + p2

1
).
∏n
i=1(1− 1

pi
)

=
∑n

j=1(p2
j+1
.
∏n
i=1(1− 1

pi
)− p2

j
.
∏n
i=1(1− 1

pi
)) + p2

1
.
∏n
i=1(1− 1

pi
)

Reason: By Corollary 2.13, πL(n) is a non-heuristic estimate of π(n), and, for any given k > 1:

http://fuchs-braun.com/media/8cdd73c813c342f8ffff80d1fffffff0.pdf
http://fuchs-braun.com/media/8cdd73c813c342f8ffff80d1fffffff0.pdf
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πL(p2
k+1

)− πL(p2
k
) > 0 as n→∞;

whilst, for any given k > 114:

p2
k+1

.
∏n
i=1(1− 1

pi
)− p2

k
.
∏n
i=1(1− 1

pi
)→ 0 as n→∞.

More specifically, by Corollary 2.13 and Mertens’ Theorem15, the non-heuristic estimate of the number
of primes between the prime squares p2

k
and p2

k+1
(see Fig.1), for any k > 1, is given by:

π(p2
k+1

)− π(p2
k
) ∼ πL(p2

k+1
)− πL(p2

k
) as k →∞

πL(p2
k+1

)− πL(p2
k
) = (p2

k+1
− p2

k
).
∏k
i=1(1− 1

pi
)

≥ ((p
k

+ 2)2 − p2
k
).
∏k
i=1(1− 1

pi
)

≥ 4(p
k

+ 1).
∏k
i=1(1− 1

pi
)

∈ O(
p
k

logepk
) as k →∞

→ ∞ as k →∞
So, if we were to contrarily accept both πL(n) and πH (n) as prime counting functions, then the
anomaly noted by Hardy and Littlewood would, indeed, follow from the Prime Number Theorem
π(n) ∼ n

logen
, since πH (n) ∼ 2.e−γn

logen
!

Brocard’s conjecture: We note without further comment that Brocard’s conjecture:

π(p2
k+1

)− π(p2
k
) ≥ 4

would follow if we could show that, for k > 1, the difference between π(n) and πL(n) is always less
than 4(p

k
+ 1).

∏k
i=1(1− 1

pi
) + 1.16

1.E. The ‘second’ Hardy-Littlewood conjecture concerning prime density

What is intriguing is that the ‘heuristic’ definition of the probability of a number being prime, albeit
discounted by Hardy and Littlewood as ‘unsatisfactory’, is not only straightforwardly justifiable non-
heuristically (as shown in §2.D.), but that Definition 4 immediately implies:

Theorem 1.2. πL(m+ n) ≤ πL(m) + πL(n) for all integers m,n ≥ 2

Proof : The m terms of the summation πL(m) =
∑m

j=1

∏π(
√
j)

i=1 (1 − 1
pi

) are identical to the first m

terms of πL(m + n) =
∑m+n

j=1

∏π(
√
j)

i=1 (1− 1
pi

); whilst the kth term
∏π(

√
k)

i=1 (1− 1
pi

) of πL(n) is greater

than the corresponding (m+ k)th term
∏π(

√
m+k)

i=1 (1− 1
pi

) of πL(m+ n) for m ≥ 1, k ≥ 117. �

We further have, by the Law of Large Numbers, that:

Corollary 1.3. π(m+ n) ≤ π(m) + π(n) as m→∞ �

The significance of Theorem 1.2 is seen if we compare:

14Compare with what appears to be a similar argument in [St02], Chapter 2, p.9, Theorem (sic) 2.1.
15[HW60], Theorem 429, p.351.
16cf. Wikipedia: Brocard’s conjecture.
17As is graphically obvious from Fig.1.

https://en.wikipedia.org/wiki/Brocard%27s_conjecture
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(i) Theorem 1.2 with the definition of the ‘second’ Hardy-Littlewood 1923 conjecture in
Richards18 concerning the estimated density of primes as:

‘π(x+ y) ≤ π(x) + π(y) for all integers x, y ≥ 2’

where the author claims:

“We show that this assertion is probably false”;

(ii) and Corollary 1.3 with the original conjecture in [HL23]19, where Hardy and Littlewood
define:

“%(x) = limn→∞(π(n+ x)− π(n))”

and remark that:

“It is plain that the determination of a lower bound for %(x) is a problem of
exceptional depth. . . . The problem of an upper bound has greater possibilities.
. . . An examination of the primes less than 200 suggests forcibly that: %(x) ≤
π(x) (x ≥ 2)”.

2. An elementary probability-based approach to estimating prime
counting functions non-heuristically

In the rest of this investigation we demonstrate the broader significance of defining the probability of
n being a prime non-heuristically by giving elementary probability-based proofs that:

(i) The Prime Number Theorem: First, by the Law of Large Numbers, π(x) ∼ πL(x) since
p2
n+1
− p2

n
→∞ (Corollary 2.13). Second, the function πL(x)/ x

logex
is differentiable in the

interval (p2
n
, p2

n+1
) with derivative (πL(x)/ x

logex
)′ ∈ o(1) (Lemma 2.15). We conclude that

both πL(x)/ x
logex

and π(x)/ x
logex

do not oscillate as x→∞.

Chebyshev’s Theorem, π(x) � x
logex

, then yields the Prime Number Theorem (Theorem
2.16):

π(x) ∼ x
logex

.

(ii) Dirichlect’s Theorem: By the Law of Large Numbers, the number π
(a,d)

(n) of Dirichlect
primes of the form a+m.d which are less than or equal to n, where a, d are co-prime and
1 ≤ a < d = q

α1
1 .q

α2
2 . . . q

α
k

k (qi prime), is approximated by the non-heuristic Dirichlect
prime counting function πD(n) (Definition 6), such that:

π
(a,d)

(n) ∼ πD(n) =
∏k
i=1

1

q
αi
i

.
∏k
i=1(1− 1

qi
)−1.πL(n)→∞.

(iii) Twin Prime Theorem: By the Law of Large Numbers, the number π2(n) of twin
primes ≤ n is approximated by the non-heuristic twin-prime counting function:

18[Ri74], p.420.
19pp.52-54.
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πT (n) =
∑n

j=1 P(j ∈ {p} ∩ j + 2 ∈ {p}).

We conclude that there are infinitely many twin primes since we show that (Corollary
2.34):

π2(n) ∼ πT (n) ∼ e−2γ . n

log2
en

.

2.A. The residues ri(n).

We begin by formally defining the residues ri(n) for all n ≥ 2 and all i ≥ 2 as below20:

Definition 1. n+ ri(n) ≡ 0 (mod i) where i > ri(n) ≥ 0.

Since each residue ri(n) cycles over the i values (i − 1, i − 2, . . . , 0), these values are all incongruent
and form a complete system of residues21 mod i.

It immediately follows that:

Lemma 2.1. ri(n) = 0 if, and only if, i is a divisor of n. �

2.B. The probability model Mi = {(0, 1, 2, . . . , i− 1), ri(n),
1
i
}

By the standard definition of the probability P(e) of an event e22, we have by Lemma 2.1 that:

Lemma 2.2. For any n ≥ 2, i ≥ 2 and any given integer i > u ≥ 0:

• the probability P(ri(n) = u) that ri(n) = u is 1
i ;

•
∑u=i−1

u=0 P(ri(n) = u) = 1;

• and the probability P(ri(n) 6= u) that ri(n) 6= u is 1− 1
i . �

By the standard definition of a probability model23, we conclude that:

Theorem 2.3. For any i ≥ 2, Mi = {(0, 1, 2, . . . , i−1), ri(n), 1
i } is a probability model for the values

of ri(n). �

Corollary 2.4. For any n ≥ 2 and any prime p ≥ 2, the probability P(rp(n) = 0) that rp(n) = 0,
and that p divides n, is 1

p ; and the probability P(rp(n) 6= 0) that rp(n) 6= 0, and that p does not divide

n, is 1− 1
p . �

We also note the standard definition24:

Definition 2. Two events ei and ej are mutually independent for i 6= j if, and only if, P(ei ∩ ej) =
P(ei).P(ej).

20The residues ri(n) can also be graphically displayed variously as shown in the Appendix II in §4..
21[HW60], p.49.
22See §3., Appendix I; also [Ko56], Chapter I, §1, Axiom III, pg.2.
23See §3., Appendix I.
24See §3., Appendix I; also [Ko56], Chapter VI, §1, Definition 1, pg.57 and §2, pg.58.
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2.C. The prime divisors of any integer n are mutually independent

We then have that:

Lemma 2.5. If pi and pj are two primes where i 6= j then, for any n ≥ 2, we have:

P((rpi (n) = u) ∩ (rpj (n) = v)) = P(rpi (n) = u).P(rpj (n) = v)

where pi > u ≥ 0 and pj > v ≥ 0.

Proof : The pi.pj numbers v.pi + u.pj , where pi > u ≥ 0 and pj > v ≥ 0, are all incongruent and
form a complete system of residues25 mod (pi.pj). Hence:

P((rpi (n) = u) ∩ (rpj (n) = v)) = 1
pi.pj

By Lemma 2.2:

P(rpi (n) = u).P(rpj (n) = v) = ( 1
pi

)( 1
pj

).

The lemma follows. �

If u = 0 and v = 0 in Lemma 2.5, so that both pi and pj are prime divisors of n, we immediately
conclude by Definition 2 that:

Corollary 2.6. P((rpi (n) = 0) ∩ (rpj (n) = 0)) = P(rpi (n) = 0).P(rpj (n) = 0). �

We can also express this as:

Corollary 2.7. P(pi|n ∩ pj |n) = P(pi|n).P(pj |n). �

We thus conclude that:

Theorem 2.8. The prime divisors of any integer n are mutually independent. �

2.C.a. Integer Factorising cannot be polynomial-time

We digress briefly from our investigation of prime counting functions to note that Theorem 2.8 imme-
diately yields the actively pursued26 (although prima facie unconnected) computational complexity
consequence that no deterministic algorithm27 can compute a factor of any randomly given integer n
in polynomial time28!

We note the standard definition29:

Definition 3. A deterministic algorithm computes a number-theoretical function f(n) in polynomial-
time if there exists k such that, for all inputs n, the algorithm computes f(n) in ≤ (loge n)k+k steps.

25[HW60], p.52, Theorem 59.
26cf. [Cook].
27A deterministic algorithm computes a mathematical function which has a unique value for any input in its domain,

and the algorithm is a process that produces this particular value as output.
28cf. [Cook], p.1; also [Br00], p.1, fn.1.
29cf. [Cook], p.1; also [Br00], p.1, fn.1: “For a polynomial-time algorithm the expected running time should be a

polynomial in the length of the input, i.e. O((logN)c) for some constant c”.
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It then follows from Theorem 2.8 that:

Corollary 2.9. Any deterministic algorithm that always computes a prime factor of n cannot be
polynomial-time.

Proof : Any computational process that successfully identifies a prime divisor of n must necessarily
appeal to at least one logical operation for identifying such a factor.

Since n is a prime if, and only if, it is not divisible by any prime p ≤
√
n, and n may be the square

of a prime, it follows from Theorem 2.8 that we necessarily require at least one logical operation for
each prime p ≤

√
n in order to logically determine whether p is a prime divisor of n.

Since the number of such primes is of the order O(n/loge n), the number of computations required by
any deterministic algorithm that always computes a prime factor of n cannot be polynomial-time—i.e.
of order O((loge n)c) for any c—in the length of the input n. The corollary follows. �

2.D. The non-heuristic probability P(n ∈ {p}) that n is a prime

Since n is a prime if, and only if, it is not divisible by any prime p ≤
√
n, it follows immediately from

Lemma 2.2 and Lemma 2.5 that:

Lemma 2.10. For any n ≥ 2, the probability P(n ∈ {p}) of an integer n being a prime p is the
probability that rpi (n) 6= 0 for any 1 ≤ i ≤ k if p2

k
≤ n < p2

k+1
. �

By Corollary 2.4 we can express this by the non-heuristic prime probability function (graphically
illustrated in 1.C., Fig.1)30:

Theorem 2.11. P(n ∈ {p}) =
∏π(

√
n)

i=1 (1− 1
pi

) ∼ 2e−γ

logen
. �

It immediately follows that, for any m > π(
√
n):

Corollary 2.12. P(n ∈ {p}) >
∏m
i=1(1− 1

pi
). �

2.E. The non-heuristic prime counting function π
L
(n)

It now follows from Theorem 2.11 that, since p2
n+1
− p2

n
→ ∞ as n → ∞, by the Law of Large

Numbers31, a non-heuristic estimate32 of the number π(n) of primes less than or equal to n is the
non-heuristic prime counting function (graphically illustrated in §1.C., Fig.2):

Definition 4. πL(n) =
∑n

j=1

∏π(
√
j)

i=1 (1− 1
pi

).

Corollary 2.13. π(n) ∼ πL(n). �

30We note that Ltn→∞logen.
∏π(

√
n)

i=1 (1− 1
pi

) = 2.e−λ ≈ 1.12292 . . . ([Gr95], p.13).
31See §3., Appendix I; also [Ko56], Chapter VI, §3, p.61; [?], pp.52-57.
32i.e. ‘expected value’: see §3., Apendix III. Compare also [HL23], pp.36-37.
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2.F. The interval (p2
n
, p2

n+1
)

It also follows immediately from the definition of π(x) as the number of primes less than or equal to
x that:

Lemma 2.14.
∏π(

√
x)

i=1 (1− 1
pi

) =
∏π(

√
x+1)

i=1 (1− 1
pi

) for p2
n ≤ x < p2

n+1. �

We can also generalise the number-theoretic function of Definition 4 as the real-valued function:

Definition 5. πL(x) = πL(p2
n
) + (x− p2

n
)
∏n
i=1(1− 1

pi
) for p2

n ≤ x < p2
n+1. �

We note that the graph of πL(x) in the interval (p2
n
, p2

n+1
) for n ≥ 1 is now a straight line with

gradient
∏n
i=1(1− 1

pi
), as illustrated in §1.C., Fig.2 where we defined πL(x) equivalently by:

πL(x) = u(x) = (x− p2
n
)
∏n
i=1(1− 1

pi
) +

∑n−1
j=1 (p2

j+1
− p2

j
)
∏j
i=1(1− 1

pi
) + 2

2.G. The function π
L
(x)/ x

logex

We consider next the function πL(x)/ x
logex

in the interval (p2
n
, p2

n+1
):

πL(x)/ x
logex

= (πL(p2
n
) + (x− p2

n
)
∏n
i=1(1− 1

pi
))/ x

logex

This now yields the derivative (πL(x). logexx )′ in the interval (p2
n
, p2

n+1
) as:

πL(x).( logexx )′ + (πL(x))′. logexx

(πL(p2
n
) + (x− p2

n
)
∏n
i=1(1− 1

pi
)).( logexx )′ + (πL(p2

n
) + (x− p2

n
)
∏n
i=1(1− 1

pi
))′. logexx

(πL(p2
n
) + (x− p2

n
)
∏n
i=1(1− 1

pi
)).( 1

x2 − logex
x2 ) + (

∏n
i=1(1− 1

pi
)). logexx

Since p2
n ≤ x < p2

n+1 and πL(x) ∼ π(x) by the Law of Large Numbers, by Mertens’33 and Chebyshev’s
Theorems we can express the above as:

∼ (πL(p2
n
) +

e−γ(x−p2
n

)

logen
).( 1

x2 − logex
x2 ) + e−γ .logex

x.logen

∼ (
π
L

(p2
n

)

x + e−γ

logen
(1− p2

n
x )). (1−logex)

x + e−γ .logex
x.logen

∼ (
π
L

(p2
n

)

p2
n

.
p2
n
x + e−γ

logen
(1− p2

n
x )). (1−2.logepn )

p2
n

+ 2.e−γ .logepn
p2
n .logen

Since each term → 0 as n → ∞, we conclude that the function πL(x)/ x
logex

does not oscillate but
tends to a limit as x→∞ since:

Lemma 2.15. (πL(x)/ x
logex

)′ ∈ o(1). �

2.H. An elementary probability-based proof of the Prime Number Theorem

The above now yields an elementary probability-based proof that:

Theorem 2.16. π(x) ∼ x/logex

Proof : By Lemma 2.15 (πL(x)/ x
logex

)′ ∈ o(1); whence the function πL(x)/ x
logex

does not oscillate but
tends to a limit as x→∞.

Since p2
n+1
− p2

n
→ ∞ as n → ∞, and π(x) ∼ πL(x) by the Law of Large Numbers, the theorem

follows from Chebyshev’s Theorem that π(x) � x/logex. �

33[HW60], Theorem 429, p.351.
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2.I. An elementary probability-based proof of Dirichlect’s Theorem

We consider next Dirichlect’s Theorem, which is the assertion that if a and d are co-prime and
1 ≤ a < d, then the arithmetical progression a + m.d, where m ≥ 1, contains an infinitude of
(Dirichlect) primes.

We first note that Lemma 2.5 can be extended to prime powers in general34:

Lemma 2.17. If pi and pj are two primes where i 6= j then, for any n ≥ 2, α, β ≥ 1, we have:

P((rpα
i
(n) = u) ∩ (r

pβj
(n) = v)) = P(rpα

i
(n) = u).P(r

pβj
(n) = v)

where pαi > u ≥ 0 and pβj > v ≥ 0.

Proof : The pαi .p
β
j numbers v.pαi + u.pβj , where pαi > u ≥ 0 and pβj > v ≥ 0, are all incongruent and

form a complete system of residues35 mod (pαi .p
β
j ). Hence:

P((rpα
i
(n) = u) ∩ (r

pβj
(n) = v)) = 1

pαi .p
β
j

By Lemma 2.2:

P(rpα
i
(n) = u).P(r

pβj
(n) = v) = ( 1

pαi
)( 1

pβj
).

The lemma follows. �

If u = 0 and v = 0 in Lemma 2.17, so that both pi and pj are prime divisors of n, we immediately
conclude by Definition 2 that:

Corollary 2.18. P((rpα
i
(n) = 0) ∩ (r

pβj
(n) = 0)) = P(rpα

i
(n) = 0).P(rpjβ(n) = 0). �

We can also express this as:

Corollary 2.19. P(pαi |n ∩ pβj |n) = P(pαi |n).P(pβj |n). �

We thus conclude that:

Theorem 2.20. For any two primes p 6= q and natural numbers n, α, β ≥ 1, whether or not pα

divides n is independent of whether or not qβ divides n. �

34Hint : The following arguments may be easier to follow if we visualise the residues rpα
i

(n) and r
p
β
i

(n) as they would

occur in §4., Fig.3 and Fig.4.
35[HW60], p.52, Theorem 59.
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2.I.a. The probability that n is a prime of the form a+m.d

We note next that:

Lemma 2.21. For any co-prime natural numbers 1 ≤ a < d = q
α1
1 .q

α2
2 . . . q

α
k

k where:

q1 < q2 < . . . < q
k

are primes and α1 , α2 . . . αk ≥ 1 are natural numbers;

the natural number n is of the form a+m.d for some natural number m ≥ 1 if, and only if:

a+ r
q
αi
i

(n) ≡ 0 (mod q
αi
i ) for all 1 ≤ i ≤ k

where 0 ≤ ri(n) < i is defined for all i > 1 by:

n+ ri(n) ≡ 0 (mod i) .

Proof : First, if n is of the form a + m.d for some natural number m ≥ 1, where 1 ≤ a < d =
q
α1
1 .q

α2
2 . . . q

α
k

k , then:

n ≡ a (mod d)

and : n+ r
q
αi
i

(n) ≡ 0 (mod q
αi
i ) for all 1 ≤ i ≤ k

whence : a+ r
q
αi
i

(n) ≡ 0 (mod q
αi
i ) for all 1 ≤ i ≤ k

Second:

If : a+ r
q
αi
i

(n) ≡ 0 (mod q
αi
i ) for all 1 ≤ i ≤ k

and : n+ r
q
αi
i

(n) ≡ 0 (mod q
αi
i ) for all 1 ≤ i ≤ k

then : n− a ≡ 0 (mod q
αi
i ) for all 1 ≤ i ≤ k

whence : n ≡ a (mod d)

The Lemma follows. �

By Lemma 2.2, it follows that:

Corollary 2.22. The probability that a+ r
q
αi
i

(n) ≡ 0 (mod q
αi
i ) for any 1 ≤ i ≤ k is 1

q
αi
i

. �

By Theorem 2.20, it further follows that:

Corollary 2.23. The joint probability that a+ r
q
αi
i

(n) ≡ 0 (mod q
αi
i ) for all 1 ≤ i ≤ k is

∏k
i=1

1

q
αi
i

.

�

We conclude by Lemma 2.21 that:

Corollary 2.24. The probability that n is of the form a+m.d for some natural number m ≥ 1, where
1 ≤ a < d = q

α1
1 .q

α2
2 . . . q

α
k

k is
∏k
i=1

1

q
αi
i

. �

It follows that:
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Corollary 2.25. The probability P(n ∈ {p} ∩ n ∈ {a + m.d}) that n is a Dirichlect prime of the
form a+m.d for some natural number m ≥ 1, where 1 ≤ a < d = q

α1
1 .q

α2
2 . . . q

α
k

k is:

∏k
i=1

1

q
αi
i

.
∏k
i=1(1− 1

qi
)−1.P(n ∈ {p}).

Proof : Since a, d are co-prime, we have by Lemma 2.21 that if n is of the form a + m.d for some
natural number m ≥ 1, where 1 ≤ a < d = q

α1
1 .q

α2
2 . . . q

α
k

k , we have that:

n ≡ a (mod qi) for all 1 ≤ i ≤ k
whilst : n+ ri(n) ≡ 0 (mod i) for all 1 ≤ i
whence : a+ rqi

(n) ≡ 0 (mod qi) for all 1 ≤ i ≤ k
rqi

(n) 6= 0 for all 1 ≤ i ≤ k
and : qi 6 | n for all 1 ≤ i ≤ k

Hence, if n is of the form a+m.d for some natural number m ≥ 1, where 1 ≤ a < d = q
α1
1 .q

α2
2 . . . q

α
k

k

and (a, d) = 1, the probability that qi 6 |n for all 1 ≤ i ≤ k is 1.

By Lemma 2.10, Theorem 2.11 and Theorem 2.20, the probability that any n ≥ q2
k

is a Dirichlect
prime of the form a+m.d is thus:

∏k
i=1

1

q
αi
i

.
∏2≤p≤

√
n

p 6=qifor1≤i≤k
(1− 1

p)

=
∏k
i=1

1

q
αi
i

.
∏k
i=1(1− 1

qi
)−1.

∏
2≤p≤

√
n (1− 1

p)

=
∏k
i=1

1

q
αi
i

.
∏k
i=1(1− 1

qi
)−1.

∏π(
√
n)

j=1 (1− 1
pj

)

=
∏k
i=1

1

q
αi
i

.
∏k
i=1(1− 1

qi
)−1.P(n ∈ {p})

The Corollary follows. �

2.I.b. Dirichlect’s Theorem

It further follows from Theorem 2.11 that, since p2
n+1
− p2

n
→ ∞ as n → ∞, by the Law of Large

Numbers36 a non-heuristic estimate of the number π
(a,d)

(n) of Dirichlect primes, of the form a+m.d

for some natural number m ≥ 1 and 1 ≤ a < d = q
α1
1 .q

α2
2 . . . q

α
k

k , that are less than or equal to any
n ≥ q2

k
is the non-heuristic Dirichlect prime counting function:

Definition 6. πD(n) =
∑n

l=1(
∏k
i=1

1

q
αi
i

.
∏k
i=1(1− 1

qi
)−1.P(l ∈ {p})).

We conclude that:

Lemma 2.26. π
(a,d)

(n) ∼ πD(n)→∞ as n→∞.

Proof : If a, d are co-prime and 1 ≤ a < d = q
α1
1 .q

α2
2 . . . q

α
k

k , we have for any n ≥ q2
k
:

36See §3., Appendix I; also [Ko56], Chapter VI, §3, pg. 61.
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πD(n) =
∑n

l=1(
∏k
i=1

1

q
αi
i

.
∏k
i=1(1− 1

qi
)−1.P(l ∈ {p}))

=
∏k
i=1

1

q
αi
i

.
∏k
i=1(1− 1

qi
)−1.πL(n)

=
∏k
i=1

1

q
αi
i

.
∏k
i=1(1− 1

qi
)−1.

∑n
l=1

∏π(
√
l)

j=1 (1− 1
pj

)

≥
∏k
i=1

1

q
αi
i

.
∏k
i=1(1− 1

qi
)−1.n.

∏π(
√
n)

j=1 (1− 1
pj

)

The lemma follows since, by Mertens’ Theorem, we have that:

n.
∏π(

√
n)

j=1 (1− 1
pj

) ∼ 2e−γn
loge(n) →∞ as n→∞. �

We conclude by the Law of Large Numbers when applied to the interval, p2
n+1
− p2

n
→∞ as n→∞,

that:

Theorem 2.27. There are an infinity of primes in any arithmetic progression a+m.d where (a, d) =
137. �

2.J. An elementary probability-based proof that there are infinitely many twin-
primes

We next note that, by Theorem 2.11, we can define the twin-prime counting function πT (n), which
non-heuristically estimates the number π2(n) of twin primes (pi , pi+1 = pi + 2) for 3 ≤ pi ≤ n as:

Definition 7. πT (n) =
∑n

j=1 P(j ∈ {p} ∩ j + 2 ∈ {p})

In order to estimate πT (n), we first define:

Definition 8. An integer n is a TW integer if, and only if, rpi (n) 6= 0 and rpi (n) 6= 2 for all
1 ≤ i ≤ π(

√
n).

Since n is a prime if, and only if, it is not divisible by any prime p ≤
√
n, we then have that:

Lemma 2.28. If n is a TW integer, then n is a prime.

Proof : The lemma follows immediately from Definition 8, Definition 1 and Lemma 2.1. �

Lemma 2.29. If n is a TW integer, then n+ 2 is either a prime or p2
π(
√
n)+1

.

Proof : By Definition 8 and Definition 1:

rpi (n) 6= 2 for all 1 ≤ i ≤ π(
√
n)

n+ 2 6= λ.i for all 2 ≤ i ≤ p
π(
√
n)
, λ ≥ 1

Hence, if n+ 2 is divisible by p
π(
√
n)+1

, then n+ 2 = p2
π(
√
n)+1

; else it is a prime. �

Since each residue ri(n) cycles over the i values (i − 1, i − 2, . . . , 0), these values are all incongruent
and form a complete system of residues mod i. It thus follows from Definition 8 and Section 2.B. that
the probability of n ≥ 9 being a TW integer is:

37Compare [HW60], p.13, Theorem 15*.
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Lemma 2.30. P(n ∈ {TW}) =
∏π(

√
n)

i=2 (1− 2
pi

). �

The number πTW(n) of TW integers ≥ 9 but ≤ n is thus:

Lemma 2.31. πTW(n) =
∑n

j=9

∏π(
√
j)

i=2 (1− 2
pi

). �

Since the number of TW integers such that n + 2 = p2
π(
√
n)+1

is not more than π(
√
n), it also follows

that, for n ≥ 9:

Lemma 2.32. πT (n) ≥
∑n

j=9

∏π(
√
j)

i=2 (1− 2
pi

)− π(
√
n). �

We further note that:

Theorem 2.33. πT (n)→∞ as n→∞.

Proof : We have by Lemma 2.32 that, for n ≥ 9:

πT (n) ≥ (n− 9).
∏π(

√
n)

i=2 (1− 2
pi

)− π(
√
n)

≥ (n− 9).
∏π(

√
n)

i=2 (1− 1
pi

)(1− 1
(pi−1))− π(

√
n)

≥ (n− 9).
∏π(

√
n)

i=2 (1− 1
pi

)(1− 1
pi−1

)− π(
√
n)

≥ (n− 9).
∏π(

√
n)

i=2 (1− 1
pi−1

)2 − π(
√
n)

≥ (n− 9).
∏n
i=1(1− 1

pi
)2 − π(

√
n)

Now, by Chebyshev’s and Mertens’ Theorems, we have that:

(n− 9).
∏n
i=1(1− 1

pi
)2 − π(

√
n) ∼ (n− 9).( e−γ

logen
)2 − π(

√
n)

∼ e−2γ . n

log2
en
− 9e−2γ

log2
en
−O(

√
n

logen
)

→ ∞ as n→∞
The theorem follows. �

Since p2
n+1
−p2

n
→∞ as n→∞, it follows by the Law of Large Numbers that π2(n) ∼ πT (n) ∼ πTW (n).

We conclude that there are infinitely many twin primes, and that38:

Corollary 2.34. π2(n) ∼ e−2γ . n

log2
en

. �

2.K. The Generalised Prime Counting Function:
∑n

j=1

∏π(
√
j)

i=a (1− b
pi
)

We note that the argument of Theorem 2.33 in §2.J. is a special case of the limiting behaviour of the

Generalised Prime Counting Function
∑n

j=1

∏π(
√
j)

i=a (1− b
pi

), which estimates the number of integers

≤ n such that there are b values that cannot occur amongst the residues rpi (n) for a ≤ i ≤ π(
√
j)39:

38Where e−2γ = 0.3152373316 . . .; compare [HW60], p.371, §22.20: π2(n) ∼ 2C2.
n

log
2
en

, where C2 =
∏
p≥3

p(p−2)

(p−1)2
≈

0.66016181584 . . ..
39Thus b = 1 yields an estimate for the number of primes ≤ n, and b = 2 an estimate for the number of TW primes

(Definition 8) ≤ n.

http://en.wikipedia.org/wiki/Twin_prime


18 2. An elementary probability-based approach to estimating prime counting functions non-heuristically18 2. An elementary probability-based approach to estimating prime counting functions non-heuristically

Theorem 2.35.
∑n

j=1

∏π(
√
j)

i=a (1− b
pi

)→∞ as n→∞ if pa > b ≥ 1.

Proof : For pa > b ≥ 1, we have that:∑n
j=1

∏π(
√
j)

i=a (1− b
pi

) ≥
∑n

j=p2
a

∏π(
√
j)

i=a (1− b
pi

)

≥
∑n

j=p2
a

∏π(
√
n)

i=a (1− b
pi

)

≥ (n− p2
a
).
∏π(

√
n)

i=a (1− b
pi

)

≥ (n− p2
a
).
∏n
i=a(1−

b
pi

)

The theorem follows if:

loge(n− p2
a
) +

∑n
i=a loge(1−

b
pi

)→∞

(i) We note first the standard result for |x| < 1 that:

loge(1− x) = −
∑∞

m=1
xm

m

For any pi > b ≥ 1, we thus have:

loge(1− b
pi

) = −
∑∞

m=1
(b/pi )

m

m = − b
pi
−
∑∞

m=2
(b/pi )

m

m

Hence:

∑n
i=a loge(1−

b
pi

) = −
∑n

i=a(
b
pi

)−
∑n

i=a(
∑∞

m=2
(b/pi )

m

m )

(ii) We note next that, for all i ≥ a:

c < (1− b
pa

)→ c < (1− b
pi

)

It follows for any such c that:

∑∞
m=2

(b/pi )
m

m ≤
∑∞

m=2( bpi
)m =

(b/pi )
2

1−b/pi
≤ b2

c.p2
i

Since:

∑∞
i=1

1
p2
i

= O(1)

it further follows that:

∑n
i=a(

∑∞
m=2

(b/pi )
m

m ) ≤
∑n

i=a(
b2

c.p2
i

) = O(1)
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(iii) From the standard result40:

∑
p≤x

1
p = logelogex+O(1) + o(1)

it then follows that:∑n
i=a loge(1−

b
pi

) ≥ −
∑n

i=a(
b
pi

)−O(1)

≥ −b.(logelogen+O(1) + o(1))−O(1)

The theorem follows since:

loge(n− p2
a
)− b.(logelogen+O(1) + o(1))−O(1)→∞

and so:

loge(n− p2
a
) +

∑n
i=a loge(1−

b
pi

)→∞ �

3. Appendix I: Definitions of some terms and concepts of Probabil-
ity Theory

Probability model41: A probability model is a mathematical representation of a random phe-
nomenon. It is defined by its sample space, events within the sample space, and probabilities as-
sociated with each event.

• The sample space S for a probability model is the set of all possible outcomes.

• An event A is a subset of the sample space S.

• A probability is a numerical value assigned to a given event A.

Distribution Function42: Let X be a random variable which denotes the value of the outcome of a
certain experiment, and assume that this experiment has only finitely many possible outcomes. Let
Ω be the sample space of the experiment (i.e., the set of all possible values of X, or equivalently, the
set of all possible outcomes of the experiment). A distribution function for X is a real-valued function
m whose domain is Ω and which satisfies:

1. m(ω) ≥ 0, for all ω ∈ n, and

2.
∑

ω∈Ω
m(ω) = 1.

For any subset E of Ω, we define the probability of E to be the number P (E) given by

P (E) =
∑

ω∈E
m(ω)

Some notations43: Let A and B be two sets. Then the union of A and B is the set

40[HW60], p.351, Theorem 427.
41cf. http://www.stat.yale.edu/Courses/1997-98/101/probint.htm.
42Excerpted from [GS97], Chapter 1, §1.2, p.19.
43Excerpted from [GS97], Chapter 1, §1.2, p.21.

http://www.stat.yale.edu/Courses/1997-98/101/probint.htm
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A ∪B = {x | x ∈ A or x ∈ B}

The intersection of A and B is the set

A ∩B = {x | x ∈ A and x ∈ B}

The difference of A and B is the set

A−B = {x | x ∈ A and x /∈ B}

The set A is a subset of B, written A ⊂ B, if every element of A is also an element of B. Finally, the
complement of A is the set

A = {x | x ∈ Ω and x /∈ A}.

Mutual Independence44: A set of events {A1, A2, . . . , An} is said to be mutually independent if
for any subset {Ai, Aj , . . . , Am} of these events we have

P (Ai ∩Aj ∩ . . . ∩Am) = P (Ai)P (Aj) . . . P (Am),

or equivalently, if for any sequence A1, A2, . . . , An with Aj = Aj or Aj ,

P (Ai ∩Aj ∩ . . . ∩Am) = P (Ai)P (Aj) . . . P (Am).

Expected Value45: Let X be a numerically-valued discrete random variable with sample space Ω
and distribution function m(x). The expected value E(X) is defined by:

E(X) =
∑

x∈Ω
xm(x),

provided this sum converges absolutely. We often refer to the expected value as the mean, and denote
E(X) by µ for short. If the above sum does not converge absolutely, then we say that X does not
have an expected value.

Law of Large Numbers46: Let X1, X2, . . . , Xn be an independent trials process, with finite
expected value µ = E(Xj) and finite variance σ2 = V (Xj). Let Sn = X1 +X2 + . . .+Xn. Then for
any ε > 0,

P (|Snn − µ| ≥ ε)→ 0

as n→∞. Equivalently,

P (|Snn − µ| < ε)→ 1

as n→∞.

44Excerpted from [GS97], Chapter 4, §4.1, Definition 4.2, p.141.
45Excerpted from [GS97], Chapter 5, §5.1, p.183.
46Excerpted from [GS97], Chapter 8, §8.1, p.307, Theorem 8.2.
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4. Appendix II: The residue function ri(n)

We graphically illustrate how the residues ri(n) occur naturally as values of:

A: The natural-number based residue functions Ri(n);

B: The natural-number based residue sequences E(n);

and as the output of:

C: The natural-number based algorithm EN;

D: The prime-number based algorithm EP;

E: The prime-number based algorithm EQ.

A: The natural-number based residue functions Ri(n)

The residues ri(n) can be defined for all n ≥ 1 as the values of the natural-number based residue
functions Ri(n), defined for all i ≥ 1 as below in Fig.3. We note that each function Ri(n) cycles
through the values (i− 1, i− 2, . . . , 0) with period i.

Fig.3: The natural-number based residue functions Ri(n)

Function:R1n R2n R3n R4n R5n R6n R7n R8n R9n R10n R11n . . .Rnn

n = 1 0 1 2 3 4 5 6 7 8 9 10 . . . n-1
n = 2 0 0 1 2 3 4 5 6 7 8 9 . . . n-2
n = 3 0 1 0 1 2 3 4 5 6 7 8 . . . n-3
n = 4 0 0 2 0 1 2 3 4 5 6 7 . . . n-4
n = 5 0 1 1 3 0 1 2 3 4 5 6 . . . n-5
n = 6 0 0 0 2 4 0 1 2 3 4 5 . . . n-6
n = 7 0 1 2 1 3 5 0 1 2 3 4 . . . n-7
n = 8 0 0 1 0 2 4 6 0 1 2 3 . . . n-8
n = 9 0 1 0 3 1 3 5 7 0 1 2 . . . n-9
n = 10 0 0 2 2 0 2 4 6 8 0 1 . . . n-10
n = 11 0 1 1 1 4 1 3 5 7 9 0 . . . n-11

n r1n r2n r3n r4n r5n r6n r7n r8n r9n r10n r11n . . . 0

Fig.3: The natural-number based residue functions Ri(n)

B: The natural-number based residue sequences E(n)

The above residues ri(n) can also be viewed alternatively as values of the associated residue sequences,
E(n) = {ri(n) : i ≥ 1}, defined for all n ≥ 1, as illustrated below in Fig.4.

We note that:

• The sequences highlighted in red identify a prime47 p (since ri(p) 6= 0 for 1 < i < p);

• The ‘boundary’ residues r1(n) = 0 and rn(n) = 0 are identified in cyan.

47Conventionally defined as integers that are not divisible by any smaller integer other than 1.
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Fig.4: The natural-number based residue sequences E(n)

Function:R1n R2n R3n R4n R5n R6n R7n R8n R9n R10n R11n . . .Rnn

E(1): 0 1 2 3 4 5 6 7 8 9 10 . . . n-1
E(2): 0 0 1 2 3 4 5 6 7 8 9 . . . n-2
E(3): 0 1 0 1 2 3 4 5 6 7 8 . . . n-3
E(4): 0 0 2 0 1 2 3 4 5 6 7 . . . n-4
E(5): 0 1 1 3 0 1 2 3 4 5 6 . . . n-5
E(6): 0 0 0 2 4 0 1 2 3 4 5 . . . n-6
E(7): 0 1 2 1 3 5 0 1 2 3 4 . . . n-7
E(8): 0 0 1 0 2 4 6 0 1 2 3 . . . n-8
E(9): 0 1 0 3 1 3 5 7 0 1 2 . . . n-9
E(10): 0 0 2 2 0 2 4 6 8 0 1 . . . n-10
E(11): 0 1 1 1 4 1 3 5 7 9 0 . . . n-11
. . .
E(n): r1n r2n r3n r4n r5n r6n r7n r8n r9n r10n r11n . . . 0

. . .

Fig.4: The natural-number based residue sequences E(n)

C: The output of a natural-number based algorithm EN

We give below in Fig.5 the output for 1 ≤ n ≤ 11 of a natural-number based algorithm EN that
computes the values ri(n) of the sequence EN(n) for only 1 ≤ i ≤ n for any given n.

Fig.5: The output of the natural-number based algorithm EN

Divisors: 1 2 3 4 5 6 7 8 9 10 11 . . . n . . .

EN(1): 0
EN(2): 0 0
EN(3): 0 1 0
EN(4): 0 0 2 0
EN(5): 0 1 1 3 0
EN(6): 0 0 0 2 4 0
EN(7): 0 1 2 1 3 5 0
EN(8): 0 0 1 0 2 4 6 0
EN(9): 0 1 0 3 1 3 5 7 0
EN(10): 0 0 2 2 0 2 4 6 8 0
EN(11): 0 1 1 1 4 1 3 5 7 9 0
. . .
EN(n): r1n r2n r3n r4n r5n r6n r7n r8n r9n r10n r11n . . . 0
. . .

Fig.5: The output of the natural-number based algorithm EN
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D: The output of the prime-number based algorithm EP

We give below in Fig.6 the output for 2 ≤ n ≤ 31 of a prime-number based algorithm EQ that
computes the values qi(n) = rpi (n) of the sequence EP(n) for only each prime 2 ≤ pi ≤ n for any
given n.

Fig.6: The output of the prime-number based algorithm EP

Prime: p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 . . . pn . . .
Divisor: 2 3 5 7 11 13 17 19 23 29 31 . . . pn . . .

EP(2): 0
EP(3): 1 0
EP(4): 0 2
EP(5): 1 1 0
EP(6): 0 0 4
EP(7): 1 2 3 0
EP(8): 0 1 2 6
EP(9): 1 0 1 5
EP(10): 0 2 0 4
EP(11): 1 1 4 3 0
EP(12): 0 0 3 2 10
EP(13): 1 2 2 1 9 0
EP(14): 0 1 1 0 8 12
EP(15): 1 0 0 6 7 11
EP(16): 0 2 4 5 6 10
EP(17): 1 1 3 4 5 9 0
EP(18): 0 0 2 3 4 8 16
EP(19): 1 2 1 2 3 7 15 0
EP(20): 0 1 0 1 2 6 14 18
EP(21): 1 0 4 0 1 5 13 17
EP(22): 0 2 3 6 0 4 12 16
EP(23): 1 1 2 5 10 3 11 15 0
EP(24): 0 0 1 4 9 2 10 14 22
EP(25): 1 2 0 3 8 1 9 13 21
EP(26): 0 1 4 2 7 0 8 12 20
EP(27): 1 0 3 1 6 12 7 11 19
EP(28): 0 2 2 0 5 11 6 10 18
EP(29): 1 1 1 6 4 10 5 9 17 0
EP(30): 0 0 0 5 3 9 4 8 16 28
EP(31): 1 2 4 4 2 8 3 7 15 27 0
. . .
EP(n): q1n q2n q3n q4n q5n q6n q7n q8n q9n q10n q11n . . . 0
. . .

Fig.6: The output of the prime-number based algorithm EP

E: The output of the prime-number based algorithms EP and EQ

We give below in Fig.7 the output for 2 ≤ n ≤ 121 of the two prime-number based algorithms EP
(whose output {qi(n) = rpi (n) : 1 ≤ i ≤ π(n)} is shown only partially, partly in cyan) and EQ (whose
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output qi(n) = {rpi (n) : 1 ≤ i ≤ π(
√
n)} is highlighted in black and red, the latter indicating the

generation of a prime sequence and, ipso facto, definition of the corresponding prime48.

Fig.7: The output of the prime-number based algorithms EP and EQ

Prime: p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 . . . pn . . .
Divisor: 2 3 5 7 11 13 17 19 23 29 31 . . . pn . . .
Function:Q1n Q2n Q3n Q4n Q5n Q6n Q7n Q8n Q9n Q10n Q11n . . .

EQ(2): 0 (Prime by definition)
EQ(3): 1 0
EQ(4): 0 2
EQ(5): 1 1 0
EQ(6): 0 0 4
EQ(7): 1 2 3 0
EQ(8): 0 1 2 6
EQ(9): 1 0 1 5
EQ(10): 0 2 0 4
EQ(11): 1 1 4 3 0
EQ(12): 0 0 3 2 10
EQ(13): 1 2 2 1 9 0
EQ(14): 0 1 1 0 8 12
EQ(15): 1 0 0 6 7 11
EQ(16): 0 2 4 5 6 10
EQ(17): 1 1 3 4 5 9 0
EQ(18): 0 0 2 3 4 8 16
EQ(19): 1 2 1 2 3 7 15 0
EQ(20): 0 1 0 1 2 6 14 18
EQ(21): 1 0 4 0 1 5 13 17
EQ(22): 0 2 3 6 0 4 12 16
EQ(23): 1 1 2 5 10 3 11 15 0
EQ(24): 0 0 1 4 9 2 10 14 22
EQ(25): 1 2 0 3 8 1 9 13 21
EQ(26): 0 1 4 2 7 0 8 12 20
EQ(27): 1 0 3 1 6 12 7 11 19
EQ(28): 0 2 2 0 5 11 6 10 18
EQ(29): 1 1 1 6 4 10 5 9 17 0
EQ(30): 0 0 0 5 3 9 4 8 16 28
EQ(31): 1 2 4 4 2 8 3 7 15 27 0
EQ(32): 0 1 3 3 1 7 2 6 14 26 30
EQ(33): 1 0 2 2 0 6 1 5 13 25 29
EQ(34): 0 2 1 1 10 5 0 4 12 24 28
EQ(35): 1 1 0 0 9 4 16 3 11 23 27
EQ(36): 0 0 4 6 8 3 15 2 10 22 26
EQ(37): 1 2 3 5 7 2 14 1 9 21 25
EQ(38): 0 1 2 4 6 1 13 0 8 20 24
EQ(39): 1 0 1 3 5 0 12 18 7 19 23

48For informal reference and perspective, formal definitions of both the prime-number based algorithms EP and EQ
are given in this work in progress Factorising all m ≤ n is of order Θ(

∑n
i=2 π(

√
i)).

http://alixcomsi.com/40_Factorising_Update.pdf
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EQ(40): 0 2 0 2 4 12 11 17 6 18 22
EQ(41): 1 1 4 1 3 11 10 16 5 17 21
EQ(42): 0 0 3 0 2 10 9 15 4 16 20
EQ(43): 1 2 2 6 1 9 8 14 3 15 19
EQ(44): 0 1 1 5 0 8 7 13 2 14 18
EQ(45): 1 0 0 4 10 7 6 12 1 13 17
EQ(46): 0 2 4 3 9 6 5 11 0 12 16
EQ(47): 1 1 3 2 8 5 4 10 22 11 15
EQ(48): 0 0 2 1 7 4 3 9 21 10 14
EQ(49): 1 2 1 0 6 3 2 8 20 9 13
EQ(50): 0 1 0 6 5 2 1 7 19 8 12
EQ(51): 1 0 4 5 4 1 0 6 18 7 11
EQ(52): 0 2 3 4 3 0 16 5 17 6 10
EQ(53): 1 1 2 3 2 12 15 4 16 5 9
EQ(54): 0 0 1 2 1 11 14 3 15 4 8
EQ(55): 1 2 0 1 0 10 13 2 14 3 7
EQ(56): 0 1 4 0 10 9 12 1 13 2 6
EQ(57): 1 0 3 6 9 8 11 0 12 1 5
EQ(58): 0 2 2 5 8 7 10 18 11 0 4
EQ(59): 1 1 1 4 7 6 9 17 10 28 3
EQ(60): 0 0 0 3 6 5 8 16 9 27 2
EQ(61): 1 2 4 2 5 4 7 15 8 26 1
EQ(62): 0 1 3 1 4 3 6 14 7 25 0
EQ(63): 1 0 2 0 3 2 5 13 6 24 30
EQ(64): 0 2 1 6 2 1 4 12 5 23 29
EQ(65): 1 1 0 5 1 0 3 11 4 22 28
EQ(66): 0 0 4 4 0 12 2 10 3 21 27
EQ(67): 1 2 3 3 10 11 1 9 2 20 26
EQ(68): 0 1 2 2 9 10 0 8 1 19 25
EQ(69): 1 0 1 1 8 9 16 7 0 18 24
EQ(70): 0 2 0 0 7 8 15 6 22 17 23
EQ(71): 1 1 4 6 6 7 14 5 21 16 22
EQ(72): 0 0 3 5 5 6 13 4 20 15 21
EQ(73): 1 2 2 4 4 5 12 3 19 14 20
EQ(74): 0 1 1 3 3 4 11 2 18 13 19
EQ(75): 1 0 0 2 2 3 10 1 17 12 18
EQ(76): 0 2 4 1 1 2 9 0 16 11 17
EQ(77): 1 1 3 0 0 1 8 18 15 10 16
EQ(78): 0 0 2 6 10 0 7 17 14 9 15
EQ(79): 1 2 1 5 9 12 6 16 13 8 14
EQ(80): 0 1 0 4 8 11 5 15 12 7 13
EQ(81): 1 0 4 3 7 10 4 14 11 6 12
EQ(82): 0 2 3 2 6 9 3 13 10 5 11
EQ(83): 1 1 2 1 5 8 2 12 9 4 10
EQ(84): 0 0 1 0 4 7 1 11 8 3 9
EQ(85): 1 2 0 6 3 6 0 10 7 2 8
EQ(86): 0 1 4 5 2 5 16 9 6 1 7
EQ(87): 1 0 3 4 1 4 15 8 5 0 6
EQ(88): 0 2 2 3 0 3 14 7 4 28 5
EQ(89): 1 1 1 2 10 2 13 6 3 27 4
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EQ(90): 0 0 0 1 9 1 12 5 2 26 3
EQ(91): 1 2 4 0 8 0 11 4 1 25 2
EQ(92): 0 1 3 6 7 12 10 3 0 24 1
EQ(93): 1 0 2 5 6 11 9 2 22 23 0
EQ(94): 0 2 1 4 5 10 8 1 21 22 30
EQ(95): 1 1 0 3 4 9 7 0 20 21 29
EQ(96): 0 0 4 2 3 8 6 18 19 20 28
EQ(97): 1 2 3 1 2 7 5 17 18 19 27
EQ(98): 0 1 2 0 1 6 4 16 17 18 26
EQ(99): 1 0 1 6 0 5 3 15 16 17 25
EQ(100): 0 2 0 5 10 4 2 14 15 16 24
EQ(101): 1 1 4 4 9 3 1 13 14 15 23
EQ(102): 0 0 3 3 8 2 0 12 13 14 22
EQ(103): 1 2 2 2 7 1 16 11 12 13 21
EQ(104): 0 1 1 1 6 0 15 10 11 12 20
EQ(105): 1 0 0 0 5 12 14 9 10 11 19
EQ(106): 0 2 4 6 4 11 13 8 9 10 18
EQ(107): 1 1 3 5 3 10 12 7 8 9 17
EQ(108): 0 0 2 4 2 9 11 6 7 8 16
EQ(109): 1 2 1 3 1 8 10 5 6 7 15
EQ(110): 0 1 0 2 0 7 9 4 5 6 14
EQ(111): 1 0 4 1 10 6 8 3 4 5 13
EQ(112): 0 2 3 0 9 5 7 2 3 4 12
EQ(113): 1 1 2 6 8 4 6 1 2 3 11
EQ(114): 0 0 1 5 7 3 5 0 1 2 10
EQ(115): 1 2 0 4 6 2 4 18 0 1 9
EQ(116): 0 1 4 3 5 1 3 17 22 0 8
EQ(117): 1 0 3 2 4 0 2 16 21 28 7
EQ(118): 0 2 2 1 3 12 1 15 20 27 6
EQ(119): 1 1 1 0 2 11 0 14 19 26 5
EQ(120): 0 0 0 6 1 10 16 13 18 25 4
EQ(121): 1 2 4 5 0 9 15 12 17 24 3
. . .
EQ(n): q1n q2n q3n q4n q5n q6n q7n q8n q9n q10n q11n . . .
. . .

Prime: p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 . . . pn . . .
Divisor: 2 3 5 7 11 13 17 19 23 29 31 . . . pn . . .

Fig.7: The output of the prime-number based algorithms EP and EQ
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