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Simply generated non-crossing partitions

Igor Kortchemski♠ & Cyril Marzouk♥

Abstract

We introduce and study the model of simply generated non-crossing partitions, which are,
roughly speaking, chosen at random according to a sequence of weights. This framework
encompasses the particular case of uniform non-crossing partitions with constraints on their
block sizes. Our main tool is a bijection between non-crossing partitions and plane trees, which
maps such simply generated non-crossing partitions into simply generated trees so that blocks
of size k are in correspondence with vertices of outdegree k. This allows us to obtain limit
theorems concerning the block structure of simply generated non-crossing partitions. We apply
our results in free probability by giving a simple formula relating the maximum of the support
of a compactly supported probability measure on the real line in term of its free cumulants.

1 Introduction

We are interested in the structure of non-crossing partitions. The latter were introduced by Kreweras
[28], and quickly became a standard object in combinatorics. They have also appeared in many
different other contexts, such as low-dimensional topology, geometric group theory and free
probability (see e.g. the survey [32] and the references therein). In this work, we study combinatorial
and geometric aspects of large random non-crossing partitions.
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Figure 1: The non-crossing partition {{1, 3, 5}, {2}, {4}, {6, 7, 11, 12}, {8}, {9, 10}} of [12].
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Recall that a partition of [n] := {1, 2, . . . ,n} is a collection of (pairwise) disjoint subsets, called
blocks, whose union is [n]. A non-crossing partition of [n] is a partition of the vertices of a regular
n-gon (labelled by the set [n] in clockwise order) with the property that the convex hulls of its
blocks are pairwise disjoint (see Fig. 1 for an example).

Large discrete combinatorial structures. There are many ways to study discrete structures. Given
a finite combinatorial class An of objects of “size” n, a first step is often to calculate as explicitly
as possible its cardinal #An, using for instance bijective arguments or generating functions. For
non-crossing partitions, it is well-known that they are enumerated by Catalan numbers. It is also
often of interest to enumerate elements of An satisfying constraints. For instance, the number of
non-crossing partitions of [n] with given block sizes [28], or the total number of blocks [19] have
been studied. Edelman [19] also introduced and enumerated k-divisible non-crossing partitions
(where all blocks must have size divisible k), which have also been studied by Arizmendi & Vargas
[4] in connection with free probability. Arizmendi & Vargas also studied k-equal non-crossing
partitions (where all blocks must have size exactly k).

In probabilistic combinatorics, one is interested in the properties of a typical element of An. In
other words, one studies statistics of a random element an of An chosen uniformly at random.
Graph theoretical properties of different uniform plane non-crossing structures obtained from a
regular polygon have been considered in the past years. For example, [16, 21, 17, 12] study the
maximal degree in random triangulations, [7, 12] obtain concentration bounds for the maximal
degree in random dissections, and [31, 15, 12] are interested in the structure of non-crossing trees.
However, uniform non-crossing partitions have attracted less attention. Arizmendi [3] finds the
expected number of blocks of given size for non-crossing partitions of [n] with certain constraints on
the block sizes, Ortmann [34] shows that the distribution of a uniform random block in a uniform
non-crossing partition Pn of [n] converges to a geometric random variable of parameter 1/2 as
n→∞ and limit theorems concerning the length of the longest chord of Pn are obtained in [12].

It is also of interest to sample an element an of An according to a probability distribution
different from the uniform law; one then studies the impact of this change on the asymptotic
behavior of an as n→∞. Certain families of probability distributions lead to the same asymptotic
properties, and are said to belong the same universality class. However, the structure of an may
drastically be impacted.To the best of our knowledge, only uniform non-crossing partitions have
yet been studied in [4, 34, 12].

Finally, another direction is to study distributional limits of an. Indeed, if it is possible to see
the elements of the combinatorial class under consideration as elements of a same metric space, it
makes sense to study the convergence in distribution of the sequence of random variables (an)n>1

in this metric space. In the case of uniform non-crossing partitions, this approach has been followed
in [12] by seeing them as compact subsets of the unit disk; we extend the result obtained there to
simply generated non-crossing partitions.

Simply generated non-crossing partitions. In this work, we propose to sample non-crossing
partitions at random according to a Boltzmann-type distribution, which depends on a sequence
of weights. For every integer n > 1, denote by NCn the set of all non-crossing partitions of [n];
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given a sequence of non-negative real numbers w = (w(i); i > 1), with every partition P ∈NCn,
we associate a weightΩw(P):

Ωw(P) =
∏

B block of P

w(size of B).

Then, for every P ∈NCn, set

Pwn (P) =
Ωw(P)∑

Q∈NCn
Ωw(Q)

.

Implicitly, we shall always restrict our attention to those values of n for which
∑
P∈NCn

Ωw(P) > 0.
A random non-crossing partition of [n] sampled according to Pwn is called a simply generated non-
crossing partition. We chose this terminology because of the similarity with the model of simply
generated trees, introduced by Meir & Moon [33] and whose definition we recall in Sec. 2.2 below.
We were also inspired by recent work on scaling limits of Boltzmann-type random graphs [29, 27].

We point out that, takingw(i) = 1 for every i > 1, Pwn is the uniform distribution on NCn; more
generally, if A is a non-empty subset of N = {1, 2, 3, . . .}, and wA(i) = 1 if i ∈ A and wA(i) = 0 if
i 6∈ A, then P

wA
n is the uniform distribution on the subset of NCn formed by partitions with all

block sizes belonging to A (provided that they exist), and which we call A-constrained non-crossing
partitions. In particular, by taking A = {k} one gets uniform k-equal non-crossing partitions, and by
taking A = kN one gets uniform k-divisible non-crossing partitions.

Bijections between non-crossing partitions and plane trees. Our main tools to study simply
generated non-crossing partitions are bijections with plane trees. We explain here the main ideas,
and refer to Sec. 2.1 for details. With a non-crossing partition, we start by associating a (two-type)
dual tree, as depicted in Fig. 2.
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Figure 2: The (non-crossing) partition {{1, 3, 5}, {2}, {4}, {6, 7, 11, 12}, {8}, {9, 10}} and its dual

tree.

We choose an appropriate root for this two-type tree, and then apply a recent bijection due to
Janson & Stefánsson [26]; this yields a bijection B◦ between NCn and plane trees with n+ 1 vertices.
We mention here that this bijection was directly defined by Dershowitz & Zaks [14] without using
the dual two-type tree. It turns out that other known bijections between non-crossing partitions and
plane trees, such as Prodinger’s bijection [36] and the Kreweras complement [28], can be obtained
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by choosing to distinguishing another root in the dual two-type tree (again see Sec. 2.1 below for
details). Our contribution is therefore to unify previously known bijections between non-crossing
partitions and plane trees by showing that they all amount to doing certain operations on the dual
tree of a non-crossing partition, and to use them to study random non-crossing partitions.

It turns out that the dual tree of a simply generated non-crossing partition is a two-type simply
generated tree (Prop. 7). A crucial feature of the bijection B◦ it that it maps simply generated
non-crossing partitions into simply generated trees in such a way that blocks of size k are in
correspondence with vertices with outdegree k (Prop. 6). This allows to reformulate questions on
simply generated non-crossing partitions involving block sizes in terms of simply generated trees
involving outdegrees. The point is that the study of simply generated trees is a well-paved road. In
particular, this allows us to show that if Pn is a simply generated non-crossing plane partition of [n],
then, under certain conditions, the size of a block chosen uniformly at random in Pn converges in
distribution as n→∞ to an explicit probability distribution depending on the weights. We also
obtain, for a certain family of weights, asymptotic normality of the block sizes and limit theorems for
the sizes of the largest blocks. We specify here some of these results for A-constrained non-crossing
partitions, and refer to Section 3.4 for more general statements and further applications.

Theorem 1. Let A be a non-empty subset of N with A 6= {1}, and let PAn be a random non-crossing partition
chosen uniformly at random among all those with block sizes belonging to A (provided that they exist). Let
πA be the probability measure on Z+ = {0, 1, 2, . . .} defined by

πA(k) =
ξkA

1+
∑
i∈A ξ

i
A

1k∈{0}∪A, where ξA > 0 is such that 1 +
∑
i∈A

ξiA =
∑
i∈A

i · ξiA.

(i) Let S1(P
A
n ) be the size of the block containing 1 in PAn . Then, for every k > 1, P

(
S1(P

A
n ) = k

)
→

kπA(k) as n→∞.

(ii) Let Bn be a block chosen uniformly at random in PAn . Then, for every k > 1, P (|Bn| = k) →
πA(k)/(1 − πA(0)) as n→∞.

(iii) Let C be a non-empty subset of N and denote by ζC(PAn ) the number of blocks of PAn whose size
belongs to C. As n→∞, the convergence ζC(PAn )/n→ πA(C) holds in probability and, in addition,
E
[
ζC(P

A
n )
]
/n→ πA(C).

In the particular case of uniform k-divisible non-crossing partitions, Theorem 1 (ii,iii) has been
obtained by Ortmann [34, Sec. 2.3]. Also, Arizmendi [3] obtained by combinatorial means closed
formulas for the expected number of blocks of given size in k-divisible non-crossing partitions.

Applications in free probability. An additional motivation for introducing simply generated
non-crossing partitions comes from free probability. Indeed, the partition function

Zwn :=
∑

P∈NCn

∏
B block of P

w(size of B)



1 INTRODUCTION 5

expresses the moments of a measure in terms of its free cumulants. More precisely, if µ is a
probability measure on R with compact support, its Cauchy transform

Gµ(z) =

∫
R

µ(dt)

z− t
, z ∈ C \ suppµ

is analytic and locally invertible on a neighbourhood of∞; its inverse Kµ is meromorphic around
zero, with a simple pole of residue 1 (see e.g. [6, Sec. 5]). One can then write

Rµ(z) = Kµ(z) −
1
z
=

∞∑
n=0

κn+1(µ)z
n.

The analytic function Rµ is called the R-transform of µ, and uniquely defines µ. In addition, the
coefficients (κn(µ);n > 1) are called the free cumulants of µ. The importance of R-transforms
stems in the fact that they linearize free additive convolution and characterize weak convergence
of probability measures, see [6]. The following relation between the moments of µ and its free
cumulants is a well-known fact, that goes up to [38]. Let µ be a compactly supported probability
measure on R. Then, for every n > 1,∫

R

tnµ(dt) =
∑

P∈NCn

∏
B block of P

κsize(B)(µ). (1)

In other words, the n-th moment of µ is the partition function of simply generated non-crossing
partitions on [n] with weights w(i) = κi(µ) given by the free cumulants of µ. Using the bijection
B◦, we establish the following result.

Theorem 2. Let µ be a compactly supported probability measure on R, different from a Dirac mass, and
such that all its free cumulants (κi(µ); i > 1) are nonnegative. Let sµ be the maximum of its support. Set

ρ =

(
lim sup
n→∞ κn(µ)

1/n
)−1

and ν = 1 + lim
t↑ρ

t2R ′µ(t) − 1
tRµ(t) + 1

.

If ν > 1, there exists a unique number ξ in (0, ρ] such that R ′µ(ξ) = 1/ξ2, and, in addition,

sµ =

 1
ξ + Rµ(ξ) if ν > 1,
1
ρ + Rµ(ρ) if ν < 1.

See Sec. 3.3 for examples. This gives a more explicit formula that the one obtained by Ortmann
[34, Thm. 5.4], which reads

log(sµ) = sup

{
1

m1(p)

∑
n∈L

pn log
(
κn(µ)

pn

)
−
θ(m1(p))

m1(p)
; p ∈M1

1(L)

}
,

where L = {n > 1; κn(µ) 6= 0}, θ(x) = log(x− 1) − x log(x− 1/x), M1
1(L) is the set of probability

measures p = (pn;n ∈N) on N with p(Lc) = 0 andm1(p) is the mean of p.
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Non-crossing partitions seen as compact subsets of the unit disk. Finally, if Pn is a simply
generated non-crossing partition of [n], we study the distributional limits of Pn, seen as compact
subset of the unit disk by identifying each integer l ∈ [n] with the complex number e−2iπl/n. This
route was followed in [12], where it was shown that as n→∞, a uniform non-crossing partition
of [n] converges in distribution to Aldous’ Brownian triangulation of the disk [2], in the space of
all compact subsets of the unit disk equipped with the Hausdorff metric, and where the Brownian
triangulation is a random compact subset of the unit disk constructed from the Brownian excursion.
We show more generally that a whole family of simply generated non-crossing partitions of [n]
(including uniform A-constrained non-crossing partitions) converge in distribution to the Brownian
triangulation, and show that other families converge in distribution to the stable lamination, which
is another random compact subset of the unit disk introduced in [27]. We refer to Sec. 4 for details
and precise statements.

Figure 3: Simulations of random non-crossing partitions of [200] chosen uniformly at

random among all those having respectively only block sizes that are multiples of 5, block

sizes that are odd and block sizes that are prime numbers.

This has in particular applications concerning the length of the longest chord of Pn. By definition,
the (angular) length of a chord [e−2iπs, e−2iπt] with 0 6 s 6 t 6 1 is min(t− s, 1 − t+ s). Denote
by C(Pn) the length of the longest chord of Pn. In the case of A-constrained non-crossing partitions,
we prove in particular the following result.

Theorem 3. Let A is a non-empty subset of N with A 6= {1}, and let PAn be a random non-crossing partition
chosen uniformly at random among all those with block sizes belonging to A (provided that they exist). Then,
as n→∞, C(PAn ) converges in distribution to a random variable with distribution

1
π

3x− 1
x2(1 − x)2

√
1 − 2x

1 1
36x6

1
2
dx.

It is remarkable that the limiting distribution in Theorem 3 does not depend on A (it seems that
this is not the case for the largest block area, see Section 5).

This bears some similarity with [12], but we emphasize that this is not a simple adaptation of the
arguments of [12]. Indeed, roughly speaking, [12] manages to code uniform non-crossing partitions
of [n] by a dual-type uniform plane tree. In the more general case of simply generated non-crossing
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partitions, the dual tree is a more complicated two-type tree and the Janson–Stefánsson bijection is
needed.

Acknowledgments. I.K. is grateful to Octavio Arizmendi for introducing him to k-divisible non-
crossing partitions during a stay at CIMAT, and to the University of Zürich, where this work began,
for its hospitality. Both authors thank Valentin Féray for a stimulating discussion, and the Newton
Institute for its hospitality, where this work was finished.

2 Bijections between non-crossing partitions and plane trees

We denote by D = {z ∈ C : |z| < 1} the open unit disk of the complex plane, by S1 = {z ∈ C : |z| = 1}
the unit circle and by D = D∪ S1 the closed unit disk. For every x,y ∈ S1, we write [x,y] for the
line segment between x and y in D, with the convention [x, x] = {x}. A geodesic lamination L of
D is a closed subset of D which can be written as the union of a collection of non-crossing such
chords, i.e. which do not intersect in D. In this paper, by lamination we will always mean geodesic
lamination of D.

We view a partition of [n] as a closed subset of D by identifying each integer l ∈ [n] with the
complex number e−2iπl/n and by drawing a chord [e−2iπl/n, e−2iπl ′/n] whenever l, l ′ ∈ [n] are two
consecutive elements of the same block of the partition, where the smallest and the largest element
of a block are consecutive by convention. The partition is non-crossing if and only if these chords do
not cross; we implicitly identify a non-crossing partition with the associated lamination throughout
this paper.

Let T be the set of all finite plane trees (see the definition below), and Tn be the set of all plane
trees with n vertices. We construct two bijections between NCn and Tn+1. The study of a (random)
non-crossing partition then reduces to that of the associated (random) plane tree.

2.1 Non-crossing partitions and plane trees

Recall that N = {1, 2, . . . } is the set of all positive integers, set N0 = {∅} and let

U =
⋃
n>0

Nn.

For u = (u1, . . . ,un) ∈ U, we denote by |u| = n the length of u; if n > 1, we define pr(u) =

(u1, . . . ,un−1) and for i > 1, we let ui = (u1, . . . ,un, i); more generally, for v = (v1, . . . , vm) ∈ U,
we let uv = (u1, . . . ,un, v1, . . . , vm) ∈ U be the concatenation of u and v. We endow U with the
lexicographical order: v ≺ w if there exists z ∈ U such that v = z(v1, . . . , vn), w = z(w1, . . . ,wm)

and v1 < w1.
A plane tree is a nonempty, finite subset τ ⊂ U such that:

(i) ∅ ∈ τ;

(ii) if u ∈ τwith |u| > 1, then pr(u) ∈ τ;

(iii) if u ∈ τ, then there exists an integer ku > 0 such that ui ∈ τ if and only if 1 6 i 6 ku.
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We will view each vertex u of a tree τ as an individual of a population whose τ is the genealogical
tree. The vertex ∅ is called the root of the tree and for every u ∈ τ, ku is the number of children (or
outdegree) of u (if ku = 0, then u is called a leaf), |u| is its generation, pr(u) is its parent and more
generally, the vertices u,pr(u),pr ◦ pr(u), . . . ,pr|u|(u) = ∅ are its ancestors. In the sequel, if non
specified otherwise, by tree we will always mean plane tree.

We define the (planar, but non-rooted) dual tree T(P) of a non-crossing partition P of [n] as
follows: we place a black vertex inside each block of the partition and a white vertex inside each
other face, then we join two vertices if the corresponding faces share a common edge; here we shall
view the singletons as self-loops and the blocks of size two with one double edge. See Fig. 2 for an
illustration. Observe that the graph thus obtained is a indeed a planar tree (meaning that there is an
order among all edges adjacent to a same vertex, up to cyclic permutations), with n+ 1 vertices,
and that the latter is bipartite: each edge connects two vertices of different colours.

In order to fully recover the partition from the tree (and therefore obtain a bijection), we need
to assign a root by distinguishing a corner of T(P) (a corner of a vertex in a planar tree is a sector
around this vertex delimited by two consecutive edges), thus making it a plane tree. We will do so
in two different ways, which will give rise to two different bijections. First, T◦(P) is the tree T(P)
rooted at the corner of the white vertex that lies in the face containing the vertices 1 and n, and that
has the black vertex in the block containing 1 as its first child; T•(P) is the tree T(P) rooted at the
corner of the black vertex in the block containing n and that has the white vertex that lies in the face
containing the vertices 1 and n as its first child; see Fig. 4 and 5 for an example.

The trees T◦(P) and T•(P) are two-type plane trees: vertices at even generation are coloured
in one colour and vertices at odd generation are coloured in another colour. We apply to each a
bijection due to Janson & Stefánsson [26, Sec. 3] which maps such a tree into a one-type tree, that
we now describe. This bijection enjoys useful probabilistic features, see Corollary 8 below.

We denote by T a plane tree and by G(T) its image by this bijection; T and G(T) have the same
vertices but the edges are different. If T = {∅} is a singleton, then set G(T) = {∅}; otherwise, for
every vertex u ∈ T at even generation with ku > 1 children, do the following: first, if u 6= ∅, draw
an edge between its parent pr(u) and its first child u1, then draw edges between its consecutive
children u1 and u2, u2 and u3, ..., u(ku − 1) and uku, and finally draw an edge between uku and
u; if u is a leaf of T , then this procedure reduces to drawing an edge between u and pr(u). We
root G(T) at the first child of the root of T . One can check that G(T) thus defined is indeed a plane
tree, and that the mapping is invertible. Also observe that every vertex at even generation in T is
mapped to a leaf of G(T), and every vertex at odd generation with k > 0 children in T is mapped to
a vertex with k+ 1 children in G(T).

We let
T◦(P) := G(T◦(P)) and T•(P) := G(T•(P))

be the (one-type) trees associated with T◦(P) and T•(P) respectively and now explain how to
reconstruct the non-crossing partition P from the trees T◦(P) and T•(P).

To this end, we introduce the notion of twig. If T is a tree and u, v ∈ T , denote by Ju, vK the
shortest path between u and v in T . A twig of T is a set of the form Ju, vK, where u is an ancestor of
v and such that all the vertices of Ku, vK are the last child of their parent; we agree that Ju,uK is a
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Figure 4: The tree T◦ associated with the partition from Fig. 2, with its black corners

indexed according to the contour sequence, and its image T◦ by the Janson–Stefánsson

bijection, with its vertices indexed in lexicographical order.
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Figure 5: The tree T• associated with the partition from Fig. 2, black corners indexed

according to the contour sequence, and its image T• by the Janson–Stefánsson bijection,

with its vertices indexed in lexicographical order.

twig for every vertex u. Now, if τ ∈ Tn+1 is a tree, let ∅ = u(0) ≺ u(1) ≺ · · · ≺ u(n) be its vertices
listed in lexicographical order. We define two partitions P◦(τ) and P•(τ) of [n] as follows:

• i, j ∈ [n] belong to the same block of P◦(τ) when u(i) and u(j) have the same parent in τ;

• i, j ∈ [n] belong to the same block of P•(τ) when u(i) and u(j) belong to a same twig.

It is an easy exercise to check that for every τ ∈ T, P◦(τ) and P•(τ) are indeed partitions which,
further, are non-crossing. As illustrated by Fig. 4 and Fig. 5, we have the following result.

Proposition 4. For every non-crossing partition P we have

P = P◦(T
◦(P)) = P•(T

•(P)).

Proof. Fix a non-crossing partition P of [n]. Let us first prove the first equality. Define the contour
sequence (u0,u1, . . . ,u2n) of the tree T◦(P) as follows: u0 = ∅ and for each i ∈ {0, . . . , 2n− 1}, ui+1

is either the first child of ui which does not appear in the sequence (u0, . . . ,ui), or the parent of ui if
all its children already appear in this sequence. Recall that a corner of a vertex v ∈ T◦(P) is a sector
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around v delimited by two consecutive edges. We index from 1 to n the corners of the black vertices
of T◦(P), following the contour sequence. By construction of T◦(P), we recover P from these corners:
for each black vertex of T◦(P), the indices of its corners, listed in clockwise order, form a block of P.
Now assign labels to the vertices of T◦(P) as follows. By definition of the bijection G, each edge of
T◦(P) starts from one of these corners, we then label its other extremity by the label of the corner.
The root of T◦(P) is not labelled, we assign it the label 0; the labels thus obtained correspond to the
lexicographical order in T◦(P) and the first identity follows.

For the second equality, define similarly the contour sequence of T•(P), but starting from the
first child of the root, and label the black corners as before. We then label the vertices of T•(P) as
follows: the label of every black vertex is the largest label of its adjacent corners, and then assign
the remaining labels of its adjacent corners in decreasing order to its children, starting from the last
one. Observe that the root of T•(P) has as many children as corners, and all the other black vertices
have one child less than the number of corners. Thus all the vertices of T•(P) have labels, except the
first child of the root which we label 0. We recover P from T•(P) as follows: for each black vertex of
T•(P), its label, together with the labels of its children, form a block of P (and one does not take into
account the label 0). As the vertex set of T•(P) and of T•(P) is the same, we also get a labeling of the
vertices of T•(P). Again, by definition of the G, these labels correspond to the lexicographical order
in T•(P) and the second identity follows.

Observe from the previous results that the plane trees T◦(P) and T•(P) are in bijection. Let us
describe a direct operation on trees which maps T◦(P) onto T•(P). Starting from a tree τ ∈ T, we
construct a tree B(τ) on the same vertex-set by defining edges (called “new” edges in the sequel) as
follows: first, we link any two consecutive children in τ; second, we link every vertex v which is
the first child of its parent to its youngest ancestor u such that Ju,pr(v)K is a twig in τ (in this case
observe that either u is the root of τ, or v is not the last child of u in B(τ)).

We leave it as an exercise to check that this mapping preserves the lexicographical order.
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Figure 6: The transformation τ 7→ B(τ).

Proposition 5. For every non-crossing partition P we have

B(T◦(P)) = T•(P).

Proof. Fix a non-crossing partition P. Thanks to Prop. 4, it is equivalent to show that

P•(B(T◦(P))) = P,
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and we set by P ′ = P•(B(T◦(P))) to simplify notation.
Suppose first that i, j > 1 lie in the same block of P. We shall show that i and j belong to the

same block of P ′. The two corresponding vertices, say, u(i) and u(j) have the same parent in T◦(P).
Without loss of generality, assume that u(i) ≺ u(j) are consecutive children in T◦(P). It suffices to
check that, in B(T◦(P)), u(j) is the last child of u(i). This simply follows from the fact B preserves
the lexicographical order and that the children of u(i) in B(T◦(P)), u(j) excluded, are descendants
of u(i) in T◦(P).

Conversely, suppose that i, j > 1 lie in the same block of P ′. Without loss of generality, we may
assume that, in B(T◦(P)), u(j) is the last child of u(i). We argue by contradiction and assume that,
in T◦(P), u(i) and u(j) are not siblings. We saw that in this case, by definition of B, either u(i) is the
root, or u(j) is not the last child of u(i) in B(T◦(P)). Both of these cases are excluded. Therefore i
and j belong to the same block of P.

We already mentioned in the Introduction that the bijection τ ↔ P◦(τ) was defined by Der-
showitz and Zaks [14]; the bijection τ↔ P•(τ) was defined by Prodinger [36] and further used in
combinatorics, see e.g. Yano and Yoshida [40] and in (free) probability, see Ortmann [34]. Roughly
speaking, here we unify these two bijections by seeing that they amount (up to the Janson–Stefánsson
bijection) to choosing different distinguished corners in the dual two-type planar tree. In this spirit,
if P is a non-crossing partition, let us also mention that its Kreweras complement K(P) is just ob-
tained by re-rooting T(P) at a new corner; more precisely, the mappings (T•)−1 ◦ T◦ and (T•)−1 ◦ T◦

coincide and both correspond to K.
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Figure 7: The Kreweras complement of the partition {{1, 3, 5}, {2}, {4}, {6, 7, 11, 12}, {8}, {9, 10}}
is {{1, 2}, {3, 4}, {5, 12}, {6}, {7, 8, 10}, {11}}.

The Kreweras complement can be formally defined as follows. If we denote by NC(A) the
set of non-crossing partitions on a finite subset A ⊂ N, then we have canonical isomorphisms
NCn := NC({1, 2, . . . ,n}) ∼= NC({1, 3, . . . , 2n− 1}) ∼= NC({2, 4, . . . , 2n}). Given two non-crossing
partitions P ∈NC({1, 3, . . . , 2n− 1}) and P ′ ∈NC({2, 4, . . . , 2n}), one constructs a (possibly crossing)
partition P ∪ P ′ of {1, 2, . . . , 2n}. The Kreweras complement of a non-crossing partition P ∈NCn ∼=

NC({1, 3, . . . , 2n− 1}) is then given by

K(P) = max{P ′ ∈NCn ∼= NC({2, 4, . . . , 2n}) : P ∪ P ′ ∈NC2n},
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where the maximum refers to the partial order of reverse refinement: P1 � P2 when every block of
P1 is contained in a block of P2.

The Kreweras complementation can be visualized as follows: consider the representation of
P ∈NCn in the unit disk as in Fig. 2; invert the colors and rotate the vertices of the regular n-gon
by an angle −π/n; then the blocks of K(P) are given by the vertices lying in the same “coloured”
component. See Fig. 7 for an illustration.

2.2 Simply generated non-crossing partitions and simply generated trees

An important feature of the bijection B◦ : P 7→ T◦(P) is that it transforms simply generated non-
crossing partitions into simply generated trees, which were introduced by Meir & Moon [33] and
whose definition we now recall.

Given a sequence w = (w(i); i > 0) of nonnegative real numbers, with every τ ∈ T, associate a
weightΩw(τ):

Ωw(τ) =
∏
u∈τ

w(ku).

Then, for every τ ∈ Tn, set

Qwn (τ) =
Ωw(τ)∑

T∈Tn
Ωw(T)

.

Again, we always restrict our attention to those values of n for which
∑
T∈Tn

Ωw(T) > 0. A random
tree of Tn sampled according to Qwn is called a simply generated tree. A particular case of such
trees on which we shall focus in Sec. 4 is when the sequence of weights w defines a probability
measure on Z+ with mean 1 (see the discussion in Sec. 3.1 below). In this case, Qwn is the law of a
Galton–Watson tree with critical offspring distribution w conditioned to have n vertices.

Proposition 6. Let (w(i); i > 1) be any sequence of nonnegative real numbers. Set w(0) = 1. Then, for
every P ∈NCn,

Pwn (P) = Qwn+1(T
◦(P)).

In other words, the bijection B◦ transforms simply generated non-crossing partitions into simply
generated trees.

Proof. By Prop. 4, we have P = P◦(T
◦(P)). In particular, blocks of size k > 1 in P are in bijection

with vertices with out-degree k in T◦(P). The claim immediately follows.

It is also possible to give an explicit description of the law of T◦ under Pwn , which turns out to
be a two-type simply generated tree. We denote by T(e,o) the set of finite two-type trees: for every
τ ∈ T(e,o), we denote by e(τ) and o(τ) the set of vertices respectively at even and odd generation in
τ. Given two sequences of weights we and wo, we define the weight of tree τ ∈ T(e,o) by

Ω(we,wo)(τ) =
∏
u∈e(τ)

we(ku)
∏
u∈o(τ)

wo(ku).

and we define for every τ ∈ T
(e,o)
n the set of two-type trees with n vertices,

Q
(we,wo)
n (τ) =

Ω(we,wo)(τ)∑
T∈T

(e,o)
n
Ω(we,wo)(T)

,
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where, again, we implicitly restrict ourselves to the values of n for which
∑
T∈T

(e,o)
n
Ω(we,wo)(T) > 0.

A random tree sampled according to Q
(we,wo)
n is called a two-type simply generated tree.

Proposition 7. Let w = (w(i), i > 1) be a sequence of nonnegative real numbers and c > 0 be a positive
real number. For every i > 0, set wo(i) = w(i+ 1) and we(i) = c−(i+1). Then, for every P ∈NCn,

Pwn (P) = Q
(we,wo)
n+1 (T◦(P)).

Proof. Fix P ∈ NCn; by construction of T◦(P) (recall the proof of Prop. 4), the vertices at odd
generation in T◦(P) are in bijection with the blocks of P and the degree of each corresponds to the
size of the associated block. Consequently, we have on the one hand∏

u∈o(T◦(P))

wo(ku) =
∏

u∈o(T◦(P))

w(ku + 1) =
∏

B block of P

w(size of B) = Ωw(P);

on the other hand, since T◦(P) ∈ T
(e,o)
n+1,∏

u∈e(T◦(P))

we(ku) =
∏

u∈e(T◦(P))

c−(ku+1) = c−
∑
u∈e(T◦(P))(ku+1) = c−(n+1).

This last term only depends on n and not on P and the claim follows.

Recall that G denotes the Janson–Stefánsson bijection. Then, combining Propositions 6 and 7, we
obtain the following result.

Corollary 8. Let w = (w(i), i > 1) be any sequence of nonnegative real numbers and c > 0 be a positive
real number. Set w(0) = 1 and for every i > 0, define wo(i) = w(i+ 1) and we(i) = c−(i+1). Then, for
every T ∈ T

(e,o)
n , we have

Qw
e,wo

n (T) = Qwn (G(T)).

In other words, the Janson–Stefánsson bijection transforms a certain class of two-type sim-
ply generated trees into one-type simply generated trees. A similar result implicitly appears in
their work [26, Appendix A] in the particular case of Galton–Watson trees, where we and wo are
probability distribution on {0, 1, . . . , } and moreover we is a geometric distribution.

3 Applications

In this section, we use simply generated trees to study combinatorial properties of simply generated
non-crossing partitions. Indeed, as suggested by Prop. 6, it is possible to reformulate questions
concerning random non-crossing partitions in terms of random trees, which are more familiar
grounds.
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3.1 Asymptotics of simply generated trees

Following Janson [23], here we describe all the possible regimes arising in the asymptotic behavior
of simply generated trees. All the following discussion appears in [23], but we reproduce it here for
the reader’s convenience in view of future use and refer to the latter reference for details and proofs.

Let (w(i); i > 0) be a sequence of nonnegative real numbers with w(0) > 0 and w(k) > 0 for
some k > 2 (and keeping in mind that we will take w(0) = 1 in view of Prop. 6). Set

Φ(z) =

∞∑
k=0

w(k)zk, Ψ(z) =
zΦ ′(z)

Φ(z)
=

∑∞
k=0 kw(k)z

k∑∞
k=0w(k)z

k
, ρ =

(
lim sup
k→∞ w(k)1/k

)−1

.

If ρ = 0, set ν = 0 and otherwise
ν = lim

t↑ρ
Ψ(t).

We now define a number ξ > 0 according to the value of ν.

• If ν > 1, then ξ is the unique number in (0, ρ] such that Ψ(ξ) = 1.

• If ν < 1, then we set ξ = ρ.

In both cases, we have 0 < Φ(ξ) <∞, and we set

π(k) =
w(k)ξk

Φ(ξ)
, k > 0,

so that π is a probability distribution with expectation min(ν, 1) and variance ξΨ ′(ξ) 6∞.
We say that another sequence of weights w̃ = (w̃(i); i > 0) is equivalent to w when there

exists a,b > 0 such that w̃(i) = abiw(i) for every i > 0. In this case, one can check that Ωw̃(τ) =
anbn−1Ωw(τ) for every τ ∈ Tn so that Qw̃n = Qwn and Pw̃n = Pwn for every n > 1. We see that w
is equivalent to a probability distribution if and only if ρ > 0. In addition, when ρ > 0, π defined
as above is the unique probability distribution with mean 1 equivalent to w, if such distribution
exists; if no such distribution exists, then π is the probability distribution equivalent to w that has
the maximal mean.

Example 9. Let A is a non-empty subset of {1, 2, 3, . . .} with A 6= {1}. Set wA(0) = 1, wA(k) = 1 if
k ∈ A and wA(k) = 0 if k 6∈ A. Then the equivalent probability measure πA is defined by

πA(k) =
ξkA

1 +
∑
i∈A ξ

i
A

1k∈{0}∪A, where ξA > 0 is such that 1 +
∑
i∈A

ξiA =
∑
i∈A

i · ξiA.

For example, for fixed n > 1, we have

πnN(k) =
n

(1 +n)1+k/n 1k∈nZ+ (k > 0).

In particular, πZ+(k) = 1/2k+1 for every k > 0. Also,

π(2Z++1)(k) =
1 − z2

1 + z− z2 · z
k · 1k=0 or k odd (k > 0),

where z is the unique root of 1 − 2z2 − 2z3 + z4 = 0 in [0, 1].
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Now let Tn be a random element of Tn sampled according to Qwn .

Theorem 10 (Janson [23], Theorems 7.10 and 7.11). Fix k > 0.

(i) We have P (k∅(Tn) = k)→ kπ(k) as n→∞;

(ii) LetNk(Tn) be the number of vertices with outdegree k in Tn. ThenNk(Tn)/n converges in probability
to πk as n→∞.

Theorem 11 (Janson [23], Theorem 18.6). If ρ > 0, we have

1
n
· log

∑
T∈Tn

Ωw(T)

 −→
n→∞ log (Φ(ξ)/ξ) .

3.2 Applications in the enumeration of non-crossing partitions with prescribed block
sizes

By Prop. 4, counting non-crossing partitions of [n] with conditions on the number of blocks of
given sizes reduces to counting plane trees of Tn+1 with conditions on the number of vertices
with given outdegrees, which is a well-paved road (see e.g. [39, Sec. 5.3]). Since our main interest
lies in probabilistic aspects of non-crossing partitions, we shall only give one such example of
application. Let A be a non-empty subset of {1, 2, 3, . . .} with A 6= {1}, and denote by NCA

n the set of
all non-crossing partitions of [n] with blocks of size only belonging to A. Recall the definition of ξA
from Example 9.

Proposition 12. SetΦ(z) = 1 +
∑
k∈A z

k. Then

#NCA
n ∼

n→∞ gcd(A) ·

√
Φ(ξA)

2πΦ ′′(ξA)
·
(
Φ(ξA)

ξA

)n+1

·n−3/2,

where n→∞ in such a way that n is divisible by gcd(A).

Setting A = {0} ∪ A, observe that #NCA
n = #TA

n+1 by Prop. 4. But, by [20, Prop. I.5.], the
generating function TA(z) =

∑
n>1 #TA

n · zn satisfies the implicit equation TA(z) = zΦ(TA(z)).
Prop. 12 then immediately follows from [20, Thm.VII.2 and Rem. VI.17].

Let us mention that explicit expressions for #NCA
n for n fixed are known for two particular

choices of A. Edelman [19] has found an explicit formula for #NC
kZ+

kn (i.e. for k-divisible non-
crossing partitions) and Arizmendi & Vargas [4] have found the explicit expression of #NC

{k}
kn

(i.e. for k equal non-crossing partitions):

#NC
{k}
kn =

1
(k− 1)n+ 1

(
kn

n

)
and #NC

kZ+

kn =
1

kn+ 1

(
(k+ 1)n
n

)
.
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3.3 Applications in free probability

Recall from the Introduction the definition of the R-transform Rµ of a compactly supported proba-
bility measure µ on the real line, and that it is related to its associated free cumulants (κi(µ); i > 0)
by the formula

Rµ(z) =

∞∑
n=0

κn+1(µ)z
n.

Theorem 13. Let µ be a compactly supported probability measure on R different from a Dirac mass. Assume
that its free cumulants (κi(µ); i > 1) are all nonnegative. Set

ρ =

(
lim sup
n→∞ κn(µ)

1/n
)−1

and ν = 1 + lim
t↑ρ

t2R ′µ(t) − 1
tRµ(t) + 1

.

(i) If ν > 1, there exists a unique number ξ in (0, ρ] such that R ′µ(ξ) = 1/ξ2 and

1
n
· log

∫
R

tnµ(dt) −→
n→∞ log

(
1
ξ
+ Rµ(ξ)

)
.

(ii) If ν < 1, we have
1
n
· log

∫
R

tnµ(dt) −→
n→∞ log

(
1
ρ
+ Rµ(ρ)

)
.

Note that the equality R ′µ(ξ) = 1/ξ2 is equivalent to K ′µ(ξ) = 0, where we recall that Kµ denotes
the inverse of the Cauchy transform of µ.

Proof. First note that ρ > 0, as Rµ is analytic on a neighbourhood of the origin. We then apply the
results of Sec. 3.1 with weights w defined by w(0) = 1 and w(i) = κi(µ) for i > 1. The fact that µ is
different from a Dirac mass guaranties that w(k) > 0 for some k > 2. Observe that

Φ(z) = 1 + zRµ(z) = zKµ(z) and Ψ(z) = 1 +
z2R ′(z) − 1
zR(z) + 1

.

In particular, Ψ(z) = 1 if and only if R ′µ(z) = 1/z2. The claim then follows by combining (1) with
Theorem 11.

See Example 14 below for an example where ν < 1. If µ is the uniform measure on [0, 1], its
free cumulants are not all nonnegative, as Rµ(z) = 1/(1 − e−z) − 1/z. See also [5] for information
concerning Taylor series of the R-transform of measures which are not compactly supported.

Let sµ be the maximum of the support of a compactly supported probability measure µ on R. It
is well known and simple to check that

log(sµ) = lim sup
n→∞

1
n

log
∫

R

tnµ(dt).

Hence, taking into account (1), we immediately get Theorem 2 from Theorem 13.

Example 14. (i) If µ(dx) = 1/(π
√

1 − x2)1|x|61dx is the arcsine law (which is also the free additive
convolution λ � λ with λ = (δ−1/2 + δ1/2)/2)), one has ρ = ∞, ν = 0, so that Rµ(z) =

(
√

1 + z2 − 1)/z, and one recovers that sµ = 1/∞+ R(∞) = 1.
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(ii) If µ is the free convolution of a free Poisson law of parameter 1 and the uniform distribution
on [−1, 1], then Rµ(z) = coth(z) − z−1 + (1 − z)−1, ρ = 1, ν =∞ so that

sµ = coth(z∗) +
1

1 − z∗
' 4.16, where csch(z∗)(1 − z∗)

2 = 1 with z∗ ∈ (0, 1).

This gives a simpler expression that the one of [34, Example 6.2], which involves solutions of
two implicit equations.

(iii) If µ is such that Rµ(z) = 1
z − πcot(πz) (this corresponds to the Lévy area corresponding to the

free Brownian bridge introduced in [35]), then

sµ =
2 −

√
2 − π2z2

∗
z∗

' 3.94, where
sin(πz∗)
πz∗

=

√
2

2
with z∗ ∈ (0, 1).

This gives a simpler expression that the one of [34, Prop. 5.12],

(iv) As noted by Ortmann [34, Sec. 6.1], if λ is a finite compactly supported measure on R and
α ∈ R, by [6] or [22, Thm. 3.3.6], there exists a compactly supported probability measure µ
such that

Rµ(z) = α+

∫
z

1 − xz
λ(dx),

and all the cumulants of µ are nonnegative, so that Theorem 13 and Theorem 2 apply to the
corresponding normalized probability measure. This actually corresponds to the class of
so-called freely infinitely divisible measures.

In particular, if λ(dx) = c(1 − x)α106x61dx with c > 0,α > 1, then µ is such that Rµ(z) =∫
R

z
1−xzλ(dx) and

κ1(µ) = 0, κn(µ) = c
Γ(1 +α) · Γ(n− 1)

Γ(n+α)
(n > 2), ρ = 1, ν =

(2α− 1)c
(α− 1)(α+ c)

.

Note that κn(µ) ∼ cΓ(1 + α) · n−1−α as n → ∞ and that ν = 1 if and only if c = α− 1. For
example, for α = 2 and c = 1/2, we have ν = 3/5 < 1 and sµ = 1 + Rµ(1) = 5/4.

3.4 Distribution of the block sizes in random non-crossing partitions

We are now interested in the distribution of block sizes in large simply generated non-crossing
partitions. We fix a sequence of nonnegative weights w = (w(i); i > 1) such that w(k) > 0 for
some k > 2. Set w(0) = 1, and let Pn be a random non-crossing partition with law Pwn . Denote
by π the probability distribution equivalent to the weights w in the sense of Sec. 3.1. Finally, set
Tn+1 = T◦(Pn), so that by Prop. 6, Tn+1 is a simply generated tree with n+ 1 vertices with law
Qwn+1.

Blocks of given size. If P is a non-crossing partition and A is a non-empty subset of N, we let
ζA(P) be the number of blocks of P whose size belongs to A. In particular, notice that ζN(P) is the
total number of blocks of P.



3 APPLICATIONS 18

Theorem 15. (i) Let S1(Pn) be the size of the block containing 1 in Pn. Then, for every k > 1,
P (S1(Pn) = k)→ kπ(k) as n→∞.

(ii) Let Bn be a block chosen uniformly at random in Pn. Assume that π(0) < 1. Then, for every k > 1,
P (|Bn| = k)→ π(k)/(1 − π(0)) as n→∞.

(iii) Let A be a non-empty subset of N. As n → ∞, the convergence ζA(Pn)/n → π(A) holds in
probability and, in addition, E [ζA(Pn)] /n→ π(A).

In particular, the total number of blocks of Pn is of order (1 − π(0))nwhen π(0) < 1.

Proof. For (i), simply note that S1(Pn) = k∅(Tn+1), and the claim immediately follows from Theo-
rem 10 (i). For the second assertion, if T is a tree, denote by Nk(T) the number of vertices of T with
outdegree k. Note that Bn has the law of the outdegree of an internal (i.e. not a leaf) vertex of Tn+1

chosen uniformly at random. As a consequence,

P (|Bn| = k) = E

[
Nk(Tn+1)

n−N0(Tn+1)

]
.

By Theorem 10 (ii),Nk(Tn+1)/(n−N0(Tn+1)) converges in probability to π(k)/(1−π(0)) as k→∞,
and is clearly bounded by 1. The second first assertion then follows from the dominated convergence
theorem. For the last assertion, observe that ζA(Pn) = NA(Tn+1), where NA(Tn+1) denotes the
number of vertices of Tn+1 with outdegree in A. Then, fix K > 1, and to simplify notation, set
AK = A∩ [K], so that by Theorem 10 (ii), the convergence ζAK(Pn)/n→ π(AK) holds in probability
as n → ∞. Since |ζA(Pn) − ζAK(Pn)| 6 n/K, the quantity |ζA(Pn)/n− ζAK(Pn)/n| can be made
arbitrarily small by choosing K sufficiently large. It follows that ζA(Pn)/n→ π(A) in probability as
n→∞, and the last claim readily by the dominated convergence theorem.

In the case π(0) = 1 (which corresponds to ρ = 0), (i) tells us that the convergence S1(Pn)→∞
holds in probability as n→∞, but the asymptotic behavior of |Bn| and the total number of blocks
of Pn remains unclear. Unfortunately, it seems that one cannot say anything more in full generality.
Indeed:

(i) If w(k) = k!α with α > 1, by [25, Remark 2.9], with probability tending to one as n→∞, the
root of Tn+1 has n children which are all leaves. Therefore, as n → ∞, P (S1(Pn) = n) → 1,
P (|Bn| = n)→ 1 and P (ζN(Pn) = 1)→ 1.

(ii) If w(k) = k!, by [25, Theorem 2.4], with probability tending to one as n → ∞, the root of
Tn+1 has n −Un+1 children which are all leaves, except Un+1 of them (which have only
one vertex grafted on them), and Un+1 converges in distribution to X, a Poisson random
variable of parameter 1, as n → ∞. Therefore, as n → ∞, n− S1(Pn) → X in distribution,
P (|Bn| = 1) → E [X/(X+ 1)] = 1/e, P (|Bn| = S1(Pn)) → 1 − 1/e and ζN(Pn) → X + 1 in
distribution.

(iii) If w(k) = k!α with 0 < α < 1 and 1/α 6∈ N for simplicity, by [25, Theorem 2.5], as n → ∞,
k∅(Tn+1)/n→ 1 in probability, for every 1 6 i 6 b1/αc, Ni(Tn)/n1−iα → i!α in probability
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and, with probability tending to one as n→∞, Ni(Tn) = 0 for every i > b1/αc. Therefore, as
n→∞, S1(Pn)/n→ 1 in probability. Also, noting that

P (|Bn| = k) = E

[
Nk(Tn+1)∑
i>1Ni(Tn+1)

]
, ζN(Pn) =

∑
i>1

Ni(Tn+1),

we get that and P (|Bn| = 1)→ 1 and ζN(Pn)/n
1−α → 1 in probability.

In addition, [23, Example 19.39] gives an example where ρ = 0 and k∅(Tn)/n→ 0 in probability.

Asymptotic normality of the block sizes. Theorem 15 (ii) shows that a law of large numbers
holds for ζA(Pn). Under some additional regularity assumptions on the weights, it is possible to
obtain a central limit theorem. Specifically, assume that w is equivalent (in the sense of Sec. 3.1)
to a probability distribution πwhich is critical (meaning that its mean is equal to 1) and has finite
positive variance σ2. In this case, the following result holds.

Theorem 16. Fix an integer k > 1, and let A1, . . . ,Ak be non-empty subsets of N. Then there exists a
centered Gaussian vector (XA1 , . . . ,XAk) such that the convergence(

ζA1(Pn) − π(A1)n√
n

, . . . ,
ζAk(Pn) − π(Ak)n√

n

)
(d)−→
n→∞ (XA1 , . . . ,XAk)

holds in distribution. In addition we have E
[
X2
Ai

]
= π(Ai)(1 − π(Ai)) −

1
σ2

∑
r∈Ai(r− 1)2π(r) for

1 6 i 6 k and

Cov(XAi ,XAj) = −π(Ai)π(Aj) −
1
σ2

∑
r∈Ai

(r− 1)2π(r) ·
∑
s∈Aj

(s− 1)2π(s)

if 1 6 i 6= j 6 k are such that Ai ∩Aj = ∅.

This result is just a translation of the corresponding known result for conditioned Galton–
Watson trees: recalling that Tn+1 = T◦(Pn), let NA(Tn+1) denote the number of vertices of Tn+1

with outdegree in A, then (ζA1(Pn), . . . , ζAk(Pn)) = (NA1(Tn+1), . . . ,NAk(Tn+1)), and Theorem 16
then follows from [24, Example 2.2] (in this reference, the results are stated when #Ai = 1 for every
i, but it is a simple matter to see that they still hold).

Large deviations for the empirical block size distribution. Denote by Mn the law of the size of
a block of Pn, chosen uniformly at random among all possible blocks, so that Mn is a random
probability measure on N. Dembo, Mörters & Sheffield [13, Thm. 2.2] establish a large deviation
principle for the empirical outdegree distribution in Galton–Watson trees. Therefore, we believe
that an analogue large deviation principle holds for Mn (at least when the weights are equivalent to
a critical probability distribution having a finite exponential moment), which would in particular
extend a result of Ortmann [34, Thm. 1.1], who established such a large deviation principle in the
case of uniformly distributed k-divisible non-crossing partitions. The point is that Ortmann uses the
bijection P ↔ T•(Pn), but we believe that it is simpler to use the bijection P ↔ T◦(P) since T◦(Pn) is
a simply generated tree, but in general not T•(Pn). However, we have not worked out the details.
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Largest blocks. Depending on the weights, Janson [23, Sec. 9 and 19] obtains general results
concerning the largest outdegrees of simply generated trees. Since the sequence of outdegrees of
vertices of Tn+1 that are not leaves, listed in non increasing order, is equal to the sequence of sizes
of blocks of Pn, listed in non increasing order, one gets estimates on the sizes of the largest blocks of
Pn. We do not enter details, and refer to [23] for precise statements.

Local behavior. Theorem 15 (i) describes the distributional limit of the size of the block of Pn
containing 1; it is also possible to describe the behavior of the blocks at “finite distance” of the latter.
Indeed, as we have seen in Section 2.2, when Pn is sampled according to Pwn , then its two-type dual
tree T◦n = T◦(Pn) is distributed according to Q

(we,wo)
n+1 where wo(i) = w(i+ 1) and we(i) = 1 for

every i > 0. In this case, for every tree τ ∈ T(e,o) we have

Ω(we,wo)(τ) =
∏
u∈e(τ)

we(ku)
∏
u∈o(τ)

wo(ku) =
∏
u∈o(τ)

w(deg(u)),

and Björnberg & Stefánsson [10, Theorem 3.1] have obtained a limit theorem for the measure
Q

(we,wo)
n on T

(e,o)
n as n→∞, in the local topology. Loosely speaking, the dual tree T◦n converges

locally to a limiting infinite two-type tree which can be explicitly constructed, and which is in a
certain sense a two-type Galton–Watson tree conditioned to survive. We do not enter details as we
will not use this and refer to [10] for precise statements and proofs.

4 Non-crossing partitions as compact subsets of the unit disk

We investigate in this section the asymptotic behavior, as n → ∞, of a non-crossing partition
sampled according to P

µ
n and viewed as an element of the space of all compact subsets of the unit

disk equipped with the Hausdorff distance.

Main assumptions. We restrict ourselves to the case where µ = (µ(k),k > 0) defines a critical
probability measure, i.e.

∑∞
k=0 µ(k) =

∑∞
k=0 kµ(k) = 1. Recall from Sec. 3.1 that any sequence of

weights (w(k),k > 0) such that

ρ =

(
lim sup
k→∞ w(k)1/k

)−1

> 0 and lim
t↑ρ

∑∞
k=0 kw(k)t

k∑∞
k=0w(k)t

k
> 1

is equivalent to such a measure µ and then P
µ
n = Pwn for every n > 1. We shall in addition assume

that µ belongs to the domain of attraction of a stable law of index α ∈ (1, 2], i.e. either it has
finite variance:

∑∞
k=0 k

2µ(k) <∞ (in the case α = 2), or
∑∞
k=j µ(k) = j

−αL(j), where L is a slowly
varying function at infinity. Without further notice, we always assume that µ(0) + µ(1) < 1 to
discard degenerate cases.

In this section, we shall establish the following result.

Theorem 17. Fix α ∈ (1, 2]. There exists a random compact subset of the unit disk Lα such that for every
critical offspring distribution µ belonging to the domain of attraction of a stable law of index α, if Pn is
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a random non-crossing partition sampled according to P
µ
n, for every integer n > 1 such that P

µ
n is well

defined, the convergence

Pn
(d)−→
n→∞ Lα

holds in distribution for the Hausdorff distance on the space of all compact subsets of D.

The random compact set Lα is a geodesic lamination; for α = 2, the set L2 is Aldous’ Brownian
triangulation of the disk [2], while Lα is the α-stable lamination introduced in [27] for α ∈ (1, 2).
Observe that Theorem 17 applies for uniform A-constrained non-crossing partitions of [n] when
A 6= {1}, since this law is P

wA
n where wA(k) = 1 if k ∈ A and wA(k) = 0 otherwise; the equivalent

probability distribution defined in Example 9 is then critical and with finite variance and thus
corresponds to α = 2.

Before explaining the construction of Lα, we mention an interesting corollary. Recall from the
Introduction the notation C(Pn) for the (angular) length of the longest chord.

Corollary 18. Fix α ∈ (1, 2]. There exists a random variable Cα such that for every critical offspring
distribution µ belonging to the domain of attraction of a stable law of index α, if Pn is a random non-crossing
partition sampled according to P

µ
n, for every integer n > 1 such that P

µ
n is well defined, the convergence

C(Pn)
(d)−→
n→∞ Cα

holds in distribution.

This immediately follows from Theorem 17, since the functional “longest chord” is continuous
on the set of laminations. Aldous [2] (see also [16]) showed that the law of C2 has the following
explicit distribution:

1
π

3x− 1
x2(1 − x)2

√
1 − 2x

1 1
36x6

1
2
dx.

See [37] for a study of the longest chord of stable laminations. As before, observe that Theorem
3 follows from Corollary 18, which applies with α = 2 for uniform A-constrained non-crossing
partitions of [n] when A 6= {1}.

Techniques. We briefly comment on the main techniques involved in the proof of Theorem 17.
Since it is simple to recover Pn from its dual two-type tree T◦(Pn), it seems natural to study scaling
limits of T◦(Pn). However, this is not the road we take: we rather code Pn by the associated
one-type tree T◦(Pn), which, as we have earlier seen, has the law of a Galton–Watson tree with
offspring distribution µ conditioned to have n+ 1 vertices, and is therefore simpler to study. We
then follow the route of [27]: we code T◦(Pn) via a discrete walk; the latter converges in distribution
to a continuous-time process, we then define Lα from this limit path and we show that it is indeed
the limit of the discrete non-crossing partitions.

In [27], it is shown that certain random dissections of [n] (a dissection of a polygon with n
vertices is a collection of non-crossing diagonals) are shown to converge to the stable lamination, by
using the fact that their dual trees are Galton–Watson trees conditioned to have a fixed number of
leaves. Our arguments are similar to that of [27, Sec. 2 and 3], but the devil is in the details since the
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objects under consideration and their coding by trees are different: first, vertices with outdegree 1
are forbidden in [27], and second a vertex with outdegree k in [27] corresponds to k+ 1 chords in
the associated discrete lamination, whereas in our case a vertex with outdegree k corresponds to k
chords in the associated non-crossing partition. In particular, the proofs of [27, Sec. 2 and 3] do not
carry out with mild modifications, and for this reason we give a complete proof of Theorem 17.

From now on, we fix α ∈ (1, 2], a critical offspring distribution µ belonging to the domain of
attraction of a stable law of index α, and we let Pn be a random non-crossing partition sampled
according to P

µ
n, for every integer n > 1 such that P

µ
n is well defined.

4.1 Non-crossing partitions and paths

We first explain how a plane tree can be coded by a function, called Łukasiewicz path, and then we
describe how to define a non-crossing partition P from the Łukasiewicz path coding the tree T◦(P).
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Figure 8: The partition P = {{1, 3, 5}, {2}, {4}, {6, 7, 11, 12}, {8}, {9, 10}} and the tree T◦(P).

Let τ ∈ Tn+1 and ∅ = u(0) ≺ u(1) ≺ · · · ≺ u(n) its vertices, listed in lexicographical order.
Recall that ku denotes the number of children of u ∈ τ. The Łukasiewicz path W(τ) = (Wj(τ), 0 6
j 6 n+ 1) of τ is defined by W0(τ) = 0 and

Wj+1(τ) = Wj(τ) + ku(j)(τ) − 1 for every 0 6 j 6 n.

One easily checks that Wj(τ) > 0 for every 0 6 j 6 n but Wn+1(τ) = −1. Observe that for every
0 6 j 6 n, Wj+1(τ) −Wj(τ) > −1, with equality if and only if u(j) is a leaf of τ. The next result,
whose proof is left as an exercise, explains how to reconstruct a plane tree from its Łukasiewicz
path.

Proposition 19. Let τ ∈ Tn+1, ∅ = u(0) ≺ u(1) ≺ · · · ≺ u(n) its vertices listed in lexicographical order
and W(τ) its Łukasiewicz path. Fix 0 6 j 6 n− 1 such that k := ku(j)(τ) > 1. Let s1, . . . , sk ∈ {1, . . . ,n}
be defined by s` = inf{m > j+ 1 : Wm(τ) = Wj+1(τ) − (`− 1)} for 1 6 ` 6 k (in particular, s1 = j+ 1).
Then u(s1),u(s2), . . . ,u(sk) are the children of u(j) listed in lexicographical order.

We now describe how to define a non-crossing partition from a Łukasiewicz path. Fix n ∈N

and W = (Wj, 0 6 j 6 n+ 1) a path such that W0 = 0, for every 0 6 j 6 n, Wj+1 −Wj > −1 with
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Figure 9: A plane tree and its  Lukasiewicz path.

the condition thatWj > 0 for every 0 6 j 6 n andWn+1 = −1. Define

kj =Wj+1 −Wj + 1 for every 0 6 j 6 n− 1;

if kj > 1, then let

s
j
` = inf{m > j+ 1 :Wm =Wj+1 − (`− 1)} for every 1 6 ` 6 kj,

and then set sjkj+1 = sj1 = j+ 1. Next define P(W) by

P(W) =
⋃
j:kj>1

kj⋃
`=1

[
exp

(
−2iπ

s
j
`

n

)
, exp

(
−2iπ

s
j
`+1

n

)]
. (2)

Let us briefly explain what this means: if W is the Łukasiewicz path of a tree τ with its vertices
labelled as above, then kj is the number of children of u(j), and sj1, . . . , sjkj are the indices of its
children. Recall from Sec. 2.1 that from a tree τ, we can define a non-crossing partition P◦(τ)
by joining two consecutive children in τ (where the first and the last ones are consecutive by
convention); this is exactly what is done in (2). Recall also from Sec. 2.1 the construction of the plane
tree tree T◦(P) from a non-crossing partition P.

Proposition 20. For every non-crossing partition P, we have

P = P(W(T◦(P))).

Proof. To simplify notation, let W◦ denote the Łukasiewicz path of T◦(P) and let n be its length.
First, note that P(W◦) is a partition of [n]: with the notation used in (2), the blocks are given by the
sets {sj1, . . . , sjkj} for the j’s such that kj > 1. To show that it is non-crossing, fix j, j ′ ∈ {0, . . . ,n− 1}
with kj,kj ′ > 1 and fix ` ∈ {1, . . . ,kj + 1} and ` ′ ∈ {1, . . . ,kj ′ + 1} with (j, `) 6= (j ′, ` ′); one checks that
the intervals (sj`, s

j
`+1) and (sj

′

` ′ , s
j ′

` ′+1) either are disjoint or one is included in the other so that the
chords [

exp

(
−2iπ

s
j
`

n

)
, exp

(
−2iπ

s
j
`+1

n

)]
and

[
exp

(
−2iπ

s
j ′

` ′

n

)
, exp

(
−2iπ

s
j ′

` ′+1

n

)]



4 NON-CROSSING PARTITIONS AS COMPACT SUBSETS OF THE UNIT DISK 24

do not cross. Further, as explained above, by construction, the chords of P(W◦) are chords between
consecutive children of T◦(P). The equality P = P(W◦) then simply follows from the fact that, by
construction and Prop. 4, i, j ∈ [n] belong to the same block of P if and only if u(i) and u(j) have
the same parent in T◦(P).

As previously explained, we will prove the convergence, when n → ∞, of a random non-
crossing partition Pn of [n] sampled according to P

µ
n, by looking at the scaling limit of the

Łukasiewicz path of the conditioned Galton–Watson tree T◦(Pn). The latter is known (see Thm. 21
below) to be the normalized excursion of a spectrally positive strictly α-stable Lévy process Xex

α

which we next introduce. The main advantage of this approach is that T◦(Pn) is a (conditioned)
one-type Galton–Watson tree, whereas the dual tree T◦(Pn) of Pn is a (conditioned) two-type
Galton–Watson tree. We mention here that [1] uses a “modified” Łukasiewicz path to study a
two-type Galton–Watson tree; actually this path is just the Łukasiewicz path of the one-type tree
associated with the two-type tree by the Janson–Stefánsson bijection.

4.2 Convergence to the stable excursion

Fix α ∈ (1, 2] and consider a strictly stable spectrally positive Lévy process of index α: Xα is a
random process with paths in the set D([0,∞), R) of càdlàg functions endowed with the Skorokhod
J1 topology (see e.g. Billingsley [9] for details on this space) which has independent and stationary
increments, no negative jumps and such that E [exp(−λXα(t))] = exp(tλα) for every t, λ > 0. Using
excursion theory, it is then possible to define Xex

α , the normalized excursion of Xα, which is a random
variable with values in D([0, 1], R), such that Xex

α (0) = Xex
α (1) = 0 and, almost surely, Xex

α (t) > 0
for every t ∈ (0, 1). We do not enter into details, and refer the interested reader to Bertoin [8] for
details on Lévy processes and Chaumont [11] for interesting ways to obtain such a process by path
transformations.

An important point is that Xex
α is continuous for α = 2, and indeed Xex

2 /
√

2 is the standard
Brownian excursion, whereas the set of discontinuities of Xex

α is dense in [0, 1] for every α ∈ (1, 2);
we shall treat the two cases separately. Duquesne [18, Prop. 4.3 and proof of Theorem 3.1] provides
the following limit theorem which is the steppingstone of our results in this section.

Theorem 21 (Duquesne [18]). Fix α ∈ (1, 2] and let (µ(k),k > 0) be a critical probability measure in the
domain of attraction of a stable law of index α. For every integer n such that Q

µ
n+1 is well defined, sample

τn according to Q
µ
n+1. Then there exists a sequence (Bn)n>1 of positive constants converging to∞ such

that the convergence (
Wbnsc(τn)

Bn
; 0 6 s 6 1

)
(d)−→
n→∞ (Xex

α (s); 0 6 s 6 1)

holds in distribution for the Skorokhod topology on D([0, 1], R).

Recall that if we sample Pn according to P
µ
n, then the plane tree T◦(Pn) is distributed according

to Q
µ
n+1. Thus, denoting by Wn = W(T◦(Pn)) the Łukasiewicz path of T◦(Pn), the convergence(

Wn
bnsc

Bn
; 0 6 s 6 1

)
(d)−→
n→∞ (Xex

α (s); 0 6 s 6 1) (3)
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holds in distribution for the Skorokhod topology on D([0, 1], R).
We next define continuous laminations by replacing the Łukasiewicz path by Xex

α and mimicking
the definition (2). We prove, using (3), that they are the limit of Pn as n→∞. We first consider the
case α = 2 as a warm-up before treating the more involved the case α ∈ (1, 2).

4.3 The Brownian case

Let e = Xex
2 ; we define an equivalence relation e∼ on [0, 1] as follows: for every s, t ∈ [0, 1], we set

s
e∼ t when e(s∧ t) = e(s∨ t) = min[s∧t,s∨t] e. We then define a subset of D by

L(e) :=
⋃
s

e∼t

[
e−2iπs, e−2iπt] . (4)

Using the fact that, almost surely, e is continuous and its local minima are distinct, one can prove
(see Aldous [2] and Le Gall & Paulin [30]) that almost surely, L(e) is a geodesic lamination of D

and that, furthermore, it is maximal for the inclusion relation among geodesic laminations of D.
Observe that s e∼ s for every s ∈ [0, 1] so S1 ⊂ L(e). Also, since L(e) is maximal, its faces, i.e. the
connected components of D \ L(e), are open triangles whose vertices belong to S1; L(e) is called the
Brownian triangulation and corresponds to L2 in Theorem 17.

Proof of Theorem 17 for α = 2. Using Skorokhod’s representation theorem, we assume that the con-
vergence (3) holds almost surely with α = 2; we then fixω in the probability space such that this
convergence holds for ω. Since the space of compact subsets of D equipped with the Hausdorff
distance is compact, we have the convergence, along a subsequence (which depends onω), of Pn
to a limit L∞, and it only remains to show that L∞ = L(e). Observe first that, since the space of
geodesic laminations of D is closed, L∞ is a lamination. Then, by maximality of L(e), it suffices to
prove that L(e) ⊂ L∞ to obtain the equality of these two sets.

Fix ε > 0 and 0 6 s < t 6 1 such that s e∼ t. Using the convergence (3) and the properties of the
Brownian excursion (namely that times of local minima are almost surely dense in [0, 1]), we can
find integers jn, ln ∈ {1, . . . ,n− 1} such that every n large enough, we have

|n−1jn − s| < ε, |n−1ln − t| < ε, Wn
jn
>Wn

jn−1, and ln = min{m > jn : Wn
m <Wn

jn
}.

In other words, u(jn) and u(ln) are consecutive children of u(jn − 1) in T◦(Pn). By Prop. 20, the
last two properties yield [

exp
(
−2iπ

jn

n

)
, exp

(
−2iπ

ln

n

)]
⊂ Pn.

Thus, for every n large enough, the chord [e−2iπs, e−2iπt] lies within distance 2ε from Pn. Letting
n→∞, along a subsequence, we obtain that [e−2iπs, e−2iπt] lies within distance 2ε from L∞. As ε is
arbitrary, we have [e−2iπs, e−2iπt] ⊂ L∞, hence L(e) ⊂ L∞ and the proof is complete.
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4.4 The stable case

We follow the presentation of [27]. Fix α ∈ (1, 2) and consider Xex
α the normalized excursion of the

α-stable Lévy process. For every t ∈ (0, 1], we denote by ∆Xex
α (t) = X

ex
α (t) −X

ex
α (t−) > 0 its jump at

t, and we set ∆Xex
α (0) = Xex

α (0−) = 0. We recall from [27, Prop. 2.10] that Xex
α fulfills the following

four properties with probability one:

(H1) For every 0 6 s < t 6 1, there exists at most one value r ∈ (s, t) such that Xex
α (r) = inf[s,t] X

ex
α .

(H2) For every t ∈ (0, 1) such that ∆Xex
α (t) > 0, we have inf[t,t+ε] Xex

α < X
ex
α (t) for every 0 < ε 6

1 − t;

(H3) For every t ∈ (0, 1) such that ∆Xex
α (t) > 0, we have inf[t−ε,t] X

ex
α < X

ex
α (t−) for every 0 < ε 6 t;

(H4) For every t ∈ (0, 1) such that Xex
α attains a local minimum at t (which implies ∆Xex

α (t) = 0), if
s = sup{u ∈ [0, t] : Xex

α (u) < X
ex
α (t)}, then ∆Xex

α (s) > 0 and Xex
α (s−) < Xex

α (t) < X
ex
α (s).

We will always implicitly discard the null-set for which at least one of these properties does not
hold. We next define a relation (not equivalence relation in general) on [0, 1] as follows: for every
0 6 s < t 6 1, we set

s 'Xex
α t if t = inf{u > s : Xex

α (u) 6 X
ex
α (s−)},

and then for 0 6 t < s 6 1, we set s 'Xex
α t if t 'Xex

α s, and finally we agree that s 'Xex
α s for every

s ∈ [0, 1]. We next define the following subset of D:

Lα :=
⋃

s'Xex
α t

[
e−2iπs, e−2iπt] . (5)

Observe that S1 ⊂ Lα. Using the above properties, it is proved in [27, Prop. 2.9] that Lα is a geodesic
lamination of D, called the α-stable lamination. The latter is not maximal: each face is bounded by
infinitely many chords (the intersection of the closure of each face and the unit disk has indeed a
non-trivial Hausdorff dimension in the plane).

We next prove Theorem 17; as in the case α = 2, we assume using Skorokhod’s representation
theorem that (3) holds almost surely and we work withω fixed in the probability space such that
this convergence (as well as the properties (H1) to (H4)) holds forω. To simplify notation, we set

Xn(s) =
1
Bn

Wn
bnsc for every s ∈ [0, 1].

Along a subsequence (which depends onω), we have the convergence of Pn to a limit L∞, which is
a lamination. It only remains to prove the identity L∞ = Lα. To do so, we shall prove the inclusions
Lα ⊂ L∞ and L∞ ⊂ Lα in two separate lemmas.

Lemma 22. We have Lα ⊂ L∞.

Proof. Notice that if s < t and s 'Xex
α t, then Xex

α (t) = Xex
α (s−) and Xex

α (r) > Xex
α (s−) for every

r ∈ (s, t), hence s 'Xex
α t if and only if one the following cases holds:

(i) ∆Xex
α (s) > 0 and t = inf{u > s : Xex

α (u) = X
ex
α (s−)}, we write (s, t) ∈ E1(X

ex
α );



4 NON-CROSSING PARTITIONS AS COMPACT SUBSETS OF THE UNIT DISK 27

(ii) ∆Xex
α (s) = 0, Xex

α (s) = X
ex
α (t) and Xex

α (r) > X
ex
α (s) for every r ∈ (s, t), we write (s, t) ∈ E2(X

ex
α ).

Using the observation ([27, Prop. 2.14]) that, almost surely, for every pair (s, t) ∈ E2(X
ex
α ) and every

ε ∈ (0, (t− s)/2), there exists s ′ ∈ [s, s+ ε] and t ′ ∈ [t− ε, t] with (s ′, t ′) ∈ E1(X
ex
α ), one can prove

([27, Prop. 2.15]) that almost surely

Lα =
⋃

(s,t)∈E1(Xex
α )

[e−2iπs, e−2iπt]. (6)

The proof thus reduces to showing that, for any 0 6 u < v 6 1 such that ∆Xex
α (u) > 0 and

v = inf{w > u : Xex
α (w) = Xex

α (u−)} fixed, we have [e−2iπu, e−2iπv] ⊂ L∞. Further, as in the case
α = 2, it is sufficient to find sequences un → u and vn → v as n → ∞ such that for every n
large enough, [e−2iπun , e−2iπvn ] ⊂ Pn. Informally, the main difference with [27] is that we choose
different sequences un, vn: with the notation used in (2), we shall take the pair (un, vn) of the form
n−1(sj1, sjkj) for a certain j.

More precisely, fix ε > 0 and observe that, since v cannot be a time of local minimum of Xex
α by

(H4), then
inf

[v−ε,v+ε]
Xex
α < X

ex
α (v) = X

ex
α (u−) < inf

[u,v−ε]
Xex
α .

Using the convergence (3), we can then find a sequence (un)n>1 such that for every n sufficiently
large, we have

un ∈ (u− ε,u+ ε)∩n−1N and inf
[v−ε,v+ε]

Xn < Xn(un−) < inf
[un,v−ε]

Xn.

Define then vn := inf{r > un : Xn(r) = Xn(un−)} and observe that vn ∈ (v− ε, v+ ε) ∩ n−1N.
Moreover, as BnXn(un) = Wn

nun
and BnXn(un−) = Wn

nun−1, we have Wn
nun−1 6Wn

nun
and

nvn = inf{l > nun : Wn
l = Wn

nun
− (Wn

nun
−Wn

nun−1)}.

We conclude from Prop. 20 that [
e−2iπun , e−2iπvn

]
⊂ Pn

for every n large enough and the proof is complete.

Finally, we end the proof of Theorem 17 with the converse inclusion.

Lemma 23. We have L∞ ⊂ Lα.

Proof. Recall that L∞ is the limit of Pn along a subsequence, say, (nk)k>1. Let us rewrite (2),
combined with Prop. 20, as

Pnk =
⋃

(u,v)∈E(nk)

[
e−2iπu, e−2iπv] ,

where E(nk) is a symmetric finite subset of [0, 1]2. Upon extracting a further subsequence, we may,
and do, assume that E(nk) converges in the Hausdorff sense as k→∞ to a symmetric closed subset
E∞ of [0, 1]2. One then checks that

L∞ =
⋃

(u,v)∈E∞
[
e−2iπu, e−2iπv] .
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It only remains to prove that every pair (u, v) ∈ E∞ satisfies u 'Xex
α v. Fix (u, v) ∈ E∞ with u < v;

we aim to show that v = inf{r > u : Xex
α (r) 6 X

ex
α (u−)}.

For every integer j ∈ {1, . . . ,n} and let p(j) be the index of the parent of vertex labelled j in
T◦(Pn): p(j) = sup{m < j : Wn

m 6 Wn
j }. Observe then that [e−2iπjn/n, e−2iπln/n] ⊂ Pn when

p(jn) = p(ln) and, either ln = inf{m > jn : Wn
m = Wn

jn
− 1}, or jn = p(jn) + 1 and ln = inf{m >

jn : Wn
m = Wn

p(jn)
}.

By definition, (u, v) is the limit as k → ∞ of elements (unk , vnk) in E(nk). Upon extracting a
subsequence, we may, and do, suppose that either each pair (jnk , lnk) = (nkunk ,nkvnk) fulfills the
first condition above, or they all fulfill the second one. We first focus on the first case. We therefore
suppose that we can find integers jnk < lnk in {1, . . . ,nk} such that

(u, v) = lim
k→∞

(
jnk
nk

,
lnk
nk

)
and lnk = inf{m > jnk : W

nk
m = W

nk
jnk

− 1} for every k > 1.

We see that

Xnk(r) > Xnk
(
jnk
nk

)
= Xnk

(
lnk − 1
nk

)
for every r ∈

[
jnk
nk

,
lnk − 1
nk

]
, (7)

which yields, together with the functional convergence Xn → Xex
α ,

Xex
α (r) > X

ex
α (v−) for every r ∈ (u, v). (8)

By (H3), we must have ∆Xex
α (v) = 0 and so Xnk(n−1

k (lnk − 1)) → Xex
α (v) as k → ∞. On the other

hand, the only possible accumulation points of Xnk(n−1
k jnk) are Xex

α (u−) and Xex
α (u).

We consider two cases. Suppose first that ∆Xex
α (u) = 0; then Xnk(n−1

k jnk)→ Xex
α (u) as k→∞

and it follows from (7) that Xex
α (u) = Xex

α (v). This further implies that Xex
α (u) < X

ex
α (r) for every

r ∈ (u, v), otherwise it would contradict either (H1) or (H4), depending on whether Xex
α admits a

local minimum at u or not. We conclude that in this case, we have u 'Xex
α v.

Suppose now that ∆Xex
α (u) > 0; then, by (H2), for every ε > 0, there exists r ∈ (u,u+ ε) such

that Xex
α (r) < X

ex
α (u). Consequently, we must have Xnk(n−1

k jnk)→ Xex
α (u−) as k→∞, otherwise

(7) would give Xex
α (u) = Xex

α (v) = Xex
α (v−) and we would get a contradiction with (8). We thus

have Xex
α (u−) = Xex

α (v) 6 X
ex
α (r) for every r ∈ (u, v); moreover the latter inequality is strict since

an element r ∈ (u, v) such that Xex
α (r) = Xex

α (u−) is the time of a local minimum of Xex
α and this

contradicts (H4). We see again that u 'Xex
α v.

In the second case when each pair (jnk , lnk) satisfies jnk = p(jnk) + 1 and lnk = inf{m > jnk :

Wn
m = Wn

p(jnk)
}, the very same arguments apply, which completes the proof.

5 Extensions

If Pn is a simply generated non-crossing partition generated using a sequence of weights w, a
natural question is to ask how behaves the largest block area of Pn. In this direction, if P is a
non-crossing partition, we propose to study P•, which is by definition the union of the convex hulls
of the blocks of P (see Fig. 10 for an example).
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Figure 10: From left to right: P50,P•50,P500,P•500, where P50 (resp. P500) is a uniform

non-crossing partition of [50] (resp. [500]).

Question 24. Assume that the weights w are equivalent to a critical probability distribution which
has finite variance. Is it true that P•n converges in distribution as n → ∞ to a random compact
subset of the unit disk?

If the answer was positive, the limiting object would be obtained from the Brownian triangula-
tion by “filling-in” some triangles, and this would imply that the largest block area of Pn converges
in distribution to the area of the largest “filled-in face” of the distributional limit.

In the case of A-constrained uniform plane partitions, numerical simulations based on the
calculation of the total area of P•n indicate that this limiting distribution should depend on the
weights A (note that in the particular case A ⊂ {1, 2} it is clear that (Pn,P•n)→ (L2, L2) in distribution
as n→∞).

Figure 11: A simulation of P•20000 for respectively α = 2 and α = 1.3, where the largest

faces are the darkest ones.

When the weights w are equivalent to a critical probability distribution that belongs to the
domain of attraction of a stable law of index α ∈ (1, 2), it is not difficult to adapt the arguments of
the previous section to check that(

Pn, D \ P•n

)
(d)−→
n→∞ (Lα, Lα),
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meaning that the faces of Pn cover in the limit the whole disk (see Fig. 11 for an illustration). In
particular, in this case, the largest block area of Pn converges in distribution to the largest area face
of Lα.
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