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3 SAMM, Université Paris 1 - France

and 4 INRA, UR875 MIA-T, Castanet Tolosan - France

Abstract: A new nonparametric approach for statistical calibration with functional

data is studied. The practical motivation comes from calibration problems in

chemometrics in which a scalar random variable Y needs to be predicted from a

functional random variable X. The proposed predictor takes the form of a weighted

average of the observed values of Y in the training data set, where the weights are

determined by the conditional probability density of X given Y . This functional

density, which represents the data generation mechanism in the context of calibra-

tion, is so incorporated as a key information into the estimator. The new proposal is

computationally simple and easy to implement. Its statistical consistency is proved,

and its relevance is shown through simulations and an application to data.
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1. Introduction

Statistical calibration plays a crucial role in such areas as pharmacology, neu-

roscience and chemometrics (Osborne (1991); Martens and Naes (1989); Brown

(1993); Massart et al. (1997); Lavine and Workman (2002); Walters and Rizzuto

(1988)). The calibration problem can be described as follows. An observable ran-

dom variable X is related to a variable of interest Y according to a statistical

model specified by a conditional probability density f (X|Y ). The density of Y

may be imposed by the researcher (controlled or designed experiments) or given

by nature (observational or natural experiments). A sample D of independent

observations (x1, y1), ..., (xn, yn) of (X,Y ) is available (training sample). Given a
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new (future) observation x0 of X that corresponds to an unknown value y0 of Y ,

the problem is to make statistical inferences about y0 on the basis of the given

statistical model, the data D and x0.

Our motivation comes from chemometrics, specifically from spectroscopy,

where some chemical variable Y (e.g., concentration of a substance) needs to be

predicted from a digitized function X (e.g., an absorbance spectrum). In this

setting, the conditional density f (X|Y ) represents the physical data generation

mechanism in which the output spectrum X is determined by the input chemical

concentration Y , plus some random perturbation mainly due to the measure-

ment procedure. Then, given an observed spectrum x0 that corresponds to a

new substance, one wishes an estimate of its concentration y0, based on (past)

observations of pairs of spectra and concentrations (xi, yi).

Hereafter, we restrict ourselves to cases where the variable of interest Y

takes real values (e.g., only the concentration of one substance is considered). In

this framework, different calibration setups arise: the space in which the random

variable X takes values can be the real line (univariate calibration), a finite-

dimensional space (multivariate calibration), or a functional space (functional

calibration); the experimental design can be fixed (the Y values are not random

but set by the researcher) or random (Y is a random variable as well as X); and

the nature of the assumed statistical model f (X|Y ) can be linear or nonlinear.

A review of the literature on this subject, for both univariate and multivariate

calibration, can be found in Osborne (1991).

This paper is concerned with functional calibration, which is useful for deal-

ing with X measurements corresponding to spectra. In this context, the fact

that the spectra are digitized measurements of a continuous phenomenon is di-

rectly included in the model by assuming that X lies in a functional space, such

as L2. The focus is on random design and nonlinear, in general nonparametric

models (we refer the reader to Cuevas et al. (2002) and Hernández et al. (2012)

for approaches on functional calibration to linear models under fixed design).

A widely used criterion for calibration in case of random design is

mean squared error, which is minimized by the conditional mean E(Y |X =

x0). This can be estimated by means of functional regression meth-

ods in which the response Y is a real random variable and the explana-
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tory variable X is a function, thus prediction methods that consider the

conditional density f(Y |X) as the regression model. A number of such

methods have been proposed. Seminal works focused on linear regres-

sion models (Ramsay and Dalzell (1991); Cardot Ferraty and Sarda (1999);

James and Hastie (2001); Ramsay and Silverman (2005); Ferraty and Vieu

(2006)). More recently, nonlinear functional models have been exten-

sively developed and include nonparametric kernel regression (Ferraty and Vieu

(2006)), Functional Inverse Regression (Ferré and Yao (2003, 2005)), neural net-

works (Rossi and Conan-Guez (2005); Rossi et al. (2005)), k-nearest neighbors

(Biau et al. (2010); Laloë (2008)), Support Vector Regression (Preda (2007);

Hernández et al. (2007)).

None of these approaches for predicting Y makes use of the specific structure

of the density f(X|Y ), which in the calibration context plays the basic role of a

physically justified regression model X vs Y . In the calibration framework, it is

natural that the probabilistic assumptions refer to f(X|Y ) that is the data gener-

ation mechanism. This is a major specificity of statistical calibration, in contrast

with standard prediction problems in regression analysis (Osborne (1991)).

In Hernández et al. (2010, 2011) a new functional calibration approach,

which we call Functional Density-Based Inverse Calibration (DBIC), was intro-

duced. This method makes it possible to incorporate knowledge on the density of

the regression model f(X|Y ) for the prediction of a scalar variable Y , on the basis

of a functional data X, taking into consideration the specificities of the predic-

tion problem in the calibration setting. As is common in spectroscopy, this data

generation model is assumed conditionally Gaussian. No parametric assumption

is required about its mean and covariance functions, which provides remarkable

flexibility in applications to capture nonlinear dependencies of X vs Y . Since the

introduced predictor is an estimate of the conditional expectation E(Y |X), we

regarded it as an inverse calibration method, following customary terminology

in the literature on statistical calibration (Osborne (1991)). In Hernández et al.

(2010, 2011), preliminary results illustrated the computational feasibility and

good behavior of the DBIC method in numerical simulations. However, no the-

oretical support to such findings has been published so far.

The main aim of the present paper is to provide a theoretical study of the
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consistency of the DBIC method, as well as to further assess its numerical perfor-

mance in a more elaborate simulation setting. It is organized as follows. Section 2

elaborates the method and proves its consistency. The proofs require the bring-

ing together of results from nonparametric statistics, Functional Data Analysis

(FDA) and equivalence of Gaussian measures; details are deferred to the Ap-

pendices. Section 3 shows the performance of the functional DBIC approach

and provides comparison with functional kernel regression in a simulation study.

Section 4 illustrates the method on a benchmark data set.

2. Functional Density-Based Inverse Calibration

Let (X,Y ) be a pair of random variables taking values in X ×R, where X =

L2([a, b]). Suppose n independent and identically distributed (i.i.d.) realizations

of (X,Y ) are given, denoted by (xi, yi)i=1,...,n. The goal is to build a predictor

of the value of Y corresponding to a future observed value of X. This problem

is usually addressed through the estimation of the regression function γ(x) =

E(Y |X = x).

Here, a functional calibration method to estimate γ(X) is introduced. It

relies on assuming:

X = r(Y ) + e, (2.1)

where e is a random process (perturbation or noise), independent of Y , and r is a

function from R into X . Its motivation arises in calibration problems in chemo-

metrics, specifically in spectroscopy, where some chemical variable Y needs to

be predicted from a digitized function X. In this setting, the conditional mean

r(y) of (2.1) represents the physical data generation mechanism. In this model,

according to the physics of molecular spectroscopy, the spectrum X (recorded

by an spectrometer) is determined by the input chemical concentration Y , and e

is a functional random perturbation mainly due to the measurement procedure

(Osborne (1991)). That is why this model, characterized by the conditional den-

sity f(X|Y ), is frequently referred to as the hard model or the physical model in

spectroscopy (Kriesten et al. (2008b,a); Zhou and Cao (2013); Boulet and Roger

(2010)). A simple instance of such a hard model in spectroscopy arises in case of

an ideal mixture spectrum of pure components that includes a certain quantity

of the component of interest Y , all obeying what is known as the Lambert-Beer

law. In this case, as a consequence of this law, r(y) is simply a linear func-
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tion of the concentration y (Naes et al. (2002)). The model assumptions in the

present work will allow to cover the remarkable more general hard-type model

in which r(y) involves unknown nonlinearities (see Chen and Morris (2009);

Geladi MacDougall and Martens (1985); Melgaard and Haaland (2004) for the

importance of nonlinear effects in spectroscopy data).

We assume here that the perturbation e in (2.1) follows a Gaussian distri-

bution P0 with zero mean and covariance Γ. This is a common assumption in

the context of calibration. In applications, y → r(y) represents an underlying

input-output physical system and the perturbation e is interpreted as due to

instrumental noise and possible uncontrolled factors. Popular methods in spec-

troscopy calibration that are based on multivariate hard models f(X|Y ) usually

have underlying Gaussian assumptions, that result in statistical procedures in-

volving only the first two moments of the variables (Martens and Naes (1989);

Kriesten et al. (2008a)). Hard models of Gaussian type for f(X|Y ) lead to more

complex, non-Gaussian inverse models for f(Y |X) if nonlinearities are involved

in the conditional mean r(y). This emphasizes that stating probability assump-

tions in terms of the hard model f(X|Y ) is physically more meaningful, and

easier, than for the inverse model f(Y |X).

Under a Gaussian distribution assumption, the conditional distribution

P (·|y) is also Gaussian fully determined by its mean r(·) = E(X|Y = ·), and
its covariance operator Γ (on the space X . There exists an eigenvalue decompo-

sition of Γ, (ϕj , λj)j≥1 such that (λj)j is a decreasing sequence of positive real

numbers, (ϕj)j are orthonormal functions on X and Γ =
∑

j λjϕj ⊗ ϕj where

ϕj ⊗ ϕj : h ∈ X → 〈ϕj , h〉ϕj .

If for each y ∈ R,
∑∞

j=1

r2j (y)

λj
< ∞, where rj (y) = 〈r (y) , ϕj〉 for all

j ≥ 1 then, P (·|y) and P0 are equivalent Gaussian measures, and the den-

sity f (·|y) of P (·|y) with respect to P0 has the explicit form: f (x|y) =

exp
{∑∞

j=1
rj(y)
λj

(
xj − rj(y)

2

)}
, where xj = 〈x, ϕj〉 for all j ≥ 1 (Grenander

(1981)). Then, if the distribution of Y has a density fY (y) (with respect

to the Lebesgue measure on R), the regression function can be written as

γ (x) =
∫

R
f(x|y)fY (y)ydy

fX(x) , where fX (x) =
∫
R
f (x|y) fY (y) dy.

Given an estimate f̂ (x|y) of f (x|y), this suggests an (plug-in) estimate of
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γ (x):

γ̂ (x) =
1
n

∑n
i=1 f̂ (x|yi) yi
f̂X (x)

, (2.2)

where f̂ (x|y) is an estimate of the density f (x|y) of P (·|y) with respect to the

measure P0, and f̂X(x) = 1
n

∑n
i=1 f̂(x|yi) is used to estimate the density fX(x)

of X.

An estimate f̂ (x|y) of f (x|y) can be obtained through the following steps:

1. For each t ∈ [0, 1], compute an estimate r̂ (·) (t) of the function r : y 7→
r(y)(t). This can be carried out through any standard nonparametric

method for univariate regression based on the data set (yi, xi (t))i=1,...,n.

Here a smoothing kernel method, specifically the Nadaraya-Watson kernel

estimate of r,

r̂(y) =

∑n
i=1K

(yi−y
h

)
xi∑n

i=1 K
(yi−y

h

) =
m̂(y)

f̂Y (y)
, (2.3)

is used, where h is the bandwidth parameter, K an order k kernel,

m̂(y) = 1
n

∑n
i=1K

(yi−y
h

)
xi, and f̂Y (y) = 1

n

∑n
i=1K

(yi−y
h

)
. In this case,

the bandwidth h has a common value for all t.

2. Obtain estimates (ϕ̂j , λ̂j)j of the eigenfunctions and eigenvalues (ϕj , λj)j

of the covariance Γ on the basis of the empirical covariance Γ̂ of the resid-

uals êi = xi − r̂ (yi), Γ̂ = 1
n

∑n
i=1 êi ⊗ êi. Only the first p eigenvalues and

eigenfunctions are incorporated, where p = p(n) is an integer smaller than

n. This is a standard functional PCA problem.

3. Estimate f (x|y) by

f̂ (x|y) = exp





p∑

j=1

r̂j (y)

λ̂j

(
x̂j −

r̂j (y)

2

)
 , (2.4)

where r̂j (y) = 〈r̂(y), ϕ̂j〉 and x̂j = 〈x, ϕ̂j〉 for all j ≥ 1.

Having f̂ (x|y), substituting (2.4) into (2.2) leads to an estimate γ̂ (x) of

γ (x). It is referred to as the functional Density-Based Inverse Calibration (DBIC)

because the conditional density f̂(X|Y ) plays a key role in its construction. If

X had been a scalar variable, the proposal reduces to the univariate calibration

described in Lwin and Maritz (1980).
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The DBIC estimate has been explored under the assumption that f(X|Y ) is

Gaussian with covariance not depending on y, but the approach is general enough

to allow for extension to non-Gaussian distributions. For instance, the method

can be extended to the more general setting in which x is a diffusion process gener-

ated by the stochastic differential equation dx (t) =
·
r (y) (t) dt+b (x (t) , t) dW (t),

where W (t) is a Brownian motion,
·
r denotes the derivative of r with respect to

t, and b : R× [0, 1] → R+ is a given function. Under mild conditions (e.g., if

the function b is bounded away from zero and infinity, see Liptser and Shiryaev

(1977)) the measure P (·|y) of the solution x has a density with respect to the mea-

sure P0 = P (·|0), given by f (x|y) = exp

{
∫ 1
0

·
r(y)(t)

b2(x(t),t)
dx (t)− 1

2

∫ 1
0

∣∣∣∣
·
r(y)(t)
b(x(t),t)

∣∣∣∣
2

dt

}
.

Here, the integral with differential dx (t) is thought of as an Ito integral. If b (u, t)

does not reduce to a function depending only on t, then the resulting random

function x is not Gaussian.

Another wide class of non-Gaussian random functions for which their dis-

tributions have explicitly known densities f(x|y) with respect to some reference

measure is generated by stochastic differential equations driven by an additive

fractional Brownian motion WH (t). Specifically, random functions satisfying

equations of the type x (t) = r (y) (t)+
∫ t
0 b (s) dW

H (s) have distributions P (·|y)
with explicitly known densities f (x|y) with respect to the measure P0 = P (·|0)
(see,. e.g., Rao (2010 chapter 2)).

For these kinds of non-Gaussian functional data, DBIC estimators can be

carried out through the steps 1)-3). They differ only in their specific implemen-

tation of the approximation f̂ (x|y) that depends on the numerical computation

of the stochastic integrals involved. We do not carry this further, but not that

these matters are worth study and may be of interest in other applied fields.

We turn to asymptotic properties of the estimators proposed in steps (1)-(3)

and provide a consistency result for the DBIC estimator γ̂(x). Proofs are given

in the Appendices (Section 6). To obtain the consistency of γ̂(x) to γ(x), the

same steps as the ones used for the DBIC estimation are followed.

The first step of the DBIC method is the estimation of the conditional mean

r(y) by a Nadaraya-Watson kernel estimate r̂(y) as in (2.3). A consistency result

and a rate of convergence for r̂(y) can be obtained under some assumptions:
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(A1) fY has support ΩY ⊂ R, and fY and r are Ck, for a k ≥ 2, on ΩY .

(A2) K is an order k kernel with compact support.

(A3) There exists d1 and d2 such that supy∈ΩY

∣∣∣f (k)
Y (y)

∣∣∣ < d1 and

supy∈ΩY

∥∥r(k)(y)
∥∥ < d2.

(A4) h = O (n−c1), where 1
4+2k < c1 <

1
4 ;

(A5) There exists b1 > 0 such that infy∈ΩY
fY (y) ≥ b1.

(A6) There exists b2 > 0 such that supy∈ΩY
‖r(y)‖ ≤ b2.

Proposition 1. Under (A1)-(A6), supy∈ΩY
‖r̂(y)− r(y)‖ =

OP

(
n−c1k +

(
logn

n1−2c1

)1/2)
.

Assumptions (A1)-(A3) are standard in the framework of kernel-based den-

sity estimation (Rao (1983)). Assumption (A5) is satisfied in most calibration

settings that motivate the present work; with minor technical modifications of

the DBIC estimator, it can be replaced by the weaker assumption that, for any

δ > 0, supy∈ΩY ,fY (y)<δ ‖r(y)‖ goes to zero when δ does so. The estimation of

r(y) by a Nadaraya-Watson kernel estimate is not necessary, this step (and the

corresponding assumptions) can be replaced by any other (1-dimensional non-

parametric) method leading to the same kind of convergence rate.

The second step of the DBIC method is the estimation of the covariance

operator of the error, Γ, based on the estimated residuals. The consistency of

this estimate with
√
n-rate ensures the consistency of the corresponding eigen-

decomposition, using a result given in Bosq (1991). This convergence is needed

in the last step of the DBIC method. To obtain the consistency of the covariance

operator estimator, another assumption is required.

(A7) e in model (2.1) is a Gaussian process.

This assumption, which serves as a basis for the DBIC method, implies the

condition usually assumed on moments: E
(
‖e‖4

)
< +∞.

Proposition 2. Under (A1)-(A7),
∥∥∥Γ̂− Γ

∥∥∥ = OP

(
1

n1/2−2c1

)
, where ‖.‖ denotes

the operator norm.
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The last step of the DBIC method is to estimate the conditional density

f(X|Y ) from the eigen-decomposition of Γ̂. The result here is derived from a

Theorem in Bosq (1991), and the corresponding technical assumptions made

therein are thus required. If (aj)j is the sequence defined by a1 = 2
√
2/(λ1 −λ2)

and aj = 2
√
2/min(λj−1 − λj , λj − λj+1), it is assumed that

(A8)
∑∞

j=1 supy∈ΩY

|rj(y)|√
λj

< ∞;

(A9) the (λj)j are all distinct;

(A10) limn→+∞ p = +∞;

(A11) limn→+∞
∑p

j=1 aj

λpn1/2−2c1
= 0;

(A12) p
λ2
p
= O (nq) for some 0 < q < min(c1k,

1
2 − c1).

Since (λj)j is a sequence of positive numbers decreasing to 0 when j tends

to +∞, (A8) implies that
∑∞

j=1 supy∈ΩY
|rj(y)| < ∞ and, consequently,

∑∞
j=1 supy∈ΩY

r2j (y) < ∞. Since supy∈ΩY
‖r(y)‖2 = supy∈ΩY

∑∞
j=1 r

2
j (y) ≤

∑∞
j=1 supy∈ΩY

r2j (y) < ∞, (A8) implies that supy∈ΩY
‖r(y)‖ < ∞, which is the

Assumption (A6) required in Propositions 1 and 2. Also, (A8) implies that
∑∞

j=1

r2j (y)

λj
=
∑∞

j=1

(
rj(y)√

λj

)2

< ∞, which is the regularity assumption needed for

the existence of the conditional density (see Section 2). Then, Assumption (A6)

is no longer required for this proposition.

Proposition 3. Under (A1)-(A5) and (A7)-(A12), for any x ∈ X ,

supy∈ΩY

∣∣∣f̂(x|y)− f(x|y)
∣∣∣ = oP (1) .

From this, the consistency of γ̂(x), defined at (2.2), can be proved. Proof is

the in Appendix.

Theorem 1. Under (A1)-(A5) and (A7)-(A12), for all x ∈ X such that fX(x) >

0, we have: limn→+∞ γ̂(x) =P γ(x).

From Theorem 1 and the Lebesgue’s Dominated Convergence Theorem,

proving that E (γ̂(x)− γ(x))2 →n 0 is straightforward. Thus, the DBIC esti-

mator converges in the sense of the quadratic Bayesian risk.

3. A simulation study
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In this section, the feasibility and performance of the nonparametric func-

tional calibration method is discussed through a simulation study. The physical

data generation mechanism is specified by the density f(X|Y ). Here, training

data were generated under various models. Based on this training data set, the

DBIC estimator was computed to predict Y values corresponding to new values

of the variable X (test data set).

The data were simulated as follows. The variable Y was uniform on the

interval [0, 10]. For all models, e was a Gaussian process independent of Y with

zero mean and covariance Γ =
∑

j≥1
1

j(1+0.1) vj ⊗ vj, where v2k−1 =
√
2 cos(2πkt)

and v2k =
√
2 sin(2πkt), k = 1, . . . , 250. In this, X was generated in four settings.

M1 E(X|Y ) is the linear function of Y given by X = Y (v1 + v2 + v5 + v10) + e;

M2 E(X|Y ) is a nonlinear function of Y given byX = sin(Y )v1+log(Y +1)v5+e;

M3 E(X|Y ) is a linear function of Y given by X = Y (q1 + 5q2) + e, where

q1 = 2t3 and q2 = t4.

M4 E(X|Y ) is the nonlinear function of Y given by X = sin(Y )q1 + 20 log(Y +

1)q2 + e.

For each model, training and test samples of size nL = 300 and nT = 200,

respectively, were generated. To apply the DBIC method, simulated discretized

functions were converted into continuous data (or functional predictors) X by

approximation through 128 B-spline basis functions of order 4.

For the first step, the conditional mean r(y) was estimated from the training

sample by kernel smoothing. For this, it was necessary to tune the bandwidth

parameter h, and was done through a 10-fold cross-validation for minimizing the

L2-norm between the data and the estimated mean curves in the training sample.

The number p of eigenfunctions used to estimate f(x|y) was selected by

a 10-fold cross-validation for minimizing the root mean squared error (RMSE)

criterion on the training sample. For M1, the cross-validation gives the value

p = 15, which is close to the true one (p = 10) according to the model; for

All the simulations were done using Matlab c© and the DBIC method was also implemented for

Matlab c©. Parts of the implementation use the Matlab c© FDA functions developed by Jim Ramsay

and freely available at http://www.psych.mcgill.ca/faculty/ramsay/software.html. The DBIC code is

available upon request.
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Model DBIC NWK DBIC

(parametric est. of the mean)

M1 0.23 0.28 0.22

M2 1.71 1.91 X

M3 0.07 0.19 0.02

M4 0.35 0.47 X

Table 3.1: RMSE achieved by DBIC and NWK for the four simulated models

M4 the resulting value was p = 47. Unlike M1, M4 was not built by using

the first eigenfunctions of the covariance operator Γ, hence the need for more

eigenfunctions.

Once the estimate γ̂(x) was obtained on the basis of the training set,

the performance was assessed according to RMSE was computed: RMSE =√
1
nT

∑nT
i=1 (yi − ŷi)

2, where yi denotes the observed value of Y in the test sam-

ple and ŷi the corresponding prediction γ̂(xi). For comparison, the standard

functional nonparametric kernel estimate (NWK) (Ferraty and Vieu (2006)) was

computed from the training sample (using a Gaussian kernel and also tuning the

bandwidth parameter by 10-fold cross-validation on the training sample) and its

predictions on the test set were calculated. Table 3.1 presents the DBIC and

NWK RMSE for each of the simulated models. It can be observed that the

DBIC outperforms the NWK estimator. The fourth column in the table is the

RMSE achieved by DBIC using a parametric estimation of the mean; instead of

estimating the mean using kernel smoothing, the mean was estimated by least

squares for models M1 and M3. It can be observed that the RMSE resulting from

such parametric estimates are smaller that those obtained by kernel smoothing.

This illustrates that the DBIC approach has the flexibility to incorporate prior

knowledge about the mean, if available, and that this additional information can

improve the performance.

A detailed analysis of these experiments is provided in supplemental material.

4. A study of Tecator dataset

DBIC was also tested on the Tecator dataset (Borggaard and Thodberg

(1992)) which consists of spectrometric data from the food industry. Each of

the 215 observations is the near infrared absorbency spectrum of a meat sam-
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ple recorded on a Tecator Infratec Food and Feed Analyzer. Each spectrum

was sampled at 100 wavelengths uniformly spaced in the range 850–1050 nm.

The composition of each meat sample was determined by analytic chemistry, so

percentages of moisture, fat, and protein were associated in this way to each spec-

trum. We focus on predicting the percentage of fat on the basis of the absorbency

spectrum. This problem is more challenging than the ones in Section 3 where the

data were generated to fulfill the conditions of the DBIC method. The data set

was randomly split 100 times into training and test sets having approximately

the same size. Table 4.2 reports the mean of the mean square error (MSE), and

its standard deviation, over the 100 splits, for the DBIC and NWK methods.

Model DBIC NWK

MSE 2.41 (0.9) 11.01 (3.09)

Table 4.2: Prediction results on Tecator dataset

The results obtained by DBIC are remarkably better than those of NWK.

In Ferraty and Vieu (2006), results based on the use of a semi-metric involving

second order derivatives (known to be useful for this data set) were reported.

Even incorporating this information in the model, a MSE of 3.5 was obtained,

still larger than the one obtained by using DBIC without derivative information.

5. Conclusion

The functional Density-Based Inverse Calibration (DBIC) can be extended

to other sample spaces and distribution families. Two appealing features of the

method are its rather mild model assumptions and its computational simplicity,

and one can incorporate parametric information on the conditional mean E(X|Y )

of the “inverse” model if available. DBIC can be considered as a promising

functional calibration method, particularly appealing for calibration problems in

which said “inverse” model X vs. Y represents the actual physical mechanism

generating the data. It would be interesting to obtain a limit distribution for the

estimate in order to derive confidence bounds.

6. Appendix

In the appendices, m is the function defined on ΩY such that r(y) = m(y)
fY (y)

and g(x) =
∫
R
f(x|y)yfY (y)dy, ĝ(x) = 1

n

∑n
i=1 f̂(x|yi)yi.

Proof of Proposition 1
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Two lemmas are needed to obtain Proposition 1. Their proofs can be found

in the cited articles.

Lemma 1. (Rao (1983)) Under (A1)-(A3), supy∈ΩY

∣∣∣f̂Y (y)− fY (y)
∣∣∣ =

OP

(
hk +

√
logn√
nh

)
.

Lemma 2. (Yao (2001)) Under (A1)-(A3), supy∈ΩY
‖m(y)− m̂(y)‖ =

OP

(
hk +

√
logn√
nh

)
.

Proof of Proposition 1.

For any y ∈ ΩY , ‖r(y)− r̂(y)‖ =
∥∥∥ r(y)

f̂Y (y)

(
f̂Y (y)− fY (y)

)
+ 1

f̂Y (y)
(m(y)− m̂(y))

∥∥∥
which, by (A6), leads to

sup
y∈ΩY

‖r(y)− r̂(y)‖ ≤ b2

infy∈ΩY
|f̂Y (y)|

sup
y∈ΩY

∣∣∣f̂Y (y)− fY (y)
∣∣∣

+
1

infy∈ΩY
|f̂Y (y)|

sup
y∈ΩY

‖m(y)− m̂(y)‖ .

From Lemma 1 and (A5), it follows that 1
infy∈ΩY

|f̂Y (y)| = 1
infy∈ΩY

fY (y) +

oP (1) ≤ 1
b1

+ oP (1) . From this and Lemma 1, Lemma 2, and (A4), we obtain

supy∈ΩY
‖r(y)− r̂(y)‖ = OP

(
n−c1k +

(
logn

n1−2c1

)1/2)
.2

Lemma 3. (Cardot Ferraty and Sarda (1999)) If Z is a random variable

in a Hilbert space with covariance operator ΓZ and E
(
‖Z‖4

)
< +∞ then

E
(
‖ΓZ − Γn

Z‖
2
)

≤ E(‖Z‖4)
n , where Γn

Z = 1
n

∑n
i=1(Zi − Z) ⊗ (Zi − Z), and Zi

are independent and identically distributed (i.i.d) like Z.

Proof of Proposition 2.

By definition of the estimator Γ̂, we have

Γ̂ =
1

n

n∑

i=1

êi ⊗ êi =
1

n

n∑

i=1

(xi − r̂(yi))⊗ (xi − r̂(yi))

=
1

n

n∑

i=1

(xi − r(yi) + r(yi)− r̂(yi))⊗ (xi − r(yi) + r(yi)− r̂(yi)).
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This can be expressed as Γ̂ = Γn + T1 + T ∗
1 + T2, where

Γn =
1

n

n∑

i=1

ei ⊗ ei =
1

n

n∑

i=1

(xi − r(yi))⊗ (xi − r(yi)),

T1 =
1

n

n∑

i=1

(xi − r(yi))⊗ (r(yi)− r̂(yi)),

T2 =
1

n

n∑

i=1

(r(yi)− r̂(yi))⊗ (r(yi)− r̂(yi)),

and T ∗
1 is the self-adjoint operator of T1. Then,

∥∥∥Γ− Γ̂
∥∥∥ ≤ ‖Γ− Γn‖+ 2 ‖T1‖+ ‖T2‖ . (6.1)

Each term of the right side of this inequality is addressed separately.

From (A7) and Lemma 3 we obtain directly that

‖Γ− Γn‖ = OP

(
1/
√
n
)
. (6.2)

By definition of T1, we have

n1/2−2c1 ‖T1‖ ≤ 1

n

n∑

i=1

‖ei‖n1/2−2c1 ‖r(yi)− r̂(yi)‖

≤ 1

n

n∑

i=1

‖ei‖ × n1/2−2c1 sup
y∈ΩY

‖r(y)− r̂(y)‖ .

Thus, for any c > 0, using the Cauchy-Schwartz and Markov inequalities, we

have

P
(
n1/2−2c1 ‖T1‖ > c

)
≤

{
P

(
1

n

n∑

i=1

‖ei‖ >
√
c

)} 1
2

×

{
P

(
n1/2−2c1 sup

y∈ΩY

‖r(y)− r̂(y)‖ >
√
c

)} 1
2

≤
{
E (‖e‖)√

c

} 1
2

{
P

(
n1/2−2c1 sup

y∈ΩY

‖r(y)− r̂(y)‖ >
√
c

)} 1
2

As E ‖e‖2 < +∞, and with Proposition 1, supy∈ΩY
‖r(y)− r̂(y)‖ =

OP

(
n−c1k +

(
logn

n1−2c1

)1/2)
, we have that n1/2−2c1 supy∈ΩY

‖r(y)− r̂(y)‖ =
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OP

(
n1/2−c1(2+k) +

√
logn
nc1

)
which is oP (1) by (A4). Hence,

limn→+∞ P
(
n1/2−2c1 ‖T1‖ > c

)
= 0 and

‖T1‖ = oP

(
1

n1/2−2c1

)
. (6.3)

By definition of T2, we have

√
n ‖T2‖ ≤

√
n
1

n

n∑

i=1

‖r(yi)− r̂(yi)‖2

≤
√
n sup

y∈ΩY

‖r(y)− r̂(y)‖2.

By Proposition 1, this gives
√
n ‖T2‖ = OP

((
n−c1k+1/4 +

(
logn

n1/2−2c1

)1/2)2
)

but, by (A4), 1/2 − 2c1 > 0, and also, since k ≥ 2, c1 > 1
4+2k ≥ 1

4k , and so

−kc1 + 1/4 < 0. Then
√
n ‖T2‖ = oP (1) and thus

‖T2‖ = oP
(
1/
√
n
)
. (6.4)

Using (6.2), (6.3) and (6.4) in (6.1),
∥∥∥Γ− Γ̂

∥∥∥ = OP

(
1

n1/2−2c1

)
.2

Proof of Proposition 3.

The proof of Proposition 3 requires the use of a lemma whose proof follow

that of Bosq (1991) for the particular case in which ∆̃ is an empirical covariance

operator associated with the covariance operator ∆.

Lemma 4. Let ∆ and ∆̃ be two linear self-adjoint and compact operators defined

in a Hilbert space, with (νj , φj)j∈N, (ν̃j , φ̃j)j∈N being the respective decreasing se-

quence of eigenvalues and sequence of orthonormal eigenvectors. Then, for all

j ∈ N,

i) |νj − ν̃j| ≤
∥∥∥∆− ∆̃

∥∥∥;

ii)
∥∥∥φj − φ̃j

∥∥∥ ≤ aj

∥∥∥∆− ∆̃
∥∥∥ where aj =

{
2
√
2

ν1−ν2
if j = 1

2
√
2

min(νj−1−νj ,νj−νj+1)
if j ≥ 2

.

Proof of Proposition 3.
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For any y ∈ ΩY , let

E(y) =
∣∣∣ln f̂(x|y)− ln f(x|y)

∣∣∣

=

∣∣∣∣∣∣

p∑

j=1

r̂j(y)

λ̂j

(
x̂j −

r̂j(y)

2

)
−
∑

j≥1

rj(y)

λj

(
xj −

rj(y)

2

)∣∣∣∣∣∣
.

Then, E(y) ≤ E1(y) + E2(y) where E1(y) =
∣∣∣
∑+∞

j=p+1
rj(y)
λj

(
xj − rj(y)

2

)∣∣∣ and

E2(y) =
∣∣∣
∑p

j=1

[
r̂j(y)

λ̂j

(
x̂j − r̂j(y)

2

)
− rj(y)

λj

(
xj − rj(y)

2

)]∣∣∣ .
The Karhunen-Loeve expansion of x has coordinates xj = rj(y) +

√
λjξj,

where the ξj are independent standard normal. Then,

sup
y∈ΩY

E1(y) = sup
y∈ΩY

∣∣∣∣∣∣

+∞∑

j=p+1

rj(y)

λj

√
λjξj +

+∞∑

j=p+1

r2j (y)

2λj

∣∣∣∣∣∣

≤
+∞∑

j=p+1

sup
y∈ΩY

|rj(y)|√
λj

|ξj|+
+∞∑

j=p+1

sup
y∈ΩY

|rj(y)|2
2λj

. (6.5)

(A8) implies that
∑+∞

j=1 supy∈ΩY

(
|rj(y)|√

λj

)2

< +∞, hence

+∞∑

j=p+1

sup
y∈ΩY

|rj(y)|2
λj

p→+∞−−−−→ 0. (6.6)

E

(∑+∞
j=1 supy∈ΩY

|rj(y)|√
λj

|ξj |
)

=
∑+∞

j=1 supy∈ΩY

|rj(y)|√
λj

< +∞ by (A8), which

implies that P0 − a.s.,
∑+∞

j=1 supy∈ΩY

|rj(y)|√
λj

|ξj| < +∞ and then

P0 − a.s.,
+∞∑

j=p+1

sup
y∈ΩY

|rj(y)|√
λj

|ξj|
p→+∞−−−−→ 0. (6.7)

Putting (6.6) and (6.7) into (6.5) leads to P0−a.s., supy∈ΩY
E1(y)

p→+∞−−−−→ 0.

E2 can be divided into four parts: E2(y) ≤ A(y)+B(y)+C(y)+D(y), where

A(y) =
∣∣∣
∑p

j=1
rj(y)
λj

(xj − x̂j)
∣∣∣.

B(y) =
∣∣∣
∑p

j=1
rj(y)
2λj

(rj(y)− r̂j(y))
∣∣∣.

C(y) =
∣∣∣
∑p

j=1
x̂j−r̂j(y)/2

λj
(rj(y)− r̂j(y))

∣∣∣.
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D(y) =
∣∣∣
∑p

j=1

(
1
λj

− 1
λ̂j

)
r̂j(y)

(
x̂j − r̂j(y)

2

)∣∣∣.

From
∑

j r
2
j (y) = ‖r(y)‖2 it follows that |rj(y)| ≤ ‖r(y)‖ for all j. Then,

since λj ≥ λp for j = 1, . . . , p and |xj − x̂j | = |〈x, ϕj − ϕ̂j〉| ≤ ‖x‖‖ϕj − ϕ̂j‖ we

obtain, for any y ∈ ΩY ,

A(y) ≤ ‖r(y)‖
λp

‖x‖
p∑

j=1

‖ϕj − ϕ̂j‖

≤ ‖r(y)‖ ‖x‖n1/2−2c1‖Γ− Γ̂‖
∑p

j=1 aj

n1/2−2c1λp
,

where the last inequality follows from Lemma 4. Since n1/2−2c1‖Γ− Γ̂‖ = OP (1)

by Proposition 2,
∑p

j=1 aj

n1/2−2c1λp

n→+∞−−−−−→ 0 by (A11), and supy∈ΩY
‖r(y)‖ < ∞ by

(A8), we have that supy∈ΩY
A(y) = oP (1).

By the same arguments as those used for A, we have B(y) ≤
‖r(y)‖
2λp

∑p
j=1 |rj(y)− r̂j(y)| . Moreover, we have that, for any j and any y ∈ ΩY ,

|rj(y)− r̂j(y)| ≤ ‖r(y)‖‖ϕj − ϕ̂j‖+ ‖ϕ̂j‖‖r(y)− r̂(y)‖, Thus, applying Lemma 4

and Proposition 1 we obtain, for any j,

sup
y∈ΩY

|rj(y)− r̂j(y)| ≤ sup
y∈ΩY

‖r(y)‖aj‖Γ− Γ̂‖

+OP

(
n−c1k +

(
log n

n1−2c1

)1/2
)
.

Then,

sup
y∈ΩY

B(y) ≤ 1

2

(
sup
y∈ΩY

‖r(y)‖
)2

n1/2−2c1‖Γ− Γ̂‖
∑p

j=1 aj

λpn1/2−2c1

+
1

2
sup
y∈ΩY

‖r(y)‖ p

λp
OP

(
n−c1k +

(
log n

n1−2c1

)1/2
)

where the first term is oP (1) due to (A11) and Proposition 2, and the second

term is OP

(
1

nc1k−q + (log n)1/2

n1/2−c1−q

)
by (A12) (because, taking into consideration

that λj is a decreasing sequence, (A12) implies that p/λp = O (nq)). Since by

Assumption (A12), c1k− q > 0 and 1/2− c1 − q > 0, the second term in the last

inequality is also oP (1). Thus, supy∈ΩY
B(y) = oP (1).

From |x̂j | ≤ ‖x‖ and |r̂j(y)| ≤ ‖r̂(y)‖, we have that

C(y) ≤ ‖x‖+‖r̂(y)‖
λp

∑p
j=1 |rj(y)− r̂j(y)| . Thus, supy∈ΩY

C(y) ≤
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(
‖x‖+ supy∈ΩY

‖r̂(y)‖
)

1
λp

supy∈ΩY

∑p
j=1 |rj(y)− r̂j(y)| . As with B, it

can be shown that 1
λp

supy∈ΩY

∑p
j=1 |rj(y)− r̂j(y)| = oP (1). Moreover,

supy∈ΩY
‖r̂(y)‖ ≤ supy∈ΩY

‖r(y)‖+ supy∈ΩY
‖r(y)− r̂(y)‖ = OP (1) by Proposi-

tion 1 and (A8). Putting all this together gives supy∈ΩY
C(y) = oP (1).

From the same arguments as for C, and Lemma 4, we have that

D(y) ≤ ‖r̂(y)‖
(
‖x‖+ ‖r̂(y)‖

2

) p∑

j=1

∣∣∣∣∣
1

λj
− 1

λ̂j

∣∣∣∣∣

≤
(
‖r̂(y)‖‖x‖ + ‖r̂(y)‖2

2

)
p‖Γ− Γ̂‖
λpλ̂p

.

Now by using λ̂p ≥
∣∣∣λp − |λp − λ̂p|

∣∣∣ we have that p‖Γ−Γ̂‖
λpλ̂p

≤ p‖Γ−Γ̂‖
|λ2

p−λp|λp−λ̂p|| =
p

λ2p
‖Γ−Γ̂‖

∣

∣

∣

∣

1− |λp−λ̂p|

λp

∣

∣

∣

∣

. Using the expansion 1
1−x =

∑∞
j=0 x

j for all |x| < 1 together with

Lemma 4,

p
λ2
p
‖Γ− Γ̂‖

∣∣∣1− |λp−λ̂p|
λp

∣∣∣
=

p

λ2
p

‖Γ− Γ̂‖
(
1 +

|λp − λ̂p|
λp

+ o

(
|λp − λ̂p|

λp

))

=
p

λ2
p

OP

(
1√
n

)
+

p

λ3
p

OP

(
1

n

)
+

p

λ2
p

OP

(
1√
n

)
oP

(
1√
nλp

)
.

Here, the first term is oP (1) by (A4) and (A12) (taking into consideration

that the last one implies q−1/2 < 0). The second and third terms are equivalent

to OP

(
p

λ2
p

√
n
× 1

λp
√
n

)
which is also oP (1) due to (A11) and (A12).

Hence, supy∈ΩY
D(y) ≤

((
supy∈ΩY

‖r̂(y)‖
)
‖x‖+ 1

2

(
supy∈ΩY

‖r̂(y)‖
)2)

oP (1) .

In demonstrating the convergence of C, we showed that supy∈ΩY
‖r̂(y)‖ = OP (1),

so it can be concluded that supy∈ΩY
D(y) = oP (1).
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Now, supy∈ΩY
E(y) = oP (1). On the other hand, for any η > 0,

P

(
sup
y∈ΩY

|f(x|y)− f̂(x|y)| > η

)
≤ P

(
sup
y∈ΩY

|f(x|y)− f̂(x|y)| > η, sup
y∈ΩY

E(y) ≤ 1

2

)

+P

(
sup
y∈ΩY

E(y) > 1

2

)

≤ P

(
sup
y∈ΩY

E(y)e1/2 sup
y∈ΩY

f(x|y) > η

)

+P

(
sup
y∈ΩY

E(y) > 1

2

)
,

where supy∈ΩY
f(x|y) is finite by (A8). The right hand side of the last inequality

goes to zero as n increases, which concludes the proof.2

Proposition 4. Under (A1)-(A5) and (A7)-(A12), for any x ∈ X ,∣∣∣fX(x)− f̂X(x)
∣∣∣ = oP (1) , and

∣∣∣ 1n
∑n

i=1 f̂(x|yi)yi −
∫
R
f(x|y)yfY (y)dy

∣∣∣ = oP (1) .

Proof of Proposition 4.

For any x ∈ X ,
∣∣∣f̂X(x)− fX(x)

∣∣∣ ≤
∣∣∣f̂X(x)− 1

n

∑n
i=1 f(x|yi)

∣∣∣ +
∣∣ 1
n

∑n
i=1 f(x|yi)− fX(x)

∣∣ . By Proposition 3,
∣∣∣f̂X(x)− 1

n

∑n
i=1 f(x|yi)

∣∣∣ ≤

supy∈ΩY

∣∣∣f(x|y)− f̂(x|y)
∣∣∣ = oP (1). (A8) ensures that, for all x ∈ X , fX(x)

is finite. Hence, by the Law of Large Numbers, limn→+∞ 1
n

∑n
i=1 f(x|yi) =as

EY (f(x|Y )) = fX(x). These two arguments complete the first part of the proof.

The second part is similar. For any x ∈ X ,
∣∣∣∣∣
1

n

n∑

i=1

f̂(x|yi)yi −
∫

R

f(x|y)yfY (y)dy
∣∣∣∣∣ ≤

∣∣∣∣∣
1

n

n∑

i=1

f̂(x|yi)yi −
1

n

n∑

i=1

f(x|yi)yi

∣∣∣∣∣

+

∣∣∣∣∣
1

n

n∑

i=1

f(x|yi)yi −
∫

R

f(x|y)yfY (y)dy
∣∣∣∣∣ .

Here, the first part of the right side of this inequality is bounded

by supy∈ΩY

∣∣∣f(x|y)− f̂(x|y)
∣∣∣ × 1

n

∑
i yi. As E(Y ) < ∞, we have that

limn→+∞
1
n

∑
i yi =as E(Y ). By Proposition 3, supy∈ΩY

∣∣∣f(x|y)− f̂(x|y)
∣∣∣ =

oP (1). Thus,
∣∣∣ 1n
∑n

i=1 f̂(x|yi)yi − 1
n

∑n
i=1 f(x|yi)yi

∣∣∣ = oP (1) . The second part

of the right side of the inequality converges to 0 almost surely by the Law of

Large Numbers under the fact that E(Y ) < ∞.2
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Proof of Theorem 1.

For any x ∈ X such that fX(x) > 0,

|γ̂(x)− γ(x)| =

∣∣∣∣∣
ĝ(x)fX(x)− g(x)f̂X(x)

fX(x)f̂X(x)

∣∣∣∣∣

≤ 1

|fX(x)| |g(x) − ĝ(x)|+
∣∣∣∣∣

ĝ(x)

fX(x)f̂X(x)

∣∣∣∣∣
∣∣∣fX(x)− f̂X(x)

∣∣∣ .

Since, |ĝ(x)| ≤ ||ĝ(x)− g(x)| + g(x)| and f̂X(x) ≥
∣∣∣fX(x)− |f̂X(x)− fX(x)|

∣∣∣,

|γ̂(x)− γ(x)| ≤ |g(x) − ĝ(x)|
fX(x)

+

||ĝ(x)− g(x)|+ |g(x)||∣∣∣fX(x)− |f̂X(x)− fX(x)|
∣∣∣ fX(x)

∣∣∣f̂X(x)− fX(x)
∣∣∣ .

Since fX(x) is finite (A8) and positive, the first term in the right side of this

inequality is oP (1) by Proposition 4. By Proposition 4, the second term is
|g(x)|
fX(x)2

oP (1), which is trivially oP (1) since g(x) is finite for all x. Hence we can

conclude that |γ̂(x)− γ(x)| = oP (1), which completes the proof. 2
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