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Introduction

Given a connected graph with n vertices and a number p n ∈ [ , ], we consider the following random dynamics: initially every edge is ammable, then successively, in a uniform random order, each edge is either reproof with probability -p n or set on re with probability p n ; in the latter case, the edge burns, sets on re its ammable neighbors and the re propagates instantly in the graph, only stopped by reproof edges. An edge which has burnt because of the propagation of re is not subject to the dynamics thereafter. The dynamics continue until all edges are either burnt or reproof. A vertex is called reproof if all its adjacent edges are reproof and called burnt otherwise. We discard the reproof edges with at least one burnt extremity and thus get two families of subgraphs: one consists of reproof subgraphs and the other of burnt subgraphs; see Figure for an illustration. We study the asymptotic behavior of the size of these two families of subgraphs and of their connected components as the size of the graph tends to in nity.

Fires on a graph nd applications in statistical physics and in the study of epidemics propagating in a network. If the graph models a network, then the res may be thought of as infections, and burnt and reproof vertices respectively as infected and immune nodes. We stress that in the present model, infected nodes do not recover, we talk about a Susceptible-Infected-Removed epidemic, as opposed to Susceptible-Infected-Susceptible epidemics described by usual re forest models in which the infected nodes recover and may be infected again later, see e. Given a recursive tree and an enumeration of its edges on the left, if the edges set on re are the th, the th and the th, we get the two forests on the right where the burnt components are drawn with dotted lines and the reproof ones with plain lines.

re, the whole connected component which contains it burns and is removed from the graph (edges and vertices). This model is in some sense dual to the present one: all edges are present at the beginning but reproof edges act as barriers that stop the propagation of res.

The model we investigate was introduced by Bertoin [ ] and further studied in [ ] in the special case where the graphs are Cayley trees of size n, i.e. picked uniformly at random amongst the n n-di erent trees on a set of n labelled vertices. In this paper, we rst work in the general tree-setting: (T n ) n≥ is a sequence of random trees, where T n has size n. Our rst result gives a criterion depending on the law of T n in order to observe a phase transition for the proportion of reproof vertices, in the sense that for p n smaller than some speci ed sequence, the proportion of reproof vertices in T n converges to in probability, for p n larger, it converges to , and for p n comparable to this sequence, there is convergence in distribution to a non-trivial limit. Further, in the latter case, under a stronger assumption, we prove the joint convergence of the proportion of reproof vertices and the sizes of the burnt connected components rescaled by n. See respectively Proposition and Proposition . Both results rely on the cut-tree associated with T n as de ned by Bertoin [ ] and a certain point process de ned in [ ].

We then investigate more speci cally the case of random recursive trees. A tree on the set of vertices [n] { , . . . , n} is called recursive if, when rooted at , the sequence of vertices along any branch from the root to a leaf is increasing. There are (n -)! such trees and we pick one of them uniformly at random, that we simply call random recursive tree, and denote by T n .

A random recursive tree on [n] can be inductively constructed by the following algorithm: we start with the singleton { }, then for every i = , . . . , n, the vertex i is added to the current tree by an edge {u i , i}, where u i is chosen uniformly at random in { , . . . , i -} and independently of the previous edges. We shall see that random recursive trees ful ll the assumptions of Proposition (and Proposition ) previously alluded, which reads as follows: denote by I n the number of reproof vertices in T n , then (i) If lim n→∞ np n / ln n = , then lim n→∞ n -I n = in probability (supercritical regime).

(ii) If lim n→∞ np n / ln n = ∞, then lim n→∞ n -I n = in probability (subcritical regime).

(iii) If lim n→∞ np n / ln n = c ∈ ( , ∞), then n -I n converges in distribution to ϵ c ∧ , where ϵ c is exponentially distributed with rate c (critical regime).

Using more precise information about the cut-tree of random recursive trees, in particular a coupling with a certain random walk due to Iksanov and Möhle [ ], we improve the convergence (ii) as follows.

Theorem . In the subcritical regime p n ln n/n, we have the convergence in distribution

p n ln( /p n ) I n (d ) -→ n→∞ ϵ ,
where ϵ is an exponential random variable with rate .

We further study the connectivity in the reproof forest. We show the following asymptotic estimate for the probability that the root and a uniform random vertex belong to the same reproof subtree, in both the critical and supercritical cases.

Theorem . Let c ∈ [ , ∞) and p n such that lim n→∞ np n / ln n = c. Let also X n be a uniform random vertex in [n] independent of T n and the re dynamics. Then the probability that X n and belong to the same reproof subtree converges towards e -c as n → ∞.

This enables us to deduce estimates on the size of the largest reproof component. We shall see that with high probability as n → ∞, (i) in the supercritical regime, there exists a giant reproof component of size ∼ n, (ii) in the subcritical regime, the largest reproof component has size of order p - n n/ ln n, (iii) in the critical regime, the largest reproof component has size of order n/ ln n if the root burns and ∼ n if the root is reproof.

Finally, we study the sizes of the burnt subtrees, in order of appearance, in the critical regime p n ∼ c ln n/n. The one which contains the root (if the root burns) has size of order n, whereas for the others, the logarithm of their size, rescaled by ln n converges in distribution to a limit strictly smaller than . More precisely, let γ = and consider a sequence (γ j -γ j-) j≥ of i.i.d. exponential random variables with rate c, so each γ j has the gamma (also called Erlang) distribution with parameters j and c. Consider also, conditional on (γ j ) j≥ , a sequence (Z j ) j≥ of independent random variables, where Z j is distributed as an exponential random variable with rate γ j conditioned to be smaller than . For every i ∈ N, denote by θ n,i the time at which the i-th re occurs and by b n,i the size of the corresponding burnt subtree of T n .

Theorem . Consider the critical regime p n ∼ c ln n/n. We have for every i ∈ N,

ln n n (θ n, , . . . , θ n,i ) (d ) -→ n→∞ (γ , . . . , γ i ).
Furthermore, for every j ∈ N, the probability that the root burns with the j-th re converges to

E e -γ j j- i= ( -e -γ i )
as n → ∞. Finally, on this event, for every k ≥ j + , the vector This work leaves open the question of the total number of burnt vertices in the supercritical regime: as in Theorem for the subcritical one, one would ask for a convergence in distribution of n -I n , rescaled by some sequence which is negligible compared to n. This holds true for Cayley trees, see [ ].

Let us nally mention that the present re dynamics on trees is closely related to the problem of isolating nodes, rst introduced by Meir & Moon [ ]. In this model, one is given a tree T n of size n and k vertices (chosen randomly or deterministically), say, u , . . . , u k ; then the edges of T n are successively removed in a uniform random order, and at each step, if a connected component newly created does not contain any of the k selected vertices, it is immediately discarded. This random dynamics eventually end when the graph is reduced to the k selected singletons, we say that the k vertices have been isolated. The main interest in [ ] and subsequent papers concerns the behavior of the (random) number of steps X (T n ; u , . . . , u k ) of this algorithm, as n → ∞ and the number of selected vertices k is xed. We shall see that X (T n ; u , . . . , u k ) is related to the re dynamics on T n . Indeed, if one sees reproof edges as being removed from the tree, then a vertex is reproof if and only if it is isolated. In the context of random recursive trees, we will rely in particular on results of Meir & Moon [ ] who estimated the rst two moments of X (T n ; ), Iksanov & Möhle [ ] who proved a limit theorem for the latter using probabilistic argument (it was rst derived by Drmota et al. [ ] with a di erent proof), as well as Bertoin [ ] who obtained a limit theorem for X (T n ; U , . . . , U k ) when U , . . . , U k are k independent uniform random vertices of T n (which was rst obtained by Kuba & Panholzer [ ]).

The rest of this paper is organized as follows: in Section . , we rst state and prove the general phase transition by relating the re dynamics on T n to a point process on its cut-tree, following the route of [ ]. We then focus on random recursive trees. After recalling some known results in Section . , in particular a coupling of Iksanov and Möhle [ ], we prove Theorem in Section . Section is devoted to the proof of Theorem and the existence of a giant reproof component. Finally, we prove Theorem in Section .

Cut-trees and res . General results

In this section, we study the re dynamics on a general sequence of random trees T n with n labelled vertices, say, [n] = { , . . . , n}. Let us recall the de nition of the cut-tree of a nite tree introduced by Bertoin [ ], as well as the point process on the latter which is related to the re dynamics on the original tree as described in [ ]. We associate with T n a random rooted binary tree Cut(T n ) with n leaves which records the genealogy induced by the fragmentation of T n : each vertex of Cut(T n ) corresponds to a subset (or block) of [n], the root of Cut(T n ) is the entire set [n] and its leaves are the singletons { }, . . . , {n}. We remove successively the edges of T n in a uniform random order; at each step, a subtree of T n with set of vertices, say, V , splits into two subtrees with sets of vertices, say, V and V respectively; in Cut(T n ), V and V are the two o springs of V . Notice that, by construction, the set of leaves of the subtree of Cut(T n ) that stems from some block coincides with this block. See A tree with the order of cuts on the left and the corresponding cut-tree on the right. The order of the children in the cut-tree is irrelevant and has been chosen for aesthetic reasons only.

The cut-tree is an interesting tool to study the isolation of nodes in a tree described in the introduction. Indeed, x k vertices in the tree T n , say, u , . . . , u k , and consider the isolation procedure. It should be plain that the subtrees which are not discarded correspond to the blocks of the tree Cut(T n ) reduced to its branches from its root to the k leaves {u }, . . . , {u k }. As a consequence, the number of steps of this isolation procedure is given by the number of internal (i.e. non-singleton) nodes of this reduced tree or, equivalently, its length (i.e. number of edges) minus the number of distinct leaves plus one.

We endow Cut(T n ) with a mark process φ n : at each generation, each internal block is marked independently of the others with probability p n provided that none of its ancestors has been marked, and not marked otherwise. This is equivalent to the following two-steps procedure: mark rst every internal block independently with probability p n , then along each branch from the root to a leaf, keep only the closest mark to the root and erase the other marks. Throughout this paper, "marks on Cut(T n )" shall always refer to the marks induced by φ n .

Recall the re dynamics on T n described in the introduction; if we remove each edge as soon as it is reproof, then, when an edge is set on re, it immediately burns the whole subtree which contains it. Observe that the only information which is lost with this point of view is the geometry of the reproof forest. We can couple this dynamics on T n and the cut-tree Cut(T n ) endowed with the marks induced by φ n in such a way that the marked blocks of Cut(T n ) correspond to the burnt subtrees of T n and the leaves of Cut(T n ) which do not possess a marked ancestor correspond to the reproof vertices of T n , see Figure for an illustration. We implicitly assume in the sequel that the re dynamics on T n and the pair (Cut(T n ), φ n ) are coupled in this way.

Fix k ∈ N and let R n,k be the tree Cut(T n ) reduced to its branches from its root to k leaves chosen uniformly at random with replacement; denote by L n,k the length of R n,k . Let r : N → R be some function such that lim n→∞ r (n) = ∞. We introduce the following hypothesis:

r (n) -L n,k (d ) -→ n→∞ L k , (H k )
where L k is a non-negative and nite random variable. The arguments developed by Bertoin [ , ] allow us to derive the following result. The forests after the dynamics on the recursive tree on the left and the corresponding cut-tree on the right: the plain blocks are the ones connected to the root, the dotted ones, those disconnected from the root. The leaves in the root-component of the cut-tree are the reproof vertices, the other components code the burnt subtrees.

Proposition . Denote by I n the number of reproof vertices in T n .

(i) If (H ) holds and lim n→∞ r (n)p n = , then n -I n converges in probability to .

(ii) If (H ) holds and lim n→∞ r (n)p n = ∞, then for every ε > , we have lim sup n→∞ P(I n > εn) ≤ ε -P(L = ). In particular, if L > almost surely, then n -I n converges in probability to .

(iii) If (H k ) holds for every k ∈ N and lim n→∞ r (n)p n = c with c ∈ ( , ∞) xed, then we have the convergence

n -I n (d ) -→ n→∞ D (c),
where the law of D (c) is characterized by its entire moments: for every k ≥ ,

E[D (c) k ] = E[exp(-cL k )]. ( )
Note that P(D (c) = ) < and also P(D (c) = ) = if and only if P(L k = ) = .

Proof. Fix k ∈ N; the variable n -I n represents the proportion of reproof vertices in T n , therefore its k-th moment is the probability that k vertices of T n chosen uniformly at random with replacement and independently of the dynamics are reproof. Using the coupling with Cut(T n ), the latter is the probability that there is no atom of the point process φ n on R n,k . We

thus have E[(n -I n ) k ] = E[( -p n ) X n,k ],
where

X n,k denotes the number of internal nodes of R n,k . Observe that L n,k -X n,k is equal to the number of distinct leaves of R n,k minus one, which is bounded by k -, then (H k ) yields lim n→∞ E[(n -I n ) k ] = E[exp(-cL k )] when r (n)p n → c ∈ [ , ∞), as well as lim sup n→∞ E[(n -I n ) k ] ≤ P(L k = ) when r (n)p n → ∞,
and the three assertions follow.

The next proposition o ers a reciprocal to Proposition , which shows that (H k ), k ∈ N, form a necessary and su cient condition for the critical case (iii). Observe that, if D(c) is de ned as in ( ) for every c ∈ ( , ∞), then lim c→ + D (c) = in probability.

Proposition . Assume that if lim n→∞ r (n)p n = c ∈ ( , ∞), then n -I n converges in distribution as n → ∞ to a limit D (c) which satis es and lim c→ + D (c) = in probability. Then (H k ) is ful lled for every k ∈ N and the Laplace transform of L k is given by ( ).

Proof. Fix k ∈ N. The convergences r (n)p n → c and n -I n → D (c) in distribution imply that for every c ∈ ( , ∞), E[D (c) k ] = lim n→∞ E[(n -I n ) k ] = lim n→∞ E[( -p n ) L n,k ] = lim n→∞ E[exp(-cr (n) -L n,k )].

Moreover, the assumption lim

c→ + D (c) = in probability implies that E[D (c) k ] converges to as c → +. We conclude from Theorem XIII. . of Feller [ ] that the function c → E[D(c) k ] is the Laplace transform of a random variable L k and r (n) -L n,k converges in distribution to L k .
For the critical case p n ∼ c/r (n), under a stronger assumption, we obtain the joint convergence in distribution of I n and the sizes of the burnt components, all rescaled by n. To this end, let us rst introduce some notation. A compact rooted measure space is a quadruple (T, d, ρ, µ) where (T, d ) is a compact metric space, ρ ∈ T a distinguished element called the root of T, and µ a Borel probability mass measure on T. This quadruple is called a (compact rooted) real tree if, furthermore, T is tree-like, in the sense that it is a geodesic space for which any two points are connected via a unique continuous injective path up to re-parameterisation; see e.g. Le Gall [ ] and references therein for background. For each integer k, we denote by R(T, k ) the tree T spanned by its root and k i.i.d. elements chosen according to µ.

Observe that Cut(T n ), rooted at [n] and equipped with the graph distance and the uniform distribution on leaves, is a random real tree and R n,k = R(Cut(T n ), k ). Let r : N → R be some function such that lim n→∞ r (n) = ∞. We introduce the following hypothesis:

r (n) -R n,k (d ) -→ n→∞ R(T, k ). (H k )
where T is a random rooted real tree and r (n) -R n,k has the same tree-structure as R n,k but with distances rescaled by a factor r (n) -. We adopt the framework of Aldous [ ], viewing the reduced trees as a combinatorial rooted tree structure with edge lengths. Note that the fact that all the (H k ), k ∈ N, hold is equivalent to the convergence of r (n) -Cut(T n ) to T for the so-called pointed Gromov-Prokhorov topology, see e.g. Gromov [ ] and Greven, Pfa elhuber & Winter [ ] for references.

The distance on T induces an extra length measure , which is the unique σ -nite measure assigning measure d (x, ) to the geodesic path between x and . We de ne on T the analog of the point process φ n on Cut(T n ): rst sample a Poisson point process with intensity c (•), then, along each branch from the root to a leaf, keep only the closest mark to the root (if any) and erase the other marks. The process Φ c induces a partition of T in which two elements x, ∈ T are connected if and only if there is no atom on the geodesic with extremities x and . Denote by #(T, Φ c ) the sequence given by the µ-masses of each connected component of T after logging at the atoms of Φ c , the root-component rst, and the next in non-increasing order.

Recall that I n denotes the total number of reproof vertices in T n and let b ↓ n, ≥ b ↓ n, ≥ • • • ≥ be the sizes of the burnt subtrees, ranked in non-increasing order.

Proposition . If (H k ) holds for every k ∈ N, then in the regime p n ∼ c/r (n), the convergence n -(I n , b ↓ n, , b ↓ n, , . . .) (d ) -→ n→∞ #(T, Φ c )
holds in distribution for the topology.

Remark that (H k ) implies (H k ) where L k is the total length of R(T, k ); further the rst element of #(T, Φ c ) is the variable D (c) of Proposition and we can interpret identity ( ) using T. Sample U , . . . , U k ∈ T independently according to µ and denote by R(T, k ) the associated reduced tree. Denote also by C c the root-component of T after logging at the atoms of Φ c . Then

D(c) = µ (C c ) and E[D (c) k ] = E[µ (C c ) k ] = P(U , . . . , U k ∈ C c ).
Since U , . . . , U k belong to C c if and only if there is no atom of the Poisson random measure on R(T, k ), we also have

P(U , . . . , U k ∈ C c ) = E[exp(-c (R(T, k )))] = E[exp(-cL k )].
In the case where T n is a Cayley tree of size n, Bertoin [ ] proved that the assumptions (H k ), k ∈ N, hold with r (n) = n / and T the Brownian Continuum Random Tree. Moreover, a more explicit expression of the limit in Proposition in that case can be found in [ ]. The proof of Proposition is essentially that of Lemma in [ ] to which we refer.

. The case of random recursive trees

In the rest of this paper, we only consider the case where the trees are random recursive trees of size n denoted by T n . In this setting, Kuba & Panholzer [ , Theorem ], provide the assumptions

(H k ), k ∈ N: ln n n L n,k (d ) -→ n→∞ β k , ( )
where β k is a beta(k, ) random variable, i.e. with distribution kx k-dx on [ , ]. Their result is stated in terms of the number of cuts needed to isolate uniform random vertices. Bertoin [ ] proved an even stronger convergence than (H k ) for every k ∈ N. Indeed, the proof of Theorem in [ ] shows the following.

Lemma ([ ]). Consider Cut(T n ) equipped with the metric d n given by the graph distance rescaled by a factor ln n/n, and the uniform probability measure µ n on the n leaves. Then Propositions and then read as follows for recursive trees.

(Cut(T n ), {[n], { }}, d n , µ n ) -→ n→∞ ([ , ], { , }, | • |, Leb)
Theorem . We have for res on T n :

(i) If lim n→∞ np n / ln n = , then lim n→∞ n -I n = in probability.

(ii) If lim n→∞ np n / ln n = ∞, then lim n→∞ n -I n = in probability.

(iii) If lim n→∞ np n / ln n = c ∈ ( , ∞), then the convergence in distribution n -(I n , b ↓ n, , b ↓ n, , . . . ) (d ) -→ n→∞ (ϵ c ∧ , -(ϵ c ∧ ), , , . . . )
holds for the topology, where ϵ c is an exponential random variable with rate c.

Proof. It follows from the convergences ( ) and Proposition , that n -I n converges in probability to when p n ln n/n and to when p n ln n/n, and converges in distribution to ϵ c ∧ when p n ∼ c ln n/n, since, for every k ≥ , we have

E[e -cβ k ] = e -cx kx k-dx = e -c + ce -cx x k dx = E[(ϵ c ∧ ) k ].
Further, using Lemma , the mark process Φ c on T = [ , ] reduces to the point process with at most one mark, given by the smallest atom of a Poisson random measure on [ , ] with intensity c × Leb if it exists, and no mark otherwise. The limit #(T, Φ c ) of Proposition is thus

(ϵ c ∧ , -(ϵ c ∧ ), , , . . . ).
Consider the critical regime of the re dynamics on T n , that is p n ∼ c ln n/n for some xed c ∈ ( , ∞). We identify the macroscopic burnt component of Theorem (iii) above as the one containing the root. Denote by b n the size of the burnt subtree which contains the root of T n if the latter is burnt and otherwise, and A n the event that the root of T n burns.

Proposition . In the critical regime p n ∼ c ln n/n, we have

( A n , n -I n , n -b n ) (d ) -→ n→∞ ( ϵ c < , ϵ c ∧ , -(ϵ c ∧ )),
where ϵ c is an exponential random variable with rate c.

We see that the probability that the root burns converges toe -c . Further, from this result and Theorem (iii), we see that in the critical regime, with high probability, when the root burns, its burnt component is the macroscopic one, and when it does not, there is no macroscopic burnt component. Finally, the density of reproof vertices converges to in probability if we condition the root to be reproof, and it converges in distribution to an exponential random variable with rate c conditioned to be smaller than if we condition the root to burn.

Proof. On the path of Cut(T n ) from [n] to { }, there is at most one mark, at a height given by a geometric random variable with parameter p n ∼ c ln n/n if the latter is smaller than the height of { }, and no mark otherwise. Furthermore, b n is equal to if there is no such mark and is given by the number of leaves of the subtree of Cut(T n ) that stems from this marked block otherwise. Thanks to Lemma , this path and the mark converge in distribution to the interval [ , ] with at most one mark, at distance ϵ c from if ϵ c < , and no mark otherwise. Hence

( A n , n -b n ) (d ) -→ n→∞ ( ϵ c < , -(ϵ c ∧ )).
Moreover, we already know from Theorem (iii) that n -I n converges in distribution to ϵ c ∧ , where ϵ c is exponentially distributed with rate c. Notice that we have I n ≤ n-b n , so ϵ c ∧ ≤ ϵ c ∧ almost surely. Since they have the same law, we conclude that ϵ c ∧ = ϵ c ∧ almost surely and the claim follows.

In order to obtain more precise results on the re dynamics on T n , we need more information about Cut(T n ). We next recall some known results about the cut-tree of large random recursive trees, due to Meir and Moon [ ], Iksanov and Möhle [ ], and Bertoin [ ], and introduce the notation we shall use subsequently.

.

The cut-tree of a random recursive tree

Let ζ (n) be the length of the path in Cut(T n ) from its root [n] to the leaf { }. Set C n,
[n] and for each i = , . . . , ζ (n), let C n,i and C n,i be the two o springs of C n,i-, with the convention that ∈ C n,i ; nally, denote by T n,i and T n,i the subtrees of T n restricted to C n,i and C n,i respectively.

Note that for every

i ∈ { , . . . , ζ (n)}, the collection {C n, , . . . , C n,i , C n,i } forms a partition of [n].
The next lemma shows that the law of Cut(T n ) is essentially determined by that of the nested sequence

[n] = C n, ⊃ C n, ⊃ • • • ⊃ C n,ζ (n) = { }.
Indeed, random recursive trees ful ll a certain consistency relation called splitting property or randomness preservation property. We extend the de nition of a recursive tree to a tree on a totally ordered set of vertices which is rooted at the smallest element and such that the sequence of vertices along any branch from the root to a leaf is increasing. There is a canonical way to transform such a tree with size, say, k, to a recursive tree on [k] by relabelling the vertices.

Lemma . Fix i ∈ { , . . . , ζ (n)}. Conditional on the sets C n, , . . . , C n,i and C n,i , the subtrees T n, , . . . , T n,i and T n,i are independent random recursive trees on their respective set of vertices. Furthermore, conditional on these sets, the subtrees of Cut(T n ) that stem from these blocks are independent and distributed as cut-trees of random recursive trees on these sets.

Proof. The rst statement should be plain from the inductive construction of random recursive trees described in the introduction. The second follows since, in addition, if we restrict the fragmentation of T n described earlier to one of its subtree, the edges of this subtree are indeed removed in a uniform random order and this fragmentation is independent of the rest of T n .

As a consequence, we only need to focus on the size of the C n,i 's. Our main tool relies on a coupling due originally to Iksanov & Möhle [ ] that connects the latter with a certain random walk. Let us introduce a random variable ξ with distribution

P(ξ = k ) = k (k + ) , k ≥ ,
then a random walk

S j = ξ + • • • + ξ j , j ≥ ,
where (ξ i ; i ≥ ) are i.i.d. copies of ξ , and nally the last-passage time

λ(n) = max{j ≥ : S j < n}.
A weaker form of the result in [ ], which is su cient for our purpose, is the following.

Lemma . One can construct on the same probability space a random recursive tree of size n and its cut-tree, together with a version of the random walk S such that ζ (n) ≥ λ(n) and

(|C n, |, . . . , |C n,λ(n) |, |C n,λ(n) |) = (ξ , . . . , ξ λ(n) , n -S λ(n) ). ( )
From now on, we assume that the recursive tree T n and its cut-tree Cut(T n ) are indeed coupled with the random walk S. This coupling enables us to deduce properties of Cut(T n ) from that of S; we shall need the following results.

Lemma . The random walk S ful lls the following properties.

(i) Weak law of large numbers:

k ln k S k -→ k→∞ in probability.
(ii) The last-passage time satis es

ln n n λ(n) -→ n→∞ in probability.
(iii) The undershoot satis es

ln n n (n -S λ(n) ) -→ n→∞ in probability.
(iv) The random point measure

λ(n) i= δ ln n n ξ i (dx )
converges in distribution on the space of locally nite measures on ( , ∞] endowed with the vague topology towards to a Poisson random measure with intensity x -dx.

Proof. The rst assertion can be checked using generating functions; a standard limit theorem for random walk with step distribution in the domain of attraction of a stable law entails moreover the weak convergence of k - Note from Lemma that

λ(n) ≤ ζ (n) ≤ λ(n) + |C n,λ(n) | = λ(n) + n -S λ(n) .
Lemma (ii) and (iii) thus entail

ln n n ζ (n) -→ n→∞ in probability.
This result was obtained earlier by Meir & Moon [ ] who proved

lim n→∞ E ln n n ζ (n) = lim n→∞ E ln n n ζ (n) = .
We will use this stronger result in Section below.

Density of reproof vertices

As claimed in the introduction, we prove a non-trivial limit in distribution for the number I n of reproof vertices in T n , under an appropriate scaling, in the subcritical regime. We begin with a lemma.

Lemma . Consider the subcritical regime

p n ln n/n. Then, as n → ∞, the root of T n burns with high probability, and the size of its burnt component, rescaled by n, converges to in probability.

Proof. Consider the path from [n] to { } in Cut(T n ). It contains at most one mark, whose height σ (n) is distributed as n ∧ ζ (n) where n is a geometric random variable with parameter p n independent of ζ (n). Recall from Lemma that ζ (n) ≥ λ(n) ∼ n/ ln n in probability, so this mark exists with high probability and, moreover,

p n σ (n) (d ) -→ n→∞ ϵ .
In particular, we have σ (n) ≤ λ(n) with high probability. On this event, observe thanks to Lemma that the size of the burnt component which contains the root is given by ln n/n, so this result recovers Theorem (ii). Observe also that in the critical regime p n ∼ c ln n/n, we have p n / ln( /p n ) ∼ c/n; it then follows from Theorem (iii) that in this case

|C n,σ (n) | = n -S σ (n) .

It follows from

p n ln( /p n ) I n (d ) -→ n→∞ c (ϵ c ∧ ) = ϵ ∧ c,
and the right-hand side further converges to ϵ as c → ∞. The same phenomenon appears in [ ] for Cayley trees, were in both regimes, critical and subcritical, one should rescale I n by a factor p n and the limit for the critical case converges to that of the subcritical case when c → ∞.

Proof of Theorem . The proof borrows ideas from Section of Bertoin [ ]. Recall that I n is the number of leaves in the component of Cut(T n ) which contains the root [n] after logging at the atom of φ n . According to the proof of Lemma , with high probability, there exists a mark on the path from

[n] to { } in Cut(T n ), at height σ (n).
Observe that all the other marks of φ n are contained in the subtrees of Cut(T n ) that stem from the blocks C n, , . . . , C n,σ (n) . Moreover, we have seen, appealing to Lemma , that

p n ln( /p n ) σ (n) i= |C n,i | (d ) -→ n→∞ ϵ .
It only remains to show that the proportion of leaves in all these subtrees which belong to the root-component of Cut(T n ) converges to in probability. Recall from Lemma that, conditionally given the sets C n, , . . . , C n,σ (n) , the subtrees of Cut(T n ) that stems from these blocks are independent and distributed respectively as the cut-tree of a random recursive tree on C n,i . As in the proof of Proposition , we show that the probability that a leaf chosen uniformly at random in these subtrees belongs to the root-component converges to . The latter is bounded from below by

E ( -p n ) max{Depth(Cut(T n,i )), ≤i≤σ (n)} ,
where Depth(T ) denotes the maximal distance in the tree T from the root to a leaf. The proof then boils down to the convergence

p n max{Depth(Cut(T n,i )); ≤ i ≤ σ (n)} -→ n→∞ in probability.
Proposition of Bertoin [ ] proves a similar statement, in the case where p n = ln n/n and the maximum is up to λ(n). We closely follow the arguments in [ ]. Fix ε > ; from Lemma , since Depth(Cut(T )) ≤ |T |, for every m ∈ N and a > ,

P(p n max{Depth(Cut(T n,i )), ≤ i ≤ σ (n)} > ε ) is bounded from above by m sup k ≤a/p n P(p n Depth(Cut(T k )) > ε ) + P(N (ε, n) > m) + P(N (a, n) ≥ ),
where N (z, n) = Card{i = , . . . , σ (n) : |T n,i | > z/p n }. On the one hand, from ( ) and the distribution of ξ , conditionally given σ (n) with σ (n) ≤ λ(n), N (z, n) is binomial distributed with parameters σ (n) and z/p n -; as a consequence, for any δ > , we may x m and a su ciently large so that lim sup

n→∞ P(N (ε, n) > m) + P(N (a, n) ≥ ) ≤ δ .
On the other hand, from ( ), we have

Depth(Cut(T k )) ≤ λ(k ) + max{ξ i , ≤ i ≤ λ(k )} + (k -S λ(k ) )
which, rescaled by a factor p n , converges in probability to uniformly for k ≤ a/p n thanks to Lemma . This concludes the proof.

Remark . Let C n be the root-component of Cut(T n ) after performing a Bernoulli bond percolation, in which each edge is removed with probability p n ; we endow it with the graph distance d n and the measure ν n which assigns mass to each leaf. Adapting Section of Bertoin [ ], the proofs of Proposition and Theorem here respectively entail the following weak convergences for the pointed Gromov-Hausdor -Prokhorov topology:

C n , {[n]}, p n d n , p n ln( /p n ) ν n (d ) -→ n→∞ [ , ϵ ], { }, | • |, Leb , when p n ln n/n, and 
C n , {[n]}, ln n n d n , n ν n (d ) -→ n→∞ [ , ϵ c ∧ ], { }, | • |, Leb , when p n ∼ c ln n/n,
where in both cases, | • | and Leb refer respectively to the Euclidean distance and Lebesgue measure. The same arguments also yield

C n , {[n]}, ln n n d n , n ν n (d ) -→ n→∞ [ , ], { }, | • |, Leb , when p n ln n/n.

Connectivity properties of the reproof forest

We next focus on the reproof forest. We rst nd an asymptotic estimate for the probability that the root of T n and a uniform random vertex belong to the same reproof subtree, in both the critical and supercritical cases. We then derive some consequences in terms of the existence of a giant reproof component.

Proof of Theorem . We use a so-called spinal decomposition: x X ∈ [n] and denote by h(X ) = d (X , ) the height of X in T n . Let V , . . . , V h(X ) be the vertices on the oriented branch from to X : V = , V h(X ) = X and for each i = , . . . , h(X ), V i-is the parent of V i . Removing all the edges {V i , V i+ } disconnects T n into h(X ) + subtrees denoted by T , . . . ,T h(X ) where T i contains V i for every i = , . . . , h(X ). Clearly, V = and V h(X ) = X belong to the same reproof connected component if and only if all the V i 's are reproof, i.e. when all the edges {V i , V i+ } are reproof and each V i is reproof for the dynamics restricted to the tree T i . Using the inductive construction of random recursive trees described in the introduction, one sees that, when removing the edge {V , V }, the two subtrees we obtain are, conditional on their set of vertices, independent random recursive trees. The one containing V is T . Removing the edge {V , V } in the other subtree, we obtain similarly that T is, conditional on its set of vertices and that of T , a random recursive tree independent of T . We conclude by induction that conditional on their set of vertices, the T i 's are independent random recursive trees rooted at V i respectively.

Recall that for every k ≥ , ζ (k ) denotes the height of the leaf { } in the cut-tree Cut(T k ) of a random recursive tree of size k. We have seen that the root of k ) ]. Thus, from the discussion above, the probability that X and belong to the same reproof connected component is given by

T k is reproof with probability E[( -p n ) ζ (
E exp ln( -p n ) h(X ) + h(X ) i= ζ i (|T i |) , ( )
where

(ζ i (k ); k ≥ ) i≥ is a sequence of i.i.d. copies of (ζ (k ); k ≥ ). We prove that if X n is uniformly distributed on [n], then ln n n h(X n ) + h(X n ) i= ζ i (|T i |) -→ n→∞ in probability, ( )
which yields Theorem . It is well-known that h(X n ) ∼ ln n in probability as n → ∞ so we only need to consider the sum in ( ). Let us rst discuss the distribution of the |T i |'s.

Let S n ( ) be a random variable uniformly distributed in [n]. Then, for every i ≥ , conditionally given S n (i -) S n ( )

+ • • • + S n (i -), let S n (i) be uniformly distributed in [n -S n (i -)] if S n (i -) < n and set S n (i) = otherwise. Let κ n inf {i ≥ : S n (i) = n}; note that S n (i) = if and only if i > κ n and that S n ( ) + • • • + S n (κ n ) = n.
We call the sequence S n (S n ( ), . . . , S n (κ n )) a discrete stick-breaking process. Denote nally by Sn a size-biased pick from S n . Then Sn is uniformly distributed in [n] (see Lemma below) and for every measurable and non-negative functions f and , we have

E κ n i= f (S n (i)) = E κ n i= n f (S n (i)) S n (i) P( Sn = S n (i) | S n ) = E n f ( Sn ) Sn ( )
The stick breaking-process appears in a random recursive tree in two ways: vertically and horizontally. Indeed, if we discard the root of T n+ and its adjacent edges, then the sequence formed by the sizes of the resulting subtrees, ranked in increasing order of their root is distributed as S n . In particular, the one containing the leaf n + has size Sn so is uniformly distributed in [n]. Further, if n + is not the root of this subtree, we can iterate the procedure of removing the root and discarding all the components but the one containing n + . Conditionally given the size s i of the component containing n + at the i-th step, its size at the i + -st step is uniformly distributed in [s i -], thus de ning a stick-breaking process. We continue until the component containing n + is reduced to the singleton {n + }; this takes h(n + ) = κ n + steps. Let X n be the parent of n + in T n+ ; then X n is distributed as a uniform random vertex of T n . Moreover, we just saw that h(X n ) = h(n + )is distributed as κ n and, further, the sequence |T |, . . . , |T h(X n ) | previously de ned is distributed as S n . Theorem will thereby follow from the convergence ln n n

κ n i= ζ i (S n (i)) -→ n→∞ in probability. ( )
We prove the convergence of the rst and second moments. Let us de ne f ( )

E[ζ ( )] and f ( ) E[ζ ( ) ] for every ≥ . We already mentioned that Meir & Moon [ ] proved that, as → ∞, f ( ) = ln ( + o( )) and f ( ) = ln ( + o( )). ( )
Conditioning rst on S n and then averaging, we have

E κ n i= ζ i (S n (i)) = E κ n i= f (S n (i)) ,
and, using the conditional independence of the

ζ i 's, E κ n i= ζ i (S n (i)) = E κ n i= ζ i (S n (i)) + E i j ζ i (S n (i))ζ j (S n (j)) = E κ n i= f (S n (i)) + E i j f (S n (i)) f (S n (j)) = E κ n i= f (S n (i)) + E κ n i= f (S n (i)) -E κ n i= f (S n (i)) .
We nally compute these four expectations appealing to ( ), ( ) and Lemma below: as n → ∞,

E κ n i= f (S n (i)) = nE f ( Sn ) Sn = n = f ( ) ∼ n = ln ∼ n ln n ; similarly E κ n i= f (S n (i)) = nE f ( Sn ) Sn = n = f ( ) ∼ n = (ln ) ∼ n (ln n) ; and E κ n i= f (S n (i)) = n E f ( Sn ) Sn = n n = f ( ) ∼ n n = (ln ) ∼ n (ln n) ; nally E κ n i= f (S n (i)) = nE f ( Sn ) Sn = n = f ( ) ∼ n = (ln ) ∼ n (ln n) .
Thus, the rst two moments of n -ln n κ n i= ζ i (S n (i)) converge to , which implies ( ), the convergence even holds in L .

In the course of the proof we used the following lemma.

Lemma . A size-biased pick Sn from a discrete stick-breaking process S n is uniformly distributed in [n].

Proof. As we have seen, S n is distributed as the sizes of the subtrees of T n+ after removing the root and its adjacent edges. Furthermore, as there are n! recursive trees of size n + , the latter are in bijection with permutations of [n]. Indeed, there is an explicit bijection between uniform random recursive trees of size n + and uniform random permutation of [n], via the chinese restaurant process, see e.g. Goldschmidt and Martin [ ], in which the vertex-sets of the subtrees of T n+ after removing the root and its adjacent edges are exactly the cycles of the permutation. Then, for every k ∈ [n],

P( Sn = k ) = i≥ k n P(S n (i) = k ) = k n E[Card{i ≥ : S n (i) = k }],
and Card{i ≥ : S n (i) = k } is distributed as the number of cycles of length k in a uniform random permutation of [n]. It is well-known that the expectation of the latter is given by /k and the proof is complete.

We end this section with three corollaries of Theorem . Denote by f ↓ n, the size of the largest reproof subtree of T n .

Corollary . In the supercritical regime p n ln n/n, we have

n -f ↓ n, -→ n→∞ in probability. Proof. Let f ↓ n, ≥ f ↓ n, ≥ • •
• ≥ be the sizes of the reproof subtrees of T n , ranked in nonincreasing order. Let also X n and X n be two independent uniform random vertices in [n], independent of the re dynamics. Since i≥ f ↓ n,i ≤ n, we have

E[n -f ↓ n, ] ≥ E n - i≥ ( f ↓ n,i )
= P(X n and X n belong to the same reproof component)

≥ P(X n , X n and belong to the same reproof component)

≥ P(X n and belong to the same reproof component) -,

and the latter converges to as n → ∞ from Theorem . We conclude that n -f ↓ n, converges to in probability. This further yields the following result for the subcritical regime.

Corollary . In the subcritical regime p n ln n/n, the sequence (p n f ↓ n, , n ≥ ) is tight.

Proof. With the notations of the proof of Theorem , the root burns with high probability, so we implicitly condition on this event, and the number of edges reproof in the root-component is given by σ (n) which, rescaled by a factor p n , converges in distribution towards ϵ . Then the argument of Lemma (iv) entails the joint convergence in distribution of the pair

p n σ (n), σ (n) i= δ p n |T n,i | (dx )
towards ϵ and a Poisson random measure with intensity ϵ x -dx on ( , ∞). In particular, for every ε ∈ ( , ), there exist two constants, say, m and M, for which

P m ≤ max ≤i≤σ (n) p n |T n,i | ≤ M > -ε,
for every n large enough. Observe that

p n M/p n ln(M/p n ) -→ n→∞ ,
and therefore a subtree which satis es m ≤ p n |T n,i | ≤ M is supercritical. It then follows from Corollary that such a subtree contains a reproof component larger than ( -ε )m/p n (and smaller that M/p n ) with high probability and the proof is complete.

Finally, in the critical regime, the behavior resembles that of sub or supercritical, according to the nal state of the root.

Corollary . Consider the critical regime p n ∼ c ln n/n. We distinguish two cases:

(i) On the event that the root burns, the sequence ((ln n)n -f ↓ n, , n ≥ ) is tight.

(ii) On the event that the root is reproof, n -f ↓ n, converges to in probability.

Proof. For the rst statement, on the event that the root burns, the number σ (n) of edges reproof in the root-component, rescaled by a factor ln n/n converges in distribution towards an exponential random variable with rate c conditioned to be smaller than . The rest of the proof follows verbatim from that of Corollary above.

For the second statement, we already proved in Proposition that the probability that the root of T n is reproof converges to e -c as n → ∞. Thus, on this event, the probability that the root and an independent uniform random vertex belong to the same reproof subtree converges to and the claim follows from the proof of Corollary .

On the sequence of burnt subtrees

In the last section, we prove Theorem which describes the asymptotic behavior of the burnt subtrees, in the critical regime p n ∼ c ln n/n. One of the claims is that the probability that the root burns with the j-th re converges to E e -γ j j-i= (e -γ i ) , where γ = and (γ j -γ j-) j≥ is a sequence of i.i.d. exponential random variables with rate c. We can compute this expectation by writing E[e -γ j j- i= (e -γ i )] = q j--q j , where for every j ≥ ,

q j = E j i= ( -e -γ i ) = E j i= (-) i ≤ <•••< i ≤j e -γ • • • e -γ i = j i= (-) i ≤ <•••< i ≤j E[e -iγ e -(i-)(γ -γ ) • • • e -(γ i -γ i-) ] = j i= (-) i ≤ <•••< i ≤j c c + i c c + i - - • • • c c + i -i- .
Before tackling the proof of Theorem , let us give a consequence of this.

Corollary . We have in the critical regime p n ∼ c ln n/n:

lim k→∞ lim n→∞ P(the root of T n is not burnt after k res) = lim n→∞ P(the root of T n is reproof),
and both are equal to e -c .

In particular, we see that for every ε > , there exists k ∈ N such that lim inf n→∞ P(the root of T n is reproof | it is not burnt after k res) > -ε.

In words, we can nd k large enough but independent of n, such that if the root of T n has not burnt after the rst k res, then with high probability, it will be reproof at the end of the dynamics.

Proof. Observe from Theorem that for every k ∈ N, the probability that the root of T n is not burnt after k res converges as n → ∞ towards q k = E[ k i= (e -γ i )], which in turn, thanks to the previous computation, converges as k → ∞ towards

E ∞ i= ( -e -γ i ) = ∞ i= (-) i ≤ <•••< i c c + i c c + i - - • • • c c + i -i- = ∞ i= (-) i c i c i - • • • c = e -c .
Finally, as we already mentioned, it follows from Proposition that, as n → ∞, the probability that the root of T n is reproof converges to e -c as well.

In order to prove Theorem , we shall need the following three results on random recursive trees. Let E n be the set of all edges of T n which are not adjacent to the root. Fix k ∈ N, consider a random recursive tree T n and a simple random sample (e n, , . . . , e n,k ) of k edges from E n . For each i = , . . . , k, denote by n,i and n,i the two extremities of e n,i with the convention that n,i is the closest one to the root. Finally, denote by ρ n,k max ≤i,j≤k h( n,i ∧ n,j ), where a ∧ b denotes the last common ancestor of a and b in T n and h(a) the height of a in T n . Then in the complement of the ball centered at the root and of radius ρ n,k , the paths from to n,i , i = , . . . , k are disjoint. 

Lemma

[ϒ n ] = n- = n - ( + E[ϒ n-]) = (n -) + E[ϒ n-] = n = ( -) = n(n -) .
Finally,

P(h(u n ∧ n ) ≥ ) = E[ϒ n ] n = n - n -→ n→∞ .
We can iterate with the same reasoning: h(u n ∧ n ) ≥ if and only if u n and n belong to the same tree-component in the forest obtained by removing all the vertices at distance at most from the root and their adjacent edges. Then as previously,

P(h(u n ∧ n ) ≥ + | h(u n ∧ n ) ≥ ) -→ n→∞ .
Therefore h(u n ∧ n ) converges weakly to the geometric distribution with parameter / . It follows that for every k ∈ N xed, the sequence (ρ n,k ) n∈N is bounded in probability.

Lemma . For each ∈ [n], denote by T n ( ) the subtree of T n that stems from . Then for any sequence of integers n n, we have

n n |T n ( n )| (d ) -→ n→∞ ϵ ,
where ϵ is an exponential random variable with rate .

Proof. We interpret the size of T n ( ) in terms of a Pólya urn. Recall the iterative construction of random recursive trees described in the introduction. At the -th step, we add the vertex to the current tree; then cut the edge which connects to its parent to obtain a forest with two components with sets of vertices { } and [ -] respectively. Next, the vertices + , . . . , n are added to this forest independently one after the others, and the parent of each is uniformly chosen in the system. Considering the two connected components, we see that their sizes evolve indeed as an urn with initial con guration of red ball andblack balls and for which at each step, a ball is picked uniformly at random and then put back in the urn, along with one new ball of the same color. Then |T n ( )|is equal to the number of "red" outcomes after ntrials and this is known to have the beta-binomial distribution with parameters (n -, , -), i.e.

P(|T

n ( )| = + ) = ( -) (n -)! (n --)! (n --)! (n -)! , = , . . . , n -.
Using Stirling formula, we compute for every x ∈ ( , ∞) and n n,

P(|T n ( n )| = xn/ n ) = n n e -x ( + o( )),
and the claim follows from this local convergence.

The proof of Theorem consists of four main steps, which are indicated by "S ", . . . , "S ". We rst consider the case of the root: we view the re dynamics as a dynamical percolation in continuous-time where each reproof edge is deleted and each burnt component is discarded. Then the results of Bertoin [ ] allow us to derive the size of the root-cluster at the instant of the rst re, which gives us the probability that this cluster burns with the rst re. If it does not, then we discard a small cluster (this is proven in step ) and then continue the percolation on the remaining part until the second re; again we know the size of the root-cluster at this instant. By induction, we obtain for every j ≥ the probability that the root burns with the j-th re, and the size of its burnt component.

In a second step, we investigate the size of the rst burnt subtree, conditionally given that it does not contain the root. We denote by A n, the closest extremity to the root of the rst edge which is set on re. Since the root does not burn at this instant, there exists at least one reproof edge on the path from the root to A n, ; consider all the vertices on this path which are adjacent to such a reproof edge and let Z n, be the closest one to A n, . Finally, let T n, be the subtree of T n that stems from Z n, . Then b n, is the size of the rst burnt subtree of T n, and the latter contains A n, and its root Z n, . We estimate the size of T n, ; further, we know the number of reproof edges in T n, before the rst re and, thanks to the rst step (recall that, conditionally given its size, T n, is a random recursive tree), we know the size of the root-component which burns with the rst re.

A n,1 Z n,1 T n,1 T n,2 A n,2 Z n,2 T n,j+1 A n,j+1 Z n,j+1 A * n,j Z * n,j 1 Figure : Illustration of the proof of Theorem .
In the third step, we extend the results of the second one to the rst two burnt components, conditionally given that none of them contains the root. The reasoning is the same as for the second step; we prove that the paths between the root of T n and the starting points of the rst two res, respectively A n, and A n, , become disjoint close to the root so that the dynamics on each are essentially independent: in particular the variables Z n, and Z n, (the latter plays the same role as Z n, for the second re) become independent at the limit. We conclude by induction that the estimate holds for the sizes of the rst k burnt subtrees, conditionally given that the root does not burn with any of the rst k res.

The last step is a simple remark: the fact that the root burns does not a ect the previous reasoning. Indeed, if the root burns with, say, the j-th re, then there exists a vertex Z * n,j between the root and the starting point A n,j+ of the j + -rst re where the j-th re stops. Therefore the estimate for the size of the burnt components before the instant where the root burns holds also for the burnt components which come after that the root has burnt.

Proof of Theorem . S

: Let us rst consider the root-component. It will be more convenient to work in a continuous-time setting. We attach to each edge e of T n two independent exponential random variables, say, ϵ ( f ) (e) and ϵ (b) (e), with parameter ( -p n )/ ln n and p n / ln n respectively. They should be thought of as the time at which the edge e becomes reproof or is set on re respectively; if the edge is already burnt because of the propagation of a prior re, we do not do anything; likewise, if an edge e is reproof, we do not set it on re at the time ϵ (b) (e) > ϵ ( f ) (e). Then the time τ (n) corresponding to the rst re is given by τ

(n) = inf {ϵ (b) (e) : ϵ (b) (e) < ϵ ( f ) (e)}.
By the properties of exponential distribution, the variable inf e ϵ (b) (e) is exponentially distributed with parameter (n -)p n / ln n → c as n → ∞. Denote by ê the edge of T n such that ϵ (b) ( ê) = inf e ϵ (b) (e). Then ϵ ( f ) ( ê) is exponentially distributed with parameter ( -p n )/ ln n and so ϵ (b) ( ê) < ϵ ( f ) ( ê) with high probability. We conclude that τ (n) = inf e ϵ (b) (e) with high probability and the latter converges in distribution to γ . It then follows from Corollary of Bertoin [ ] that the size of the root-component at the instant τ (n), rescaled by a factor n -, converges to e -γ as n → ∞. We conclude that the probability that the root of T n burns with the rst re converges to E[e -γ ] and, conditional on this event, the size of the corresponding burnt component rescaled by a factor n -converges to e -γ in distribution.

If the root does not burn with the rst re, then we shall prove in the next step that the size b n, of the rst burnt component is negligible compared to n with high probability. The previous reasoning then shows that the time of the second re converges in distribution to γ , the probability that the root of T n burns at the second re converges to E[(e -γ )e -γ ] and, on this event, the size of the corresponding burnt component rescaled by a factor n -converges to e -γ in distribution. Again, if the root does not burn with the second re, then the second burnt component is negligible compared to n with high probability and the general claim follows by induction.

S : For the rest of this proof, we condition on the event that the root of T n burns with the j-th re with j ≥ xed. We rst prove the convergence of the logarithm of the sizes of the rst jburnt subtrees. Observe that the jrst edges which are set on re are distributed as a simple random sample of jedges from the set E n of edges of T n not adjacent to the root. Lemma then entails that ln n (h(A n, ), . . . , h(A n,j-)) -→ n→∞ ( , . . . , ) in probability.

Consider rst the rst burnt subtree. The number θ n, of reproof edges when the rst edge is set on re follows the geometric distribution with parameter p n ∼ c ln n/n, truncated at n -, so ln n n θ n,

(d ) -→ n→∞ γ . ( )
Conditioning the root not to burn with the rst re amounts to conditioning the path from to A n, to contain at least one of the θ n, rst reproof edges. Since, conditionally given θ n, , these edges are distributed as a simple random sample from the nedges of T n di erent from the rst one which is set on re, then for every x ∈ ( , ), the probability that d (A n, , Z n, ) is smaller than x ln n, conditionally given that it is smaller than h(A n, ) is given by

E       -( -x ln n n-) • • • ( -x ln n n-θ n, -) -( - h(A n, ) n-) • • • ( - h(A n, ) n-θ n, -)       ∼ E       -( -x ln n n ) θ n, -( -ln n n ) θ n,       -→ n→∞ E -exp(-xγ ) -exp(-γ ) .
We S : Consider next the rst two res and, again, condition the root not to be burnt after the second re; in particular, there exists at least one reproof edge on the path from to A n, and on that from to A n, . Thanks to Lemma , we have h(A n, ∧ A n, ) = o(ln n) in probability. Then with high probability, Z n, and Z n, are located outside the ball centered at and of radius h(A n, ∧ A n, ) where the two paths from to A n, and to A n, are disjoint so where the location of the reproof edges are independent (conditionally given θ n, and θ n, ). With the same reasoning as for the rst re, we obtain The general claim follows by a last induction.
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  Figure :Given a recursive tree and an enumeration of its edges on the left, if the edges set on re are the th, the th and the th, we get the two forests on the right where the burnt components are drawn with dotted lines and the reproof ones with plain lines.

Figure

  Figure :A tree with the order of cuts on the left and the corresponding cut-tree on the right. The order of the children in the cut-tree is irrelevant and has been chosen for aesthetic reasons only.

  Figure :The forests after the dynamics on the recursive tree on the left and the corresponding cut-tree on the right: the plain blocks are the ones connected to the root, the dotted ones, those disconnected from the root. The leaves in the root-component of the cut-tree are the reproof vertices, the other components code the burnt subtrees.

  in probability for the two-pointed Gromov-Hausdor -Prokhorov topology, where | • | and Leb refer respectively to the Euclidean distance and Lebesgue measure.

  S kln k to the so-called continuous Luria-Delbrück distribution, see for instance Geluk & de Haan [ ]. Iksanov & Möhle [ ], provide ner limit theorems for the last-passage time as well as the undershoot, see respectively Proposition and Lemma there. Finally, the last assertion is the claim of Lemma (ii) of Bertoin [ ] and follows readily from the distribution of ξ and Theorem . of Kallenberg [ ].

  We see that in T n, , we reproof N n, ≈ γ Z |T n, |/ ln |T n, | edges before setting the root on re. From the rst step of the proof, the size b n, of the rst burnt component (which, by construction, contains the root of T n, ) is comparable to |T n, |; in particular,

  n, , Z n, ), d (A n, , Z n, ) γ ), (Z , Z ) . Then ln n (ln Z n, , ln Z n, ) (d ) -→ n→∞ ( -Z , -Z ),and ln n (ln |T n, |, ln |T n, |)

  the j + -st re. The number of ammable edges after the j-th re is given by q n,j n -( + θ n,j + (b n, -) + • • • + (b n,j -))which, rescaled by a factor n -, converges in distribution towardse -γ j . As previously, θ n,j+ -θ n,j is then distributed as a geometric random variable with parameter p n ∼ c ln n/n and truncated at q n,j n/ ln n. . . . , γ j+ ).Moreover since the root has burnt, there is at least one reproof edge on the path from to A n,j+ , the starting point of the j + -st re. All the previous work then applies and we obtain the convergence ln n (ln b n, , . . . , ln b n,j-, ln b n,j+ ) . . . , Z j-, Z j+ ).

  Lemma (i) and a standard argument (cf. Theorem . in Kallenberg [ ]) that for every ≥ ,

	sup x ∈[ , ] and we conclude that ln( /p n ) p n ln( /p n ) ln( /p n ) S x/p n -x p n S σ (n) p n I n (d ) -→ n→∞ ϵ where ϵ is an exponential random variable with rate . As we noted, p n / ln( /p n ) -→ n→∞ in probability, (d ) -→ n→∞ ϵ . when p n ln n/n, Note that p We next prove Theorem , speci cally, p n	( ) /n when

n / ln( /p n ) /n when p n ln n/n, therefore

n -|C n,σ (n) | -→ n→∞ in probability,

and the proof is complete.

  . For every i ∈ N xed, we have Proof. We may replace n, by n, , which is uniformly distributed on the set of vertices of T n with height at least two. It is known that the degree of the root of T n rescaled by ln n converges to in probability so, as n → ∞, n, is close (in the sense of total variation) to a uniform random vertex on[n]. It follows thatLemma . For every k ∈ N xed, ρ n,k = O ( ) in probability as n → ∞.Proof. It su ces to consider k = ; moreover, we may approximate n, and n, by a two independent uniform random vertices in [n], say, u n and n . We have h(u n ∧ n ) ≥ if and only if u n and n belong to the same tree-component in the forest, say, (T n , . . . ,T κ n ) obtained by removing the root and all its adjacent edges from T n . We already noticed that this vector forms a discrete stick-breaking process on [n -]. Let ϒ = and ϒ n

	ln n	h( n,i ) -→ n→∞	in probability.
	ln n	ln n,	n→∞ -→	in probability.
	Finally, in a random recursive tree, the label of a vertex and its height h( ) are related by
	ln	→∞ h( ) -→	in probability,	( )
	which concludes the proof.			
					κ j= |T j n | for n ≥ ; then, by
	decomposing according to the value of |T n |, since the latter is uniformly distributed on [n -],
	we obtain			
	E			

  jointly with the convergence ( ). Note that with the notation of Lemma , we have T n, = T n (Z n, ).again jointly with ( ). Consider nally the re dynamics on T n, and denote by N n, the number of edges which are reproof in this tree before the rst re. Note that conditionally given N n, , these edges are distributed as a simple random sample of N n, edges from the complement in T n, of the path from its root Z n, to A n, and that the re burns this path. Conditionally given θ n, , d (A n, , Z n, ) and |T n, |, the variable N n, has a hypergeometric distribution: it is the number of edges picked amongst the |T n, | --d (A n, , Z n, ) ∼ |T n, | "admissible" edges from the nedges of T n after θ n, draws without replacement. Since θ n, = o(n) in probability, conditionally given θ n, , d (A n, , Z n, ) and |T n, |, the variable N n, is close (in total variation) to a binomial variable with parameter θ n, and n -|T n, |. It is easy to check that a binomial random variable with parameters, say, n and p(n), rescaled by a factor (np(n)) -, converges in probability to ; it follows from the previous convergences that

	Appealing to ( ), we further have		
					ln n	ln Z n,	(d ) -→
	Since	Z n,	n in probability, we obtain
						ln n	ln |T n, |	(d ) -→ n→∞	Z ,
		ln |T n, | |T n, |	N n, =	ln n n	θ n,	ln |T n, | ln n	n θ n, |T n, |	N n,
	conclude that						
			ln n n	θ n, ,	ln n	d (A n, , Z n, )	(d ) -→

n→∞ (γ , Z ). n→∞ -Z ,