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On the sizes of burnt and �reproof components for

�res on a large Cayley tree

Cyril Marzouk ∗

Abstract

We continue the study initiated by Jean Bertoin in 2012 of a random dynamics on the

edges of a uniform Cayley tree with n vertices in which, successively, each edge is either

set on �re with some �xed probability pn or �reproof with probability 1 − pn . An edge

which is set on �re burns and sets on �re its �ammable neighbors, the �re then propagates

in the tree, only stopped by �reproof edges. We study the distribution of the proportion of

burnt and �reproof vertices and the sizes of the burnt or �reproof connected components

as n →∞ regarding the asymptotic behavior of pn .

Résumé

On poursuit l’étude initiée par Jean Bertoin en 2012 d’une dynamique aléatoire sur un

arbre de Cayley uniforme avec n sommets dans laquelle, successivement, chaque arête est

soit en�ammée avec une probabilité pn �xée, soit ignifugée avec probabilité 1 − pn . Une
arête en�ammée brûle et en�amme ses arêtes voisines in�ammables, le feu se propage

alors dans l’arbre, stoppé uniquement par les arêtes ignifugées. On étudie la loi de la pro-

portion de sites ignifugés et brûlés ainsi que la taille des composantes connexes ignifugées

et brûlées lorsque n → ∞ selon le comportement asymptotic de pn .

Key words: Cayley tree, �re model, percolation, fragmentation.

1 Introduction and main results

We recall the de�nition of the �re dynamics introduced by Bertoin [5]. Given a tree of size n

and a number pn ∈ [0, 1], we consider the following random dynamics: initially every edge

is �ammable, then successively, in a random uniform order, each edge is either �reproof with

probability 1−pn or set on �re with probability pn. In the latter case, the edge burns, sets on �re
its �ammable neighbors and the �re propagates instantly in the tree, only stopped by �reproof

edges. An edge which has been burnt because of the propagation of �re is not subject to the

dynamics thereafter. The dynamics continue until all edges are either burnt or �reproof. A

vertex is called �reproof if all its adjacent edges are �reproof and called burnt otherwise; we
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discard �reproof edges that have at least one burnt extremity and thus get two forests: one

consists of �reproof trees and the other of burnt trees. See Figure 1 for an illustration. We study

the asymptotic behavior of the size of these two forests and of their connected components as

the total size of the tree tends to in�nity.
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Figure 1: Given a tree and a uniform enumeration of its edges on the left, if the edges set on

�re are the 6th and the 9th, we get the two forests on the right where dashed lines stand for

"burnt" and double lines for "�reproof".

In this work, we assume that the tree is a uniform Cayley tree of size n, denoted by tn,

i.e. picked uniformly at random amongst the nn−2 di�erent trees on a set of n labeled vertices,

say, [n] = {1, . . . ,n}. For this model, the system exhibits a phase transition as it is shown by

Bertoin [5]. Theorem 1 in [5] is stated in the case where pn ∼ cn−α with c,α > 0 but extends

verbatim as follows: denote by In and Bn respectively the total number of �reproof and burnt

vertices of tn, then we have

(i) If limn→∞ n
1/2pn = ∞ (subcritical regime), then limn→∞ n

−1In = 0 in probability.

(ii) If limn→∞ n
1/2pn = 0 (supercritical regime), then limn→∞ n

−1Bn = 0 in probability.

(iii) If limn→∞ n
1/2pn = c for some c > 0 (critical regime), then limn→∞ n

−1In = D(c ) in

distribution where

P(D(c ) ∈ dx ) =
c

√

2πx (1 − x )3
exp

(

−
c2x

2(1 − x )

)

dx, 0 < x < 1. (1)

The aim of this paper is to improve these three convergences. For the �rst two regimes, we

prove a convergence in distribution to a non-trivial limit under an appropriate scaling of In
and Bn respectively, see the statements below. For the critical regime, we prove the joint

convergence in distribution of the number of �reproof vertices and the sizes of the burnt

subtrees, ranked in non-increasing order; the precise statement requires some notations and

is postponed to Section 3, see Theorem 3 there. We next state our main result concerning the

subcritical regime.

Theorem 1. Suppose that limn→∞ n
1/2pn = ∞. Then

lim
n→∞

p2nIn = Z
2 in distribution,

where Z is a standard Gaussian random variable.
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Consider then the supercritical regime; as we are interested in the asymptotic behavior of

Bn we assume that pn ≫ n−1 so that the probability that no �re occurs is (1 − pn )n−1 → 0.

Theorem 2. Suppose that limn→∞ n
1/2pn = 0 and limn→∞ npn = ∞. Then

lim
n→∞

(npn )
−2Bn = Z

−2 in distribution,

where Z is a standard Gaussian random variable.

Remark 1. Let Z be a standard Gaussian random variable. One can check from (1) that

lim
c→∞

c2D(c ) = Z 2 and lim
c→0

c−2 (1 − D(c )) = Z−2 (2)

in distribution. Very informally, if we write In (pn ) for the number of �reproof vertices of tn
when the probability to set on �re a given edge is pn, and similarly Bn (pn ), then (iii) above

shows that for every c ∈ (0,∞) �xed,

In (cn
−1/2) ≈ nD(c ), and Bn (cn

−1/2) ≈ n(1 − D(c )).

From (2), one is tempted to write more generally for pn ≫ n−1/2,

In (pn ) ≈ nD(n1/2pn ) ≈ p−2n Z 2,

and for pn ≪ n−1/2,

Bn (pn ) ≈ n(1 − D(n1/2pn )) ≈ (npn )
2Z−2.

However, it does not seem clear to the author how to prove respectively Theorem 1 and The-

orem 2 from this sketch. Indeed the argument in [5] does not enable one to deal with the sub

or supercritical regime and the proofs given here are di�erent from that of (i), (ii) and (iii).

The rest of this paper is organized as follows. Relying on Pitman [11] and Chaumont and

Uribe Bravo [7], we brie�y discuss in Section 2 the existence of a conditional distribution for

the sequence of the ranked sizes of the jumps made during the time interval [0, 1] by a certain

subordinator, say, σ , conditionally given the value of the latter at time 1. We also prove the

continuity of this conditional distribution in the terminal value σ (1), which will be used to

derive our �rst result.

We then focus on the critical regime in Section 3. Motivated by the proof of (iii) in [5],

we associate with the Cayley tree tn its cut-tree and view the �re dynamics as a point process

on the latter. Using the ideas of Aldous and Pitman [3], we show that the marked cut-tree

converges to the Brownian continuum random tree (CRT) endowed with a slight modi�ed

version of the point process obtained in [3]. This yields the joint convergence of the number

of �reproof vertices and the sizes of the burnt connected components to the masses of the

components of the CRT logged at the atoms of the point process. Using a second approxima-

tion of the CRT with �nite trees, we further express this limit as a mixture of the jumps of

the previous subordinator σ conditioned on the value of the latter at time 1, with a mixing law

D(c ).

We prove Theorem 1 in Section 4. For this, we shall see that, with high probability, the

remaining forest after the �rst �re has a total size of order p−2n and so have its largest trees.
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Note that the dynamics then continue on each subtree independently. Informally, the smallest

ones do not contribute much andmay be neglected, while the dynamics on the largest subtrees

are now critical. A slight generalization of (iii) then yields an asymptotic for the number of

�reproof vertices in each subtree and so for the total number of �reproof vertices.

Finally, we prove Theorem 2 in Section 5. Consider the sequence of the sizes of the burnt

subtrees, ranked in order of appearance, and all rescaled by a factor (npn )
−2. We prove that

the latter converges in distribution for the ℓ1 topology, from which Theorem 2 follows readily.

To this end, we �rst show for every integer j the joint convergence for the size of the j �rst

burnt subtrees; then we show that, taking j large enough, the next trees are arbitrary small.

2 Preliminaries on subordinators and bridges

Let (σ (t ), t ≥ 0) be the �rst-passage time process of a linear Brownian motion: σ is a stable

subordinator of index 1/2 such that

E[exp(−qσ (t ))] = exp(−t
√

2q), for any t ,q ≥ 0. (3)

Let J1 ≥ J2 ≥ · · · ≥ 0 be the ranked sizes of its jumps made during the time interval [0, 1]. We

need to make sense of the conditional distribution of the sequence (Ji )i≥1 conditionally given

the null event {σ (1) = z} in the set ℓ1(R) of real-valued summable sequences.

From the Lévy-Itō decomposition, we know that σ is a right-continuous, non-decreasing

process which increases only by jumps - we say that σ is a pure jump process - and that the

pairs (t ,x ) induced by the times and sizes of the jumps are distributed as the atoms of a Poisson

random measure on [0, 1] × (0,∞) with intensity (2πx3)−1/2dtdx . Denote by (Pi )i≥1 a size-

biased permutation of the sequence (Ji/
∑

k Jk )i≥1. Pitman [11] gives an inductive construction

of a regular conditional distribution for (Pi )i≥1 given {
∑

k Jk = z} for arbitrary z > 0. The

latter determines the conditional distribution of (Ji/
∑

k Jk )i≥1 given {
∑

k Jk = z} called Poisson-
Kingman distribution. Descriptions of �nite-dimensional distributions can be found in Perman

[9] or in Pitman and Yor [12]. Our purpose here is to check that these distributions depend

continuously on the variable z.

Proposition 1. The conditional distribution of the ranked jump-sizes (Ji )i≥1 given {σ (1) = z} is
continuous in z.

Proof. In the recent work of Chaumont and Uribe Bravo [7], su�cient conditions on the

distribution of a Markov process (Xt , t ≥ 0) in a quite general metric space are given in order

to make sense of a conditioned version of (Xs , 0 ≤ s ≤ t ) given {X0 = x andXt = y}. The latter
is called Markovian bridge from x to y of length t and its law is denoted by P

t
x,y . The process

σ ful�lls the framework of their Theorem 1 and Corollary 1, it follows that the bridge laws

P
1
0,z are well de�ned and continuous in z for the Skorohod topology. Thanks to Skorohod’s

representation Theorem, the claim thus reduces to the deterministic result below. �

Let f , f1, f2, . . . be functions de�ned from [0, 1] to [0,∞) which are non-decreasing, right-

continuous and null at 0. Denote by j1 ≥ j2 ≥ · · · ≥ 0 the ranked sizes of the jumps of f and

respectively, j
(n)
1 ≥ j

(n)
2 ≥ · · · ≥ 0 that of fn for every n ≥ 1.
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Lemma 1. Suppose that fn converges to f for the Skorohod topology. Then

(i) For any integer N , (j
(n)
1 , . . . , j

(n)
N ) converges to (j1, . . . , jN ) in R

N .

(ii) If f is a pure jump function, then (j
(n)

k
)k≥1 converges to (jk )k≥1.

Proof. For the �rst claim, suppose �rst that f has in�nitely many jumps. We may, and do,

assume that N is such that jN > jN+1. For any t , denote by ∆f (t ) ≔ f (t ) − f (t−) the size

of the jump made by f at time t and similarly ∆fn for every n ≥ 1. Upon changing the time

scale using a sequence of increasing homeomorphisms from [0, 1] onto itself which converges

uniformly to the identity, we may assume that fn converges to f uniformly. This does not

a�ect the jump-sizes of fn . Then ∆fn (t ) converges to ∆f (t ) for every t and (j1, . . . , jN ) are

limits of N jumps of fn . Moreover, these jumps are (j
(n)
1 , . . . , j

(n)
N

) for n large enough since, for

any ε ∈ (0, jN − jN+1), for any n large enough, as fn converges to f uniformly, it admits no

other jump larger than jN+1 + ε/2 < jN − ε/2. If f has only �nitely many jumps, say, N , this

reasoning yields the convergences (j
(n)
1 , . . . , j

(n)
N

) → (j1, . . . , jN ) and j
(n)

k
→ 0 for any k ≥ N +1.

For the second claim, we write for any integer N �xed,

∞
∑

k=1

|j (n)
k
− jk | ≤

N
∑

k=1

|j (n)
k
− jk | +

∞
∑

k=N+1

jk +

∞
∑

k=N+1

j
(n)

k
.

As n → ∞, the �rst term tends to 0 from (i). Let ε > 0 and �x N such that
∑∞
k=N+1 jk < ε .

Since f is a pure jump function, we have f (1) =
∑∞
k=1 jk and so

∑N
k=1

jk ≥ f (1) − ε . Finally,
since limn→∞ fn (1) = f (1), we conclude that

∑∞
k=N+1 j

(n)

k
≤ fn (1) −

∑N
k=1 j

(n)

k
≤ 2ε for n large

enough. �

3 Asymptotic size of the burnt subtrees in the critical regime

Fix c ∈ (0,∞) and consider the critical regime pn ∼ cn−1/2 of the �re dynamics on tn. Let κn be

the number of burnt subtrees, bn,1, . . . , bn,κn their respective size, listed in order of appearance,

and �nally b∗n,1 ≥ · · · ≥ b∗n,κn a non-increasing rearrangement of the latter. We can now state

the main result of this section.

Theorem 3. For all continuous and bounded maps f : (0, 1) → R and F : ℓ1(R) → R, we have

lim
n→∞

E

[
f

(

In

n

)

F

(

b∗n,1
n
, . . . ,

b∗n,κn
n

) ]

=

∫ 1

0

f (x )E

[
F

(

(1 − x )J1
σ (1)

,
(1 − x )J2
σ (1)

, . . .

) �����σ (1) =
1 − x
c2x2

]
P(D(c ) ∈ dx ),

where σ is a subordinator distributed as (3) and P(D(c ) ∈ dx ) is de�ned in (1).

Note that, taking F ≡ 1, this recovers the result (iii) in the introduction; moreover, since
∑

i Ji = σ (1), it strengthens (iii) by giving the decomposition of the burnt forest conditionally

given its total size.
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The proof is divided in two parts. As discussed in the introduction, we view the �re dy-

namics on tn as a mark process on the associated cut-tree Cut(tn ), which translates the vec-

tor n−1(In, b
∗
n,1, . . . , b

∗
n,κn

) into the proportion of leaves of the trees in the forest obtained by

logging Cut(tn ) at the marks. We prove that the marked tree Cut(tn ), properly rescaled, con-

verges to the CRT endowed with a certain point process; it follows that the previous vector

converges to the masses of the trees in the forest obtained by logging the CRT at the atoms

of the point process. We then study the distribution of the latter. As direct computations with

the CRT seem rather complicated, we approximate the marked CRT by a Galton-Watson tree

with Poisson(1) o�spring distribution conditioned to have n vertices and endowed with the

same mark process as the cut-tree Cut(tn ). We refer to Aldous [1] and Aldous and Pitman [3]

for prerequisites about the CRT, its logging by a Poisson point process and convergence of

conditioned Galton-Watson trees.

3.1 Binary cut-tree, �re dynamics and mark process

Given a tree Tn on a set of n labeled vertices, say [n] = {1, . . . ,n}, we build inductively its

cut-tree Cut(Tn ), which is a random rooted binary tree with n leaves. Each vertex of Cut(Tn )

corresponds to a subset (or block) of [n], the root of Cut(Tn ) is the whole set [n] and its leaves

are the singletons {1}, . . . , {n}. We remove successively the edges of Tn in a random uniform

order; at each step, a subtree of Tn with set of vertices, say, B, falls into two subtrees with

set of vertices, say, B′ and B′′ respectively; in Cut(Tn ), B
′ and B′′ are the two o�springs of B.

Notice that, by construction, the set of leaves of the subtree of Cut(Tn ) generated by some

block coincides with this block. See Figure 2 for an illustration.
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Figure 2: A tree with the order of cuts on the left and the corresponding cut-tree on the right.

Let tn be a Cayley tree with n vertices and let Cut(tn ) be the associated cut-tree. We can

encode the �re dynamics on tn as a mark process on the vertices of Cut(tn ). It is convenient

to see �reproof edges of tn as deleted, then when an edge is set on �re, the whole subtree

that contains it burns instantly and we mark the corresponding block of Cut(tn ). The leaves

of Cut(tn ) cannot be marked as they correspond to singletons in tn . Note that if a block of

Cut(tn ) is marked, its descendants are never marked because the edges of the corresponding

subtree of tn are no longer subject to the dynamics. The marked blocks of Cut(tn ) are exactly

the burnt components of tn and, as we noticed, their size is the number of leaves of the subtree

of Cut(tn ) they generate; see Figure 3 for an illustration.
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Figure 3: The forest after the dynamics and the corresponding marked cut-tree.

Given the cut-tree Cut(tn ), the mark process can be constructed as follows: at each gen-

eration, each internal (i.e. non-singleton) block is marked independently of the others with

probability pn provided that none of its ancestor has been marked, and not marked otherwise.

This is equivalent to the following two-steps procedure: mark �rst every internal block inde-

pendently with probability pn , then along each branch, keep only the closest mark to the root

and erase the other marks. We will refer to this procedure as themarking-erasing process asso-

ciated with the point process which marks each internal block independently with probability

pn.

3.2 Convergence of marked trees

It will be more convenient to mark Cut(tn ) on its edges rather than on its vertices so we shift

the marks de�ned above from a vertex to the edge that connects it to its parent: denote by

φ′n the mark process which marks each edge of Cut(tn ) which is not adjacent to a leaf on its

mid-point independently with probability pn , by φn the associated marking-erasing process

and by #(Cut(tn ),φn ) the vector whose entries count the number of leaves of each tree in the

forest obtained by logging Cut(tn ) at the marks of φn , the root-component �rst, and the next

in non-increasing order.

Let T be a rooted Brownian CRT, µ its uniform probability "mass" measure on leaves and

the usual distance d . The distance induces a "length" measure ℓ, which is the unique σ -�nite

measure assigning measure d (x,y) to the geodesic path between x and y in T. Denote by Φ′

a Poisson point process with intensity cℓ(·) on the skeleton of T, Φ the associated marking-

erasing process and #(T,Φ) the vector whose entries count the mass of each tree in the forest

obtained by logging T at the atoms of Φ, again the root-component �rst, and the next in non-

increasing order.

Lemma 2. The vector n−1#(Cut(tn ),φn ) converges in distribution to #(T,Φ) for the ℓ1 topology.

We endow the tree Cut(tn ) with the uniform distribution on leaves µn and the metric dn

given by the graph distance rescaled by a factor n−1/2. For every integer k ≥ 1, denote byRn (k )

the smallest connected subset of Cut(tn ) which contains the root [n] and k i.i.d. leaves chosen

according to µn ; we call Rn (k ) the tree Cut(tn ) reduced to those leaves. Denote similarly by

R(k ), the CRT reduced to k i.i.d. elements picked according to µ. We see the reduced trees as

�nite rooted metric spaces; the proof of Lemma 1 in Bertoin [5] shows that for every k ≥ 1
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�xed,

lim
n→∞

Rn (k ) = R(k ) in distribution (4)

in the sense of Gromov-Hausdor�. This is equivalent to the convergence of the rooted metric

measure spaces (Cut(tn ),dn, µn ) to (T,d, µ ) in distribution for the so-called Gromov-Prokhorov

topology.

Proof. Since the scaling factor of Cut(tn ) corresponds to pn , we may, and do, extend (4) to the

joint convergence of Rn (k ) and the trace of φ′n on its edges to R(k ) endowed with a Poisson

point process with rate c per unit length on its edges. The same convergence holds when

considering the marking-erasing processes; subsequently, for every k ≥ 1,

lim
n→∞

#Rn (k,φn ) = #R(k,Φ)

in distribution, where #Rn (k,φn ) denotes the vector whose entries count the number of leaves

of each tree in the forest obtained by logging Rn (k ) at the marks induced by φn, the root-

component �rst, and the next in non-increasing order, and similarly for #R(k,Φ). Since

lim
k→∞

k−1#R(k,Φ) = #(T,Φ),

it follows from a diagonal argument that for kn → ∞ su�ciently slowly as n →∞,

lim
n→∞

k−1n #Rn (kn,φn ) = #(T,Φ)

in distribution. Adapting Lemma 11 of Aldous and Pitman [3] to uniform sampling of leaves

instead of vertices, this �nally yields

lim
n→∞

n−1#(Cut(tn ),φn) = #(T,Φ)

in distribution. �

A consequence of this lemma is the following result, which is the �rst step in the proof of

Theorem 3. Recall that In stands for the total number of �reproof vertices of the Cayley tree tn,

κn for the number of burnt components and b∗n,1 ≥ · · · ≥ b∗n,κn for their respective size, ranked

in non-increasing order.

Proposition 2. We have

lim
n→∞

n−1
(

In, b
∗
n,1, . . . , b

∗
n,κn

) = #(T,Φ) in distribution.

Proof. Recall that the connected components of Cut(tn ) that do not contain the root corre-

spond to the burnt subtrees of tn, whereas the root-component corresponds to the �reproof

forest. Recall also that the number of leaves in Cut(tn ) of each component is the number of

vertices of the corresponding in tn. We then get the identity

(In, b
∗
n,1, . . . , b

∗
n,κn

) = #(Cut(tn ),φn ),

and the claim follows readily from Lemma 2. �
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To complete the proof of Theorem 3, we need to identify the limiting distribution #(T,Φ).

For this, we use a second discrete approximation of the latter. Denote by Tn a Galton-Watson

tree with Poisson(1) o�spring distribution conditioned to have n vertices and where labels are

assigned to the vertices uniformly at random. It is known, see for instance Aldous [1], that Tn

is distributed as a uniform rooted Cayley tree with n vertices and that, reduced to k vertices

picked uniformly at random and rescaled by a factor n−1/2, it converges to the CRT reduced

to k leaves. We endow Tn with the marking-erasing process ψn associated with the process

which marks each vertex independently with probability pn . Adapting Lemma 2 to Tn and the

uniform probability on vertices, we get

lim
n→∞

n−1#(Tn,ψn ) = #(T,Φ) in distribution. (5)

where #(Tn,ψn ) stands here for the number of vertices of each component, the root-component

�rst, and the next in non-increasing order. We now study the asymptotic behavior of this

vector in order to show that the right-hand side above is the limit in Theorem 3.

3.3 Asymptotic behavior of the size of the burnt blocks

Denote byCn,0 the size of the connected component ofTn that contains the root,Mn the number

of marks, andC∗n,1 ≥ · · · ≥ C
∗
n,Mn

the respective sizes of the other connected components, listed

in non-increasing order.

Proposition 3. For all continuous and bounded maps f : (0, 1) → R and F : ℓ1(R) → R,

lim
n→∞

E

[
f

(

Cn,0

n

)

F

(

C∗n,1
n
, . . . ,

C∗n,Mn

n

)]

=

∫ 1

0

f (x )E

[
F

(

(1 − x )J1
σ (1)

,
(1 − x )J2
σ (1)

, . . .

) �����σ (1) =
1 − x
c2x2

]
P(D(c ) ∈ dx ),

where σ is a subordinator distributed as (3) and P(D(c ) ∈ dx ) is de�ned in (1).

Before proving this result, notice �rst that Theorem 3 is a direct consequence of Proposi-

tions 2 and 3 and the convergence (5).

Proof of Theorem 3. Let f : (0, 1) → R and F : ℓ1(R) → R be two continuous and bounded

maps. From Proposition 2 and (5), the sequences

E

[
f

(

In

n

)

F

(

b∗n,1
n
, . . . ,

b∗n,κn
n

)]
and E

[
f

(

Cn,0

n

)

F

(

C∗n,1
n
, . . . ,

C∗n,Mn

n

)]

both converge to the same limit as n → ∞ and Proposition 3 gives the expression of the latter,

which is the one claimed in Theorem 3. �

It remains to prove Proposition 3. For any positive real number z, we de�ne the Borel distri-

bution with parameter z, which is the law of the size of a Galton-Watson tree with Poisson(z)

o�spring distribution:

P(Borel(z) = n) =
1

n!
e−nz (nz)n−1, n ≥ 1.

9



We also de�ne for any integer k , the Borel-Tanner distribution with parameter k as the sum

of k i.i.d. Borel(1) variables:

P(Borel-Tanner(k ) = n) =
k

(n − k )!
e−nnn−k−1, n ≥ k .

Borel and Borel-Tanner distributions appear in our context as the sizes of the connected com-

ponents of Tn.

Lemma 3. For any integers x,y with x + y ≤ n, conditionally on the event {Cn,0 = x,Mn = y},
the vector (C∗n,1, . . . ,C

∗
n,y ) is distributed as a non-increasing rearrangement of y i.i.d. Borel(1)

random variables conditioned to have sum n − x .

Proof. We explicitly write the condition for the size of the tree. Let T be a Galton-Watson tree

with Poisson(1) o�spring distribution; we endow it with the marking-erasing process associ-

ated with the process which marks each vertex independently with probability pn. Denote by

M̃n the number of marks, C̃n,0 the size of the root-component and, conditionally on {M̃n = y},
C̃∗n,1 ≥ · · · ≥ C̃∗n,y the ranked sizes of the other components. Note that on the event {M̃n = y},
we have |T| = C̃n,0 + C̃∗n,1 + · · · + C̃

∗
n,y .

Condition on the event {M̃n = y}; it is known that the subtrees of T generated by the

y atoms of the point process are independent Galton-Watson trees with Poisson(1) o�spring

distribution, independent of C̃n,0. Hence, on the event {M̃n = y}, C̃∗n,1, . . . , C̃∗n,y are i.i.d. Borel(1)
random variables, listed in non-increasing order and independent of C̃n,0. Further, on the event

{|T| = n, M̃n = y, C̃n,0 = x}, C̃∗n,1, . . . , C̃∗n,y are conditioned to have sum n − x . �

The Borel(1) distribution belongs to the domain of attraction of a stable law of index 1/2. A

consequence tailored for our need is the following: let (βi )i≥1 be i.i.d. Borel(1) random variables,

and for any k ≥ 1, denote by β∗1 ≥ · · · ≥ β∗
k
the order statistics of the �rst k elements of the

latter. Let also σ be a subordinator distributed as (3) and J1 ≥ J2 ≥ · · · ≥ 0 the ranked sizes of

its jumps made during the time interval [0, 1].

Lemma 4. Let λ,ν > 0 and two sequences of integers kn and an such that limn→∞ n
−1/2kn = λ

and limn→∞ n
−1an = ν . Then

lim
n→∞

*,*,
1

n

⌊
√
nt⌋∧kn
∑

i=1

βi , t ≥ 0+-
������
kn
∑

i=1

βi = an+- =
(

(σ (t ∧ λ), t ≥ 0)
���σ (λ) = ν )

in distribution for the Skorohod topology. As a consequence, the convergence of the ranked jumps

holds for the ℓ1 topology:

lim
n→∞

*,*,
β∗1
n
, . . . ,

β∗
kn

n
+-
������
kn
∑

i=1

βi = an+- = *,
ν J1

σ (1)
,
ν J2

σ (1)
, . . .

������σ (1) =
ν

λ2
+-

in distribution.

Proof. The �rst convergence is the result stated in Lemma 11 of Aldous and Pitman [2]. The

second then follows from the continuity obtained in Lemma 1. �
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We apply this convergence to the random sequencesMn and n −Cn,0 instead of kn and an .

They ful�ll the assumptions of Lemma 4 as it is shown in the following lemma that we prove

in the next subsection.

Lemma 5. Let D(c ) be a random variable distributed as (1). Then

lim
n→∞

(

Cn,0

n
,
Mn√
n

)

= (D(c ), cD(c )) in distribution.

In order to go from deterministic sequences to random sequences, we also use the following

elementary result (see Carathéodory [6], Part Four, Chapter I). Let X and Y be metric spaces

and f , f1, f2, . . . be functions de�ned from X to Y. We say that fn converges continuously to

f if for any x,x1,x2, · · · ∈ X such that limn→∞ xn = x in X, we have limn→∞ fn (xn ) = f (x ) in

Y. Then fn converges continuously to f if and only if f is continuous and fn converges to f

uniformly on compact sets.

Proof of Proposition 3. Let f : (0, 1) → R and F : ℓ1(R) → R be two continuous and bounded

maps. With the notations of Lemma 4, de�ne for any (u,v ) ∈ (0, 1) × (0,∞)

ϒn (u,v ) ≔ f (u)E

[
F

(

β∗1
n
, . . . ,

β∗⌊
√
nv⌋

n

) �����
⌊
√
nv⌋

∑

i=1

βi = n − ⌊nu⌋
]
,

and

ϒ(u,v ) ≔ f (u)E

[
F

(

(1 − u)J1
σ (1)

,
(1 − u)J2
σ (1)

, . . .

) �����σ (1) =
1 − u
v2

]
.

Then Lemma 4 states that ϒn (un,vn ) → ϒ(u,v ) whenever (un,vn ) → (u,v ). On the one hand,

E[ϒ(D(c ), cD(c ))] is the limit claimed in Proposition 3 and, from Lemma 3, the C∗n,i ’s are, con-

ditionally givenCn,0 andMn , distributed as ranked i.i.d. Borel(1) random variables conditioned

to have sum n −Cn,0. Then we also have

E

[
ϒn

(

Cn,0

n
,
Mn√
n

)]
= E

[
f

(

Cn,0

n

)

F

(

C∗n,1
n
, . . . ,

C∗n,Mn

n

)]
.

On the other hand, from the discussion above, ϒ is continuous (which is also a consequence

of Proposition 1) and ϒn → ϒ uniformly on compact sets. Let us bound from above

�����E
[
ϒn

(

Cn,0

n
,
Mn√
n

)]
− E

[
ϒ(D(c ), cD(c ))

] �����
by

E

[�����ϒn
(

Cn,0

n
,
Mn√
n

)

− ϒ
(

Cn,0

n
,
Mn√
n

) �����
]
+

�����E
[
ϒ

(

Cn,0

n
,
Mn√
n

)]
− E

[
ϒ(D(c ), cD(c ))

] �����.
From Lemma 5, since ϒ is continuous and bounded, the second term tends to 0. Moreover

ϒ, ϒ1, ϒ2, . . . are uniformly bounded, say by C > 0, therefore the �rst term is bounded from

above by

sup
x∈K

���ϒn (x ) − ϒ(x )��� + 2CP
((

Cn,0

n
,
Mn√
n

)

< K

)

,

for any compactK . The �rst term of the latter converges to 0 for any K and the second can be

made arbitrary small as the sequence is tight. �
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3.4 Asymptotic behavior of the number of burnt blocks

We �nally prove Lemma 5 which completes the proof of Proposition 3 and thereby that of

Theorem 3. We use the two following observations: the convergence of the �rst marginal

n−1Cn,0 holds and the conditional distribution of Mn givenCn,0 is known explicitly.

Lemma 6. We have limn→∞ n
−1Cn,0 = D(c ) in distribution.

Proof. Denote by µ (ξ0) the mass of the root-component of the CRT after logging at the atoms

of a Poisson point process with rate c per unit length (here keeping only the closest atoms to

the root does not matter). Then (5) yields limn→∞ n
−1Cn,0 = µ (ξ0) in distribution. The claim

follows from the identity µ (ξ0) = D(c ) in distribution stated in Corollary 5 of Aldous and

Pitman [3] since µ (ξ0) here is Y
∗
1 (c ) there. �

Lemma 7. For any n ≥ 2, the pair (Cn,0,Mn ) is distributed as follows: for any integers x,y such

that x + y ≤ n,

P(Cn,0 = x,Mn = y) =
n!(x (1 − pn ))x−1(xpn )y (n − x )n−x−y−1

nn−1x!(y − 1)!(n − x − y)!
.

Then, on the event {Cn,0 = x},Mn is distributed as Xn + 1 whereXn is a binomial random variable

with parameters n − x − 1 and (xpn )/(n − x + xpn ).

Proof. For the �rst claim, as in the proof of Lemma 3, we explicitly write the condition on the

size of the tree and work with a Galton-Watson tree with Poisson(1) o�spring distribution T:

P(Cn,0 = x,Mn = y | |T| = n)

=

P(Cn,0 = x ) P(Mn = y |Cn,0 = x ) P( |T| = n |Cn,0 = x,Mn = y)

P( |T| = n)
.

We know that |T| is Borel(1) distributed. Moreover, the root-component of T is a Galton-

Watson tree with Poisson(1−pn ) o�spring distribution, so thatCn,0 is Borel(1−pn ) distributed,
and on {Cn,0 = x}, Mn is the sum of x i.i.d. Poisson(pn ) random variables, so is Poisson(xpn )

distributed. Finally, from Lemma 3, on {Cn,0 = x,Mn = y}, |T| − x is the sum of y i.i.d. Borel(1)

random variables, i.e. is Borel-Tanner(y) distributed. Putting the pieces together gives the �rst

claim. For the second claim (with the implicit condition |T| = n), we then directly compute

P(Mn = y |Cn,0 = x ) = P(Cn,0 = x,Mn = y)

( n−x
∑

z=1

P(Cn,0 = x,Mn = z)

)−1

=

(n − x − 1)!
(y − 1)!(n − x − y)!

(

xpn

n − x + xpn

)y−1 (
n − x

n − x + xpn

)n−x−y

= P(Xn = y − 1),

where Xn is the desired binomial random variable. �

We can now prove Lemma 5.
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Proof of Lemma 5. We aim to show that for any s, t ≥ 0,

lim
n→∞

E

[
exp

(

− s
Cn,0

n
− t Mn√

n

)]
= E[exp(−(s + ct )D(c ))].

From Lemma 6, n−1Cn,0 → D(c ) in distribution, it is thus su�cient to show

lim sup
n→∞

�����E
[
exp

(

− s
Cn,0

n
− t Mn√

n

)]
− E

[
exp

(

− (s + ct )
Cn,0

n

)]����� = 0.

Let ε > 0 and �x δ > 0 such that for any n large enough, P(Cn,0 > (1 − δ )n) ≤ ε . We then

reduce to show the above convergence on the event {Cn,0 ≤ (1 − δ )n}. Using Lemma 7, we

compute for any 1 ≤ x ≤ n − 1 and any t ≥ 0,

E
[
e−tMn ���Cn,0 = x] = E

[
e−t (Xn+1)

]
= e−t

(

1 −
xpn (1 − e−t )
n − x + xpn

)n−x−1
.

Conditioning �rst on the value of Cn,0 and then averaging, we obtain

E

[
exp

(

− s
Cn,0

n
− t Mn√

n

)

1{Cn,0≤(1−δ )n}

]

=

⌊(1−δ )n⌋
∑

x=1

P
(

Cn,0 = x
)

exp

(

− sx
n

)

exp

(

− t
√
n

) (

1 −
xpn (1 − e−t/

√
n )

n − x + xpn

)n−x−1
.

Remark that, uniformly for x ≤ ⌊(1 − δ )n⌋,

xpn (1 − e−t/
√
n )

n − x + xpn
=

1

n − x

(

xct

n
+ o(1)

)

as n → ∞.

As a consequence, as n → ∞,

exp

(

− t
√
n

) (

1 −
xpn (1 − e−t/

√
n )

n − x + xpn

)n−x−1
= exp

(

− xct
n

)

(1 + o(1)),

uniformly for x ≤ ⌊(1 − δ )n⌋. Finally, the di�erence

E

[
exp

(

− s
Cn,0

n
− t Mn√

n

)

1{Cn,0≤(1−δ )n}

]
− E

[
exp

(

− (s + ct )
Cn,0

n

)

1{Cn,0≤(1−δ )n}

]

tends to 0 as n →∞, which completes the proof. �

4 Asymptotic proportion of �reproof vertices in the sub-

critical regime

We now consider the subcritical regime pn ≫ n−1/2 of the dynamics on tn. We prove the con-

vergence of the total number of �reproof vertices In, rescaled by a factor p
2
n (recall Theorem 1),

and also the following result on the size of the largest �reproof component.

Proposition 4. For any ε > 0, with a probability converging to 1 as n → ∞, there exists at least
one �reproof subtree larger than n−εp−2n but none larger than εp−2n .
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Let us sketch our approach to establish Theorem 1. We let the dynamics evolve until an

edge is set on �re for the �rst time, denoting this random time by ζn ∈ N ∪ {∞}. The event
{ζn = ∞} corresponds to the case where the whole tree is �reproof at the end. Conditionally

on {ζn = k} with k ∈ N, if we delete the k − 1 �rst �reproof edges, we get a decomposition

of tn into a forest of k trees. Then we set on �re an edge of this forest uniformly at random

and burn the whole subtree that contains the latter. The burnt subtree is therefore picked at

random with a probability proportional to its number of edges. We then study the dynamics

which continue independently on each of the k − 1 other subtrees.
Let σ be a subordinator distributed as (3) and J1 ≥ J2 ≥ · · · ≥ 0 the sizes of its jumps made

during the time interval [0, 1]. Let also e be an exponential random variable with parameter 1

independent of σ . We shall see thatpnζn converges to e in distribution and that the sequence of

the sizes of the non-burnt subtrees at time ζn , ranked in non-increasing order and rescaled by a

factorp2n , converges in distribution to (e2Jk )k≥1 in ℓ
1. Conditionally given (e2Jk )k≥1, we de�ne a

sequence (Xk (e))k≥1 of independent random variables sampled according to µe2 Jk respectively,

where for every x > 0, µx is the probability measure given by

µx (dy) =

(

x3

2πy(x − y)3

) 1/2

exp

(

−
xy

2(x − y)

)

dy, 0 < y < x . (6)

Note that ifX is distributed as µx , then x
−1X is distributed as D(x1/2 ), de�ned in (1). Indeed, µx

is the limit of the number of �reproof vertices in a subtree of asymptotic size x (see Lemma 8

for a precise statement). Informally, summing over all subtrees, since the dynamics on each

are independent, we get

lim
n→∞

p2nIn =

∞
∑

k=1

Xk (e) in distribution. (7)

Theorem 1 �nally follows from the identity

∞
∑

k=1

Xk (e) = Z
2 in distribution. (8)

To derive the latter, note that, conditionally given e, the sequence (e2Jk )k≥1 is distributed as the

ranked atoms of a Poisson random measure on (0,∞) with intensity e(2πx3)−1/2dx . Further,

conditionally given e, the sequence (e2Jk ,Xk (e))k≥1 is distributed as the atoms of a Poisson

random measure on (0,∞)2 with intensity e(2πx3)−1/2dxµx (dy), ranked in the non-increasing

order of the �rst coordinate. Therefore, conditioning �rst on e, using Laplace formula and

then averaging, we have for any q > 0,

E

[
exp

(

− q
∞
∑

k=1

Xk (e)

)]
=

∫ ∞
0

exp

(

−
∫
(0,∞)2

(1 − e−qy ) t
√
2πx3

dxµx (dy)

)

e−tdt .

Using the de�nition of µx and the change of variables (x,y) 7→ (y(x − y)−1/2,y), we see that
the right-hand side is equal to

∫ ∞
0

exp

(

− t − t
∫ ∞
0

(1 − e−qy )e−y/2
dy

√

2πy3

)

dt .
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We write

(1 − e−qy )e−y/2 =
(

1 − exp
(

−
2q + 1

2
y

))

−
(

1 − exp
(

−
y

2

))

;

since ∫ ∞
0

(

1 − exp
(

−
z2y

2

))

dy
√

2πy3
= z for any z > 0,

we �nally obtain,

E

[
exp

(

− q
∞
∑

k=1

Xk (e)

)]
=

∫ ∞
0

exp
(

− t
√

2q + 1
)

dt = (2q + 1)−1/2 = E
[
exp

(

− qZ 2
)]
.

In the rest of this section, we �rst prove the convergence of the sequence of the sizes of

the non-burnt trees after the �rst �re. We then establish (7) which, by (8), proves Theorem 1.

Finally, we prove Proposition 4.

4.1 Con�guration at the instant of the �rst �re

Recall that we denote by ζn the �rst instant where an edge is set on �re during the dynamics

on tn. Then ζn is a truncated geometric random variable:

P(ζn = ∞) = (1 − pn )n−1 → 0 as n → ∞,
and P(ζn = k ) = pn (1 − pn )k−1 for every k ∈ {1, . . . ,n − 1},

and pnζn converges in distribution to an exponential random variable with parameter 1. For

each integer k ≤ n, we denote by tn,1, . . . , tn,k the forest obtained by deleting k − 1 edges

of tn uniformly at random, where the labeling is made uniformly at random, and |tn,1 |∗ ≥
· · · ≥ |tn,k |∗ a non-increasing rearrangement of their sizes. We know from Lemma 5 in Bertoin

[5] (see also Pavlov [8] or Pitman [10]) that the sizes of these k subtrees are distributed as

i.i.d. Borel(1) random variables conditioned to have sum n: for any n1, . . . ,nk ≥ 1 such that

n1 + · · · + nk = n,

P( |tn,1 | = n1, . . . , |tn,k | = nk ) =
(n − k )!
knn−k−1

k
∏

j=1

n
n j−1
j

nj !
. (9)

Moreover, conditionally on the partition of {1, . . . ,n} induced by the k subsets of vertices

of these subtrees, the tn,i ’s are independent uniform Cayley trees on their respective set of

vertices.

Notice that on the event {ζn ≥ k}, the forest obtained by deleting the �rst k − 1 �reproof

edges is distributed as tn,1, . . . , tn,k and, further, ζn is independent of the latter. The forest at the

instant of the �rst �re is then distributed as follows: we �rst sample a (truncated) geometric

variable ζn and then independently the uniform forest tn,1, . . . , tn,ζn . Recall that the Borel(1)

distribution belongs to the domain of attraction of a stable law of index 1/2 so that, taking a

number of order p−1n of i.i.d. such random variables, the sum is typically of order p−2n . Then,

loosely speaking, conditioning this sum to be abnormally large, here of order n, essentially

amounts to conditioning one single variable to be large, the others being almost una�ected.

This feature is formalized in the next proposition.
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Proposition 5. We have

lim
n→∞

p2n (n − |tn,1 |∗, |tn,2 |∗, . . . , |tn,ζn |
∗) = e

2(σ (1), J1, J2, . . . ) in distribution.

Proof. The proof is similar to that of Proposition 3. Aldous and Pitman [3], equation (34),

provide the convergence in distribution

lim
n→∞

k−2n (n − |tn,1 |∗, |tn,2 |∗, . . . , |tn,kn |
∗) = (σ (1), J1, J2, . . . )

for any sequence kn = o(n
1/2). Let f : ℓ1(R) → R be a continuous and bounded function and

set for any x > 0

Fn (x ) ≔ E
[
f
(

p2n

(

n − |tn,1 |∗, |tn,2 |∗, . . . , |tn,⌊xp−1n ⌋ |
∗
)) ]
,

and

F (x ) ≔ E
[
f
(

x2
(

σ (1), J1, J2, . . .
))]
.

The previous convergence yields limn→∞ Fn (xn ) = F (x ) whenever limn→∞ xn = x . Using

Skorohod’s representation Theorem, we may suppose limn→∞ pnζn = e almost surely. Since

ζn is independent of the tn,i ’s, we have limn→∞ Fn (pnζn ) = F (e) almost surely and the claim

follows from Lebesgue’s Theorem. �

Recall that the �rst �re burns one subtree in the forest tn,1, . . . , tn,ζn and that the latter is

chosen at random with a probability proportional to its size minus one. Therefore, with high

probability, this burnt subtree has a size of order n and the forest that we obtain by discarding

this tree and the edges previously �reproof has a total size of order p−2n = o(n). This already

strengthens the result (i) of the introduction. The �re dynamics then continue independently

on each tree of this forest and the total number of �reproof vertices is the sum of the number

of �reproof vertices in each component.

4.2 Total number of �reproof vertices

We now study the dynamics on the remaining forest after the �rst �re. We know from Propo-

sition 5 that with high probability, the largest trees have size of order p−2n so that they are now

critical for the dynamicswhich continue on eachwith parameterpn = (p−2n )−1/2. To see this, we

slightly generalize the convergence (iii) of the introduction. Let (t′n )n≥1 be a sequence of Cayley

trees with size |t′n | ∼ ap−2n as n → ∞ for some a > 0 and de�ne I ′n = Card{i ∈ t′n : i is �reproof}.

Lemma 8. The law of p2nI
′
n converges weakly to the distribution µa de�ned by (6).

Proof. The proof of Theorem 1 in Bertoin [5] shows that |t′n |−1I ′n, the proportion of �reproof

vertices in t
′
n, converges in distribution to D(a1/2), as de�ned in (1). Since p2n |t′n | → a, we

get p2nI
′
n → aD(a1/2 ) in distribution. One easily checks that the latter is distributed according

to µa . �

Using Proposition 5 and Lemma 8, we can now prove (7) and so, Theorem 1.
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Proof of Theorem 1. Conditionally given ζn , we write (t′n,1, . . . , t
′
n,ζn

) for the trees obtained

by deleting the �rst ζn − 1 �reproof edges, listed so that t′n,1 is the tree burnt at time ζn and

|t′n,2 | ≥ · · · ≥ |t′n,ζn |. Note that

In =

ζn
∑

k=2

Card{i ∈ t′n,k : i is �reproof}.

From Proposition 5, we have

lim
n→∞

p2n (n − |t′n,1 |, |t′n,2 |, . . . , |t′n,ζn |) = e
2(σ (1), J1, J2, . . . )

in distribution. Therefore, for any ε > 0 there exists N ∈ N and then n0 ∈ N such that

P

( ∞
∑

k=N

e
2Jk > ε

)

< ε, and for any n ≥ n0, P

( ζn
∑

k=N+1

p2n |t′n,k | > ε
)

< ε .

Recall that, conditionally given (e2Jk )k≥1, (Xk (e))k≥1 is a sequence of independent random

variables sampled according to µe2 Jk respectively, where for every x > 0, µx is the probability

measure on (0,x ) given by (6). In particular, Xk (e) ≤ e
2Jk for every k ≥ 1; we also have

Card{i ∈ t′
n,k

: i is �reproof} ≤ |t′
n,k
|. Then

P

( ∞
∑

k=N

Xk (e) > ε

)

< ε,

and for any n ≥ n0,

P

( ζn
∑

k=N+1

p2nCard{i ∈ t′n,k : i is �reproof} > ε
)

< ε .

Conditionally on the partition of {1, . . . ,n} induced by the subsets of vertices of the subtrees,

the t′
n,k

’s are independent uniformCayley trees on their respective set of vertices. Proposition 5

and Lemma 8 thus yield

lim
n→∞

N
∑

k=2

p2nCard{i ∈ t′n,k : i is �reproof} =
N−1
∑

k=1

Xk (e) in distribution.

Since the rests are arbitrary small with high probability, we get

lim
n→∞

ζn
∑

k=2

p2nCard{i ∈ t′n,k : i is �reproof} =
∞
∑

k=1

Xk (e) in distribution.

The above convergence is (7), Theorem 1 then follows from (8). �

Combined with the results of Bertoin [5], Proposition 5 and Lemma 8 also entail Proposi-

tion 4 about the size of the largest �reproof connected component.
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Proof of Proposition 4. Fix ε > 0 and δ ∈ (0, 1/2). Let σ be a subordinator distributed as (3)

and χ ∈ (0, ε ) such that the probability that σ admits no jump larger than χ during the time

interval [0, 1] is less than δ . Consider the subtrees of tn larger than χp
−2
n when an edge is set on

�re for the �rst time. From Proposition 5, we know that the number of such trees converges

to the number of jumps larger than χ made by σ before time 1. The latter is almost surely

�nite and non-zero with a probability greater than 1 − δ . Now from Lemma 8, these subtrees

are critical and thus for each, from Corollary 1 and Proposition 1 of Bertoin [5], the probability

that there exists a �reproof component larger than εp−2n tends to 0 and the probability that

there exists at least one larger than n−εp−2n tends to 1. Therefore for any n large enough, on the

one hand there exists in tn a �reproof subtree larger than n
−εp−2n and on the other hand there

exists none larger than εp−2n , both with a probability at least 1 − 2δ . The claim follows since δ

is arbitrary. �

5 Asymptotic proportion of burnt vertices in the super-

critical regime

We �nally consider the supercritical regime n−1 ≪ pn ≪ n−1/2 and prove Theorem 2. Recall

that bn,1, . . . , bn,κn denote the sizes of the burnt subtrees, listed in order of appearance. Let

(ei )i≥1 be a sequence of independent exponential random variables with parameter 1 and for

each i ≥ 1, denote by γi ≔ e1+ · · ·+ei . Let also (Zi )i≥1 be a sequence of i.i.d. standard Gaussian

random variables, independent of (γi )i≥1. We shall prove the following result.

Theorem 4. We have

lim
n→∞

(npn )
−2(bn,1, . . . , bn,κn ) = (γ−2i Z 2

i )i≥1

in distribution for the ℓ1 topology.

Theorem 2 follows as a corollary.

Proof of Theorem 2. As a consequence of Theorem 4, we have the convergence of the sums:

lim
n→∞

(npn )
−2Bn =

∞
∑

i=1

γ−2i Z 2
i in distribution.

Note that the sequence (γi )i≥1 is distributed as the atoms of a Poisson random measure on

(0,∞) with intensity dx , it follows readily that the sequence (γ−2i Z 2
i )i≥1 is distributed as the

atoms of a Poisson random measure on (0,∞) with intensity (2πx3 )−1/2dx . The above limit is

thus distributed as σ (1) where σ is the subordinator de�ned by (3); Theorem 2 �nally follows

from the well-known identity σ (1) = Z−2 in distribution. �

As discussed in the introduction, in order to prove Theorem 4, we �rst show the joint

convergence of the �rst j coordinates for any j ≥ 1, and then that, taking j large enough, the

other coordinates are arbitrary small with high probability. We conclude in the same manner

as in the proof of Theorem 1.
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5.1 Asymptotic size of the �rst burnt subtrees

We �rst prove the convergence of the size of the �rst burnt subtree bn,1. As in the preceding

section, we let the dynamics evolve until an edge is set on �re for the �rst time, denoting this

random time by ζn . The size of the tree that burns at this instant is distributed as one among ζn
i.i.d. Borel(1) random variables conditioned to have sum n, chosen proportionally to its value

minus 1. As we have seen, pnζn converges in distribution to an exponential random variable

with parameter 1, thus ζn is typically of order p−1n and the sum of ζn i.i.d. Borel(1) random

variables is of order p−2n . In the previous section, we considered p−2n = o(n) and we have seen

that conditioning these random variables to have sum n essentially amounts to conditioning

one to be of order n (Proposition 5). The behavior is notoriously di�erent when n = o(p−2n ).

As an example, Pavlov [8], Theorem 3, gives an asymptotic of the size of the largest subtree

when one removes kn − 1 edges uniformly at random, with n = o(k2n ).

Lemma 9. As n →∞, (npn )−2bn,1 converges in distribution to e−2Z 2 where Z and e are indepen-

dent, respectively standard Gaussian and exponential with parameter 1 distributed.

Proof. We work throughout the proof conditionally on {ζn = kn} with kn ∼ cp−1n , c > 0

arbitrary and show the convergence in distribution (npn )
−2bn,1 → c−2Z 2. The general claim

then follows as in the proof of Proposition 5. For any λ ≥ 0, we write

E[e−λ(npn )
−2bn,1 | ζn = kn] =

∞
∑

m=0

e−λ(npn )
−2mP(bn,1 =m | ζn = kn )

=

∫ ∞
0

e−λ(npn )
−2 ⌊x⌋P(bn,1 = ⌊x⌋ | ζn = kn )dx

=

∫ ∞
0

e−λ(npn )
−2 ⌊x (npn )2⌋ (npn )

2P(bn,1 = ⌊x (npn )2⌋ | ζn = kn )dx .

We show the pointwise convergence of the densities

lim
n→∞

(npn )
2P(bn,1 = ⌊x (npn )2⌋ | ζn = kn ) =

c
√
2πx

exp
(

− c
2x

2

)

,

then Sche�é’s Lemma implies that this convergence also holds in L1, which allows us to pass

to the limit in the above integral:

lim
n→∞

E[e−λ(npn )
−2bn,1 | ζn = kn] =

∫ ∞
0

exp(−λx )
c
√
2πx

exp

(

−
c2x

2

)

dx = E[e−λc
−2Z2

].

Recall from (9) the distribution of kn i.i.d. Borel(1) random variables conditioned to have sum

n: for any integers n1, . . . ,nkn ≥ 1 such that n1 + · · · + nkn = n,

P(βn,1 = n1, . . . , βn,kn = nkn ) =
(n − kn )!
knnn−kn−1

kn
∏

j=1

n
n j−1
j

nj !
.

In particular, the βn,j ’s are identically distributed and for anymn ∈ {1, . . . ,n−kn + 1}, summing

over all the n2, . . . ,nkn ≥ 1 such that n2 + · · · + nkn = n −mn,

P(βn,1 =mn ) =
(n − kn )!
knnn−kn−1

mmn−1
n

mn!

(kn − 1)(n −mn )
n−mn−kn

(n −mn − kn + 1)!
.
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Recall that on the event {ζn = kn}, bn,1 is distributed as one of the variables βn,1, . . . , βn,kn
chosen proportionally to its value minus 1. Therefore, for anymn ∈ {1, . . . ,n−kn + 1}, we have

P(bn,1 =mn | ζn = kn ) =
kn
∑

j=1

P(bn,1 = βn,j | βn,j =mn ) P(βn,j =mn )

= kn
mn − 1
n − kn

P(βn,1 =mn )

= (mn − 1)(kn − 1)
(n − kn − 1)!
nn−kn−1

m
mn−1
n

mn!

(n −mn )
n−mn−kn

(n −mn − kn + 1)!
.

Suppose thatmn,kn → ∞ as n → ∞ withmn,kn = o(n), then Stirling’s formula yields

P(bn,1 =mn | ζn = kn )

=

1
√
2π

kn

n
√
mn

exp

(

−
k2nmn

2n2
+O

(

k3nmn

n3

)

+O

(

(knmn )
2

n3

))

(1 + o(1)).

For any x, c > 0, takingmn = ⌊x (npn )2⌋ and kn ∼ cp−1n , we obtain

(npn )
2P(bn = ⌊x (npn )2⌋ | ζn = kn ) =

c
√
2πx

exp

(

− c
2x

2
+O

(

1

npn

)

+O (np2n )

)

(1 + o(1))

=

c
√
2πx

exp

(

− c
2x

2

)

(1 + o(1)),

and the proof is now complete. �

More generally, for any integer j ≥ 1, denote by ζn,j the time of the j-th �re, so that bn,j
denotes the size of the subtree burnt at time ζn,j .

Proposition 6. We have for any j ≥ 1,

lim
n→∞

(npn )
−2(bn,1, . . . , bn,j ) =

(

γ−21 Z 2
1 , . . . ,γ

−2
j Z 2

j

)

in distribution.

Proof. We prove the claim for j = 2 for simplicity of notation, the general case follows by

induction in the samemanner. Notice �rst that the times at which the �rst j �res appear jointly

converge:

lim
n→∞

pn (ζn,1, . . . , ζn,j ) = (γ1, . . . ,γj ) in distribution. (10)

Indeed, conditionally given the size of the �rst burnt subtree bn,1 =m and the number of edges

previously �reproof ζn,1 − 1 = k − 1, it remains a forest containing (n − 1) − (k − 1) − (m − 1) =
n−m−k + 1 edges and the time ζn,2−ζn,1 we wait for the second �re after the �rst one is again
a truncated geometric random variable which takes value

∞ with probability (1 − pn )n−m−k+1,
and ℓ with probability pn (1 − pn )ℓ−1, for any ℓ ∈ {1, . . . ,n −m − k + 1}.

Since bn,1+ζn,1 = o(n) in probability, we see that pn (ζn,2−ζn,1), conditionally given bn,1 and ζn,1,

converges in distribution to an exponential random variable with parameter 1. This yields (10)

in the case j = 2.
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The same idea gives the claim of Proposition 6. The remaining forest after the �rst �re is,

conditionally given bn,1 and ζn,1, uniformly distributed amongst the forests with ζn,1 − 1 trees

and n − bn,1 vertices. Therefore, conditionally given bn,1 and ζn,2, bn,2 is distributed as the size

of a tree chosen at random with probability proportional to its number of edges in a forest

consisting of ζn,2 − 1 trees with total size n − bn,1 ∼ n. Then the proof of Lemma 9 shows that

such a random variable, rescaled by a factor (npn )
−2, converges in distribution to γ−22 Z 2

2 . This

yields

lim
n→∞

(npn )
−2

(

bn,1, bn,2
)

=

(

γ−21 Z 2
1 ,γ
−2
2 Z 2

2

)

in distribution,

and the proof is complete after an induction on j. �

5.2 Asymptotic size of all burnt subtrees

To strengthen the convergence from �nite dimensional vectors to the ℓ1 convergence, we need

to bound the remainders. This is done in the following lemma, the last ingredient for the proof

of Theorem 2.

Lemma 10. For any ε > 0, we have

lim
j0→∞

lim sup
n→∞

P

(

(npn)
−2
∞
∑

j=j0

bn,j > ε

)

= 0.

In order to prove this result, we consider a slightly di�erent sequence of random subtrees of

tn, which can be coupled with the sequence of burnt subtrees and for which the study is easier.

Precisely, consider the following random dynamics on tn : we remove successively the edges

in a random uniform order and at each step, we mark one subtree at random proportionally

to its number of edges. We stress that in this procedure, the subtrees are not burnt, which

implies that the edges of a marked subtree can be removed afterward and that a subtree of a

marked one may be marked as well. For each k = 1, . . . ,n − 2, we denote by b′
n,k

the size of

the subtree which is marked when k edges have been removed.

Lemma 11. There exists a numerical constantC > 0 such that for any a > 0, we have

lim sup
n→∞

n−2p−1n

⌊n−un⌋
∑

k=⌊ap−1n ⌋

E[b′n,k] ≤
C

a
,

where un = n exp(−
√
npn ) for every integer n.

The role of the sequencesun and ap
−1
n shall appear in the proofs of Lemma 11 and Lemma 10;

note that since limn→∞ npn = ∞, we have

lim
n→∞

pnun = 0 and lim
n→∞

(npn )
−1 ln

(

n − un
un

)

= 0. (11)

The �rst convergence shows that the sum in Lemma 11 is not empty for n large enough.
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Proof. Fix k ≤ n − 2 and let (βn,1, . . . , βn,k ) be a k-tuple formed by i.i.d. Borel(1) random

variables conditioned to have sum n. As we have seen, b′
n,k

can be viewed as one the βn,i ’s

picked at random with probability proportional to its value minus one and hence,

E[b′n,k] = E

[ k
∑

i=1

βn,i
βn,i − 1
n − k

]
=

n

n − k
E

[ k
∑

i=1

(βn,i − 1)
βn,i

n

]
.

Bertoin [4], Section 3.1, provides an upper bound for the expectation on the right-hand side.

Precisely, Proposition 1 in [4], together with Lemma 5 and equation (2) there, shows that there

exists a numerical constant K > 0 such that for every integers 1 ≤ k ≤ n, we have

E

[ k
∑

i=1

(βn,i − 1)
βn,i

n

]
≤ K

(

n

k

)2

.

Hence for every n,
⌊n−un⌋
∑

k=⌊ap−1n ⌋

E[b′n,k] ≤ Kn
3
⌊n−un⌋
∑

k=⌊ap−1n ⌋

1

k2 (n − k )
.

Comparing sums and integrals, we have on the one hand,

⌊3n/4⌋
∑

k=⌊ap−1n ⌋

1

k2 (n − k )
≤

4

n

⌊3n/4⌋
∑

k=⌊ap−1n ⌋

1

k2
=

4

a
n−1pn (1 + o(1)),

and on the other hand,

⌊n−un⌋
∑

k=⌈3n/4⌉

1

k2 (n − k )
≤ n−2

[
ln(x ) − ln(n − x ) −

n

x

]n−un
3n/4

= n−2 ln

(

n − un
un

)

(1 + o(1)).

Summing the two terms and appealing (11), we obtain

⌊n−un⌋
∑

k=⌊ap−1n ⌋

E[b′n,k] ≤
4K

a
n2pn (1 + o(1)),

and the claim follows. �

We have a natural coupling between burnt and marked subtrees, which enables us to de-

duce Lemma 10 from Lemma 11: for each k = 1, . . . ,n − 2, we toss a coin which gives Head

with probability pn; the �rst burnt subtree, say, tn,1, is distributed as the �rst marked subtree,

say, t′
n,k

, for which the outcome is Head. Then, the second burnt subtree tn,2 is distributed as

the next marked subtree for which the outcome is Head and which is not contained in t
′
n,k

, and

so on. In the next proof, we implicitly assume that the marked and burnt subtrees are indeed

coupled.

Proof of Lemma 10. Fix ε, δ > 0 and a > δ−1. Since pnζn,j → γj in distribution as n → ∞ for

any j ≥ 1 and j−1γj → 1 in probability as j → ∞ from the law of large numbers, we may, and

do, �x j0 ≥ 1 and further n0 ≥ 1 such that for any n ≥ n0, we have

P(ζn,j0 > ap
−1
n ) ≥ 1 − δ .
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For any j ≥ 1, denote by θn,j − 1 the number of edges that have been removed in the marking

procedure when we mark the subtree corresponding to the burnt subtree bn,j . We have

∑

j≥j0
bn,j ≤

n−2
∑

k=1

b′n,k1{ηk=1}1{k≥θn, j0 },

where ηk = 1 if and only if the outcome of the coin which is tossed at the k-th step is Head.

Further, since ζn,1 = θn,1 and ζn,j ≤ θn,j for every j ≥ 2, we see that

P

(

(npn )
−2
∞
∑

j=j0

bn,j > ε
����� ζn,j0 > ap−1n

)

≤ P

(

(npn )
−2

n−2
∑

k=⌊ap−1n ⌋

b′n,k1{ηk=1} > ε

)

.

Recall that limn→∞ pnun = 0, which implies that the probability that no tree is marked after

the ⌊n − un⌋-th step is (1 − pn ) ⌈un⌉−2 ≥ 1 − δ for any n large enough. Finally, from Lemma 11,

lim sup
n→∞

P

(

(npn )
−2
⌊n−un⌋
∑

k=⌊ap−1n ⌋

b′n,k1{ηk=1} > ε

)

≤ lim sup
n→∞

ε−1(npn )
−2
⌊n−un⌋
∑

k=⌊ap−1n ⌋

E[b′n,k]pn ≤ ε
−1C

a
.

We conclude that

lim sup
n→∞

P

(

(npn )
−2
∞
∑

j=j0

bn,j > ε

)

≤ ε−1Cδ + 2δ ,

and the claim follows since δ is arbitrary. �

Using the same reasoning as in the proof of Theorem 1, Theorem 4 follows readily from

Proposition 6 and Lemma 10.

Proof of Theorem 4. For every n, j ≥ 1, we write ((npn )
−2bn,k )k≥1 = Sn (j ) + Rn (j ) with

Sn (j ) = (npn )
−2

(

bn,1, bn,2, . . . , bn,j, 0, 0, . . .
)

,

and

Rn (j ) = (npn)
−2

(

0, . . . , 0, bn,j+1, bn,j+2, . . .
)

;

and similarly, (γ−2i Z 2
i )i≥1 = S (j ) + R(j ), with

S (j ) =
(

γ−21 Z 2
1 ,γ
−2
2 Z 2

2 , . . . ,γ
−2
j Z 2

j , 0, 0, . . .
)

,

and

R(j ) =
(

0, . . . , 0,γ−2j+1Z
2
j+1,γ

−2
j+2Z

2
j+2, . . .

)

.

From Proposition 6, for any j ≥ 1, limn→∞ Sn (j ) = S (j ) in distribution. Further, for any ε > 0,

since the sequence (γ−2i Z 2
i )i≥1 is summable, and thanks to Lemma 10, there exists j0 ≥ 1 and

then n0 ≥ 1 such that

P(‖R(j0)‖ > ε ) < ε, and for every n ≥ n0, P(‖Rn (j0)‖ > ε ) < ε .

which completes the proof. �
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