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SOUND CLASSIFICATION IN INDOOR ENVIRONMENT THANKS TO BELIEF FUNCTIONS

Quentin Labourey*T, Denis Pellerin*, Michele Rombaut*, Olivier AycardT, Catherine GarbayT

* Univ. Grenoble Alpes
GIPSA-Lab, F-38000 Grenoble, France

ABSTRACT

Sounds provide substantial information on human activities
in an indoor environment, such as an apartment or a house,
but it is a difficult task to classify them, mainly due to the
variability and the diversity of realization of sounds in those
environments. In this paper, sounds are considered as a class
of information, to be mixed with other modalities (video in
particular) in the design of ambient monitoring systems. As
a consequence, we propose a classification scheme aimed at
(i) exploiting the specificities of this modality with respect
to others and (ii) leaving doubtful events for further analysis,
so that the risk of errors is overall minimized. A dedicated
taxonomy together with belief functions are proposed in this
respect. Belief functions are an adapted way to face the vari-
ability of sounds, as they are able to quantify their impossibil-
ity to classify the signals when it differs too much from what
is known by creating class of doubt. The algorithm is tested
on a dataset composed of real-life signals.

Index Terms— Sound classification, Indoor sounds, Be-
lief functions, Features selection, Reject class

1. INTRODUCTION

Intelligent systems equipped with sensors are starting to ap-
pear in our homes: home automation, monitoring systems,
companion robots, intelligent toys are becoming accessible
to everyone. In order to get information about human activ-
ity, sensors (typically cameras and microphones) provide sub-
stantial amounts of data, but they all require adapted percep-
tion algorithms to interact with the user. In this paper, sounds
are considered as a source of information, to be mixed with
other modalities (video in particular) in the design of ambient
monitoring systems (figure 1). Extensive works have been
performed as regards the visual modality in indoor environ-
ment, but sound classification in those environments is still
an open and complex problem. Sounds can be a very good
indicator of the content of a scene, or at least give hints as to
what the objects of interest in the scene are.

However, the variety of sounds encountered in real-life
scenarios, as well as the small quantity of available labelled
data to learn from, often lead to a restrained framework of
classification: discrimination between speech and music, mu-
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sic genre differentiation, speaker recognition, footstep detec-
tion, etc... The variety of sounds also makes it difficult to pro-
pose a hard classification method as a sound coming from the
same source can change depending on the situation. More-
over, in case of an interactive or reactive system, misclassi-
fication can have serious negative consequences, particularly
in the case of monitoring systems.

As a consequence, we propose a classification scheme
grounded on two pillars. Firstly, sound should be exploited
as a modality that brings specific information, whose role is
to complement others. Therefore, there is no need to ground
the classification scheme on a wide taxonomy, accounting for
any event in the monitored scene. Secondly, the risk of er-
ror should be minimized, in order that information provided
by this modality may be considered as reliable. Hard classi-
fication is then to be avoided. Rather, doubtful events may
be classified as such in a “doubt”/’unknown” class and left
for further investigation, under complementary modalities. A
dedicated taxonomy together with belief functions are pro-
posed in this respect.
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Fig. 1. General framework of an ambient monitoring system:
the proposed system is in the bold rectangle
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Section 2 briefly presents previous works on sound classi-
fication in different frameworks, section 3 presents the chosen
taxonomy. Sections 4 describes the studied features and the
method used for the selection of pertinent features. Section 5
describes how the doubt is implemented in the classification
scheme thanks to a K-Nearest Neighbours algorithm in the
context of belief functions. The dataset and the results of the
classification on real-life signals are presented in sections 6
and 7.



2. PREVIOUS WORKS

Different approaches have been used for sound classification,
although the global scheme is oftentimes similar: find a de-
scription space that separates the different classes at best and
apply classification or separation in that space. Most of the
time, finding the right description space to describe the sig-
nal at best means extracting features describing the most dis-
criminant characteristics from the signals. Numerous types of
classification algorithms can be used.

The literature on sound classification is diverse, in differ-
ent fields:

e Speech/music discrimination or musical genre discrimi-
nation have been extensively explored with various meth-
ods, some examples of which are: [1] and [2] worked on
the discrimination of a music dataset into different genre,
using GMM and KNN for classification on various clas-
sical features. [3] worked on the differentiation between
speech and music, introducing the uncertainty inside his
classification with the use of the C-means algorithm.
However this uncertainty was not used in the decision
step. A more complete and recent review of speech/music
discrimination methods can be found in [4].

e Indoor sound classification: The literature is less diverse
on the topic, as it is fairly new, however some works have
been performed, mainly on recognizing sound-events
or particular activities that can be heard in a home: [5]
worked on sound-event detection thanks to a humanoid
robot with a method based on vector quantization with
a very precise taxonomy on particular activities, [6] per-
formed an experiment inside an automated home, where
people were supposed to accomplish daily activities dur-
ing a time and the sound was acquired. An event-detection
system followed by a rather simple sound classification
was executed, then automatic speech recognition was
performed on that database, however the dataset itself is
quite complex. Various other works on specific problems
exist such as elder fall detection [7], footstep classifi-
cation [8], but the present work tries to define a more
general framework.

3. SEMANTIC GRANULARITY OF CLASSES

Most of the works described in the previous section are based
on a semantically precise taxonomy [9], which can be hinder-
ing in some cases:

e Having a lot of precise classes means having to learn the
different classes on precise objects of a defined environ-
ment. This would cause problems for adapting the system
to a new environment.

e The diversity of indoor sounds makes it difficult to chose
a granularity when semantic classes are chosen, and even
inside a semantic class, the realizations can be diverse,

e.g. should we make the difference between a door slam-
ming and a window slamming, or footsteps on a wooden
floor and footsteps on tiles ?

e [t is important for an intelligent system to make as few er-
rors as possible, particularly in case of monitoring. If two
classes are close in terms of features but semantically very
different (e.g. a person falling versus a door slammed), it
might be better to consider that they are the same class to
further investigate it with other sensors such as cameras
or depth-sensors.

From these considerations, we decided to consider the fol-
lowing classes. These classes are meant to share a common
fate as regards the overall goal of our design, being (i) solely
identified on the basis of sound information, and (ii) discrim-
inated with a rather high confidence:

e Speech: In indoor environment, speech is the most impor-
tant indicator of a person being in presence. It is important
for monitoring systems to be able to detect if a person is
speaking or not.

e Music: Music is a very common sound that can be heard
in indoor environment: radio, television, music is almost
everywhere in our everyday life.

e Short indoor sounds (impact): It is difficult to separate
the sound of a door slamming, a person falling, the impact
of something thrown on a table, etc... However each time
an impact is heard, it is important to be able to classify it
as it can mean a problem.

e Long indoor sounds: This class regroups all sounds
with sparse energy that are longer than an impact: steps,
knocking, clothes friction, etc..

e Doubt: As said, the variability and the diversity of sounds
that can be heard in indoor environments makes it impor-
tant to be able to classify an extract as an unknown sound.
The source of this type of sounds will require investiga-
tion by other sensors.

4. FEATURES SELECTION

To classify the extracts at best, it is necessary to chose adapted
features. This section briefly describes the features that were
studied for this work, and the way the signal is finally rep-
resented before classification, by selecting the features that
separate the classes best individually. The features that were
chosen in the final selection are marked with a ”*” sign. A
more thorough description of the features can be found in [3].

The process of feature extraction is the following one: a
sliding hamming window W is applied on the whole signal
with overlapping. At each window position, features are ex-
tracted. As this represents a lot of data, those features are sta-
tistically aggregated to obtain one feature vector per signal,
which is the final representation.



4.1. Classic sound features

Features in sound analysis are classically divided into 3 broad
categories: temporal, spectral and transform features.

In temporal features, one of the most classic is the root
mean square energy (E), which represents the quantity of en-
ergy associated with a portion of the signal. As such this
feature does not give much information about the content of
the signal but enables the computation of Low Energy frames
(LE)* which is the fraction of frames which energy is lower
than a portion of the average root mean square energy across
all frames. This feature is efficient to detect the temporal spar-
sity of energy across the signal. More precisely it can easily
discriminate signals with an energy temporally focused at one
instant. Another frequently used temporal feature is the Zero
Crossing Rate (ZCR), which has been extensively used in the
speech/music discrimination framework. It counts the num-
ber of time the signal changes its sign inside an analysis win-
dow.

In spectral features, the spectral flux (SF)* represents the
local temporal variations of the spectrum, while central fre-
quency and bandwidth describe the repartition of the energy
in a window of analysis. Spectral Rollof is defined as the
quantity of the spectrum containing a defined percentage «
of the power spectrum. Most of the time the percentage is
chosen between 80% and 95%.

As for transform features, Mel-Frequency Cepstrum Co-
efficients (MFCC)* are amongst the most commonly used
features in speech recognition and discrimination. They are
obtained by mapping Fourier coefficients on the Mel-scale
thanks to triangular overlapping windows. As for [3], only
the first 13 MFCCs are extracted as the first coefficients are
known to be the most significant.

4.2. Normalization and final representation

To compare the different features, the euclidian distance is
used. As the features do not have the same dynamic, it is
important to normalize each feature across the whole dataset
to avoid favoring a feature with a bigger dynamic during the
distance computations.

Each of the cited features are extracted for every window
of analysis, which means that for a 10 second signal, with a
20 ms window analysis W, a total of 950 features is extracted
from one signal. To obtain a representation of lesser dimen-
sion of the signal, we chose to compute for each feature the
mean and variance, which leaves us with a representation of
the signal by a feature vector s; of size N = 40.

4.3. Feature selection

Extracting a lot of features does not mean obtaining better re-
sults in the classification. As we are going to base the classifi-
cation on the euclidean distance between signals in the feature

space, we can have a rough idea of how individual features
will separate the different classes side-by-side, by comput-
ing the mean distance between each pair of class for that fea-
tures only, and taking into account intra-class mean distance,
to choose feature that represents the classes in the most com-
pact way. That is why the following expression is computed
for each feature and each pair of classes:

Dinter(ci7 C])
Dintra(ci) + Din,tTa(Cj)
where D;,.-(C;,C;) is the mean distance between all pairs of
classes C; and C; for the considered feature. Let C; contain
N; examples x; of the considered feature, and C; contain Ny
examples y;:

6]

D¢, c;, =

N1 N3
Dinter = »_ > _ |zi — yj 2)
i=1 j=1
Dintra 18 the same distance within one class. This enables us
to see which features separates the classes best. The higher
the distance, the more distinct the classes in the considered
feature domain.

An arbitrary number of four features were chosen for the
classification amongst those that yielded the higher distance
between classes: two MFFC variances for MFCC number 2
and number 4, the spectral flux variance, and a very selective
LE selecting the number of frames with a root mean square
energy higher than 10 times the average value. It appears
that the features that discriminate the classes at best indi-
vidually are either transform domain features (MFCCs have
shown great results in speech and music discrimination in the
past), or representative of the temporal repartition of energy in
the signal. It makes sense, since our classes are partly based
on the sparsity of energy inside the signal. Spectral feature
that describes that signal at a precise time like bandwidth or
central frequency, might not suffice, as a class can be quite
diverse spectrum-wise, while features that describes the evo-
lution of the spectrum in time, such as the spectral flux might
be better. Those four features are well adapted to our pro-
posed taxonomy.

5. CLASSIFICATION SCHEME

As it was stated before, it is important to have as few mis-
classification as possible: if a person falling is classified as a
person speaking by mistake, the system cannot be considered
efficient.

The classification algorithm used for this work has to take
into account the uncertainty of classification, which means
”hard” classification must be ruled out. Moreover, it is im-
portant to quantify the ignorance we have about the class of
the considered extract: if the system is unable to classify the
sound heard, information can be relayed to sensors that might
be able to understand the nature or the source of the sound.



Belief functions are particularly adapted to that kind of
classification [10]: they enable the classification system to
quantify its ignorance about the considered extract. The clas-
sification used here is the belief K-Nearest neighbors: part of
the dataset is used as a training set (labelled data), and the
rest is used as the validation set.

For each signal s to classify amongst the class C = {{C }-
-+ {Chs}}, the class of its K nearest neighbors x; with i €
{1,.., K} is observed. For the i" neighbor of class C,, the
basic probability assignment on the subsets of C is built as
follows:

m* ' ({Cy}) = aexp™ 3)
m*i(C) =1— aexp 7% (4)
m*(C,) =0 (5)

where -y is a constant enabling to control the decrease in belief
in class C, with respect to the distance d to the neighbor x;.
Here, ~y is set to the mean euclidean distance within the class
C,. « is a constant enabling the doubt even if the extract
to classify is placed at the exact same place as labelled data
(here 0.95). m(C)) represents the belief that is committed to
Cy, and m(C) is the belief committed to ignorance (any class
is possible). m*(C,) represents the belief committed to any
class other than Cj;.

The belief masses of neighbors x; of the same class C,, are
then aggregated in one unique belief mass mg:
mch=1- I (1-aexp®)  ©

g qu

H (1 —« exp’ydi) @)

r;€Cy

Finally, all belief masses of all neighbors are aggregated
in on final belief mass m® thanks to a Dempster combination
(as shown in [10]):

sH{c s(C
P ((<h) EI#Q o)
M s
o () = Ha=1™a(©) ©)
n
where 7 is a normalization constant:
M M
n=> |TIm@)|+a-m][m; a0
q=1 [r#q q=1

The value 1-n) represents the conflict: the higher the value
of 1, the more the belief mass cannot be attributed to any class
(ignorance included).

At the end of this process, a unique belief function is ob-
tained, representing for each class the belief for the extract to

belong to that class. A decision can be taken as to which la-
bel L is assigned to the considered extract. Several types of
decision exist in the literature, here the attributed class is the
class with the highest belief mass.

L = max(m®(C;)),C; ¢ C (11)

It also means that if m(C) is the maximum, the extract will
be classified as unknown (doubt), which turns the ignorance
into a class itself.

6. DATASET AND PARAMETER SELECTIONS

The accessibility to indoor sound data acquisition is still com-

plicated and the datasets are often quite complex. In this pa-

per, the signals composing the database are taken from differ-
ent datasets:

e Speech: 27 extracts of 10 seconds of speech were ex-
tracted, mainly from the GTZAN database [1] which re-
groups music and speech examples from various radio
broadcasts and TV show, with different levels of back-
ground noise.

e Music: 30 extracts were also extracted from the GTZAN
database.

e Impacts: To obtain sound of impacts of everyday life,
we exploited the Sweet-home corpus created by Vacher et
al. [6]: in this corpus, several participants were put inside
the automated house DOMUS and asked to accomplish
daily routine during 2 hours such as cooking, manipulat-
ing objects, sleeping, etc..., which contains impact-like
sounds. The impacts extracted include: doors and win-
dows slamming, impact of objects on walls and table, etc..
16 sounds were extracted in total from the datasets, all 10
seconds-long.

e Long sounds: This class is composed of a variety of
sounds extracted partly from the Sweet-home corpus and
partly from other sounds found on the internet. It is
composed by sounds of footsteps, door knocking, dishes
making etc.. The duration of those signals vary from 2 to
13 seconds.

Each signal of the database is sampled at 22.5 kHz, and
is processed with a 20 ms sliding window W with a 10 ms
between two successive windows. For the experiments, the
number of observed neighbors was set to 3, to enable us to
decrease the size of the training set as much as possible.

7. RESULTS

A cross-validation method is applied to test the method on the
dataset: training set and validation set are extracted randomly
1000 times from the dataset with a defined number of train-
ing samples. The separation in sets can be seen in table 1. A
classification is considered an error if the class attributed to an
extract is not the right one. The classification is not consid-
ered as an error if the system is unable to classify the extract.



The result of this classification can be seen in table 2 (line 1).
The mean error (mean-number of misclassified signal) is 4.5
( less than 10%). The mean number of signals classified as
unknown is 4.1, which brings the total of non-correctly clas-
sified signals with our method to 8.6. It is to be noted that the
misclassified signals are equally spread amongst the classes,
which would indicate that the features do not favor a particu-
lar class. A good portion of the doubt (2 signals) belongs to
the class “Long sounds” class, which makes sense as it is also
the most complex class, while the rest of the doubt is divided
almost equally amongst the other classes.

Class Nb of training extracts Nb of test extracts
Speech 11 16
Music 11 19
Impact 5 11
Long Sounds 5 12
Total 32 58

Table 1. Separation of each class into 2 different sets

Those results were compared to those given by a classic
SVM with the same features (line 2 of table 2). The SVM
gives out a higher number of hard misclassification, but a
lower overall number of non-correctly classified extracts. The
misclassified signals are higher in two classes: music and im-
pact. It seems only logical that the added number of non-
correctly classified extracts is higher in the case of the belief-
KNN as the SVM defines a separating hyperplane for the data,
and hard classifies the data according to that hyperplane. The
belief-KNN would tend to classify an extract which is close to
labelled extracts of various classes as unknown (doubt class).
The only class were there is a loss in classification compared
with the SVM is the speech class. This difference cannot be
easily explained, although it can easily be corrected by taking
other modalities into account (especially vision).

Speech Music Impact Long Doubt Total
KNN 1.4 1.3 0.7 1.1 4.1 8.6
SVM 0.6 2.5 2 1.1 6.3

Table 2. Results (mean number of misclassified signals)

8. CONCLUSION

The proposed classification method for indoor sounds signals
obtains good classification performance, even though com-
parison with state-of-the art can be difficult. This method
enables the non-classification of extracts in case the system
does not reach a certain degree of confidence in one particu-
lar class, which makes it adapted to multi-sensor systems. De-
creasing the semantic content of classes, making them more
specifically adapted to the information conveyed by the sound
modality enables the system to classify sounds that share a
common fate .
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