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Knowledge of the wave perturbation caused by an array of Wave Energy

Converters (WEC) is of great concern, in particular for estimating the interaction effects between the various WECs and determining the modification of the wave field at the scale of the array, as well as possible influence on the hydrodynamic conditions in the surroundings. A better knowledge of these interactions will also allow a more efficient layout for future WEC farms. The present work

focuses on the interactions of waves with several WECs in an array. Within linear wave theory and in frequency domain, we propose a methodology based on the use of a BEM (Boundary Element Method) model (namely Aquaplus) to solve the radiation-diffraction problem locally around each WEC, and to combine it with a model based on the mild slope equation at the scale of the array. The latter model (ARTEMIS software) solves the Berkhoff's equation in 2DH domains

(2 dimensional code with a z-dependence), considering irregular bathymetries. In fact, the Kochin function (a far field approximation) is used to propagate the perturbations computed by Aquaplus into Artemis, which is well adapted for a circular wave representing the perturbation of an oscillating body. This approximation implies that the method is only suitable for well separated devices. A main advantage of this coupling technique is that Artemis can deal with variable bathymetry. It is important when the wave farm is in shallow water or in nearshore areas. The methodology used for coupling the two models, with the underlying assumptions is detailed first. Validations test-cases are then carried out with simple bodies (namely heaving vertical cylinders) to assess the accuracy and efficiency of the coupling scheme. These tests also allow to analyze and to quantify the magnitude of the interactions between the WECs inside the array.
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INTRODUCTION

Today, wave energy takes an important place in ocean engineering research. Wave Energy Converters (WECs) are likely to be deployed in arrays of many devices, which raise particular issues and concerns in comparison with oil and gas or naval applications. Indeed, large wave farms may have a significant impact on the environment by altering the local wave climate with possible consequences on coastal processes. Some physical experiments may be conducted to study this effect (as in the Hydralab IV campaign [START_REF] Troch | Physical modelling of an array of 25 heaving wave energy converters to quantify variation of response and wave conditions[END_REF] for instance), but they are challenging due to the finite extent of wave tanks. Thus, numerical experiments are favorized for cost and flexibility reasons.

Concerning the radiation/diffraction problem for oscillating WEC, studies can be based on previous works in electromagnetism or in the offshore field about diffraction around fixed (and then moving) bodies. Thus, the work of Twersky (1952) [START_REF] Twersky | Multiple scattering of radiation by an arbitrary configuration of parallel cylinders[END_REF] on the diffraction of electromagnetic waves on parallel cylinders has been much exploited. Ohkusu (1974) [START_REF] Ohkusu | Hydrodynamic forces on multiple cylinders in waves[END_REF] improved his technique of "multiple scattering" to apply it to fixed cylinders in water (offshore platform, bridges, ...). Then, from this idea, Spring and Monkmeyer (1974) [START_REF] Spring | Interaction of plane waves with vertical cylinders[END_REF] and Simon (1982) [START_REF] Simon | Multiple scattering in arrays of axisymmetric wave-energy devices[END_REF] developped a matrix method that Kagemoto and Yue (1985) [START_REF] Kagemoto | Interactions among multple three-dimensional bodies in water waves: an exact algebraic method[END_REF] used to provide an exact algebraic method.

However, to date all the various numerical approaches (BEM, wave propagation models) suffer from theoretical and/or practical limitations [START_REF] Folley | A review of numerical modelling of wave energy converter arrays[END_REF]. To overcome these limitations, it has been proposed to couple the BEM method in the vicinity of the body with wave propagation models using domain decomposition [START_REF] Babarit | On the modelling of wecs in wave models using far field coefficients[END_REF]. The coupling of BEM (Boundary Element Method) with a phase resolving wave propagation model is further investigated in this paper. It is partly based on the multiple scattering method (previously reported). BEM is used to solve the radiation/diffraction problem of each WEC, and the wave model is used to propagate the different waves across the global domain. A far field approximation (Kochin function) is used to link these two codes. The use of the wave model allows taking into account a variable bathymetry. Thus it will be possible to understand its importance in the assessment of impact of wave farms on the local wave climate.

Approach and hypothesis 1.Global approach

In this section we will present a quick and efficient method to model the interactions between WECs. We work within the linear theory framework, which allows to decompose the wave field into a sum of potentials: incident and scattered (diffracted + radiated). We neglect the non linear interactions. Propagation of these disturbed potentials in the mild slope equation for each WEC a first time considering that the bodies are only affected by the global incident wave.

Propagation of the different disturbed waves which are the reactions of the bodies due to the other bodies perturbations.

Add these different disturbed potentials and the incident potential to get the total potential. 

∆Φ = 0 kinematic free surface condition ∂ η ∂t + - → ∇ η. - → ∇ Φ = 0 if M ∈ SL dynamic free surface condition ∂ Φ ∂t + gη = 0 if M ∈ SL slip condition at the sea bottom ∂ Φ ∂ n = 0 if M ∈ S F body condition ∂ Φ ∂ n = - → ∇ Φ. - → n = - → V . - → n if M ∈ S B scattering condition lim R→∞ Φ Scat = 0 with R 2 = (x 2 + y 2 ) ∈ S ∞
To solve the scattering problem, Aquaplus considers 7 different problems, one for the diffraction problem and six for the radiation problems (one for each mode of motion), which can be added in the linear theory. The diffraction is computed considering the body is fixed in the incident field. The boundary conditions assume that:

∂ Φ D ∂ n S B = - ∂ Φ inc ∂ n S B ( 1 
)
which allows to obtain the diffracted potential.

To solve each of the six radiation problems, we consider that the body has a forced motion in a calm area (without waves). Each one is the solution of this equation:

∂ Φ ∂ n = V i .n i with M ∈ S B and i ∈ [1; 6].
After the resolution of these problems, we add the seven potential which form the disturbed potential. This last one is then transmitted to the code which adds the different waves and propagates them. In fact, with a WEC in water, we have a potential of the form φ = φ i + φ p which is the superposition of the incident and disturbed potential. Aquaplus calculates this disturbed potential, which is a solution of equation ( 2) 

Ω (M) φ p (M) = S B φ P (M ′ ) ∂ G(M, M ′ ) ∂ n ′ - ∂ φ p (M ′ ) ∂ n ′ G(M, M ′ )dS ( 

X (t) + (B + B a )

.

X (t) + (K + K a )X(t) = F(t) (3) 
A linear PTO (Power Take Off) is applied to each WEC by adding the additional damping and stiffness coefficients, respectively termed B a and K a .

Wave propagation using the mild slope equation

To propagate these different incident and scattered monochromatic waves in the domain of interest, we use the finite element code Artemis [START_REF]Opentelemac[END_REF] which solves the mild slope equation and can take into account variable bathymetry. This code is an open source 2DH (2 dimensional code with a z-dependence) code that offers computational efficiency and accuracy. With the previous hypothesis and the following analytical depth dependence for the potential,

Φ(x, y, z,t) = cosh(k(z + h)) cosh(kh) .φ (x, y).e i(k.x-ωt) (4)
the reduced potential φ (x, y) is solution of the mild-slope equation derived by Berkhoff [START_REF] Berkhoff | Mathematical models for simple harmonic linear water waves[END_REF]:

∇. (CC g ∇φ ) +CC g k 2 φ = 0 (5) with C = ω k the phase velocity, Cg = 1 2 1 + 2kh sinh(2kh)
the group velocity and k the wave number. This equation is well adapted for a slowly changing bathymetry, but for rapidly varying bathymetry and dissipative processes (like waves breaking), it is necessary to add new terms:

∇. (CC g ∇φ ) +CC g k 2 φ (1 + f ) bathymetry + ikµCC g φ dissipation = 0 (6) 
with:

f =    E 1 (kh).(∇h) 2 + E 2 (kh) k o
.∆h rapidly varying bathymetry 0 slowly varying bathymetry [START_REF] Folley | A review of numerical modelling of wave energy converter arrays[END_REF] where E 1 and E 2 are given by Chamberlain and Porter [START_REF] Chamberlain | The modified mild-slope equation[END_REF]. As in the present paper we have a small bottom slope, we use f = 0 As the Kochin function, a far-field approximation, is accurate beyond one wave length, we do not apply the scattered potential at the WEC boundary, but at the boundary of a fictitious island whose radius is chosen as half of the wave length.

Coupling between the two codes 2.1 Kochin function

A way to transmit information between the two codes is the use of the Kochin function. As it is a far field approximation, the different bodies will be spaced with a sufficient distance to compute realistic perturbation from each body. Typically, in the present paper, a distance of one wave length is necessary between two bodies. First, we compute the Kochin function from the Aquaplus calculation:

H(θ ) = S ∂ φ ∂ n -φp ∂ ∂ n f 0 (z ′ )e ik(x ′ cos(θ -β )+y ′ sin(θ -β )) dS ′ (8)
This function has been described in [START_REF] Babarit | On the modelling of wecs in wave models using far field coefficients[END_REF] based on [START_REF] Mei | Theory and application s of ocean surface waves; Part1: Linear aspects[END_REF]. From this angular function, we can provide the potential at the WEC boundary of the fictitious island around the WEC in Artemis. We can recompose the potential [START_REF] Falnes | Wave-power absorption by parallel rows of interacting oscillating bodies[END_REF] [17]:

φ Scat = 2 πkR f 0 (z).H(θ ).e i kr- π 4 + O R -1 (9) 
with f 0 (z) = -i Ag ω .

cosh(k(z + h)) cosh(kh)

As said previously, Aquaplus solves the scattering problem under the hypothesis of a flat bottom. It follows that for an axisymmetric body one calculation is enough whatever the incoming wave direction. For a farm of axisymmetric WECs, we thus need only one calculation per depth and wave frequency.

Validation

In the following, for the presented simulations, we use an incident wave of 2 m height (η(t) = cos(ωt)) and 8 s period. The body is a truncated vertical cylinder of circular cross-section of 10 m draught and 10 m diameter (see next section). In [START_REF] Babarit | On the modelling of wecs in wave models using far field coefficients[END_REF], the scattered wave computed by Aquaplus and the Kochin far field approximation are compared. This Kochin function is obtained by a specific calculation implemented in the Aquaplus code. After one wave length, the difference between these two results is lower than 1%. These results permit us to validate the Kochin function used to transmit informations about the scattered potential from Aquaplus to Artemis. To validate the use of the Kochin function in our coupled model, we compare the results obtained by propagation of the scattered wave with Artemis and the analytic value of this function. This comparison is made with a flat bottom. We use a cylindrical body which can only oscillate vertically. The angular Kochin function obtained with Aquaplus is plotted on fig. 3 This result is plotted only on a half of the circle because of the symmetry (the body is axi-symmetric, and the domain is infinite with a flat bottom). Now we compare the analytical form with an Artemis result obtained with the Kochin function imposed on the inner boundary (figure 4). We use a disk-shaped area with an inner radius of 50 m (1/2 wavelength) and an outer radius of 280 m (∼3 wavelengths). These two results are very similar, and as shown on fig 5, the difference is very low (<3% surrounding the WEC, and lower in the far field). We can affirm that our model is able to propagate the perturbation potential given by the Kochin far field approximation. This good result allows us to add a variable bathymetry in the model.

Numerical computations 3.1 Presentation of the case

We present here only one case with a monochromatic incident wave of 8 s period and 1 m amplitude, but it is possible to work with a multidirectional and irregular wave train, as a superposition of many monochromatic and monodirectional waves. The numerical domain is 60x20 wavelengths. The incident wave propagates from the left to the domain. The WEC is constrained to move only vertically, following the z-axis. For a given incident wave (and a given damping and stiffness), the amplitude of its heave motion depends on the depth. For exemple, for the previously defined incident wave, with the flat bottom at 60m depth, the vertical motion is 10cm smaller than with the variable bathymetry (and the WECs at 20-25m depth).

Results for one WEC

First, we study a simple case with only one WEC. The advantage of this case is its simplicity because there is no interaction between different floating structures. We compare the case with a variable bathymetry with the flat bathymetry case. The variable bathymetry has a constant slope of 1.15 o from 60 to 5 meter depth. The WEC is at a 20 m depth location. With the flat bottom, the depth is uniformly 60 m. We can see (fig 8 and9) the importance of taking into account the variable bathymetry. There are two main differences, one before the body, and one above the top of the slope, but the main difference, given the same PTO on the WEC, is just in front of the body where the change in amplitude exceeds 25%. In the right part of the domain, the largest impact factor is the bathymetry.

Example with 11 WECs

With many WECs, simulations show that it is not necessary to compute beyond the second order of scattering (diffraction/radiation due to the first scattered waves), because the scattered wave height of one WEC on its nearest neighbour is lower than 1% after this. We study 11 WECs staggered configuration on three rows, and then compare the different results to show the impact of the bathymetry, as well as that due to the presence of the WEC array. We choose a minimum depth of 30 m for the shallower area covered by the WEC array. Moreover, this depth corresponds to the typical depth for WEC farms.

Impact of the bathymetry on the incident

wave First, we analyse the impact of the bathymetry on the incident wave height. The following result is obtained from the difference (wave height variable bathy -wave height f lat bathy ) (with a depth of 60 m for the flat bathymetry) Compared to the incident wave height which remains 2m with a flat bottom, we can see that the variable bathymetry has an important impact on the wave field. This varies from -25cm (-12.5%) in the shoaling zone to 10cm above the shelf (ie 5% with the formula relative dif f = (H var bathy -H f lat bathy ) H f lat bathy ).

Bathymetry impact on the scattered wave

With the arbitrary PTO force imposed to the WECs, the heaving amplitude corresponds approximately to 50% of the incident wave height. By summing the different scattered waves we obtain the following results. The bathymetry impact is obtained as the difference between the results, with a variable bathymetry and a flat bottom. As for the incident wave, the bathymetry affects the scattered waves. As it modifies wavelengths, potentials can be phase shifted and have a different direction compared to the case with a constant depth. That can explain why the difference between the two cases reaches 20cm (10% of the incident wave height) close to the WECs farm. Behind 3 wavelength, this difference decreases down to 6 cm because scattered waves are circular waves.

Bathymetry impact on the total wave field

Now, we compare the total wave height of the two cases with the same approach as in the previous paragraph. The total wave height under linear theory is obtained from: The difference rises up to 15% mainly due to the impact of the bathymetry on the scattered waves and to the shoaling process. This total difference is not the sum of the scattered and incident differences and can be lower than this sum due to the phaseing of the incident and scattered potentials.

H = 2ω g .|φ | (10) 

WEC impact on the total wave field

Now, we focus on the impact of WECs on the total wave field with a flat bottom and a variable bathymetry. To do that, we subtract the incident potential to the total potential. We can get the relative difference: As seen above, the height of the scattered waves of a WECs' farm reaches 25% of the incident wave height. The local impact of a farm is not negligible. This scattered wave height decrease as 1 r , therefore this impact is rapidly small.

relative di f f = (H total -H incident ) H total
In both cases, with a flat bottom and a variable bathymetry, the magnitude of the difference is similar. However, on the upwave part of the farm, the impact of the farm is lower than with a flat bottom. This difference is probably due to the phase shift caused by the slope. The impact of the farm is significant over a 6 wavelength distance.

In the downwave part of the domain, the nearshore area, the difference is negative. It is due to the shoaling effect for the incident wave. This effect is negligible for the scatted waves.

The combined scattered waves of each WEC increase the impact, that is why we can see a large impact on figure 14. Therefore, it is possible with this type of modeling to compare different configurations and choose the one that has a lower impact.

Conclusion/discussion

To look at the impact of a farm of WECs on a given area and to save time and maintain accuracy, we propose here a methodology coupling a diffraction/radiation code with a mild slope equation code, solving the wave propagation problem. This approach has the advantage to take into account an irregular bathymetry, which allows to deal with realistic domain. The cases under study with a variable bathymetry showed significant differences with flat bottom case. Taking this into account will allow us to optimize the organisation of farms and understanding their impact on the local wave field. Our initial results look promising. We obtain reasonable computational time: the multi-bodies case with a variable bathymetry needs only one minute to compute the Kochin function, and less than two minutes for wave propagation. As we calculate the wave interactions up to the second order, we have 122 computations (but some are negligible) for 11 WECs. A point still to be looked at is the post-treatment, especially the interpolation of each WEC results, which needs more time because we have a mesh of around 20 millions elements. Future application is to couple our results with a spectral model that includes a very large domain (∼ 10km) with the coastline, which will allow to better understand the impact of a farm, combined with the coastline, on the wave field.
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