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LUNAM Université, École Centrale de Nantes - CNRS

1 rue de la Noe, 44300 Nantes France

aurelien.babarit@ec-nantes.fr

ABSTRACT

Knowledge of the wave perturbation caused by an array of Wave Energy

Converters (WEC) is of great concern, in particular for estimating the interac-

tion effects between the various WECs and determining the modification of the

wave field at the scale of the array, as well as possible influence on the hydrody-

namic conditions in the surroundings. A better knowledge of these interactions

will also allow a more efficient layout for future WEC farms. The present work

focuses on the interactions of waves with several WECs in an array. Within lin-

ear wave theory and in frequency domain, we propose a methodology based on

the use of a BEM (Boundary Element Method) model (namely Aquaplus) to solve

the radiation-diffraction problem locally around each WEC, and to combine it

with a model based on the mild slope equation at the scale of the array. The lat-

ter model (ARTEMIS software) solves the Berkhoff’s equation in 2DH domains

(2 dimensional code with a z-dependence), considering irregular bathymetries.

In fact, the Kochin function (a far field approximation) is used to propagate the

perturbations computed by Aquaplus into Artemis, which is well adapted for a

circular wave representing the perturbation of an oscillating body. This approx-

imation implies that the method is only suitable for well separated devices. A

main advantage of this coupling technique is that Artemis can deal with vari-

able bathymetry. It is important when the wave farm is in shallow water or in

nearshore areas. The methodology used for coupling the two models, with the

underlying assumptions is detailed first. Validations test-cases are then carried

out with simple bodies (namely heaving vertical cylinders) to assess the accuracy

and efficiency of the coupling scheme. These tests also allow to analyze and to

quantify the magnitude of the interactions between the WECs inside the array.

Keywords: wave energy converter, wave-body interaction, shallow water, Kochin

function, far field approximation
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NOMENCLATURE
φ velocity potential (m2

.s−1)

ω pulsation (rad.s−1)

G Green function

η free surface elevation (m)

g gravity (m.s−2)

C velocity (m.s−1)

k wave number (m−1)

H(θ ) Kochin function

λ wave length (m)

M inertia matrix (N.m−1
.s2)

K & Ka stiffness matrix (N.m−1)

B & Ba damping matrix (N.m−1
.s)

ΦD, Φinc, ΦScat diffracted, incident, scattered potential

INTRODUCTION
Today, wave energy takes an important place in ocean

engineering research. Wave Energy Converters (WECs) are

likely to be deployed in arrays of many devices, which raise

particular issues and concerns in comparison with oil and gas

or naval applications. Indeed, large wave farms may have a

significant impact on the environment by altering the local wave

climate with possible consequences on coastal processes. Some

physical experiments may be conducted to study this effect (as

in the Hydralab IV campaign [1] for instance), but they are

challenging due to the finite extent of wave tanks. Thus, nu-

merical experiments are favorized for cost and flexibility reasons.

Concerning the radiation/diffraction problem for oscillating

WEC, studies can be based on previous works in electromag-

netism or in the offshore field about diffraction around fixed

(and then moving) bodies. Thus, the work of Twersky (1952) [2]

on the diffraction of electromagnetic waves on parallel cylinders

has been much exploited. Ohkusu (1974) [3] improved his

technique of ”multiple scattering” to apply it to fixed cylinders

in water (offshore platform, bridges, ...). Then, from this

idea, Spring and Monkmeyer (1974) [4] and Simon (1982) [5]

developped a matrix method that Kagemoto and Yue (1985) [6]

used to provide an exact algebraic method.

However, to date all the various numerical approaches (BEM,

wave propagation models) suffer from theoretical and/or prac-

tical limitations [7]. To overcome these limitations, it has been

proposed to couple the BEM method in the vicinity of the body

with wave propagation models using domain decomposition [8].

The coupling of BEM (Boundary Element Method) with a phase

resolving wave propagation model is further investigated in this

paper. It is partly based on the multiple scattering method (pre-

viously reported). BEM is used to solve the radiation/diffraction

problem of each WEC, and the wave model is used to propagate

the different waves across the global domain. A far field

approximation (Kochin function) is used to link these two codes.

The use of the wave model allows taking into account a variable

bathymetry. Thus it will be possible to understand its importance

in the assessment of impact of wave farms on the local wave

climate.

1 Approach and hypothesis

1.1 Global approach

In this section we will present a quick and efficient method

to model the interactions between WECs. We work within the

linear theory framework, which allows to decompose the wave

field into a sum of potentials: incident and scattered (diffracted

+ radiated). We neglect the non linear interactions.

FIGURE 1: GLOBAL APPROACH

We work in the frequency domain. Our general approach is

the following:

Computation of the scatted potential with a BEM code.

The Kochin function is obtained from the scattered potential.

It depends only on the frequency and the local depth (and the

wave direction if the WEC is not axisymmetric).

Propagation of these disturbed potentials in the mild slope

equation for each WEC a first time considering that the bod-

ies are only affected by the global incident wave.
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Propagation of the different disturbed waves which are the

reactions of the bodies due to the other bodies perturbations.

Add these different disturbed potentials and the incident

potential to get the total potential.

1.2 Scattering computing using linear potential flow
model

To solve the radiation and diffraction problem, we choose to

use a diffraction/radiation code based on the linear potential flow

hypothesis.

FIGURE 2: DIFFERENT PARTS OF THE DOMAIN

This type of code as Wamit [9] or Aquaplus [10] [11] is a

BEM-3D code and meshes only the body wettered boundary.

The hypotheses are:

flat bottom

linear theory (small wave height and small body motions)

the flow is irrotational

the fluid is inviscid and incompressible

the body has a mass homogeneously distributed

It solves the scattering problem for one body with appropriate

boundary conditions:

fluid continuity in the fluid domain

∆Φ = 0

kinematic free surface condition

∂η

∂ t
+
−→
∇ η .

−→
∇ Φ = 0 if M ∈ SL

dynamic free surface condition

∂Φ

∂ t
+gη = 0 if M ∈ SL

slip condition at the sea bottom

∂Φ

∂n
= 0 if M ∈ SF

body condition

∂Φ

∂n
=
−→
∇ Φ.

−→n =
−→
V .

−→n if M ∈ SB

scattering condition

lim
R→∞

ΦScat = 0 with R2 = (x2 + y2) ∈ S∞

To solve the scattering problem, Aquaplus considers 7 different

problems, one for the diffraction problem and six for the

radiation problems (one for each mode of motion), which can

be added in the linear theory. The diffraction is computed

considering the body is fixed in the incident field. The boundary

conditions assume that:

(
∂ΦD

∂n

)

SB

=−

(
∂Φinc

∂n

)

SB

(1)

which allows to obtain the diffracted potential.

To solve each of the six radiation problems, we consider that the

body has a forced motion in a calm area (without waves). Each

one is the solution of this equation:

∂Φ

∂n
=Vi.ni with M ∈ SB and i ∈ [1;6].

After the resolution of these problems, we add the seven potential

which form the disturbed potential. This last one is then trans-

mitted to the code which adds the different waves and propagates

them. In fact, with a WEC in water, we have a potential of the

form φ = φi +φp which is the superposition of the incident and

disturbed potential. Aquaplus calculates this disturbed potential,

which is a solution of equation (2)

Ω(M)φp (M)=
∫∫

SB

φP(M
′)

∂G(M,M′)

∂n′
−

∂φp(M
′)

∂n′
G(M,M′)dS

(2)

with G the Green function and SB the wetted boundary of the

body.

The final equation of motion of each WEC solved by

Aquaplus is:

M
..

X (t)+(B+Ba)
.

X (t)+(K +Ka)X(t) = F(t) (3)

A linear PTO (Power Take Off) is applied to each WEC by

adding the additional damping and stiffness coefficients, respec-

tively termed Ba and Ka.
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1.3 Wave propagation using the mild slope equation
To propagate these different incident and scattered

monochromatic waves in the domain of interest, we use the finite

element code Artemis [12] which solves the mild slope equa-

tion and can take into account variable bathymetry. This code is

an open source 2DH (2 dimensional code with a z-dependence)

code that offers computational efficiency and accuracy.

With the previous hypothesis and the following analytical depth

dependence for the potential,

Φ(x,y,z, t) =
cosh(k(z+h))

cosh(kh)
.φ(x,y).ei(k.x−ωt) (4)

the reduced potential φ(x,y) is solution of the mild-slope equa-

tion derived by Berkhoff [13]:

∇.(CCg∇φ)+CCgk2φ = 0 (5)

with C =
ω

k
the phase velocity, Cg =

1

2

[

1+
2kh

sinh(2kh)

]

the

group velocity and k the wave number.

This equation is well adapted for a slowly changing bathymetry,

but for rapidly varying bathymetry and dissipative processes (like

waves breaking), it is necessary to add new terms:

∇.(CCg∇φ)+CCgk2φ (1+ f )
︸ ︷︷ ︸

bathymetry

+ ikµCCgφ
︸ ︷︷ ︸

dissipation

= 0 (6)

with:

f =







E1(kh).(∇h)2 +
E2(kh)

ko
.∆h rapidly varying bathymetry

0 slowly varying bathymetry

(7)

where E1 and E2 are given by Chamberlain and Porter [14].

As in the present paper we have a small bottom slope, we use

f = 0

As the Kochin function, a far-field approximation, is accurate

beyond one wave length, we do not apply the scattered potential

at the WEC boundary, but at the boundary of a fictitious island

whose radius is chosen as half of the wave length.

2 Coupling between the two codes

2.1 Kochin function

A way to transmit information between the two codes is the

use of the Kochin function. As it is a far field approximation,

the different bodies will be spaced with a sufficient distance to

compute realistic perturbation from each body. Typically, in the

present paper, a distance of one wave length is necessary between

two bodies.

First, we compute the Kochin function from the Aquaplus calcu-

lation:

H(θ) =
∫∫

S

(
∂ φ̃

∂n
− φ̃p

∂

∂n

)

f0(z
′)eik(x′cos(θ−β )+y′sin(θ−β ))dS′ (8)

This function has been described in [8] based on [15]. From

this angular function, we can provide the potential at the WEC

boundary of the fictitious island around the WEC in Artemis. We

can recompose the potential [16] [17]:

φScat =

√

2

πkR
f0(z).H(θ).e

i

(

kr−
π

4

)

+O
(
R−1

)
(9)

with f0(z) =−i
Ag

ω
.

cosh(k(z+h))

cosh(kh)
As said previously, Aquaplus solves the scattering problem under

the hypothesis of a flat bottom. It follows that for an axisymmet-

ric body one calculation is enough whatever the incoming wave

direction. For a farm of axisymmetric WECs, we thus need only

one calculation per depth and wave frequency.

2.2 Validation

In the following, for the presented simulations, we use an in-

cident wave of 2 m height (η(t) = cos(ωt)) and 8 s period. The

body is a truncated vertical cylinder of circular cross-section of

10 m draught and 10 m diameter (see next section).

In [8], the scattered wave computed by Aquaplus and the Kochin

far field approximation are compared. This Kochin function is

obtained by a specific calculation implemented in the Aquaplus

code. After one wave length, the difference between these two

results is lower than 1%. These results permit us to validate the

Kochin function used to transmit informations about the scat-

tered potential from Aquaplus to Artemis. To validate the use of

the Kochin function in our coupled model, we compare the re-

sults obtained by propagation of the scattered wave with Artemis

and the analytic value of this function. This comparison is made

with a flat bottom. We use a cylindrical body which can only

oscillate vertically. The angular Kochin function obtained with

Aquaplus is plotted on fig.3
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FIGURE 3: AMPLITUDE (TOP) AND ANGLE (DOWN) OF THE

KOCHIN FUNCTION

This result is plotted only on a half of the circle because of the

symmetry (the body is axi-symmetric, and the domain is infinite

with a flat bottom).

Now we compare the analytical form with an Artemis result ob-

tained with the Kochin function imposed on the inner boundary

(figure 4). We use a disk-shaped area with an inner radius of 50 m

(1/2 wavelength) and an outer radius of 280 m (∼3 wavelengths).

FIGURE 4: RADIATED WAVE HEIGHT. NUMERICAL (TOP)

AND ANALYTICAL (BOTTOM) CALCULATION

FIGURE 5: DIFFERENCE BETWEEN THE TWO RESULTS

SHOWN FIG.4

These two results are very similar, and as shown on fig 5, the

difference is very low (<3% surrounding the WEC, and lower in

the far field). We can affirm that our model is able to propagate

the perturbation potential given by the Kochin far field approxi-

mation. This good result allows us to add a variable bathymetry

in the model.

3 Numerical computations
3.1 Presentation of the case

We present here only one case with a monochromatic inci-

dent wave of 8 s period and 1 m amplitude, but it is possible to

work with a multidirectional and irregular wave train, as a super-

position of many monochromatic and monodirectional waves.

The numerical domain is 60x20 wavelengths. The incident wave

propagates from the left to the domain.

FIGURE 6: DOMAIN

The selected WEC is the same as used in the previous sec-

tion: a truncated vertical cylinder of circular cross-section of 10
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m draught and 10 m diameter.

FIGURE 7: WEC VIEW

The WEC is constrained to move only vertically, follow-

ing the z-axis. For a given incident wave (and a given damping

and stiffness), the amplitude of its heave motion depends on the

depth. For exemple, for the previously defined incident wave,

with the flat bottom at 60m depth, the vertical motion is 10cm

smaller than with the variable bathymetry (and the WECs at 20-

25m depth).

3.2 Results for one WEC

First, we study a simple case with only one WEC. The ad-

vantage of this case is its simplicity because there is no interac-

tion between different floating structures.

We compare the case with a variable bathymetry with the flat

bathymetry case. The variable bathymetry has a constant slope

of 1.15o from 60 to 5 meter depth. The WEC is at a 20 m depth

location. With the flat bottom, the depth is uniformly 60 m.

FIGURE 8: TOTAL WAVE HEIGHT WITHOUT (TOP) AND WITH

(BOTTOM) THE VARIABLE BATHYMETRY

FIGURE 9: DIFFERENCE BETWEEN RESULTS IN FIG.8

We can see (fig 8 and 9) the importance of taking into ac-

count the variable bathymetry. There are two main differences,

one before the body, and one above the top of the slope, but

the main difference, given the same PTO on the WEC, is just

in front of the body where the change in amplitude exceeds 25%.

In the right part of the domain, the largest impact factor is the

bathymetry.

3.3 Example with 11 WECs

With many WECs, simulations show that it is not neces-

sary to compute beyond the second order of scattering (diffrac-

tion/radiation due to the first scattered waves), because the scat-

tered wave height of one WEC on its nearest neighbour is lower

than 1% after this. We study 11 WECs staggered configuration

on three rows, and then compare the different results to show the

impact of the bathymetry, as well as that due to the presence of

the WEC array.
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FIGURE 10: STAGGERED CONFIGURATION WITH 11 WECS

We choose a minimum depth of 30 m for the shallower area

covered by the WEC array. Moreover, this depth corresponds to

the typical depth for WEC farms.

3.3.1 Impact of the bathymetry on the incident
wave First, we analyse the impact of the bathymetry on the in-

cident wave height. The following result is obtained from the dif-

ference (wave heightvariable bathy −wave height f lat bathy) (with a

depth of 60 m for the flat bathymetry)

FIGURE 11: BATHYMETRY (TOP), INCIDENT WAVE HEIGHT

WITH A SLOPE (MIDDLE) AND DIFFERENCE WITH THE INFI-

NITE DEPTH CASE (BOTTOM)

Compared to the incident wave height which remains 2m

with a flat bottom, we can see that the variable bathymetry has

an important impact on the wave field. This varies from -25cm

(-12.5%) in the shoaling zone to 10cm above the shelf (ie 5%

with the formula

relative di f f =
(Hvar bathy −H f lat bathy)

H f lat bathy

).

3.3.2 Bathymetry impact on the scattered wave
With the arbitrary PTO force imposed to the WECs, the heav-

ing amplitude corresponds approximately to 50% of the incident

wave height.

By summing the different scattered waves we obtain the follow-

ing results. The bathymetry impact is obtained as the difference

between the results, with a variable bathymetry and a flat bottom.
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FIGURE 12: SCATTERED WAVE HEIGHT WITHOUT (TOP) AND

WITH THE VARIABLE BATHYMETRY (MIDDLE) AND DIFFER-

ENCE (BOTTOM)

As for the incident wave, the bathymetry affects the scat-

tered waves. As it modifies wavelengths, potentials can be phase

shifted and have a different direction compared to the case with

a constant depth. That can explain why the difference between

the two cases reaches 20cm (10% of the incident wave height)

close to the WECs farm. Behind 3 wavelength, this difference

decreases down to 6 cm because scattered waves are circular

waves.

3.3.3 Bathymetry impact on the total wave field
Now, we compare the total wave height of the two cases with

the same approach as in the previous paragraph. The total wave

height under linear theory is obtained from:

H =
2ω

g
.|φ | (10)

FIGURE 13: TOTAL WAVE HEIGHT WITHOUT (TOP) AND WITH

THE VARIABLE BATHYMETRY (MIDDLE) AND DIFFERENCE

(BOTTOM)

The difference rises up to 15% mainly due to the impact of

the bathymetry on the scattered waves and to the shoaling pro-

cess. This total difference is not the sum of the scattered and

incident differences and can be lower than this sum due to the

phaseing of the incident and scattered potentials.

3.4 WEC impact on the total wave field

Now, we focus on the impact of WECs on the total wave

field with a flat bottom and a variable bathymetry. To do that, we

subtract the incident potential to the total potential. We can get

the relative difference:

relative di f f =
(Htotal −Hincident)

Htotal

FIGURE 14: DIFFERENCE BETWEEN A DOMAIN WITH AND

WITHOUT 11 WECS FOR A FLAT BOTTOM (TOP) AND A VARI-

ABLE BATHYMETRY (BOTTOM)

As seen above, the height of the scattered waves of a WECs’

farm reaches 25% of the incident wave height. The local impact

of a farm is not negligible. This scattered wave height decrease

as

√

1

r
, therefore this impact is rapidly small.

In both cases, with a flat bottom and a variable bathymetry, the
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magnitude of the difference is similar. However, on the upwave

part of the farm, the impact of the farm is lower than with a flat

bottom. This difference is probably due to the phase shift caused

by the slope. The impact of the farm is significant over a 6 wave-

length distance.

In the downwave part of the domain, the nearshore area, the dif-

ference is negative. It is due to the shoaling effect for the incident

wave. This effect is negligible for the scatted waves.

The combined scattered waves of each WEC increase the impact,

that is why we can see a large impact on figure 14.

Therefore, it is possible with this type of modeling to compare

different configurations and choose the one that has a lower im-

pact.

4 Conclusion/discussion
To look at the impact of a farm of WECs on a given area and

to save time and maintain accuracy, we propose here a methodol-

ogy coupling a diffraction/radiation code with a mild slope equa-

tion code, solving the wave propagation problem. This approach

has the advantage to take into account an irregular bathymetry,

which allows to deal with realistic domain. The cases under

study with a variable bathymetry showed significant differences

with flat bottom case. Taking this into account will allow us to

optimize the organisation of farms and understanding their im-

pact on the local wave field.

Our initial results look promising. We obtain reasonable compu-

tational time: the multi-bodies case with a variable bathymetry

needs only one minute to compute the Kochin function, and less

than two minutes for wave propagation. As we calculate the

wave interactions up to the second order, we have 122 compu-

tations (but some are negligible) for 11 WECs. A point still to

be looked at is the post-treatment, especially the interpolation of

each WEC results, which needs more time because we have a

mesh of around 20 millions elements.

Future application is to couple our results with a spectral model

that includes a very large domain (∼ 10km) with the coastline,

which will allow to better understand the impact of a farm, com-

bined with the coastline, on the wave field.
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