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Abstract

We investigate the effect of ambiguity and ambiguity attitude on the shape and

properties of the optimal contract in an adverse selection model with a continuum

of types, using the parametric model of ambiguity and ambiguity aversion called the

NEO-additive model (Chateauneuf, Eichberger, and Grant, 2007). We show that it

necessarily features efficiency and a jump at the top and pooling at the bottom of the

distribution. Conditional on the degree of ambiguity, the pooling section may or may

not be supplemented by a separating section. As a result, ambiguity adversely affects

the principal’s ability to solve the adverse selection problem and therefore the least

efficient types benefit from ambiguity with respect to risk. Conversely, ambiguity is
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detrimental to the most efficient types. This is confirmed in the comparative statics

section.

Keywords Adverse selection, ambiguity, ambiguity aversion, NEO-additive model,

non-expected utility models, behavioral economics.

JEL Classification Numbers D81, D82.

1 Introduction

1.1 Motivation

Most principal-agent models with adverse selection share the assumption that the prin-

cipal knows at least the probability distribution of the agent’s type. For instance, in a

regulatory setting, the regulator knows the distribution from which the marginal cost of

a natural monopoly is drawn. How does the regulator come up with this knowledge,

though?

As observed by Sappington and Weisman (1996, p. 115)

Considerable expertise in a variety of areas is required merely to understand central

issues in telecommunications regulation [...] The regulatory process tends to be an

adversarial process in which interested parties provide evidence that supports their

positions. Regulators [...] must assess the evidence brought before them, and make

decisions based on their assessment of the evidence.

In standard contract theory, it is assumed that the outcome of this information gath-

ering process is a precisely defined probability distribution. However, this may not neces-

sarily be the case. The evidence might be conflicting, even when the information providers

are not biased; they might just not have access to the same data. The conflict of evidence

may therefore not always be solvable without a serious loss of information. In that case,

the regulator faces a trade-off:

• Either summarize all the evidence by a single probability distribution, at the cost of

omitting all conflicting evidence, however valuable it may be,
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• Or make do with a less precise representation of uncertainty so as to keep as much

of the information provided as possible.

It might therefore be more prudent to work with an imprecise probability distribution in

order to keep more of the available information, even though it is potentially conflicting.

In this paper, our aim is to study the impact of an imprecisely known probability

distribution on the second best optimal contract in an adverse selection model with a

continuum of types.

Poor knowledge of the probability distribution of efficiencies is an instance of the gen-

eral concept of ambiguity (Ellsberg, 1961). This powerful concept has spawned numerous

decision making models.1 Among them, the NEO–additive model (Chateauneuf et al.,

2007) has particularly appealing properties. Indeed, it ties the concepts of ambiguity and

ambiguity attitude to two additional parameters, without abandoning the probabilistic

approach altogether. Comparison with the expected utility model is therefore made eas-

ier in this model.

1.2 Main findings

To be consistent with the stylized facts described above, we consider a Baron-Myerson’s

model where the agent privately knows his type (i.e. his marginal cost).

With no ambiguity, equivalently in the expected utility model, the contract exhibits the

well-known rent-extraction efficiency trade-off: downward distortions from efficiency are

imposed on production (except for the most efficient type) in order to reduce the adverse

selection agency cost (i.e. the information rent). Moreover, under usual monotonicity

conditions, the contract is smooth and separating.

By contrast, the optimal contract under ambiguity exhibits the following properties: there

is still no distortion at the top, but a jump at the top and pooling at the bottom. These de-

partures from the expected utility model arise because of the following main changes.

The presence of ambiguity, combined with ambiguity seeking, or optimism, (resp. ambi-

guity aversion, or pessimism), leads to the introduction of a mass point for the most (resp.

1See Etner, Jeleva, and Tallon (2012) for a survey of these models.
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the least) efficient agent. This has two consequences.

First, this places a positive weight on the need of the principal to secure efficient produc-

tion for those types. She is thus tempted to eliminate output distortions at the top and at

the bottom. Second, this increases the agency cost of adverse selection with respect to the

expected utility case. The principal is then induced to increase distortions for all types in

order to limit the rent of the most efficient type.

Clearly, the two consequences work in opposing directions. The simplest way for the

principal to satisfy these opposing effects would be to give up the continuity of the pro-

duction schedule. More precisely, she would like to implement a downward jump at the

top, and an upward jump at the bottom. But, to get a truthful report from the agent, the

contract must ensure a production scheme which is non increasing with efficiency (i.e. the

implementability condition). It follows that the former jump does not violate this condi-

tion, whereas the latter does. So the jump at the top is optimal, the jump at the bottom is

not. The principal keeps the first jump in the contract and replaces the second by pool-

ing for a whole range of inefficient types. We can conclude that ambiguity and optimism

sharpen the rent-extraction efficiency trade-off, whereas ambiguity and pessimism blunt

it.

1.3 Related literature

The literature on the impact of ambiguity on contract theory is relatively scarce, and fo-

cuses more on moral hazard: a pioneering but yet unpublished paper is Ghirardato (1994).

Other references include Rigotti (1998); Karni (2009); Weinschenk (2010). For the case of

adverse selection, the paper closest to ours is Mondello (2012), which deals with the two

types case in the NEO-additive framework. The author claims to have found the coun-

terintuitive result that the optimal contract under ambiguity leads to a higher production

requirement than in the risk case for the low-skill type. However, this is based on the

wrong assessment of the sign of a certain quantity, even though the computations are

otherwise right, and in fact the results of that paper are consistent with ours. Although

not dealing with ambiguity, Lewis and Sappington (1993) obtain results similar to ours.
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We shall comment on how their findings are related to ours in due course.

1.4 Organization of the paper

The model is laid out in section 2. In section 3, the characteristics of the optimal contract

under ambiguity are presented. Comparative statics on these characteristics are discussed

in the final section. Proofs and additional material are presented in the appendices.

2 The model

2.1 Background

A risk-neutral principal derives utility S(q) from the production of a quantity q of a good

by a risk-neutral agent. We assume that S is twice continuously differentiable with S′ > 0,

S′′ < 0 and limq→0 S′(q) = +∞. The principal pays a transfer t to the agent, and thus the

principal’s net payoff is

V = S(q)− t. (1)

The agent’s privately known marginal cost (or efficiency type) is c ∈ C = [c, c]. Agent

c’s net payoff is thus

U = t − cq. (2)

Appealing to the revelation principle, we focus on the direct revelation mechanism.

Thus a contract is a schedule that assigns a transfer and a required quantity ⟨t(ĉ), q(ĉ)⟩ to

each agent’s report ĉ ∈ [c, c].

2.2 First best problem and solution

The overall benchmark situation occurs when the principal can observe the agent’s effi-

ciency type.

Participation constraint. In that case, since the agent cannot be forced to accept the con-

tract at a lower utility than its reservation level, normalized to 0, the principal faces the
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agent’s participation constraint, ∀c ∈ C

U(c) = t(c)− cq(c) ≥ 0. (PC)

The problem and its solution. Combining (1) and (2), we get

V(c) = S(q(c)) − cq(c)− U(c). (3)

The principal must maximize (3) subject to (PC). The first best contract is, ∀c ∈ C
⎧
⎨

⎩
UFB(c) = 0,

qFB(c) = S′−1(c).

It is characterized by no rent left to the agent because the participation constraint is

binding, and by efficient production since it maximizes the social surplus S(q(c))− cq(c).

Moreover, it is straightforward to see that the principal’s net payoff is strictly decreas-

ing in efficiency. Thus she still prefers to contract with a more efficient agent.

2.3 Second best problem

In this setting, the principal cannot observe the agent’s efficiency.

Principal’s beliefs. Let ∆(C) be the set of c.d.f. on C. For G ∈ ∆(C), abusing notation we

denote

G(B) =
∫ c

c
1BdG

for every Borel set B ⊆ C. That is, we denote both a distribution function and the measure

it induces with the same letter.

We assume that the principal believes that there exists a distribution F on C, with

density f , f > 0 on C, and α ∈ [0, 1], such that the true distribution of types lies in the set2

∆F,α = {G ∈ ∆(C) | G(B) ≥ (1 − α)F(B), for every Borel set B}

= {αH + (1 − α)F | H ∈ ∆(C)}

= α∆(C) + (1 − α)F.

2The equality of the two expressions of the set requires a (simple) proof, available upon request.
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Clearly, the larger α, the larger that set is. Moreover, whenever α < 1, if G ∈ ∆F,α, then

F is absolutely continuous with respect to G. Thus, F has a density with respect to G,

denoted dF
dG , and we may compute the relative entropy or Kullback-Leibler divergence of

G from F, DKL(F || G), defined by

DKL(F || G) =
∫ c

c
ln

dF
dG

dF.

Now it can be shown3 that, whenever G ∈ ∆F,α

DKL(F || G) ≤ ln
1

1 − α
.

Since the relative entropy is a measure of the divergence of the distribution G from the

distribution F, this set is included in a “ball“4 centered on F with ray ln 1
1−α . Hence, the

larger α is, the larger the ray is. Therefore, α can be interpreted as measuring the degree

of ambiguity, and equivalently 1 − α as the degree of confidence the principal has when she

estimates the distribution of types using F.

Objective function. We assume that the principal’s objective function is a convex combi-

nation of the optimistic criterion (the best possible expected utility given the set of priors)

and the pessimistic criterion (the worst possible expected utility). Let β be the optimism

parameter used for this combination (by contrast 1 − β represents the level of pessimism).

The principal’s objective function is therefore:

W = β max
G∈∆F,α

∫ c

c
V(c)dG(c) + (1 − β) min

G∈∆F,α

∫ c

c
V(c)dG(c).

As it turns out, given the shape of the set of priors, the objective function can be rewritten

in the following way5

3See Appendix section A.1.1.
4This is not strictly speaking a ball as the relative entropy is not a distance in the mathematical sense.
5Indeed, we have maxG∈∆F,α

∫ c
c V(c)dG(c) = maxH∈∆

(
α
∫ c

c V(c)dH(c) + (1 − α)
∫ c

c V(c)dF(c)
)

. This is

also equal to α
(

maxH∈∆
∫ c

c V(c)dH(c)
)
+ (1 − α)

∫ c
c V(c)dF(c) = α maxc∈C V(c) + (1 − α)

∫ c
c V(c)dF(c).

Similarly, we get minG∈∆F,α

∫ c
c V(c)dG(c) = α minc∈C V(c) + (1 − α)

∫ c
c V(c)dF(c).
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W = α[β max
c

V(c) + (1 − β)min
c

V(c)] + (1 − α)
∫ c

c
V(c) f (c)dc.

= α[β max
c

(S(q(c)) − t(c)) + (1 − β)min
c

(S(q(c)) − t(c))]

+ (1 − α)
∫ c

c
(S(q(c)) − t(c)) f (c)dc.

(4)

This is actually the formula for NEO-additive Expected Utility (Chateauneuf et al.,

2007) with respect to F.

Incentive constraints. Due to the non observability of efficiency, the principal must offer a

contract such that the agent gets a higher net payoff when he reports truthfully. It follows

that the incentive constraints are, for all c, ĉ ∈ C

U(c) ≥ t(ĉ)− cq(ĉ). (IC)

Principal’s problem. The principal’s problem is to max⟨t(.),q(.)⟩(4), subject to (PC) and

(IC). This needs to be reformulated before it can be solved. First, following standard com-

putations in incentives theory, the incentive and participation constraints are respectively,

for piecewise continuously differentiable functions,6 for all c ∈ C

U′(c) = −q(c), (IC1)

q(.) non increasing, (IC2)

and

U(c) = 0. (PC1)

Second, we will focus on the case where
⎧
⎪⎨

⎪⎩

c ∈ arg max
c

V(c),

c ∈ arg min
c

V(c).
(5)

6We will use the following definition for piecewise continuous differentiability: a function g is piecewise

continuously differentiable on an interval [a, b] if there exists a finite subdivision a = x1 < . . . < xi < · · · <

xn = b such that g is continuously differentiable (and thus continuous) on each interval (xi, xi+1), and both

g and g′ have left and right limits at each xi.
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This is akin to implicitly assuming that V(.) is decreasing in c. This allows us to simplify

the analysis, but it is important to notice that we will show that (5) holds for the optimal

contract.

Third, combining (IC1) and (PC1), the agent gets an information rent given by U(c) =
∫ c

c q(ε)dε. Plugging this into (3), then into (4), and using (5), the objective function be-

comes, after integration by parts

W = αβ

(
S(q(c))− cq(c)−

∫ c

c
q(c)dc

)
+ α(1 − β) (S(q(c))− cq(c))

+ (1 − α)
∫ c

c

(
S(q(c)) − cq(c)− F(c)

f (c)
q(c)

)
f (c)dc. (6)

Collecting terms, we obtain

W = αβ (S(q(c))− cq(c)) + α(1 − β) (S(q(c))− cq(c))

+
∫ c

c
(1 − α)

(

S(q(c)) − cq(c)−
F(c) + αβ

1−α

f (c)
q(c)

)

f (c)dc. (7)

At this stage, it is important to notice that the term F(c)+ αβ
1−α

f (c) q(c) in (7) is the agency

cost of the adverse selection, i.e. the cost of information rent. It can be decomposed into

two parts

• the standard no ambiguity cost F(c)
f (c)q(c);

• an additional cost due to ambiguity: αβ
(1−α) f (c)q(c).

The former is the cost incurred by the principal when using the distribution F, even if this

distribution is the right one; the latter can be interpreted as the additional cost incurred

when it is the wrong distribution. We assume that the cost of information rent satisifies

the following property.

Assumption 1 (Monotone adjusted hazard rate). The hazard rate F(c)+ αβ
1−α

f (c) is increasing in c

over C.

This is a version of the Monotone Hazard Rate (MHR) used in contract theory. It

avoids pooling contracts due to non monotonicity.7

Finally, the second best problem is to maximize (7) with respect to q(.) subject to (IC2).

7With differentiable f this assumption is equivalent to
(

F(c)
f (c)

)′
> αβ

1−α
f ′(c)

( f (c))2 . If f ′ ≥ 0, this assumption
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3 Properties of the Optimal Contract

3.1 No ambiguity: α = 0

When there is no ambiguity, the objective function (7) is the usual one in expected utility

models.

Proposition 1. The optimal production, q∗(c), is such that:

q∗(c) = S′−1
(

c +
F(c)
f (c)

)
:= qEU(c). (EU)

Proof. See Laffont and Martimort (2002, p. 87).

With no ambiguity, the optimal production reflects a conflict between incentives and

efficiency. To ensure a truthful report, the principal must leave an information rent to the

agent. This leads to the agency cost F(c)
f (c)q(c) in (7), with α = 0. Efficiency is related to the

presence of the social surplus S(q(c)) − cq(c) in (7) still with α = 0.

Consequently, the production is distorted downward from its efficient level in order to

reduce the agency cost. The quantity q∗(c) reflects the standard rent extraction efficiency

trade-off in expected utility models.

Four other properties must be noted. First, the most efficient agent, c, has an efficient

production, q∗(c) = qFB(c), because the agency cost is null since F(c) = 0. Second, the

production schedule is continuous in the agent’s efficiency. Third, under assumption 1,

the contract is separating. Finally, the principal’s optimal net payoff increases with the

agent’s efficiency (i.e. decreases with the agent’s type, his cost). The robustness of these

properties to the introduction of ambiguity must be investigated.

3.2 General properties of the optimal contract under ambiguity

We present here properties of the optimal contract that hold under any positive value of

α. They are stated in the next proposition.

is stronger than the standard MHR assumption. If f ′ ≤ 0, it is implied by it. In general, however, they are

independent. The uniform distribution satisfies both.
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Proposition 2. Let q∗ be a solution to the SBP. If 0 < α ≤ 1, then

(i) No distorsion at the top: q∗(c) = qFB(c)

(ii) Jump at the top, except for β = 0: lim
c↓c

q∗(c) < q∗(c) if and only if β > 0.

(iii) Pooling at the bottom, except for β = 1: There exists c∗ ∈ C such that q∗(c) = q∗(c) :=

q for all c ∈ (c∗, c] and c∗ < c if and only if β < 1.

Two observations can be made compared to the no ambiguity case: a discontinuity at

c and pooling over (c∗, c] emerge. How can this be explained?

Jump at the top. While the absence of distorsion at the top is standard, the jump is not,

and can be understood in the following way. The presence of ambiguity (α > 0) and

of a certain degree of ambiguity seeking (or optimism) (β > 0) sharpens the standard

conflict between efficiency and rent extraction for efficient types. Indeed, it introduces (in

the NEO-additive functional) a mass point at c.8 Both the social surplus S(q(c)) − cq(c)

and the rent, U(c) are allocated a strictly positive weight. For the principal, the first

effect reinforces (with respect to EU) the will to get efficient production at c. The second

effect, on the other hand, increases (with respect to EU) the agency cost that is the sum

of the standard no ambiguity cost and the additional cost due to ambiguity. This implies

the need for a further distortion (with respect to EU) for types c > c in order to limit

the information rent of the type c. This exacerbated conflict between efficiency and rent

extraction results in a jump.

Note that when ambiguity is present but the principal is fully ambiguity averse (pes-

simistic (β = 0), the jump disappears (because the mass point does). Thus it requires some

amount of ambiguity seeking or optimism.

Pooling at the bottom. The presence of ambiguity and a certain degree of ambiguity

aversion pessimism blunt the conflict between efficiency and rent extraction for inefficient

types by introducing (in the NEO-additive functional) a mass point at c. This raises the

8Note that this is possible here only because the beliefs of the principal are actually nonadditive (or even

better said this mass point creates the nonadditivity). Thus the presence of a mass point here is a genuine

consequence of ambiguity.
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importance for the principal of the social surplus at c. By contrast, it does not affect

the information rent that is null at that point because of the rationality constraint (PC1).

This effect implies that the principal wishes to eliminate production distorsions at this

point. But, because of the agency cost, downward distortions exist for types slightly more

efficient than c. A separating contract would violate incentive compatibility (IC2): slightly

more efficient types would have an incentive to claim to be the most inefficient type.

The principal must therefore give up the separation of inefficient types and offer a pooling

contract. The principal gives up important distorsions with respect to EU, so that the

conflict between efficiency and rent extraction is blunt for inefficient types.

Again, note that if ambiguity is present but there is no ambiguity aversion at all (β =

1), pooling disappears, because the principal no longer cares about efficient production

of the least efficient type c.

This shape of the optimal contract is akin to the shape of the optimal contract in Lewis

and Sappington (1993). In this paper, both the principal and the agent ignore the agent’s

type when the contract is signed, but the agent receives an imperfectly informative signal

about his production cost. The signal is perfectly informative with probability 1 − p.

This leads to the appearance of a mass point (of mass p) at a value that is endogenously

defined by the first order conditions. By contrast, we introduce two mass points that are

also endogenously located in the distribution. The consequences of the presence of these

mass points are similar, namely the presence of a discontinuity and a pooling zone. The

main difference is that the discontinuity is at the top in our case, while it is at an interior

point in Lewis and Sappington (1993). As we will see in the next section, a (possibly

degenerate) separating zone follows the discontinuity in both cases.

3.3 Full shape of the optimal contract under ambiguity

To study the full shape of the optimal contract, we need a lemma and a notation.

Lemma 1. For all β ∈ (0, 1), the equation in α

(1 − αβ)αβ

(1 − α)
= f (c)(c − c) (8)

has a unique solution in (0, 1), that we denote α∗(β).
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This will allow us to distinguish between low ambiguity whenever 0 < α < α∗(β) and

high ambiguity whenever α∗(β) ≤ α ≤ 1.

3.3.1 Low ambiguity: 0 < α < α∗(β)

Proposition 3. Under low ambiguity, the optimal production, q∗(c), is given by

q∗(c) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

S′−1(c) if c = c,

S′−1
(

c + F(c)+ αβ
1−α

f (c)

)
if c ∈ (c, c∗],

S′−1
(

c∗ + F(c∗)+ αβ
1−α

f (c∗)

)
if c ∈ (c∗, c].

(9)

with c∗ ∈ (c, c] implicitly defined by

α(1 − β)

(
c∗ +

F(c∗) + αβ
1−α

f (c∗)
− c

)

=
∫ c

c∗
(1 − α)

(
c +

F(c) + αβ
1−α

f (c)
− c∗ −

F(c∗) + αβ
1−α

f (c∗)

)
f (c)dc (10)

whenever β < 1 and c∗ = c whenever β = 1.

Under low ambiguity, the effect of ambiguity on the conflict between efficiency and

rent extraction, and particularly its blunting effect for inefficient types, is not strong

enough to completely preclude the possibility of screening some of the efficient types.

When α < α∗(β), the ambiguity is sufficiently low for the conflicts created by the mass

points at c and c not to interact which each other.

In the interval of types between the jump and the pooling zone, ambiguity implies a

usual rent extraction efficiency trade-off, except that the agency cost is higher than with-

out ambiguity. The contract is separating. The rent extraction-efficiency trade-off im-

plies that production is such that marginal social surplus S′(q(c)) − c equals the sum of

marginal information cost F(c)
f (c) and marginal ambiguity cost αβ

(1−α) f (c) .

The limit between the separating part of the contract and the pooling part is deter-

mined by (10). To interpret this equation, let

qs(c) := (S′)−1

(
c +

F(c) + αβ
1−α

f (c)

)
.
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which is a decreasing function of c because of assumption 1 and (S′)−1 is decreasing.

Thus, (10) can be rewritten

α(1 − β)
(

S′(qs(c∗))− S′(qFB(c)
)
=
∫ c

c∗
(1 − α)

(
S′(qs(c))− S′(qs(c∗))

)
f (c)dc. (11)

Let c∗∗ be such that qs(c∗∗) = qFB(c) whenever this equation has a solution on C,9 and

let c∗∗ = c otherwise. Equation 10 tells us that the contract is separating on [c∗∗, c∗] and

pooling on [c∗, c]. How is c∗ defined though? Let us examine the LHS of (11), then the

RHS.

Since c∗ ∈ [c∗∗, c] and qs is decreasing, we have qs(c∗) ≤ qs(c∗∗) ≤ qFB(c).10 Thus,

since S′ is decreasing, the LHS is nonnegative. More precisely, the LHS is null if c∗ = c∗∗,

positive if c∗ > c∗∗, and increases as c∗ moves away from c∗∗. So the more separating the

contract is, the higher the LHS is. The LHS is thus the cost of separating on [c∗∗, c∗], i.e.

the cost of not having efficient production at c.

The RHS is nonnegative because qs and S′ are decreasing. More precisely, the RHS is

null if c∗ = c, strictly positive if c∗ < c, and increases as c∗ moves away from c. So the

more pooling the contract is, the higher the RHS is. The RHS is thus the cost of pooling

on [c∗, c], i.e. the cost of giving up producing qs(c) over this interval. Specifically, at c, the

decrease in marginal utility suffered by the principal if she pools is S′(qs(c))− S′(qs(c∗)).

Since the cost of separating on [c∗∗, c∗] is increasing in c∗ and the cost of pooling on

[c∗, c] is decreasing in c∗, there is a tradeoff between these two costs. Equation (10) tells

us that c∗ is the result of resolving this conflict by equating these costs.

3.3.2 High ambiguity: α∗(β) ≤ α ≤ 1

Proposition 4. Under high ambiguity, the optimal production, q∗(c), is given by

q∗(c) =

⎧
⎪⎨

⎪⎩

S′−1(c) if c = c,

S′−1
(

c + αβ
1−αβ(c − c)

)
if c ∈ (c, c],

(12)

9That is, whenever qs(c) ≥ qFB(c), i.e. c − c ≥ αβ
(1−α) f (c) .

10This is obvious if qs(c∗∗) = qFB(c); if c∗∗ = c, then qs(c∗∗) = qs(c) < qFB(c) by definition of c∗∗.
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whenever α < 1 or α = 1 and β < 1, and

q∗(c) =

⎧
⎪⎨

⎪⎩

qFB(c) if c = c

0 if c ∈ (c, c].
(13)

whenever α = 1 and β = 1.11

Comparing with low ambiguity, the optimal production is still characterized by a

jump and pooling, but there is no longer separation. In this case, the ambiguity is high

enough for the conflicts generated by the mass points at c and c to interact with each other.

In other words, ambiguity creates an overall conflict between optimism, pessimism, and

incentives. Because of the presence of optimism (resp. pessimism), there is a jump (resp.

pooling). But, a high level of ambiguity would imply a downward jump at c at least as

large as the efficient production gap between the most and the least efficient agents.

Note that when α < 1 or α = 1 and β < 1, the principal behaves under high ambi-

guity as she would if she considered only two types and maximized expected utility: the

production corresponds to the standard expected utility model with two types, c and c,

with probabilities αβ and 1 − αβ.

3.4 Shutdown

Given the properties of the optimal contract and Assumption 1, it is easy to check that the

integrand in (7) is decreasing. Therefore, it can be optimal for the principal to allow for

some shutdown of inefficient types. Let c∗ be the threshold type such that all types c > c∗

are excluded from the contract by the principal. The objective function becomes

W = αβ (S(q(c))− cq(c)) + α(1 − β) (S(q(c∗))− c∗q(c∗))

+
∫ c∗

c
(1 − α)

(

S(q(c)) − cq(c)−
F(c) + αβ

1−α

f (c)
q(c)

)

f (c)dc. (14)

We state the following proposition.
11Actually, for the case α = 1 and β = 1 we may set q∗(c) = qFB(c) if c = c and q∗(c) = q̄ if c ∈ (c, c] for

any 0 ≤ q̄ ≤ qFB(c), since in this case only the value at c is taken into account. Setting q̄ = 0, however, is

the only way of making q∗(c, α, β) be continuous w.r.t. α and β.
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Proposition 5. The threshold c∗ is implicitly defined by

(1 − α)

(
S(q∗(c∗))− c∗q∗(c∗)−

F(c∗) +
αβ

1−α

f (c∗)
q∗(c∗)

)
f (c∗) = α(1 − β)q∗(c∗). (15)

The marginal benefit from c∗ corresponds to the payoff it provides to the principal.

This is the LHS of (15). But the presence of ambiguity implies that the principal would

like this type to produce an efficient quantity. This entails that she must incur the marginal

cost with respect to efficiency of this production. This corresponds to the RHS of (15).

It is interesting to note that (15) can be rewritten as
(

S(q(c∗))− c∗q(c∗)−
F(c∗)
f (c∗)

q(c∗)
)

f (c∗) =
α

1 − α
q(c∗) > 0.

Thus, the principal excludes more types than with expected utility (where the RHS is 0).

3.5 An example

To illustrate the results and summarize them in a graph, consider the following specifi-

cation. We let c = 1, c = 2, S(q) =
√q and F(c) = c − 1, the uniform distribution on

C = [1, 2]. Then, the first best contract is given by

qFB(c) =
1

4c2 ,

while the optimal second best contract under expected utility is given by

qEU(c) =
1

4(2c − 1)2 .

The optimal second best production under ambiguity is given by, in the case of low am-

biguity

q∗(c) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
4 if c = c

(1−α)2

4[(2c−1)(1−α)+αβ]2
if c ∈ (c, c∗]

(1−α)2

4[3−α(1+β)−2
√

α(1−β)]2
if c ∈ (c∗, c],

where

c∗ =
2 − α(1 + β)−

√
α(1 − β)

1 − α
.
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Moreover, low ambiguity arises when

α < α∗(β) =
1 + β −

√
1 + 2β − 3β2

2β2 .

In the case of high ambiguity, optimal production is such that

q∗(c) =

⎧
⎪⎨

⎪⎩

1
4 if c = c,

(1−αβ)2

4[2−αβ]2
if c ∈ (c, c].

Figure 1 shows the shape of the optimal contract under different configurations of

ambiguity and ambiguity attitude.

q
0.25

0.111

0.057

c c

qFB

qEU

c∗.1

q∗.1

c∗.5

q∗.5
q∗.92 = 0.056

q
0.25

0.107

0.042

c c

qFB

qEU

c∗.1

q∗.1

c∗.5

q∗.5
q∗.8 = 0.035

q
0.25

0.102

0.033

c c

qFB

qEU

c∗.1

q∗.1

c∗.5

q∗.5
q∗.8 = 0.012

Figure 1: The optimal contract for β = .1, β = .5 and β = .9 and various values of α

(subscripted).
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4 Comparative Statics

Ambiguity and ambiguity attitude have two consequences for the objective function.

They both modify the agency cost and the weights assigned to the three components

of the objective function. Hence they imply several effects

• qualitative effects, through the trade-off between separating and pooling,

• quantitative effects, through the production distortions,

• allocative effects, through the payoffs secured by the principal and the agent.

These are studied in turn.

4.1 Qualitative effects

Notice that the trade-off between separating and pooling is relevant only for low ambi-

guity, since in this case, c∗ ∈]c, c[.

Proposition 6. Under assumption 1, when 0 < α < α∗(β)

• c∗ is a decreasing function of α,

• there exists a unique β̂ ∈ [0, 1] such that c∗ is a decreasing function of β if β < β̂ and an

increasing function of β if β > β̂.

Recall that c∗ is such that the cost of separating below c∗ is equal to the cost of pooling

above c∗ (c.f. equation (11)). The effect of α and β on these two costs are the following.

On the cost of separating side, a rise in α or β has two different effects. On the one

hand, this leads to a decrease in the level of production qs(c) for all c, in particular at

c∗, because the agency cost is increased. This raises the cost of separating because the

production is further away from the first best at c. On the other hand, α raises the weight

attached to getting efficient production from the least efficient agent, whereas β decreases

it. So α reinforces the former effect on the cost of separating; the opposite is true for β.

Taken together, these two effects lead to an increase in the cost of separating in the case of

α, and a U-shaped effect in the case of β.
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On the cost of pooling side, a rise in α and β reduces qs(c∗), but also qs(c) for all c ≥ c∗

because the agency cost is raised. Thus, the effect on the difference between these two

levels, which contributes to the cost of pooling, is not clear-cut. Moreover, when α in-

creases, the cost of pooling falls because the principal’s confidence in the distribution F is

reduced. By contrast, β is neutral. Ultimately, α tends to reduce the cost of pooling while

β has an unclear effect.

Therefore, the overall effect on c∗ is the following. An increase in ambiguity lowers c∗

because it reduces the cost of separating and increases the cost of pooling. The pooling

zone is thus increased.12 By contrast, a decrease in ambiguity aversion (an increase in

optimism) does not have an unequivocal overall effect on c∗. As a result, the c∗ function

is a U-shaped function of β.

4.2 Quantitative effects

Two aspects are examined (1) the size of the jump (2) the level of the constant production

on the pooling zone. This is done in the next three propositions. The first two are devoted

to the case of low ambiguity, the last one to the case of high ambiguity.

Low ambiguity. When ambiguity is low, recall that the size of the jump is given by

qFB(c) − qs(c), and the constant production q̄ is such that, using (12), q̄ = q∗(c∗) =

(S′)−1
(

c∗ + F(c∗)+ αβ
1−α

f (c∗)

)
.

Proposition 7. When 0 < α < α∗(β), the size of the jump at the top is increasing in α and β.

When α and β rise, qs(c) decreases for all c because the agency cost increases, in partic-

ular at c, whereas qFB(c) remains unchanged. So the jump increases. As mentioned above,

ambiguity and ambiguity seeking (optimism) sharpen the rent extraction efficiency trade-

off at the top. Thus, when the corresponding parameters increase, the conflict is height-

ened and the jump increases.
12This is in line with other similar results in the literature, for instance the fact that ambiguity aversion

leads to absence of trade under certain circumstances (Dow and da Costa Werlang, 1992).
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Proposition 8. Let q̄ be the production of inefficient types when 0 < α < α∗(β),

• ∂q̄
∂α > 0 if and only if F(c∗) > β. Equivalently, for all β there exists α̃ ∈ (0, α∗(β)] such

that ∂q̄
∂α ≥ 0 on (0, α̃) and ∂q̄

∂α ≤ 0 on(α̃, α∗(β)].

• ∂q̄
∂β < 0.

As α or β increase, the agency cost rises all other things being equal. Therefore, the

constant production tends to be reduced. However, as previously noted in Proposition 6,

a rise in α or β affect the trade-off between separating and pooling at the bottom of the

distribution, and therefore the size of the pooling zone through the value of c∗. In the case

of a rise in α, c∗ decreases which tends to increase the constant production. The overall

effect of ambiguity on the constant production thus results in an approximately inverted

U-shaped curve: the agency cost effect trumps the effect on c∗ for small values of α and is

trumped by it for large values. In the case of a rise in β, c∗ can rise or fall. However, some

effects offset each other, resulting in an overall decrease in constant production.

High ambiguity. Let us analyze the case of high ambiguity when αβ < 1. Using Propo-

sition 4, the jump is equal to qFB(c)− q̄, with q̄ = S′−1
(

c + αβ
1−αβ(c − c)

)
for all c ∈ (c, c].

In this case, the size of the jump and the constant production covary in opposite direc-

tions. We have the following proposition.

Proposition 9. Let q̄ be the production of all types except c when α∗(β) ≤ α ≤ 1. Then ∂q̄
∂α < 0

and ∂q̄
∂β < 0.

As in the preceding proposition, a rise in α and β increases the agency cost. So this

reduces the constant production. This corresponds also to the overall effect now because,

unlike in the previous proposition, c∗ no longer contributes to defining q̄. As mentioned,

the jump varies in the opposite direction and thus increases when ambiguity and ambi-

guity seeking increase.
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4.3 Allocative effects

The way the size of the jump and the quantity produced by inefficient types in the opti-

mal contract vary with ambiguity and ambiguity attitude suggests, given the connection

between quantity produced and rent, that it is worth studying the effect of ambiguity and

ambiguity aversion on the rent of the agent and the surplus of the principal.

4.3.1 The agent’s rent

Let

U∗(c) =
∫ c

c
q∗(x)dx

be the rent of an agent of type c ∈ C. We then have the following proposition.

Proposition 10. • For all α ∈ (0, 1), ∂U∗(c)
∂β < 0 for all c ∈ (c, c].

• If 0 < α < α∗(β), then there exists K > 0 such that ∂U∗(c)
∂α > 0 for all c ∈ (c, c] if and only

if F(c∗)
β ≥ 1 + K.

• If α∗(β) ≤ α < 1, ∂U∗(c)
∂α < 0 for all c ∈ (c, c].

What this proposition shows is first, that all agents benefit from the fact that the prin-

cipal is ambiguity averse, independently of the level of ambiguity she perceives. Indeed,

ambiguity aversion leads to the principal being more attentive to the objective of getting

the least efficient type to produce the first best quantity and raises the agency cost, and

both effects work in the direction of raising the production of the least efficient types,

which in terms of rent also benefits the most efficient types. From a more psychological

point of view, a more ambiguity averse principal will prefer less ambiguous, i.e. "flatter"

contracts, to more variable ones, which also benefits all agents. Second, this proposition

shows that, when the principal perceives a low ambiguity, more ambiguity favors all the

agents as long as the principal is sufficiently ambiguity averse. Indeed, more ambiguity

will lead the principal to prefer even more unambiguous contracts if she is sufficiently

ambiguity averse. Conversely, what this proposition says is that if she is not sufficiently

ambiguity averse, then some agents, at the top of the distribution, i.e. efficient ones, might
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suffer from an increase in ambiguity, while the agents at the bottom of the distribution,

inefficient ones, might still benefit from it.

Finally, when the principal perceives a lot of ambiguity, we know from proposition 4

that she behaves as if there were only two types and the probability of the efficient type c

were αβ, and the probability of the inefficient type(s) 1 − αβ. Thus rises in α (more ambi-

guity perceived) or β (less ambiguity aversion) lead to a decrease in the latter probability,

and as a consequence, the principal will allocate a lower rent to the inefficient type, since

the objective of productive efficiency of the less efficient type is less pressing.

4.3.2 Social surplus and principal’s payoff

Let

V∗(c) = S(q∗(c))− cq∗(c))− U∗(c) = S(q∗(c))− cq∗(c))−
∫ c

c
q∗(x)dx

be the principal’s ex post net payoff when she actually faces an agent of type c ∈ C. The

effects of ambiguity and of her ambiguity attitude on this payoff are not as clear cut as the

effects they have on the agent. What we can show, however, is how they affect the total

surplus V∗(c) + U∗(c), and the consequences we can draw from this and proposition 10.

Proposition 11. • For all α ∈ (0, 1), ∂V∗(c)+U∗(c)
∂β < 0 for all c ∈ (c, c].

• If 0 < α < α∗(β), ∂V∗(c)+U∗(c)
∂α < 0 for all c ∈ (c, c] if and only if F(c∗) < β.

• If α∗(β) ≤ α < 1, ∂V∗(c)+U∗(c)
∂α < 0 for all c ∈ (c, c].

This proposition shows that ambiguity aversion increases the size of the total surplus.

We know from proposition 10 that ambiguity aversion raises the agent’s rent, and this

proposition shows that, it may or may not lower the the principal’s payoff, but in any

case the size of the rent increase is always sufficient to compensate for it.

As far as ambiguity is concerned, let us consider first the case of high ambiguity. In this

case, more ambiguity entails a decrease in total surplus. Therefore, since we know from

proposition 10 that the rent of the inefficient agents in this case decreases with ambiguity,

we see that, again, even though the principal might gain from ambiguity, her gain can

never exceed the absolute value of the loss incurred by the agent.
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Consider now the case of low ambiguity. In this case, the total surplus increases with

ambiguity, if and only if β < F(c∗), i.e. if and only if the principal is sufficiently ambiguity

averse. In that case, let K be the constant identified in proposition 10 such that ∂U∗(c)
∂α > 0

if and only if F(c∗)
β > 1 + K. Then, we have the following corollary:

Corollary 1. If 0 < α < α∗(β) and 1 < F(c∗)
β < 1 + K. Then ∂V∗(c)

∂α > 0 for all c ∈ (c, c].

This corollary identifies a sufficient condition for which the principal’s payoff might

increase with ambiguity. She should be ambiguity averse but not too much so.

5 Conclusion

The optimal contract in an adverse selection model with a continuum of types and a para-

metric model of ambiguity and ambiguity aversion, namely the NEO-additive model,

necessarily involves efficiency and a jump at the top of the distribution and pooling at the

bottom of the distribution. As a result, ambiguity adversely affects the principal’s ability

to solve the adverse selection problem and therefore, if the principal is not very ambi-

guity averse, the least efficient types benefit from ambiguity with respect to risk, while

ambiguity is detrimental to the most efficient types.
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A Appendices

A.1 Miscellaneous results.

A.1.1 Result on the Kulback-Leibler Divergence

G(B) ≥ (1 − α)F(B) ⇐⇒
∫ c

c
1BdG ≥ (1 − α)

∫ c

c
1BdF ∀B

⇐⇒
∫ c

c
1BdG ≥ (1 − α)

∫ c

c
1B

dF
dG

dG ∀B

⇐⇒
∫ c

c
1B

(
1 − (1 − α)

dF
dG

)
dG ≥ 0 ∀B.

⇒ 1 − (1 − α)
dF
dG

≥ 0 G-a.s.

⇒ 1
1 − α

≥ dF
dG

G-a.s.

⇒ ln
(

1
1 − α

)
≥ ln

(
dF
dG

)
G-a.s.

⇒ ln
(

1
1 − α

)
≥ ln

(
dF
dG

)
F-a.s.

⇒ ln
(

1
1 − α

)
≥
∫ c

c
ln
(

dF
dG

)
dF.

A.1.2 Proof of Lemma 1.

Let

ϕβ(α) = β2α2 − (β + f (c)(c − c))α + f (c)(c − c).

Then α ∈ (0, 1) is a solution to the above equation if and only if it is a solution to the

equation ϕβ(α) = 0.

The discriminant of this equation of degree two in α is

∆ = β2 + ( f (c)(c − c))2 + 2β f (c)(c − c)(1 − 2β).

Since 1 − 2β ∈ (−1, 1) for β ∈ (0, 1), ∆ > [β + f (c)(c − c)]2 > 0. So this equation has two

roots

α∗(β) :=
β + f (c)(c − c)−

√
β2 + ( f (c)(c − c))2 + 2β f (c)(c − c)(1 − 2β)

2β2
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and

α̂+(β) :=
β + f (c)(c − c) +

√
β2 + ( f (c)(c − c))2 + 2β f (c)(c − c)(1 − 2β)

2β2 .

Now, ϕβ(0) = f (c)(c − c) > 0 and ϕβ(1) = β(β − 1) < 0, so there is at least one

solution in (0, 1) and since ϕβ is a convex polynomial of the second degree it has at most

two roots, the one that lies in (0, 1) with ϕβ(0) > 0 and ϕβ(1) < 0 is on the decreasing

branch, so the second one must be on the increasing branch, so the root in (0, 1) is unique.

Since α∗(β) < α̂+(β), this root must be α∗(β).

A.2 Optimal Second Best Contracts

A.2.1 Maximum principle and identification of the argmax and argmin of V

Let c0 ∈ arg max V(c) and c1 ∈ arg min V(c).

Assume first that c0 ≤ c1. After similar computations as in (6) and (7), we obtain

W(q) = αβ(S(q(c0)− c0q(c0)) + α(1 − β)(S(q(c1))− c1q(c1))

+ (1 − α)
∫ c0

c

(
S(q(c)) − cq(c)− F(c)

f (c)
q(c)

)
f (c)dc

+ (1 − α)
∫ c1

c0

(
S(q(c)) − cq(c)−

F(c) + αβ
1−α

f (c)
q(c)

)
f (c)dc

+ (1 − α)
∫ c

c1

(

S(q(c)) − cq(c)−
F(c) + α

(1−α)

f (c)
q(c)

)

f (c)dc. (16)

Let i be such that

i =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if c ∈ [c, c0] := C1

2 if c ∈ [c0, c1] := C2

3 if c ∈ [c1, c] := C3

(17)

The principal’s problem is to maximize (16) subject to (IC2). This is a multi-stage control

problem. Let µi be the costate variable associated with the state q and y the control such

that q′ = y. The Hamiltonians are, i = 1, 2, 3,

Hi = (1 − α) (S(q(c)) − cq(c)− Ti(c, α, β)q(c)) f (c) + µi(c)y(c), (18)
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with

Ti(c, α, β) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

F(c)
f (c)

if i = 1

F(c) + αβ
1−α

f (c)
if i = 2

F(c) + α
(1−α)

f (c)
if i = 3

(19)

From the maximum principle (see Amit, 1986; Tomiyama, 1985) , we know that

∂Hi/∂y = µi(c) ≥ 0, y(c)∂Hi/∂y = µi(c)y(c) = 0; (20)

µ′
i(c) = −∂Hi/∂q = −

(
(1 − α)

(
S′(q(c)) − c − Ti(c, α, β)

))
f (c)

= (1 − α) f (c)
(

c + Ti(c, α, β)− S′(q(c))
)

except at points of discontinuities of y(c). (21)

Moreover, transversality conditions are

µ1(c) = 0 (22)

µ3(c) = 0 (23)

Finally, transition conditions are

µ1(c0)− αβ
(
S′(q(c0))− c0

)
= µ2(c0) (24)

µ2(c1)− α(1 − β)
(

S′(q(c1))− c1
)
= µ3(c1) (25)

Because S′′ < 0, necessary and transversality conditions are also sufficient.

We will now proceed to show that at the optimum c0 = c and c1 = c.

In order to do that, we need a series of lemmata.

We are looking for a piecewise C1 solution q∗. Let N ⊂ C be the finite set of points

where q′ is not continuous. Note that in principle N can be empty. Let C∗
i := Ci ! N and

C∗ = C∗
1 ∪ C∗

2 ∪ C∗
3 . Condition (21) holds at every point of C∗, hence, since q∗ is continuous

on every interval of C∗, it implies that µ′
i exists and is continuous on every interval of C∗

i ,

but may not exist at some point in N.
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Introduce a piece of notation. For all c ∈ C, let

qs
i (c) :=S′−1 (c + Ti(c, α, β)) (26)

and

qs(c) :=qs
i (c) whenever c ∈ Ci. (27)

Let also µ(c) := µi(c) whenever c ∈ Ci. Finally, let

ci :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

c0 if i = 1

c1 if i = 2

c if i = 3

Lemma 2. Under assumption 1, qs
i and qFB are differentiable on C, (qs

i )
′(c) < 0 and (qFB)′(c) <

0 for all c ∈ C.

Proof. Straightforward.

Lemma 3. If µ∗
i is a solution and µ∗

i is constant on some interval I ⊂ Ci, then µ∗
i (c) = 0 for all

c ∈ I.

Proof. Assume µ∗
i is constant on I. Then, for all c ∈ I ∩ C∗, (µ∗

i )
′(c) = 0, and thus by

(21) q∗(c) = qs
i (c). Therefore, by lemma 2 (q∗i )

′(c) < 0 for all c ∈ I ∩ C∗, and thus by

(20) µ∗
i (c) = 0 for all c ∈ I ∩ C∗. Since µ∗

i is continuous on I and N is finite, this implies

µ∗
i (c) = 0 for all c ∈ I.

Lemma 4. If (q∗, µ∗) is a solution such that (µ∗)′(ci
0) > 0 for some ci

0 ∈ C∗
i , then (µ∗

i )
′(c) > 0

for all c ∈ [ci
0, ci] ∩ C∗

i , and µ∗
i (c) > 0 for all c ∈ [ci

0, ci].

Proof. Assume (µ∗)′(ci
0) > 0 for some ci

0 ∈ C∗
i . Then since (µ∗

i )
′ is continuous at ci

0 and

µ∗
i ≥ 0, we may w.l.o.g. assume that µ∗

i (c
i
0) > 0.

Now, assume by contradiction that there exists ci
1 ∈ (ci

0, ci] such that (µ∗
i )

′(ci
1) ≤ 0.

Note that it is impossible that (µ∗
i )

′(c) = 0 for all c ∈ (ci
0, ci), because this would imply

that µ∗
i is constant on this interval, and thus by lemma 3 that µ∗

i (c) = 0 for all c ∈ (ci
0, ci),

which would be a contradiction since µ∗
i (c

i
0) > 0 and µ∗

i is continuous. Thus w.l.o.g. we
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can assume that (µ∗
i )

′(ci
1) < 0. Again by continuity, we may therefore assume w.l.o.g. that

µ∗
i (c

i
1) > 0. Now since µ∗

i is continuous over the compact interval [ci
0, ci

1], it has a global

maximum there, reached at ci
2. Since µ∗

i (c
i
0) > 0 and µ∗

i (c
i
1) > 0, we have µ∗

i (c
i
2) > 0,

therefore there exists an open interval (ci
2 − ε, ci

2 + ε) such that µ∗
i > 0 over this interval.

By (20), this implies that q∗ is constant over this interval. On the other hand, by the same

argument as before (µ∗
i )

′ is not always 0 over this interval, and, since µ∗ is piecewise

C1, there exist ci
3, ci

4 ∈ (ci
2 − ε, ci

2) ∪ (ci
2, ci

2 + ε) ∩ C∗
i such that ci

3 < ci
4, (µ∗

i )
′(ci

3) > 0

and (µ∗
i )

′(ci
4) < 0. Thus, q∗(ci

3) > qs
i (c

i
3) > qs

i (c
i
4) > q∗(ci

4) and q∗ is not constant on

(ci
2 − ε, ci

2 + ε), which is a contradiction.

Now, assume µ∗
1(c) = 0 for all c ∈ C1. Then, (µ∗

1)
′(c) = 0 for all c ∈ C∗

1 . Then

q∗(c) = qs
1(c) on C∗

1 by (21), and, in particular,

lim
c↑c0

q∗(c) ≤ qs
1(c0) < qFB(c0), (28)

since c < c0). On the other hand, condition (24) implies that

−αβ
(
S′(q∗(c0))− c0

)
= µ∗

2(c0) ≥ 0,

thus q∗(c0) ≥ qFB(c0). But this is incompatible with equation (28) given (IC2).

Let Mi := {c ∈ Ci | µ∗
i (c) > 0}. We have just shown that M1 ̸= ∅. Since it is

bounded below by c, it has a lower bound. Denote it c∗0. Since µ∗
1 is continuous, M1 is

open, and thus µ∗
1(c

∗
0) = 0. Let c ∈ M1 be such that µ1 is differentiable on (c, c∗0). Then,

µ∗
1(c) > µ∗

1(c
∗
0) and there exists c′ ∈ (c∗0, c) such that (µ∗

1)
′(c′) =

µ∗
1(c)−µ∗

1(c
∗
0)

c−c∗0
> 0. By

lemma 4, this implies that µ∗(c′′) > 0 for all c0 > c′′ > c′. Since this is true for every

c ∈ M1 ∩ C∗
1 , (µ∗

1)(c) > 0 for all c > c∗0, i.e. M1 = (c∗, c]. In particular, q∗ is constant over

M1 by (20). Denote the values it takes on this interval by q̄1.

Summarizing, on C1, we have

q∗(c) =

⎧
⎪⎨

⎪⎩

qs
1(c) if c ∈ [c, c∗0]

q̄1 if c ∈ [c∗0, c0],

28



and therefore, since (qs
1)

′(c) < 0 and qs
1(c) ≤ qFB(c) on [c, c∗0 ], we have

V ′(c) =

⎧
⎪⎨

⎪⎩

(S′(qs
1(c))− c)(qs

1)
′(c) < 0 if c ∈ [c, c∗0)

0 if c ∈ [c∗0, c0].

Thus V is nonincreasing on C1 and therefore we cannot have c0 > c.

On C3, on the other hand, there is no contradiction with condition (25) in assuming that

µ3 = 0, since condition (25) implies q∗(c1) ≤ qFB(c1), and thus q∗(c) = qs
3(c). But then

V ′(c) = (S′(qs
1(c)) − c)(qs

1)
′(c) < 0 on C3, contradicting the fact that c1 ∈ arg min(V(c)),

unless c1 = c.

If c0 > c1, then

W(q) =αβ(S(q(θ0)− θ0q(θ0)) + α(1 − β)(S(q(θ1))− θ1q(θ1))

+ (1 − α)
∫ θ0

θ1

(

S(q(θ)) − θq(θ) −
F(θ) + α(1−β)

1−α

f (θ)
q(θ)

)

f (θ)dθ

+ (1 − α)
∫ θ1

θ

(
S(q(θ)) − θq(θ) − F(θ)

f (θ)
q(θ)

)
f (θ)dθ

+ (1 − α)
∫ θ

θ0

(
S(q(θ)) − θq(θ) − (1 − α)F(θ) + α

(1 − α) f (θ)
q(θ)

)
f (θ)dθ.

(29)

In that case, similar arguments as above show that the optimality conditions imply that

V is decreasing and continuous on [c1, c0]. But this is incompatible with V(c1) < V(c0)

and c1 < c0. Thus the latter case is impossible at the optimum.

To conclude, c0 = c and c1 = c.

So let us denote

H = H2, µ(c) = µ2(c) and T(c, α, β) = T2(c, α, β), (30)

with µ absolutely continuous. Conditions (20)-(25) reduce to

µ(c) ≥ 0, y(c)µ(c) = 0; (31)

µ′(c) = (1 − α) f (c)
(

c + T(c, α, β)− S′(q(c))
)

except at points of discontinuities of y(c) (32)

µ(c) = −αβ
(
S′(q(c)))− c

)
(33)

µ(c) = α(1 − β)
(
S′(q(c))− c

)
(34)
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From (31), we know that µ(c) ≥ 0. Therefore, since S′′ < 0, we get, using (FB) with (33),

then with (34)

µ(c) ≥ 0 ⇔ αβ = 0 or (αβ > 0 and q(c) ≥ qFB(c)) (35)

µ(c) ≥ 0 ⇔ α(1 − β) = 0 or (α(1 − β) > 0 and q(c) ≤ qFB(c)) (36)

Parallel arguments show that, on C2,

q∗(c) =

⎧
⎪⎨

⎪⎩

qs
2(c) if c ∈ (c, c∗]

q̄2 if c ∈ [c∗, c],

for some values c∗ and q̄2.

We may now proceed to prove the propositions in the text.

A.2.2 Proof of Proposition 2

(i) If q∗ is a solution, q∗(c) = qFB(c).

Proof. By (33), q∗(c) ≥ qFB(c), so we must show the reverse inequality. If c ∈ C∗,

then this follows from the following lemma.

Lemma 5. If q∗ is a solution, for all c ∈ C∗, q∗(c) ≤ qFB(c).

Proof. By contradiction, consider c0 ∈ C∗ such that q∗(c0) > qFB(c0). Then, q∗(c0) >

qs(c0), thus S′(q∗(c0)) < c0 + T(c0), so that, by (32), (µ∗)′(c0) > 0. By lemma 4,

therefore, (µ∗)′(c) > 0 for all c ∈ [c0, c], and µ∗(c) > 0 for all c ∈ (c0, c]. So q∗ is

constant on (c0, c]. Let q be its value. Then, for all c ∈ (c0, c], q∗(c) = q ≥ q∗(c0) >

qFB(c0) > qFB(c). In particular, q∗(c) > qFB(c). However, since µ∗(c) > 0, by (34)

q∗(c) < qFB(c), which is a contradiction.

So assume that c /∈ C∗ and q∗(c) > qFB(c). Then, by (33) again µ(c) > 0. But then,

since µ is continuous, µ > 0 on some interval [c, c1). Thus, by (31), y = 0 on [c, c1),

hence limc→c y(c) = 0 = y(c) thus q′ is continuous at c: c ∈ C∗, contradicting the

initial assumption.
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(ii) If q∗ is a solution and β > 0, q∗ is not continuous at c.

Proof. To prove the claim, we shall need the following lemma:

Lemma 6. If q∗ is a solution, for all c ∈ C ! {c}, q∗(c) ≤ qFB(c).

Proof. Lemma 5 shows that this is true for c ∈ C∗. So consider c0 ∈ N ! {c}. There

is c1 ∈ C∗, c1 < c0 such that (c1, c0) ⊂ C∗. Thus, for all c ∈ (c1, c0), since q∗ is non

increasing, q∗(c0) ≤ q∗(c) ≤ qFB(c) by lemma 2. By continuity of qFB, this implies

q∗(c0) ≤ qFB(c0).

Assume on the contrary that q∗ is continuous at c. Since q∗ is piecewise continuously

differentiable, both q∗ and (q∗)′ have a right limit at c and the assumption implies

that (q∗)′(c) exists and is equal to limc↓c(q∗)′(c). Thus our assumption implies that

c ∈ C∗. In particular, this implies that (µ∗)′(c) exists and is given by (32). We will

therefore consider various possibilities for the sign of (µ∗)′(c) and show that all of

them lead to a contradiction, and thus to the rejection of the assumption that q∗ is

continuous at c. Note that, for all 0 < h ≤ c − c, µ∗(c + h) ≥ 0. Thus, since µ∗(c) = 0

by (33) and point (i)

µ∗(c + h)− µ∗(c)
h

=
µ∗(c + h)

h
≥ 0,

so that (µ∗)′(c) ≥ 0. Therefore we have only two cases to consider

Case 1: (µ∗)′(c) = 0. Since c ∈ C∗ by assumption, (32) applies and implies in this

case that q∗(c) = qs(c). Yet, qs(c) < qFB(c) = q∗(c); a contradiction.

Case 2: (µ∗)′(c) > 0. Then, by lemma 4, (µ∗)′(c) > 0 for all c ∈ C, therefore µ > 0 on

(c, c] and q∗ is constant on (c, c] by (31). Since moreover we have assumed

that it was continuous at c, it is constant on C. Denote q its value. Then,

for all c ∈ (c, c], q∗(c) = q ≥ q∗(c). But q∗(c) = qFB(c) by point (i) and

qFB(c) > qFB(c) by lemma 2, so q∗(c) > qFB(c); a contradiction by lemma 6.

To sum up, assuming that q∗ is continuous at c leads to a contradiction because

(µ∗)′(c) must be either 0 or positive, yet both cases are incompatible with this as-

sumption. Therefore q∗ is not continuous at c.
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(iii)

Claim 1. If µ∗ is a solution, then there exists c∗ ∈ C such that µ∗(c) = 0 for all c ∈ [c, c∗]

and µ∗(c) > 0 for all c ∈ (c∗, c]. Moreover, (c∗, c] ⊂ C∗ and c∗ < c if and only if β < 1.

Proof. The arguments are similar to the one used above but we repeat them here for

completeness.

Let M := {c ∈ C | µ∗(c) > 0}. We must show that there exists c∗ ∈ C such that M =

(c∗, c] and (c∗, c] ⊂ C∗. We will first prove that M ̸= ∅. Assume by contradiction

that µ∗(c) = 0 for all c ∈ C. Then, (µ∗)′(c) = 0 for all c ∈ C, and therefore, by

(32), q∗(c) = qs(c) for all c ∈ C∗. Assume β < 1. If c ∈ C∗, we also have by (34)

q∗(c) = qFB(c) > qs(c); a contradiction. If c /∈ C∗, there exists an interval (c0, c) ⊂ C∗

such that qs(c) = q∗(c) ≥ q∗(c) = qFB(c) for all c ∈ (c0, c), thus by continuity of

qs, qs(c) ≥ qFB(c); a contradiction since qs(c) < qFB(c). We therefore proved that

M is not empty. Since it is bounded below by c, it has a lower bound. Denote it c∗.

Since µ∗ is continuous, M is open, and thus µ∗(c∗) = 0. Therefore, for all c ∈ M,

µ∗(c) > µ∗(c∗) and there exists c′ ∈ (c∗, c) such that (µ∗)′(c′) = µ∗(c)−µ∗(c∗)
c−c∗ > 0.

By lemma 4, this implies that (µ∗)′(c) > 0 for all c > c′. Since this is true for every

c ∈ M, (µ∗)′(c) exists for all c > c∗ and (µ∗)′(c) > 0. This implies that (µ∗)(c) > 0

for all c > c∗, i.e. M = (c∗, c]. In particular, q∗ is constant over M by (31), so that it

is C1 on M, and thus M ⊂ C∗. Moreover, since M is open, this proves in particular

that c∗ < c whenever β < 1. If β = 1, then µ∗(c) = 0 and since, moreover, µ∗(c) = 0,

if M ̸= ∅, then, there exists c0 ∈ C∗ such that µ′(c0) > 0, and thus by lemma 4, this

implies that (µ∗)′(c) > 0 for all c > c0, thus µ∗(c) > 0; a contradiction. Thus M = ∅,

i.e. c∗ = c.

This claim proves point (iii), as, if µ∗(c) > 0 for all c > c∗, then by (31) q∗ is constant

on (c∗, c).
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A.2.3 Proof of Propositions 3 and 4

For β = 1, we know from claim 1 that c∗ = c. So from now on, we assume that β < 1, and

in that case c∗ < c.

Let us show

Claim 2. If c∗ > c, for all c ∈ (c, c∗], we have q∗(c) = qs(c).

Proof. Assume c∗ > c. Then, for all c ∈ (c, c∗), µ∗(c) = 0, hence (µ∗)′(c) = 0. If c ∈ C∗,

this implies by (32) that q∗(c) = qs(c). If c /∈ C∗, there exists c′, c′′, with c′ < c < c′′, such

that (c′, c) ∪ (c, c′′) ⊂ C∗. Then for all τ ∈ (c′, c), τ′ ∈ (c, c′′),

qs(τ) = q∗(τ) ≥ q∗(c) ≥ q∗(τ′) = qs(τ′),

hence taking limits as τ → c and τ′ → c and since qs is continuous, q∗(c) = qs(c).

Claim 3. If c∗ > c, for all c ∈ (c∗, c], we have q∗(c) = qs(c∗).

Proof. By (31), since µ∗ > 0 on (c∗, c], q∗ is constant on (c∗, c]. Denote its value q̄. More-

over, since (c∗, c] ⊂ C∗, (32) applies, therefore for all c ∈ (c∗, c], qs(c) < q̄. As c → c∗,

this implies qs(c∗) ≤ q̄. On the other hand, q∗ is non-increasing, thus, if c∗ > c, for all

c ∈ (c, c∗), we have qs(c) = q∗(c) ≥ q̄, thus again as c → c∗, we have qs(c∗) ≥ q̄. Thus

qs(c∗) ≥ q̄. Finally, q̄ = qs(c∗).

Proposition 3. Proposition 3 follows from claims 2 and 3, once we have characterized c∗

when c∗ > c. Let us now do this. We know from claim 1 that

c∗ = sup{c ∈ C | µ∗(c) = 0}.

Moreover, since (q∗, µ∗) is a solution, (34) must hold. Given the previous analysis, this

condition writes

α(1 − β)
(
S′(qs(c∗))− c

)
=
∫ c

c∗
(1 − α)

(
c + T(c, α, β)− S′(qs(c∗))

)
f (c)dc (37)

After some algebra and noting that
∫ c

c∗
(1 − α) (c + T(c, α, β)) f (c)dc =

∫ c

c∗
c(1 − α) f (c) + (1 − α)F(c) + αβdc

=
∫ c

c∗

d c((1 − α)F(c) + αβ)
dc

dc,
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one can show that this equation implies that whenever c∗ > c, c∗ satisfies

(1 − (1 − α) f (c∗)T(c∗, α, β))T(c∗, α, β) + c∗ − c = 0. (38)

Let, for all α, β in [0, 1] and c ∈ C,

Φ(c, α, β) := (1 − (1 − α) f (c)T(c, α, β))T(c, α, β) + c − c. (39)

Since

∂Φ
∂c

(c, α, β) = 1 + (1 − αβ)
∂T
∂c

(c, α, β)− (1 − α)

(
f (c)T(c, α, β) + F(c)

∂T
∂c

(c, α, β)

)

= 1 + (1 − αβ − (1 − α)F(c))
∂T
∂c

(c, α, β)− (1 − α) f (c)T(c, α, β)

= 1 + (1 − αβ − (1 − α)F(c))
∂T
∂c

(c, α, β)− αβ − (1 − α)F(c)

=

(
1 +

∂T
∂c

(c, α, β)

)
− (αβ + (1 − α)F(c))

∂T
∂c

(c, α, β)− (αβ + (1 − α)F(c))

=

(
1 +

∂T
∂c

(c, α, β)

)
(1 − (αβ + (1 − α)F(c))) > 0, (40)

Φ is increasing in c. Moreover,

Φ(c, α, β) = µ(c) > 0

whenever β < 1.

Thus, c∗ > c can be the (unique) solution in C to the equation

Φ(c, α, β) = 0 (41)

only if

Φ(c, α, β) =
(1 − αβ)αβ

(1 − α) f (c)
+ c − c < 0.

Therefore,

c∗ ∈ (c, c) ⇐⇒ (1 − αβ)αβ

(1 − α) f (c)
+ c − c < 0

⇐⇒ (1 − αβ)αβ

(1 − α)
< f (c)(c − c)

⇐⇒ α < α∗(β) by lemma 1.
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Thus claims 2 and 3 and this condition show that the expression given in proposition 3

for q∗ is necessary for q∗ to be the solution. Conversely, it is a routine matter to check that

q∗ is indeed a solution given µ∗ as above. So this proves proposition 3.

Proposition 4. Now for proposition 4 consider first the case α < 1 and

(1 − αβ)αβ

(1 − α)
≥ f (c)(c − c),

i.e., by lemma 1, α ≥ α∗(β). Then equation 41 does not have a solution in (c, c), and thus

c∗ = c. Therefore

q∗(c) =

⎧
⎪⎨

⎪⎩

qFB(c) if c = c

q if c ∈ (c, c],

where by (34) and (32) q satisfies

(1 − α)
∫ c

c

(
c + T(c∗, α, β)− S′(q̄)

)
f (c)dc = α(1 − β)

(
S′(q̄)− c

)
.

Solving for q̄ yields

q = S′−1
(

c +
c − c

1 − αβ

)
= S′−1

(
c +

αβ

1 − αβ
(c − c)

)
.

Note that q̄ < qFB(c) for c > c because c − c − c−c
1−αβ = (c − c) −αβ

1−αβ < 0.

Consider now the case α = 1. Using (32), we get µ′(c) = β > 0 for all c ∈ C∗. Since µ

is piecewise C1 this implies that µ′(c) = β for all c ∈ C. Then since µ(c) = 0, this implies

µ(c) = β(c − c) > 0 for all c ∈ (c, c], hence by (31) (q∗)′(c) = 0 on the same interval, thus

q∗ is constant over this interval. Thus q∗(c) = qFB(c) at c by (33) and q∗(c) = q̄ on (c, c],

with q̄ given by, using (34)

β(c − c) = (1 − β)(S′(q̄)− c).

A.2.4 Proof of Proposition 5

Let R(q, c) := α(1 − β) (S(q)− cq). The objective function (14) assigns the scrap value

R(q(c∗), c∗) to the type c∗. So according to the maximum principle (Seierstad and Syd-

saeter, 1986, p. 184), the condition defining c∗ is

H(c∗) +
∂R
∂c

(q(c∗), c∗) = 0.
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From (18), (19) and (30), we get

(1 − α) (S(q(c∗))− c∗q(c∗)− T(c∗, α, β)q(c∗)) f (c∗) + µ(c)y(c) − α(1 − β)q(c∗) = 0.

But, µ(c)y(c) = 0 by (31).

A.3 Comparative statics

A.3.1 Proof of Proposition 6

By definition c∗ is given by

Φ(c∗, α, β) = c∗ + (1 − αβ − (1 − α)F(c∗))T(c∗, α, β)− c = 0.

Thus, by the implicit function theorem,

∂c∗

∂α
(α, β) = −

∂Φ
∂α
∂Φ
∂c

(c∗, α, β) and
∂c∗

∂β
(α, β) = −

∂Φ
∂β

∂Φ
∂c

(c∗, α, β).

Now, by equation (40), ∂Φ
∂c (c, α, β) > 0; on the other hand,

∂Φ
∂α

(c, α, β) = (1 − αβ − (1 − α)F(c))
∂T
∂α

(c, α, β) + (F(c) − β)T(c, α, β)

= (1 − αβ − (1 − α)F(c))
β

(1 − α)2 f (c)
+ (F(c) − β)

(1 − α)F(c) + αβ

(1 − α) f (c)

=
[1 − αβ − (1 − α)F(c)]β + (1 − α)(F(c) − β)[(1 − α)F(c) + αβ)]

(1 − α)2 f (c)

=
β − β2 + (1 − α)2(β − F(c))2

(1 − α)2 f (c)
> 0

hence
∂c∗

∂α
(α, β) < 0.

In turn,

∂Φ
∂β

(c, α, β) = (1 − αβ − (1 − α)F(c))
∂T
∂β

(c, α, β)− αT(c, α, β)

= (1 − αβ − (1 − α)F(c))
α

(1 − α) f (c)
− α

αβ + (1 − α)F(c))
(1 − α) f (c)

=
α

(1 − α) f (c)
(1 − 2(αβ + (1 − α)F(c))).
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Thus
∂Φ
∂β

(c, α, β) > 0 ⇐⇒ 1 − 2(αβ + (1 − α)F(c)) > 0,

and, since ∂Φ
∂c (c, α, β) > 0,

∂c∗

∂β
(α, β) ≶ 0 ⇐⇒ αβ + (1 − α)F(c∗) ≶ 1

2
⇐⇒ β ≶ 1

2α
− 1 − α

α
F(c∗).

From this we can derive the existence and uniqueness of a β̂ ∈ [0, 1] such that c∗ is a

decreasing function of β if β < β̂, an increasing function of β if β > β̂ and ∂c∗
∂β (β̂) = 0.

Indeed, let

g(β) := αβ + (1 − α)F(c∗)− 1
2

.

Clearly, g is continuous and differentiable and

g′(β) = α + (1 − α)
∂c∗

∂β
(α, β) f (c∗)

= α − α(1 − 2(αβ + (1 − α)F(c∗)))

(1 − α) f (c∗)
(

1 + ∂T
∂c (c∗, α, β)

)
(1 − (αβ + (1 − α)F(c∗)))

(1 − α) f (c∗)

= α

⎛

⎝1 − (1 − 2(αβ + (1 − α)F(c∗)))(
1 + ∂T

∂c (c∗, α, β)
)
(1 − (αβ + (1 − α)F(c∗)))

⎞

⎠

=
α
((

1 + ∂T
∂c (c

∗, α, β)
)
(1 − (αβ + (1 − α)F(c∗)))− 1 + 2(αβ + (1 − α)F(c∗)))

)

(
1 + ∂T

∂c (c∗, α, β)
)
(1 − (αβ + (1 − α)F(c∗)))

=
α
(

∂T
∂c (c

∗, α, β)(1 − (αβ + (1 − α)F(c∗))) + αβ + (1 − α)F(c∗))
)

(
1 + ∂T

∂c (c∗, α, β)
)
(1 − (αβ + (1 − α)F(c∗)))

> 0.

Three cases may appear.

Case 1. g(0) < 0 and g(1) > 0. In this case, there is a unique β̂ ∈ [0, 1] such that g(β) = 0.

Moreover, since g is increasing this implies that g(β) < 0 for all β ∈ [0, β̂) and

g(β) > 0 for all β ∈ (β̂, 1], thus, ∂c∗
∂β (α, β) < 0 for all β ∈ [0, β̂) and ∂c∗

∂β (α, β) > 0

for all β ∈ (β̂, 1].

Case 2. g(0) ≥ 0. Then, we can set β̂ = 0.

Case 3. g(1) ≤ 0. Then we can set β̂ = 1.
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A.3.2 Proof or Proposition 7

Let

∆e f f := qEU(c)− qs(c) = S′−1(c)− S′−1
(

c +
αβ

(1 − α) f (c)

)

be the size of the jump at the top. Then

∂∆e f f

∂α
= − β

(1 − α)2 f (c)
1

S′′(S′−1
(

c + αβ
(1−α) f (c)

) > 0

and

∂∆e f f

∂β
= − α

(1 − α) f (c)
1

S′′(S′−1
(

c + αβ
(1−α) f (c)

) > 0.

A.3.3 Proof of Proposition 8

If α < α∗(β), then q̄ = qs(c∗) = S′−1(c∗ + T(c∗)). Thus,

∂q̄
∂α

=

(
∂c∗

∂α
+

∂c∗

∂α

∂T
∂c

(c∗, α) +
∂T
∂α

(c∗, α)

)
(S′−1)′(c∗ + T(c∗, α))

=

((
1 +

∂T
∂c

(c∗, α)

)
∂c∗

∂α
+

∂T
∂α

(c∗, α)

)
1

S′′(S′−1(c∗ + T(c∗, α)))
.

But, as was established in the proof of Proposition 6,
(

1 +
∂T
∂c

(c∗, α)

)
∂c∗

∂α
= − β − β2 + (1 − α)2(β − F(c∗))2

(1 − α)2 f (c∗)(1 − (αβ + (1 − α)F(c∗)))

and

∂T
∂α

(c∗, α) =
β

(1 − α)2 f (c∗)
,

therefore

S′′(S′−1(c∗ + T(c∗, α))).
∂q̄
∂α

=
β(1 − (αβ + (1 − α)F(c∗)))− (β − β2 + (1 − α)2(β − F(c∗))2)

(1 − α)2 f (c∗)(1 − (αβ + (1 − α)F(c∗)))

=
(1 − α)β2 − (1 − α)βF(c∗)− (1 − α)2(β − F(c∗))2

(1 − α)2 f (c∗)(1 − (αβ + (1 − α)F(c∗)))

=
(1 − α)(β − F(c∗))(αβ + (1 − α)F(c∗))
(1 − α)2 f (c∗)(1 − (αβ + (1 − α)F(c∗)))

.
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Thus,
∂q̄
∂α

< 0 ⇐⇒ β > F(c∗).

Now, let h(α) := F(c∗) − β. Then, h(0) = 1 − β > 0 and h(α∗(β)) = −β < 0.

Moreover, h′(α) = ∂c∗
∂α f (c∗) < 0. Therefore, there exists α̃(β) ∈ (0, α∗(β)) such that

h(α̃(β)) = 0, and α ≷ α̃(β) ⇐⇒ F(c∗) ≶ β ⇐⇒ ∂q̄
∂α ≶ 0.

∂q̄
∂β

=

(
∂c∗

∂β
+

∂c∗

∂β

∂T
∂c

(c∗, β) +
∂T
∂β

(c∗, β)

)
(S′−1)′(c∗ + T(c∗, β))

=

((
1 +

∂T
∂c

(c∗, β)

)
∂c∗

∂β
+

∂T
∂β

(c∗, β)

)
1

S′′(S′−1(c∗ + T(c∗, β)))
.

But, as was established in the proof of Proposition 6,
(

1 +
∂T
∂c

(c∗, β)

)
∂c∗

∂β
= − α(1 − 2(αβ + (1 − α)F(c)))

(1 − α) f (c∗)(1 − (αβ + (1 − α)F(c∗)))

and

∂T
∂β

(c∗, β) =
α

(1 − α) f (c∗)
,

therefore

∂q̄
∂β

=
α

(1 − α) f (c∗)

(
1 − 1 − 2(αβ + (1 − α)F(c))

1 − (αβ + (1 − α)F(c∗))

)
1

S′′(S′−1(c∗ + T(c∗, α)))
.

=
α

(1 − α) f (c∗)

(
αβ + (1 − α)F(c)

1 − (αβ + (1 − α)F(c∗))

)
1

S′′(S′−1(c∗ + T(c∗, α)))
. < 0.

A.3.4 Proof of Proposition 9

q̄ = S′−1
(

c +
c − c

1 − αβ

)

Thus
∂q̄
∂α

=
β

(1 − αβ)2
1

S′′(S′−1
(

c + c−c
1−αβ

) < 0.

and

∂q̄
∂β

=
α

(1 − αβ)2
1

S′′(S′−1
(

c + c−c
1−αβ

) < 0.
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A.3.5 Proof of Proposition 10

U∗(c) =
∫ c

c
q∗(x)dx

=
∫ c∗

c
q∗(x)dx +

∫ c

c∗
q∗(x)dx

=
∫ c∗

c
(S′)−1(x + T(x, α, β))dx +

∫ c

c∗
(S′)−1(c∗ + T(c∗, α, β))dx

=
∫ c∗

c
(S′)−1(x + T(x, α, β))dx + (c − c∗)q̄.

Thus,

∂U∗(c)
∂β

=
∫ c∗

c

α

(1 − α) f (x)
1

S′′(S′−1 (x + T(x)))
dx + (c − c∗)

∂q̄
∂β

and, by propositions 8 and 9, we have ∂q̄
∂β < 0 for all α ∈ (0, 1).

On the other hand, assume 0 < α < α∗(β). Then,

∂U∗(c)
∂α

=
∫ c∗

c

β

(1 − α)2 f (x)
1

S′′(S′−1 (x + T(x)))
dx + (c − c∗)

∂q̄
∂α

Note that, when 0 < α < α∗(β), by proposition 8 we have ∂q̄
∂α < 0 if and only if

F(c∗) < β. Therefore, if F(c∗) ≤ β, any K works. Assume on the contrary that F(c∗) > β.

Then, note that ∂U∗(c∗)
∂α > 0 and ∂2U∗(c)

∂α∂c = − β
(1−α)2 f (c)

1
S′′(S′−1(c+T(c))) > 0. Then there exists

c ∈ (c, c∗) such that ∂U∗(c)
∂α = 0 if and only if ∂U∗(c)

∂α ≤ 0. In other words, ∂U∗(c)
∂α > 0 for all

c ∈ C if and only if ∂U∗(c)
∂α > 0. Now, by the Mean Value Theorem, there exists č ∈ (c, c∗)

such that
∫ c∗

c

β

(1 − α)2 f (x)
1

S′′(S′−1 (x + T(x)))
dx =

(c∗ − c)β
(1 − α)2 f (č)S′′(qs(č))

,

and

(1 − α)(β − F(c∗))(αβ + (1 − α)F(c∗))
(1 − α)2 f (c∗)(1 − (αβ + (1 − α)F(c∗)))

1
S′′(S′−1(c∗ + T(c∗, α)))

=
(β − F(c∗))T(c∗)

(1 − (αβ + (1 − α)F(c∗)))
1

S′′(q̄)
,

therefore

40



∂U∗(c)
∂α

> 0 ⇔ (c∗ − c)β
(1 − α)2 f (č)S′′(qs(č))

+
(β − F(c∗))T(c∗)

(1 − (αβ + (1 − α)F(c∗)))
1

S′′(q̄)
> 0

⇔ (β − F(c∗))T(c∗)
(1 − (αβ + (1 − α)F(c∗)))

1
S′′(q̄)

> − (c∗ − c)β
(1 − α)2 f (č)S′′(qs(č))

⇔ β − F(c∗) < − (c∗ − c)β(1 − (αβ + (1 − α)F(c∗)))S′′(q̄)
T(c∗)(1 − α)2 f (č)S′′(qs(č))

⇔ 1 − F(c∗)
β

< − (c∗ − c)(1 − (αβ + (1 − α)F(c∗)))S′′(q̄)
T(c∗)(1 − α)2 f (č)S′′(qs(č))

⇔ 1 +
(c∗ − c)(1 − (αβ + (1 − α)F(c∗)))S′′(q̄)

T(c∗)(1 − α)2 f (č)S′′(qs(č))
<

F(c∗)
β

.

Letting K = (c∗−c)(1−(αβ+(1−α)F(c∗)))S′′(q̄)
T(c∗)(1−α)2 f (č)S′′(qs(č)) > 0 we are done.

Finally, assume α∗(β) ≤ α < 1. Then,

∂U∗(c)
∂α

= (c − c∗)
∂q̄
∂α

< 0

by proposition 9.

A.3.6 Proof of Proposition 11 and its corollary.

Let γ = α or β. Clearly, ∂V∗(c)+U∗(c)
∂γ = ∂q̄

∂γ (S
′(q∗(c))− c). Now, (S′(q∗(c))− c) > 0, hence

the results follow from propositions 8 and 9.

For the corollary, if 1 < F(c∗)
β , then ∂V∗(c)+U∗(c)

∂α > 0, i.e ∂V∗(c)
∂α > − ∂U∗(c)

∂α . On the other

hand, if F(c∗)
β < 1 + K, ∂U∗(c)

∂α < 0. Combining the two we get the result.

References

Amit, R. (1986). Petroleum reservoir exploitation: switching from primary to secondary

recovery. Operations Research 34(4), 534–549.

Chateauneuf, A., J. Eichberger, and S. Grant (2007). Choice under uncertainty with the

best and worst in mind: Neo-additive capacities. Journal of Economic Theory 137(1),

538–567.

41



Dow, J. and S. R. da Costa Werlang (1992). Uncertainty aversion, risk aversion, and the

optimal choice of portfolio. Econometrica: Journal of the Econometric Society 60(1), 197–

204.

Ellsberg, D. (1961). Risk, ambiguity, and the savage axioms. Quartely Journal of Eco-

nomics 75, 643–669.

Etner, J., M. Jeleva, and J. Tallon (2012). Decision theory under ambiguity. Journal of

Economic Surveys 26(2), 234–270.

Ghirardato, P. (1994). Agency theory with non-additive uncertainty. Unpublished working

paper, Cal. Tech.

Karni, E. (2009). A reformulation of the maxmin expected utility model with application

to agency theory. Journal of Mathematical Economics 45(1), 97–112.

Laffont, J.-J. and D. Martimort (2002). The Theory of Incentives: The Principal-Agent Model.

Princeton and Oxford: Princeton University Press.

Lewis, T. R. and D. E. Sappington (1993). Ignorance in agency problems. Journal of Eco-

nomic Theory 61(1), 169–183.

Mondello, G. (2012). Ambiguity, agency relationships and adverse selection. Mimeo.

Rigotti, L. (1998). Imprecise beliefs in a principal agent model. Tilburg University, CentER

Working Paper (1998-128).

Sappington, D. E. and D. L. Weisman (1996). Designing Incentive Regulation for the Telecom-

munications Industry. American Enterprise Institute.

Seierstad, A. and K. Sydsaeter (1986). Optimal Control Theory with Economic Applications.

Elsevier North-Holland, Inc.

Tomiyama, K. (1985). Two-stage optimal control problems and optimality conditions.

Journal of Economic Dynamics and Control 9(3), 317–337.

42



Weinschenk, P. (2010). Moral hazard and ambiguity. Technical report, Preprints of the

Max Planck Institute for Research on Collective Goods.

43


