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Abstract—We report results of measurements on SensLAB, an
indoor wireless sensor network testbed with a large number of
nodes equipped with a CC1101 radio chip. We analyze RSSI and
LQI to find the best way to discriminate good links from weak
ones and in particular, to derive a metric that estimates the Packet
Reception Ratio (PRR) the best. To obtain an estimator of PRR,
we have fitted a Fermi-Dirac function to the scatter diagram of
the average and standard variation of LQI. The function enables
us to find PRR for a given level of LQI. We evaluate the estimator
by computing PRR over a varying size window of transmissions
and comparing with the estimator.
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I. INTRODUCTION

Much research has considered the problem of characteriz-
ing the quality of wireless links to derive metrics for finding
the best routes in wireless sensor networks. The transmission
quality in terms of the Packet Reception Ratio (PRR) depends
on the received signal strength, the level of interference, and
the ability of the receiver to correctly decode transmitted
information. The RSSI (Received Signal Strength Indicator)
indicator provides an estimate of the signal energy at the
receiver. Many studies revealed the importance of RSSI in the
evaluation of link quality and analyzed the relation between
RSSI and PRR.

One of the recent studies by Srinivasan et al. [1] showed
that RSSI of CC2420 is a promising indicator when its value
is above the sensitivity threshold. In particular, it allows to
detect a threshold above which links present good PRR. Below
the threshold, the PRR values largely vary and one RSSI
value may correspond to several values of PRR. Nevertheless,
RSSI has a low variance indicating that a RSSI value for
one packet is a good estimator of an average RSSI value for
consecutive packets. The authors also observed that LQI (Link
Quality Indicator) presents a better correlation with PRR than
RSSI, however, it needs to be averaged over many packets
(about 120). LQI for CC1101 gives “an estimate of how easily
a received signal can be demodulated by accumulating the
magnitude of the error between ideal constellations and the
received signal over the 64 symbols immediately following the
sync word” [2].

Similar analysis by Rondinone et al. [3] led to the conclu-
sion that neither RSSI nor LQI can be considered a successful
link quality indicator since they do not sufficiently discriminate
the level of PRR. They have proposed to use the product
of PRR and the normalized average RSSI as a link quality

indicator, which presents the advantage of distinguishing links
with the same PRR, but with a different average RSSI. The
drawback of this approach is that it requires the knowledge of
PRR that we actually want to estimate based on the RSSI and
LQI indicators.

In this paper, we report results of measurements on
SensLAB [4], an indoor wireless sensor network testbed with a
large number of nodes equipped with a CC1101 radio chip. We
record the number of received packets and the values of RSSI
and LQI for each transmission (no interference nor contention
between nodes). We analyze the data to find the best way
to discriminate good links from weak ones and in particular,
derive a metric that estimates PRR the best. Recent work on
routing protocols emphasized the importance of using stable
metrics of link quality (one metric used with RPL is ETX that
depends on PRR [5] and LOADng uses the number of weak
links in a path as a metric [6]).

Our measurements confirm the previous results on the
relationship between RSSI and PRR. Moreover, we use RSSI
as an indicator of possible anomalous behavior of sensor nodes.
To further characterize PRR in function of RSSI and LQI, we
have looked for continuous distributions that fit the best the
measured values of PRR. It comes out that RSSI is not a good
discriminator of link categories, because the functions overlap.
The average and standard variation of LQI better discriminate
between the categories.

To obtain an estimator of PRR, we have fitted a Fermi-
Dirac function to the scatter diagram of the average and
standard variation of LQI. The function enables us to find
PRR for a given level of LQI. We evaluate the estimator by
computing PRR over a varying size window of transmissions
and comparing with the estimator.

II. EXPERIMENTAL SET UP

We have run experiments on the SensLAB platform [4]
available in Strasbourg composed of 240 WSN430 nodes
distributed across three trays at different heights. Each tray
contains 80 nodes arranged in a regular grid (10x8) with
a distance between contiguous nodes of about 1m. A node
is composed of a MSP430F1611 CPU (48KB ROM, 10KB
RAM) and a CC1101 radio operating at 868MHz. Its trans-
mission power ranges between -30dBm and 10dBm, and the
reception sensitivity is set to -88dBm.

In a single experiment, we use one tray at a time, i.e.
80 nodes. We observe the quality of transmission of a node
that broadcasts a total of 5000 packets of 110 bytes every
0.5s. There is no other ongoing transmissions so there is no
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interference nor contention between nodes. When one node
broadcasts its packet, the other 79 nodes are active and ready to
receive—they log the values of LQI and RSSI of the received
packet. The values are recorded for the correctly received
packets with good CRC and also for those with incorrect CRC.
As there is one sender at a time, we are able to relate the sender
and the receiver of a packet even if the receiver cannot decode
a packet.

The receiver nodes do not acknowledge frames and the
MAC layer does not retransmit frames in case of failed
transmissions. After the experiment, we compute for each link:
i) the average value of RSSI over all received packets, ii)
the average value and the standard deviation of LQI, iii) the
average value of the Packet Reception Ratio (PRR) of each
link as the proportion between the number of correctly received
packets (correct CRC) to the total number of sent packets. The
observed values of RSSI only slightly varied, so we have not
analyzed the standard deviation of RSSI.

We assume that all nodes can potentially communicate
with each other so that the number of unidirectional links
is 6320 (80 sender nodes times 79 receiver nodes). We run
the experiments with two levels of the transmission power:
0dBm and -10dBm. The bit rate is 60kb/s and nodes use the
2FSK modulation. Table I summarizes the parameters of the
experiments.

TABLE I. EXPERIMENT PARAMETERS

Experiment area 10m x 8m x 2m
Number of nodes 3 x 80
Traffic type, interpacket interval broadcast, 0.5s
Number of sent packets 5000
Packet size 110 bytes
Transmission power 0dBm, -10dBm
Topology grid

III. LINK CHARACTERIZATION

A. Categories of Link Quality

We consider three main categories of link quality: good
links with PRR ≥ 80%, intermediate with the PRR 20% ≤
PRR < 80%, and bad ones with 0 < PRR < 20%. Such
categories appeared in previous studies [7], [8], but other
thresholds are possible, e.g. 90%–10%.

Table II gives the proportion of links in each category (over
all 6320 unidirectional links). In addition to the categories, we
provide the proportion of the links with PRR = 0% (actually,
no link between nodes).

TABLE II. PROPORTION OF LINKS IN EACH CATEGORY

Transmission power good intermediate bad PRR = 0%
0dBm 49% 8% 10% 33%

-10dBm 44% 6% 9% 41%

We can observe that roughly half of links are good, a large
number of links are bad and decreasing the transmission power
to -10dBm only slightly affects the proportion of good links.
The number of intermediate links is fairly low.

B. Analysis of RSSI

We have started with the analysis of RSSI and its influence
on PRR. Fig. 1 presents the scatter diagram of PRR vs. the

average RSSI for all links (each point corresponds to a link
with a given average RSSI and the observed PRR).

Some values (red crosses) lie in a region with high PRR
and low RSSI values. It correspond to two nodes that generated
anomalous RSSI samples. A deeper RSSI analysis enables us
to detect nodes with hardware anomalies or bad calibration that
result in unlikely values of RSSI. In the case of our testbed,
there is a small proportion of anomalous nodes: 2 out of 80.
Thus, in the following, we eliminate the results from those
nodes to take away the bias of unlikely RSSI values.
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Fig. 1. Fitting of the scatter diagram with a Fermi-Dirac function.

The next step is to explore the dependence between RSSI
and PRR. Fig. 1 also presents the fitting of the scatter
diagram with a Fermi-Dirac function of the form f(x) =

1/(1 + exp −(µ−x)
σ ).

We have also averaged the values of RSSI for each value
of PRR (at the step of 1%) and found the fitting function
presented in Fig. 2. We can see that the Fermi-Dirac function
fits perfectly well PRR especially the values greater than 80%.
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Fig. 2. Fitting of the averaged RSSI.

We can use the function to determine a cutting threshold
over which the RSSI results in a PRR of good links.

C. Fitting the Distributions of RSSI and LQI

To further characterize PRR in function of RSSI and LQI,
we have looked for continuous distributions that fit the best the
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measured values of PRR. The goal is to predict PRR or at least
the link category based on the observed values of RSSI and
LQI. We have considered as candidate distributions the most
common fifty continuous distributions with a bounded, semi-
infinite, variable support or unbounded. We have used Matlab
as environment to find the best distribution fit for our data set.
The distributions that fitted the best are the following:

• Log-Logistic distribution is defined by scale α, shape
β, and location γ. Its Cumulative Distribution Func-
tion (CDF) is Fx;α,β,γ = (1 + (β/(x − γ)α)−1. The
Log-Logistic models the mid of the extreme values
(highs and lows) of a data set of random variables.

• Johnson SB distribution has a bounded support that
fits a bounded distribution to known moments and has
CDF of Fx = φ(γ + δln(z/(1− z))), where φ is the
Laplace integral and z is defined as (x − ξ)/λ. It is
parametrized with shape γ, two scale parameters δ and
λ, and location parameter ξ.

• Generalized Extreme Value is a distribution that mod-
els the maxima of the extreme values of a data set. It
is parametrized by shape ξ, scale σ, and location µ.
Its CDF is
F (x;µ, σ, ξ) = exp

{
−
[
1 + ξ

(
x−µ
σ

)]−1/ξ
}

.

• Beta distribution is defined on the interval [0, 1] with
two positive continuous shape parameters α and β. Its
CDF is F (x;α, β) = B(x;α, β)/B(α, β) = Ix(α, β),
where B(x;α, β) is the incomplete beta function
and Ix(α, β) is the regularized incomplete beta func-
tion. The incomplete beta function is the following:
B(x; a, b) =

∫ x
0
ta−1 (1− t)b−1 dt.

We have used three common statistical tests: Kolmogorov-
Smirnov, χ2, and Anderson-Darling [9] to find the best distri-
butions.

We first categorize the measured values into three cat-
egories (good, intermediate, and bad) and run fit tests on
candidate distributions. To decrease the number of samples
to handle, we average the measured values of LQI and RSSI
for each link.
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Fig. 3. Density functions fitting the average RSSI.

Figs. 3–5 show the best density functions for each category:
Johnson SB for RSSI and Generalized Extreme Value as
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Fig. 4. Density functions fitting the average LQI.
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Fig. 5. Density functions fitting the standard deviation of LQI.

well as Beta, and Johnson SB for LQI. We can observe that
RSSI is not a good discriminator of link categories, because
the functions overlap. Even the bad category overlaps the
category of good links. The average LQI better discriminates
between the categories, especially it can distinguish good from
intermediate links. We can also observe that the standard
variation of LQI is also a good discriminator of the categories.

D. Fitting PRR in Function of LQI

We have applied a similar approach to LQI—fitting a
Fermi-Dirac function to the scatter diagram of the average and
standard variation of LQI (we use here the logarithmic scale
for LQI). Figs. 6–7 present the corresponding result.

E. Estimating PRR

We want to find an estimator of PRR based on the measured
values of RSSI and LQI. We have fitted PRR in function
of RSSI, so possibly we could derive PRR from a given
value of RSSI. However, using RSSI may lead to errors
in the evaluation of PRR in the case of real networks—
they experience contention between nodes and simultaneous
transmissions. Concurrent transmissions may increase RSSI
and decrease the probability of correct decoding leading to a
lower PRR. In this case, the estimation based on RSSI would
result in wrong values of PRR. So, we have decided to focus
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Fig. 6. Fitting LQI averaged over links.
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Fig. 7. Fitting the standard deviation of LQI averaged over links.

on LQI and analyze estimators based on its average value and
standard deviation.
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Fig. 8. Estimation of the PRR for a link with PRR 80% with w=10. PRR
vs. LQI avg.

Fig. 8 shows the temporal behavior of PRR computed over
a window of 10 transmissions and its estimator derived from
the average LQI. We can observe a fairly good fit between the
values.

We have tested several estimators based on the values com-
puted on window w: LQI , average LQI, STD, the standard
deviation of LQI, and sqrt(LQI

2
+ STD

2
), the geometric

mean of the previous ones. We have also derived the estimator
of PRR from a moving average of LQI:

EWMA(α, n) = EWMA(α, n− 1) ∗ α+ (1− α) ∗ LQI (1)

where 0 < α < 1. We have considered two values of the
window w = 10, 100. Tables III–V present the precision of
the estimators in terms of several standard error measures: R2,
MSE (Mean Square Error), RMSE (Root Mean Square Error).
We can observe that for the short window, the estimation based
on LQI results in an error of the order of 18% (RMSE).
Considering larger windows reduces the error to 9%. EWMA
with α = 0.9 also results in a good precision.

IV. RELATED WORK

Much research work considered the problem of charac-
terizing the quality of wireless links in sensor networks. On
a 60 mote indoor/outdoor testbed, Zhao et al. [10] showed
the existence of spatial gray regions corresponding to high
variation in packet reception. Woo et al. [11] observed good
connectivity of links to nodes up to 3m and a transitional
(grey) zone between 3m and 12m with links exhibiting large
variability. In another paper, the authors modeled packet loss
with a binomial distribution and observed that good links are
symmetric [12]. Other researchers confirmed the existence of
three zones: the well connected, the transitional (grey), and the
disconnected one [13], [14]. They reported that the links in the
connected zone are stable contrary to the transitional zone.

As mentioned in the introduction, Srinivasan et al. [1]
analyzed RSSI and LQI of CC2420. They highlighted the
utility of RSSI in detecting links with good PRR and observed
good correlation of LQI and PRR. Meier et al. [15] analyzed
measurements of an indoor sensor network with CC2420
exhibiting high link quality variability and considered metrics
derived from modeling the loss process as a Bernoulli process.

Tang et al. [16] evaluated the temporal and spatial link
fluctuation in a factory environment and characterized channel
variations. Bas et al. [17] demonstrated that the angle of the
direction influences the correlation of the link quality with
the distance. Rondinone et al. [3] analyzed the link quality in
sensor networks and proposed to use as a link quality indicator
the product of PRR and the normalized average RSSI.

Our analysis confirms the main findings of the previous
work and provides new insights on the link quality metrics
based on LQI.

V. CONCLUSION

In this paper, we have reported results of measurements of
PRR, RSSI, and LQI on an indoor wireless sensor network
testbed. We have analyzed RSSI and used it as an indicator
of possible anomalous behavior of sensor nodes. To further
characterize PRR in function of RSSI and LQI, we have looked
for continuous distributions that fit the best the measured
values of PRR. As RSSI is not a good discriminator of
link categories, we have considered the average LQI and its
standard variation. We have found the density functions that
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TABLE III. ERROR OF ESTIMATING PRR FOR A GOOD LINK (MEAN PRR OF 80%).

Estimator R2, w = 10 R2, w = 100 MSE, w = 10 MSE, w = 100 RMSE, w = 10 RMSE, w = 100

LQI 0.55 0.94 0.03 0.01 0.17 0.1
STD 0.75 0.99 0.06 0.06 0.24 0.24

sqrt(LQI2 + STD2
) 0.55 0.99 0.03 0.04 0.18 0.20

EWMALQI(α = 0.1) 0.83 0.99 0.08 0.08 0.28 0.28
EWMALQI(α = 0.5) 0.80 0.99 0.07 0.06 0.27 0.24
EWMALQI(α = 0.9) 0.53 0.96 0.03 0.01 0.17 0.1

TABLE IV. ERROR OF ESTIMATING PRR FOR AN INTERMEDIATE LINK (MEAN PRR OF 50%).

Estimator R2, w = 10 R2, w = 100 MSE, w = 10 MSE, w = 100 RMSE, w = 10 RMSE, w = 100

LQI 0.64 0.93 0.08 0.03 0.28 0.17
STD 0.81 0.97 0.15 0.15 0.39 0.39

sqrt(LQI2 + STD2
) 0.70 0.97 0.09 0.12 0.30 0.35

EWMALQI(α = 0.1) 0.83 0.97 0.17 0.16 0.41 0.41
EWMALQI(α = 0.5) 0.72 0.97 0.15 0.13 0.39 0.36
EWMALQI(α = 0.9) 0.78 0.96 0.13 0.11 0.36 0.33

TABLE V. ERROR OF ESTIMATING PRR FOR AN INTERMEDIATE LINK (MEAN PRR OF 20%).

Estimator R2, w = 10 R2, w = 100 MSE, w = 10 MSE, w = 100 RMSE, w = 10 RMSE, w = 100

LQI 0.63 0.95 0.03 0.04 0.19 0.20
STD 0.79 0.97 0.06 0.09 0.24 0.30

sqrt(LQI2 + STD2
) 0.69 0.97 0.04 0.07 0.20 0.28

EWMALQI(α = 0.1) 0.97 0.99 0.58 0.45 0.76 0.67
EWMALQI(α = 0.5) 0.97 0.99 0.54 0.40 0.73 0.63
EWMALQI(α = 0.9) 0.97 0.99 0.57 0.44 0.75 0.66

fit the observed values for three categories of links. To obtain
an estimator of PRR, we have fitted a Fermi-Dirac function
to the scatter diagram of the average and standard variation of
LQI. The function enables us to find PRR for a given level of
LQI. We have evaluated the estimator by computing PRR over
a varying size window of transmissions and comparing with
the estimator.

In the future, we plan to use the results of the link
characterization in routing and validate the approach on the
SensLAB testbed.
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