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CHARACTERIZATION OF A CLASS OF WEAK

TRANSPORT-ENTROPY INEQUALITIES ON THE LINE

NATHAEL GOZLAN, CYRIL ROBERTO, PAUL-MARIE SAMSON, YAN SHU, PRASAD TETALI

Abstract. We study an optimal weak transport cost related to the notion of convex
order between probability measures. On the real line, we show that this weak transport
cost is reached for a coupling that does not depend on the underlying cost function. As
an application, we give a necessary and sufficient condition for weak transport-entropy
inequalities in dimension one. In particular, we obtain a weak transport-entropy form of
the convex Poincaré inequality in dimension one.

1. Introduction

In all the paper, P(R) denotes the set of Borel probability measures in R and P1(R)
the subset of probability measures having a finite first moment.

Let θ : R+ → R
+ be a measurable function; the usual optimal transport cost in the

sense of Kantorovich between two probability measures µ and ν on R is defined by

Tθ(ν, µ) = inf
π

∫∫

θ(|x− y|)π(dxdy),

where the infimum runs over the set of couplings π between µ and ν, i.e. probability
measures on R

2 such that π(dx× R) = µ(dx) and π(R × dy) = ν(dy).
Since the works by Marton [23, 24, 25] and Talagrand [31], these transport costs have

been extensively used as a tool to reach concentration properties for measures on product
spaces. More precisely, optimal transport is related to the concentration of measure phe-
nomenon via the so-called transport-entropy inequalities that we now recall. A probability
measure µ on R is said to satisfy the transport-entropy inequality T(θ), if

(1) Tθ(ν, µ) 6 H(ν|µ), ∀ν ∈ P(R),

where H(ν|µ) denotes the relative entropy (also called Kullback-Leibler distance) of ν with
respect to µ, defined by

H(ν|µ) =

∫

log

(

dν

dµ

)

dν,

if ν is absolutely continuous with respect to µ, and H(ν|µ) = ∞ otherwise. Here we
focus on the one dimensional case, but these definitions easily generalizes to probability
measures on general metric space. As a special case, if Inequality (1) holds for a cost
function of the form θ(x) = x2/C for some C > 0, one says that µ satisfies the inequality
T2(C) (also often referred to as “Talagrand’s inequality” in the literature). This inequality
is for instance satisfied with constant C = 2 by the standard Gaussian measure as proved
in [31]. We refer to the books or survey [21, 16, 32, 8] for a complete presentation of
transport-entropy inequalities as well as for bibliographic references on the field, but let
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us shortly discuss in the next few lines the consequences in terms of concentration of this
type of inequalities in the special case of the inequality T2.

As discovered by Marton and Talagrand, when a probability µ satisfies T2(C), then for
all positive integer n, and all function f : Rn → R which is 1-Lipschitz with respect to the
Euclidean norm on R

n, it holds

(2) µn(f > med(f) + t) 6 e−(t−to)2/C , ∀t > to :=
√

C log(2),

where med(f) denotes the median of f under µn.We refer to [21, 8] for a presentation of the
numerous applications of this type of dimension free concentration of measure inequalities.
Conversely, it was shown by the first named author in [14] that a probability µ satisfying
(2) necessarily satisfies T2(C), thus giving to this inequality T2 a special status among
other functional inequalities appering in the concentration of measure literature. The key
argument explaining why Talagrand’s inequality implies this dimension-free concentration
behavior, is a well known tensorisation property enjoyed by inequalities of the form T(θ)
(explained in full generality in [16]) that shows in particular that if µ satisfies T2(C), then
the product measure µ⊗ · · · ⊗ µ also satisfies T2 (on R

n) with the same constant C.
More generally, given a measure on a product space (which is not necessarily a prod-

uct measure), and assuming that each of its conditional one-dimensional marginals sat-
isfies a transport-entropy inequality, several authors have obtained, using different non-
independent tensorisation strategies, transport-entropy inequalities for the whole measure
under weak dependence assumptions (see for instance [11, 26, 33]). Then, the transport-
entropy inequality for the whole measure leads again to concentration properties using the
same classical arguments as in the product case. The problem is thus reduced to verify
one dimensional transport-entropy inequalities and therefore, it is of a real interest to
characterize the probability measures µ on R satisfying T(θ) for a general cost function θ.

In this direction, the first named author has obtained in [15] necessary and sufficient
conditions for the transport-entropy T(θ) to hold, when the cost function θ : R+ → R

+

is continuous, convex and quadratic near 0. Let Fµ denote the cumulative distribution
function of a probability measure µ defined by

Fµ(x) := µ(−∞, x], ∀x ∈ R,

and F−1
µ denote its general inverse defined by

F−1
µ (u) := inf{x ∈ R, Fµ(x) > u} ∈ R ∪ {±∞}, ∀u ∈ [0, 1].

With these notations, the conditions obtained in [15] are expressed in terms of the behavior
of the modulus of continuity of the non-decreasing map Uµ defined by

Uµ := F−1
µ ◦ Fτ ,

where τ is the symmetric exponential distribution on R:

τ(dx) =
1

2
e−|x| dx.

This map, which can also be expressed as follows

Uµ(x) =







F−1
µ

(

1 − 1
2e

−|x|
)

if x > 0

F−1
µ

(

e−|x|
)

if x 6 0

is the unique left-continuous and non-decreasing map transporting τ on µ. In the spe-
cial case of the inequality T2, the characterization of [15] reads as follows: a probability
measure µ satisfies T2(C) for some C if and only if Uµ satisfies the condition

sup
x∈R

(Uµ(x+ u) − Uµ(x)) 6
1

b

√
1 + u, ∀u > 0
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for some constant b > 0 and µ satisfies Poincaré inequality

(3) Varµ(f) 6 c

∫

(f ′)2 dµ,

for some constant c > 0, for all function f of class C1 on R. We refer to [15] for a precise
quantitative relation between C, b, c.

In the present paper, partly following [15], we focus on the study of a new weak
transport-entropy inequality introduced in [18] that is related to a weaker type of dimension-
free concentration. More precisely, in dimension one, we consider the weak optimal trans-
port cost of ν with respect to µ defined by

T θ(ν|µ) = inf
π

∫

θ

(∣

∣

∣

∣

x−
∫

y p(x, dy)

∣

∣

∣

∣

)

µ(dx)

where the infimum runs over all couplings π(dxdy) = p(x, dy)µ(dx) of µ and ν, and where
p(x, · ) denotes the disintegration kernel of π with respect to its first marginal. Note that,
in terms of random variables, one has the following interpretation

T θ(ν|µ) = inf E (θ(|X − E(Y |X)|)) .
whereas

Tθ(ν, µ) = inf E (θ(|X − Y |)) ,
where in both cases the infimum runs over all random variables X,Y such that X follows
the law µ and Y the law ν. As a consequence, when θ is convex, by Jensen inequality, one
has

T θ(ν|µ) 6 Tθ(ν, µ).

Therefore, if a measure µ satisfies T(θ) then it also satisfies the following weaker transport-
entropy inequalities.

Definition 1.1. Let θ : R+ → R
+ be a convex cost function. A probability measure µ on

R is said to satisfy the transport-entropy inequality

T
+

(θ) : if for all ν ∈ P1(R), it holds

T θ(ν|µ) 6 H(ν|µ);

T
−

(θ) : if for all ν ∈ P1(R), it holds

T θ(µ|ν) 6 H(ν|µ);

T(θ) : if µ satisfies T
+

(θ) and T
−

(θ).

In Section 4, we recall a dual formulation of these weak transport inequalities in terms
of infimum convolution operators. In particular, the inequality T(θ) appears as the dual
formulation of the so-called convex (τ)-property first introduced by Maurey [27] and de-
veloped in [29].

These weak transport-entropy inequalities are of particular interest since the class of
measures satisfying such inequalities also includes discrete measures on R, for examples,
Bernoulli, binomial and Poisson measures [18, 29]. In comparison, the classical Tala-
grand’s transport inequality is never satisfied by a discrete probability measure (unless
it is a Dirac). Indeed, as mentioned above, the Poincaré inequality is a consequence of
Talagrand’s transport inequality that forces the support of µ to be connected. Moreover
these weak transport-entropy inequalities also enjoy a nice tensorisation property (see [18,
Theorem 4.11]) that connects them to a special dimension-free concentration behavior.
For instance, as shown in [18, Corollary 5.11], a probability measure µ satisfies T2(C) (i.e.
T(θ) with θ(x) = x2/C, x ∈ R) if and only if, for all positive integer n,

µn(f > med(f) + t) 6 e−(t−to)2/C′

, ∀t > to,
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for all convex and all concave function f : Rn → R which is 1-Lipsvchitz for the Euclidean
norm on R

n, where to, C
′ > 0 are constants related to C (see [18] for a precise and more

general statement).
The main result of the paper is the following characterization of the transport inequal-

ities T(θ) associated to convex cost functions θ which are quadratic near 0.

Theorem 1.2. Let µ ∈ P1(R) and θ : R
+ → R

+ be a convex cost function such that
θ(t) = t2 for all t 6 to, for some to > 0. The following propositions are equivalent:

i) There exists a > 0 such that µ satisfies T(θ(a · )).
ii) There exists b such that for all u > 0,

sup
x

(Uµ(x+ u) − Uµ(x)) 6
1

b
θ−1(u+ t2o).

Moreover, constants are related as follows : i) implies ii) with b = aκ1 and ii) implies i),
with a = bκ2, where κ1 and κ2 are two constants depending only on θ. More precisely,

κ1 =
to

8θ−1(log(3) + t2o)
,

and

κ2 =
1

2
min

(

to
θ−1(2 + t2o)

;
max((c

√
K)/to; 1)

2
√
Kθ−1(1 + t2o)

)

.

In comparison with the characterization of the inequalities T(θ) given in [15], one sees
that only the condition on the modulus of continuity of Uµ remains. Nevertheless, as we
shall explain below, Poincaré inequality has not completely disapeared from the picture.
Denoting by ∆µ the modulus of continuity of Uµ defined by

∆µ(h) = sup {Uµ(x+ u) − Uµ(x), x ∈ R, 0 6 u 6 h} , h > 0,

the condition ii) asserts that

∆µ(h) 6
1

b
θ−1(h+ t2o).

Therefore ∆µ is bounded around zero but does not necessarily go to zero as h goes to zero.
Actually if the measure µ is discrete and not a Dirac measure, the support of µ is not
connected and there exist a < b with a and b in the support of µ such that µ(]a, b[) = 0.
In that case, we may easily check that for all h > 0,

b− a 6 ∆µ(h).

This shows that in a discrete setting limh→0 ∆µ(h) > 0.
The proof of Theorem 1.2, given in Section 6, is based on some new results of inde-

pendent interest. To introduce them and for a better understanding of the paper, let us
briefly give the main ideas of this proof. As in the paper [15], the weak transport-entropy
inequality i) follows from condition ii) by decomposition of the weak optimal cost into
two parts. One part is related to the quadratic behavior of θ on [0, to], the other part is
related to its behavior for t > to: one has θ 6 θ1 + θ2 with

θ1(t) = t21[0,to](t) + (2tto − t2o)1[to,+∞)(t),

and

θ2(t) = [θ(t) − t2]+ = (θ(t) − t2)1[to,+∞)(t), t ∈ R.

Therefore,

Tθ(a · )(ν|µ) 6 Tθ1(a · )+θ2(a · )(ν|µ),
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and we need to bound the right-hand side by the relative entropy to get a weak transport-
entropy inequality. Obviously, the optimal weak cost on the right-hand side is lower-
bounded by the sum of the weak costs, related to θ1 and θ2, but what we need is the
reversed inequality. Fortunately, in dimension one, equality holds:

T θ1(a · )+θ2(a · )(ν|µ) = T θ1(a · )(ν|µ) + T θ2(a · )(ν|µ).(4)

We obtain this equality by showing that the two optimal weak transport costs T θ1(a · )(ν|µ)

and T θ2(a · )(ν|µ) are achieved by the same coupling. This result is well known for classical
transport cost Tθ related to a convex cost function θ in dimension one. Namely, in the
case where ν has no atom (for simplicity), the map

Tν, µ = F−1
µ ◦ Fν

is the only one non-decreasing and left-continuous function that pushes forward ν onto µ,
that is to say

∫

f dµ =

∫

f ◦ Tν, µ dν.

Moreover, it follows from the works by Hoeffding, Fréchet and Dall’Aglio [10, 13, 20], that
this map achieves the optimal transport of ν onto µ independently of the convex cost
functions θ (see also [9]). In other words, it holds

Tθ(µ, ν) =

∫

θ (|x− Tν, µ(x)|) ν(dx).

Actually, the expected equality (4) follows by combining this well known one dimensional
statement with our following second main result.

Theorem 1.3. Let µ, ν ∈ P1(R) ; there exists a probability measure γ̂ dominated by ν in
the convex order, γ̂ � ν, such that for all convex cost function θ it holds

Tθ(ν|µ) = Tθ(γ̂, µ).

We recall that ν1 � ν2 means that
∫

f dν1 6
∫

f dν2 for all convex functions f : R → R.
As we shall see during the paper, this notion of convex ordering, characterized by Strassen
[30] in terms of martingales, is really crucial for the understanding of the weak transport
costs Tθ. In Section 2, we recall certain classical properties of the convex order and in
particular its geometrical meaning (in discrete setting) given by Rado’s theorem [28] (see
Theorem 2.8). From this geometrical interpretation, we obtain an intermediate outcome,
Theorem 2.9, that can be interpreted as the discrete version of Theorem 1.3. Then, the
proof of Theorem 1.3, given in Section 3, follows by discrete approximation arguments.

Let us come back to the main ideas of the proof of Theorem 1.2. The weak transport-
entropy equality i) follows from condition ii) as follows; using equality (4), we get that

Tθ(a · )(ν|µ) 6 Tθ1(a · )(ν|µ) + Tθ2(a · )(ν|µ) 6 2H(ν|µ),

for a good choice of the constant a, by relating the condition ii), either to a weak transport-
entropy inequality with the cost function θ2(a · ), either to a weak transport-entropy in-
equality with the cost function θ1(a · ).

More precisely, adapting a preceding result by the first named author [15, Theorem
2.2], one shows in Theorem 6.1 that condition ii) characterizes the weak transport-entropy
T(θ2(a · )). Secondly, let us first observe that condition ii) implies that there exists h > 0
such that

sup
x

(Uµ(x+ 1) − Uµ(x)) 6 h.

In their paper [5], Bobkov and Götze have shown that this weaker condition is equivalent
to the Poincaré inequality (3) restricted to convex functions. In our last main result, we
complete the picture by showing that this condition also characterizes measures satisfying
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a weak transport-entropy inequality with a cost function which is quadratic near zero and
then linear, like θ1(a · ).

Theorem 1.4. Let µ be a probability measure on R, then the following assertions are
equivalent:

(a) There exists h > 0 such that

sup
x∈R

[Uµ(x+ 1) − Uµ(x)] 6 h.

(b) There exists C > 0 such that for all convex function f on R, µ satisfies

Varµ(f) 6 C

∫

R

f ′2 dµ.

(c) There exist D, lo > 0 such that the probability µ satisfies the transport inequalities

T α(µ|ν) 6 H(ν|µ), ∀ν ∈ P1(R),

and

T α(ν|µ) 6 H(ν|µ), ∀ν ∈ P1(R),

for the function α defined by

α(u) =

{

u2

2D if |u| 6 loD
lo|u| − l2oD/2 if |u| > loD

.

Moreover the constants are related as follows:

• (a) ⇒ (c) with D = 2Kh2 and lo = c/h,
• (a) ⇒ (b) with C = K ′h2,

• (b) ⇒ (a) with h = K ′′√h,
• (c) ⇒ (b) with C = D,

where c, K,K ′ and K ′′ are absolute constants.

We indicate that during the preparation of this work, we learned that this characteriza-
tion of the convex Poincaré inequality in terms of transport-entropy inequality (actually
in terms of their equivalent convex (τ) Property formulation) has also been obtained by
Feldheim, Marsiglietti, Nayar and Wang in their recent paper [12].

The proof of Theorem 1.4 is given in Section 5. It uses results of independent interest
like a new discrete logarithmic Sobolev inequality for the exponential measure τ (see
Theorem 5.1). By transportation technics, this logarithmic-Sobolev inequality provides
logarithmic-Sobolev inequalities restricted to the class of convex or concave functions for
measures satisfying the condition (a) (see Corollary 5.2). Then the weak transport-entropy
inequalities of Item (c) are obtained in their dual forms, involving infimum convolution
operators (see Lemma 4.1). The method to derive transport-entropy inequalities from
logarithmic-Sobolev inequalities is based on classical arguments involving the infimum
convolution operator as a solution of the Hamilton-Jacobi equation. This approach is due
to [4] and has been also generalized in [17, 18]. Finally, in the Appendix, we present a
new discrete Hardy-type of inequality in Lemma 6.2. This is a useful tool to reach the
discrete logarithmic Sobolev inequality for the exponential measure τ . Let us observe that
this Lemma could also be used to recover differently the characterization by Bobkov and
Götze, of the Poincaré inequality restricted to convex functions.

Acknowledgment: The authors would like to thank Greg Blekherman for discussions
on the geometric aspects in Section 2.2, including his help with the proof of Theorem 2.9.
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2. Convex ordering and a majorization lemma

2.1. A reminder on convex ordering and Strassen’s theorem. We recall here some
basic facts about convex ordering of probability measures and majorization of vectors. We
refer to [22] and [19] for further results and bibliographic references.

Definition 2.1. Let ν1, ν2 in P1(R) ; we say that ν2 dominates ν1 in the convex order if
for all convex functions f on R,

∫

R

f dν1 6

∫

R

f dν2.

In this case we write ν1 � ν2.

Let us remark that for probability measures belonging to P1(R) the integral of convex
functions always makes sense in R ∪ {+∞}.

Convex ordering of probability measures can be determined by testing only some re-
stricted classes of convex functions as the following proposition indicates.

Proposition 2.2. Let ν1, ν2 ∈ P1(R) ; the following are equivalent:

(1) ν1 � ν2,
(2)

∫

x ν1(dx) =
∫

x ν2(dx) and for all Lipschitz and non-decreasing and non-negative
convex function f : R → R

+,
∫

f(x) ν1(dx) 6

∫

f(x) ν2(dx).

(3)
∫

x ν1(dx) =
∫

x ν2(dx) and for all t ∈ R,
∫

[x− t]+ ν1(dx) 6

∫

[x− t]+ ν2(dx).

For the reader’s convenience we sketch the proof of this classical result. We refer to [22]
for more details.

Sketch of proof. Let us show that (1) is equivalent to (2). First of all, since the functions
x 7→ x and x 7→ −x are convex, it is clear that ν1 � ν2 implies that

∫

x ν1(dx) =
∫

x ν2(dx)
and so (1) implies (2). Conversely, since the graph of a convex function always lies above
its tangent, subtracting an affine function if necessary, it is clear that one can restrict
to non-negative convex functions. Moreover, if f : R → R is a convex function, then
the function fn defined by fn = f on [−n, n], fn(x) = fn(n) + f ′

n(n)(x − n) if x > n
and fn(x) = fn(−n) + f ′

n(−n)(x + n) if x 6 −n (where f ′
n denotes for instance the

right derivative of f) is Lipschitz and converges monotonically to f as n goes to infinity.
The monotone convergence theorem then shows that one can further restrict to Lipschitz
convex functions. Finally, up to the subtraction of an affine map, any Lipschitz convex
function is non-decreasing.

It is not difficult to check that any convex non-decreasing Lipschitz function f : R → R
+

can be approached by a non-increasing sequence of functions of the form α0 +
∑n

i=1 αi[x−
ti]+, with αi > 0 and ti ∈ R. This shows that (2) and (3) are equivalent. �

Let us also recall a classical result of Strassen [30] characterizing the convex ordering
in terms of martingales.

Theorem 2.3. Let ν1, ν2 ∈ P1(R) ; the following are equivalent

(1) ν1 � ν2

(2) There exists a martingale (X,Y ) such that X has law ν1 and Y has law ν2.
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We refer to [18] for a proof of Theorem 2.3 involving Kantorovich duality for transport
costs of the form T .

Convex ordering is closely related to the notion of majorization which is recalled in the
following definition.

Definition 2.4. Let a, b ∈ R
n ; one says that a is majorized by b, if the sum of the largest

j components of a is less than or equal to the corresponding sum of b, for every j, and if
the total sum of each vector is equal.

Thus, assuming that the components of a and b are in increasing order, a is majorized
by b, if

an + an−1 + · · · + an−j+1 ≤ bn + bn−1 + · · · + bn−j+1, 1 ≤ j < n ,

and
∑n

i=1 ai =
∑n

i=1 bi.

The following proposition recalls the link between majorization and convex ordering.

Proposition 2.5. Let a, b ∈ R
n and denote by ν1 = 1

n

∑n
i=1 δai

and ν2 = 1
n

∑n
i=1 δbi

; the
following are equivalent

(1) a is majorized by b,
(2) ν1 is dominated by ν2 for the convex order. In other words, for every convex

f : R → R, it holds that
∑n

i=1 f(ai) ≤ ∑n
i=1 f(bi) .

In the sequel we will also denote a � b if a is majorized by b.

Proof. Let us show that (1) implies (2). We assume without loss of generality that the
components of a and b are sorted in increasing order. Let us show that for all t ∈ R,
∑n

k=1[ak − t]+ =
∑n

k=ko
(ak − t) 6

∑n
k=1[bk − t]+. The case t > max ak is clearly true.

Take t 6 max ak and let ko be the smallest k such that ak > t. Then it holds

n
∑

k=1

[ak − t]+ =
n
∑

k=ko

(ak − t) 6
n
∑

k=ko

bk − t 6
n
∑

k=1

[bk − t]+,

where the first inequality comes from the majorization assumption. According to Propo-
sition (2.2), this shows that ν1 � ν2.

Now let us prove that (2) implies (1). First of all, the measures ν1 and ν2 have the same
mean, and so

∑n
i=1 ai =

∑n
i=1 bi. Let k ∈ {1, . . . , n} ; choosing f(x) = [x− bk]+, it holds

n
∑

i=k

ai − bk 6

n
∑

i=1

[ai − bk]+ 6

n
∑

i=1

[bi − bk]+ =
n
∑

i=k

bi − bk,

and so
∑n

i=k ai 6
∑n

i=k bi, which proves that a is majorized by b. �

Let us recall one simple classical consequence of Proposition 2.5 above in terms of
discrete optimal transport on the line.

Lemma 2.6. Let x, y ∈ R
n be two vectors such that x1 6 x2 6 . . . 6 xn and y1 6 y2 6

. . . 6 yn. Then for all permutation σ of {1, . . . , n} and all convex function θ : R → R, it
holds

n
∑

i=1

θ(xi − yi) 6
n
∑

i=1

θ(xi − yσ(i)).

Proof. Since, for all k,
∑n

i=k yi >
∑n

i=k yσ(i), it holds for
∑n

i=k(xi − yi) 6
∑n

i=k(xi − yσ(i))
(with equality for k = 1). Therefore, denoting yσ = (yσ(1), . . . , yσ(n)), it holds x − y �
x− yσ. Applying Proposition 2.5 completes the proof. �
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Remark 2.7. In particular, let µ, ν are two discrete probability measures on R of the form

µ =
1

n

n
∑

i=1

δxi
and ν =

1

n

n
∑

i=1

δyi
,

where the xi’s and the yi’s are in increasing order, and assume for simplicity that the xi’s
are distinct. Then the map T sending xi on yi for all i realizes the optimal transport of µ
onto ν for every cost function θ.

The following characterization is due to Rado [28]. Here we deduce it from Strassen’s
Theorem. We will denote by Sn the set of all permutations of {1, 2, . . . , n}.

Theorem 2.8. Let a, b ∈ R
n ; the following are equivalent

(1) The vector a is majorized by b,
(2) There exists a doubly stochastic matrix P such that a = bP (treating a and b as

row vectors),
(3) The vector a lies in the convex hull of the permutations of b, i.e. writing for all

permutation σ ∈ Sn, bσ = (bσ(1), . . . , bσ(n)), it holds

a =
∑

σ

λσbσ,

for some λσ > 0 with
∑

σ λσ = 1.

Proof. Let us prove that (1) implies (2). According to Proposition 2.5, a � b means
that ν1 = 1

n

∑n
i=1 δai

is dominated by ν2 = 1
n

∑n
i=1 δbi

in the convex order. Let us write

ν1 = 1
n

∑

x∈X kxδx and ν2 = 1
n

∑

y∈Y ℓyδy, with X = {a1, . . . , an}, Y = {b1, . . . , bn} and
kx is the cardinal of the {i ∈ {1, . . . , n} : ai = x} and ℓy the cardinal of the set {i ∈
{1, . . . , n} : bi = y}. According to Strassen’s Theorem, there exists a couple of random
variables (X,Y ) on some probability space (Ω,A,P) such that X is distributed according
to ν1, and Y according to ν2 and X = E[Y |X]. Since X is discrete,

E[Y |X] =
∑

x∈X

E[Y 1X=x]

P(X = x)
1X=x, a.s.

Therefore, for all x ∈ X ,

x =
E[Y 1X=x]

P(X = x)
=
∑

y∈Y
ℓyyKy,x,

with Ky,x = nP(X=x,Y =y)
kxℓy

. Therefore, denoting Pj,i = Kbj ,ai
for all i, j it holds a = bP and

P is doubly stochastic.
If a = bP with a doubly stochastic P , then it is easily checked that

∑n
i=1 f(ai) 6

∑n
i=1 f(bi), for all convex function f on R and so (2) implies (1).
Finally, according to Birkhoff’s theorem, the extremes points of the set of doubly sto-

chastic matrices are permutation matrices. Therefore every doubly stochastic matrix can
be written as a convex combination of permutation matrices. This shows that (2) and (3)
are equivalent. �

2.2. Geometric aspects. In all what follows, we assume that the vector b = (b1, b2, . . . , bn) ∈
R

n has distinct components.

In the following, we will be working with the convex polytope denoted by Perm(b) and
defined by

Perm(b) := Conv{bσ : σ ∈ Sn}
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This polytope is sometimes called the Permutahedron generated by the vector b. According
to Rado’s Theorem 2.8, Perm(b) is exactly {a ∈ R

n; a � b}. This set is a subset of the
affine hyperplane

Eb =

{

x ∈ R
n;

n
∑

i=1

xi =
n
∑

i=1

bi

}

= b+ E0,

with E0 = {x ∈ R
n;
∑n

i=1 xi = 0}.

In what follows, we are interested in the faces, facets containing a given face, and normal
vectors to such facets.

Towards this, denote [n] the set of integer from 1 to n. For S ⊂ [n], let vS(b) denote the
vector with the |S| largest components of b in the positions indexed by S (in decreasing
order, say), and the remaining n−|S| lowest components of b in the other positions indexed
by [n] \ S (also in a decreasing order). More generally, given S = (S1, S2, . . . , Sk), with
[n] = S1 ∪ S2 ∪ · · · ∪ Sk being a partition, let vS(b) denote the vector with the largest |S1|
coordinates of b in the positions indexed by S1, then the next largest |S2| coordinates in
the positions indexed by S2 and so on. Now recalling the following two fact from [3]:

Fact 1. Each facet of Perm(b) is the convex hull of the set PS(b) of points, for some
∅ 6= S ⊂ [n], where PS(b) contains the vector vS(b) along with all vectors obtained by
permuting any subset of coordinates, as long as the subset is contained in S or in [n] \ S.
(That is, the only permutations that are not allowed are those that involve elements from
both S and [n] \ S.)

Fact 2. More generally, let F be a face of Perm(b). Then F can be described as the
convex hull of the set PS(b) of points, for some S = (S1, S2, . . . , Sk) as described above,
where PS(b) contains the vector vS(b) along with all vectors obtained by permuting the
coordinates (of vS(b)) that belong to the same Si. Furthermore, given a face F , with the
description as above using an appropriate S, the facets containing F can be obtained by
coalescing the first several Si’s in S to obtain a partition into just two sets: that is, for
each 1 ≤ j ≤ k− 1, facet Fj containing F can be described by taking [n] = T1 ∪T2, where
T1 = S1 ∪· · ·∪Sj, and T2 = Sj+1 ∪· · ·∪Sk. (In particular, there are k−1 facets containing
such a face.)

Using the above facts from (the geometry of) the theory of majorization, we now prove
the following.

Theorem 2.9. Let a, b ∈ R
n and assume that b has distinct coordinates and a /∈ Perm(b).

Then the following are equivalent:

(i) ĉ ∈ Perm(b) satisfies

a− ĉ � a− c, ∀c ∈ Perm(b) ;

(ii) ĉ is the closest point of Perm(b) to a; that is,

ĉ := arg min
c∈Perm(b)

(‖a− c‖2) .

Moreover the vector ĉ is sorted as a : (ai 6 aj) ⇒ (ĉi 6 ĉj) , for all i, j.

Let us recall that the orthogonal projection of a point a on the polytope Perm(b) is the
unique c̄ ∈ Perm(b) such that

(5) 〈a− c̄, c− c̄〉 6 0, ∀c ∈ Perm(b).

Proof. First of all, we can assume that
∑n

i=1 ai =
∑n

i=1 bi. Indeed if this is not the case,
then letting ã = a− k

n(1, 1, . . . , 1) with k =
∑n

i=1 ai −∑n
i=1 bi, we see (using (5)) that the
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orthogonal projection of a and ã on Perm(b) are equal (to some point denoted by ĉ), and
that a− ĉ � a− c if and only if ã− ĉ � ã− c.

(i) =⇒ (ii). Let c̄ (not necessarily equal to the ĉ in (i)) satisfy (ii).
Then by (i),

a− ĉ � a− c̄,

which, by Proposition 2.5 implies that
∑n

i=1(a − ĉ)2
i ≤ ∑n

i=1(a − c̄)2
i ; by the choice of c̄,

this is possible only if ĉ = c̄ .

(ii) =⇒ (i). Let ĉ be defined as in (ii) of the proposition. Since Perm(b) is invariant by
permutation, it easily follows from Lemma 2.6 that the coordinates of ĉ are in the same
order as the coordinates of a.

Now let us prove that a− ĉ � a− c for all c ∈ Perm(b). For the sake of clarity, we first
deal with the simple case when ĉ lies on a facet of Perm(b), before dealing with the general
case of ĉ being on a face.

(a) A simple case. Since ĉ is chosen from Perm(b), and since we assumed that
∑

i bi =
∑

i ai, we have
∑

i(a − ĉ)i = 0. Writing α := a − ĉ ∈ E0, suppose that α is perpendicular
to the affine subspace H := HF containing a facet F , defined by some nonempty subset S
of [n]. For all x, y ∈ F , we thus have 〈α, x − y〉 = 0. Choosing x = vS(b) and y obtained
by permuting two coordinates of x (corresponding to indices both in S or Sc), one sees
that the coordinates of α are constant on S and Sc. We denote by αS and αSc the value
of α on these sets, which verify also kαS + (n− k)αSc = 0 since α ∈ E0

Now (recalling that α = a− ĉ) our task is to show that

α � α− (c′ − ĉ), for every c′ ∈ Perm(b) .

This amounts to showing that

α � α− c, for every c such that 〈α, c〉 6 0, and
∑

i

ci = 0 .

Indeed, the choice of ĉ implies that we have 〈α, ĉ〉 ≥ 〈α, c′〉, for every c′ ∈ Perm(b),
hence 〈α, c′ − ĉ〉 ≤ 0; the second condition follows, since ĉ, c′ ∈ Perm(b) implies

∑

i ci =
∑

i c
′
i −∑

i ĉi = 0.
Now 〈α, c〉 6 0 and

∑

i ci = 0 together imply (recall that α is constant on S and Sc)
that

(αS − αSc)
∑

i∈S

ci 6 0 .

Let us assume that αS > αSc . Then denoting by cS =
∑

i∈S ci and by cSc =
∑

i∈Sc ci,
one has cS 6 0 and cSc > 0. If f is a convex function on R, then, according to Jensen
inequality

n
∑

i=1

f(αi − ci) = k

∑

i∈S f(αS − ci)

k
+ (n− k)

∑

i∈Sc f(αSc − ci)

n− k

> kf

(

αS − cS

k

)

+ (n− k)f

(

αSc − cSc

n− k

)

> kf(αS) + (n− k)f(αSc) − f ′(αS)cS − f ′(αSc)cSc

>

n
∑

i=1

f(αi),

where the last inequality comes from the fact that

f ′(αS)cS + f ′(αc
S)cSc = cS(f ′(αS) − f ′(αSc)) 6 0.

According to Proposition 2.5, we conclude that α � α− c.
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(b) The general case. Suppose that ĉ lies in a face F of the polytope. This face is
related to a partition S = (S1, . . . , Sk) of [n]. Then α := a − ĉ ∈ N(F ), where N(F )
denotes the normal cone of F . Recall that the extreme rays of N(F ) are given by the
facet directions for the facets containing F . For all i ∈ {1, . . . , n − 1}, let us denote by
Fi the facet containing F associated to the partition Ti = {S1 ∪ . . . ∪ Si ; Si+1 ∪ . . . ∪ Sk},
1 6 i 6 k − 1. Consider the vectors p1, p2, . . . , pk−1 ∈ E0 defined by

pi = 1S1∪S2∪···∪Si
− ki

n
1[n]

where 1T denotes the 0 − 1 indicator vector of T , for T ⊆ [n], and ki = |S1| + · · · + |Si|.
For each i, the vector pi is orthogonal to the facet Fi. Moreover, for all c ∈ Perm(b) one
may check that 〈c, pi〉 6 〈vTi

, pi〉, with equality on Fi. This shows that pi is an outward
normal vector to Fi. Therefore N(F ) is the conical hull of the pi’s, and so we may express
α, for a suitable choice of λi ≥ 0, as:

α =
∑

i

λi1S1∪S2∪···∪Si
− σ1[n] ,

where σ = (1/n)[
∑k−1

i=1 λi|S1|+∑k−1
i=2 λi|S2|+ · · ·+λk−1|Sk−1|] . In particular, α is constant

on each Sj : for all i ∈ Sj, αi =
(

∑k−1
p=j λp

)

− σ := Aj .

In order to establish (i), we need to show that

α � α− (c− ĉ), ∀c ∈ Perm(b) ,

or in other words, we need to show that

α � α− c′, ∀c′ ∈ Perm(b) − ĉ .

We now use again the fact that our choice of ĉ implies that, for all 1 ≤ i ≤ k − 1,

〈pi, ĉ〉 ≥ 〈pi, c〉 , ∀c ∈ Perm(b) .

This in turn gives the following:

Perm(b) − ĉ ⊆ {c′ : 〈c′, pi〉 ≤ 0, ∀i} .
Thus using N(F )0 := {d ∈ E0; 〈d, pi〉 ≤ 0, ∀i} to denote the polar cone, it then suffices
to show that for α (as above),

α � α− d, ∀d ∈ N(F )0 .

Now, d ∈ N(F )0 implies that

〈d,1S1∪S2∪···∪Sj
〉 ≤ 0 and

∑

i

di = 0 ,

therefore denoting Ej =
∑

i∈S1∪...∪Sj
di, for all j ∈ {0, 1, . . . , k}, one has Ej 6 0 and

E0 = Ek = 0.
Let f : R → R be a convex function ; denoting by f ′ the right derivative of f , the

convexity of f implies that

n
∑

i=1

f(αi − di) =
k
∑

j=1

∑

i∈Sj

f(Aj − di) >
k
∑

j=1

|Sj |f(Aj) −
k
∑

j=1

f ′(Aj)Dj ,

where Dj =
∑

i∈Sj
di. Now, using an Abel transform (and the fact that E0 = Ek = 0),

one gets

k
∑

j=1

f ′(Aj)Dj =
k
∑

j=1

f ′(Aj)(Ej − Ej−1) =
k−1
∑

j=1

(f ′(Aj) − f ′(Aj+1)Ej 6 0,
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where the inequality comes from Ej 6 0, Aj > Aj+1 and the monotonicity of f ′. Therefore,
one gets

n
∑

i=1

f(αi − di) >
k
∑

j=1

|Sj|f(Aj) =
n
∑

i=1

f(ai),

which proves that a � a− d. �

3. Properties of the optimal coupling for weak transport costs

It is well known that if µ and ν are two probability measures on R and U is a random
variable uniformly distributed on [0, 1], the coupling

π∗ = Law(F−1
µ (U), F−1

ν (U)),

is optimal for all transport costs Tθ(µ, ν) associated to a convex cost function θ. (This fact
generalizes the result mentioned in Remark 2.7). As a consequence, on R, the transport
cost is additive : for all convex cost functions α and β,

Tα+β(µ, ν) = Tα(µ, ν) + Tβ(µ, ν).

In this section, we will establish a similar result (Corollary 3.3) for the weak transport
costs T .

Toward this, we begin with the following proposition which illustrates a relationship
between T and T . In the sequel, we denote by Im(µ) the set of probability measures on
R which are images of µ under some map S : R → R, i.e.

Im(µ) = {γ ∈ P(R) : ∃S : R → R measurable such that γ = S#µ}.
and by Im↑(µ) the set of probability measures which are images of µ under a non-decreasing
map S.

Proposition 3.1. For all probability measures µ, ν on R, it holds

inf
γ�ν, γ∈Im↑(µ)

Tθ(γ, µ) > T θ(ν|µ) > inf
γ�ν, γ∈Im(µ)

Tθ(γ, µ).

Remark 3.2. Note that when µ has no atoms, then Im↑(µ) = Im(µ). If µ is a discrete
probability measure, then the two sets may be different. For instance, if µ = 1

3δ0 + 2
3δ1,

then γ = 2
3δ0 + 1

3δ1 is in Im(µ) but not in Im↑(µ). In the proof of Theorem 1.3 below, we
will use Proposition 3.1 with µ being a uniform distribution on n distinct points. In this
case, it is clear that Im↑(µ) = Im(µ).

Proof. Firstly, we prove that T θ(ν|µ) > infγ�ν,γ∈Im(µ) Tθ(γ, µ). Namely, let π(dxdy) =
p(x, dy)µ(dx) be some coupling between µ and ν and let us denote by S(x) =

∫

y p(x, dy),
x ∈ R. Clearly S#µ ∈ Im(µ). Moreover S#µ � ν. Indeed if f : R → R is some convex
function, then by Jensen inequality, it holds
∫

f(x)S#µ(dx) =

∫

f

(∫

y p(x, dy)

)

µ(dx)

6

∫∫

f(y) p(x, dy)µ(dx) =

∫

f(y) ν(dy).

Then it holds
∫

θ

(

x−
∫

y p(x, dy)

)

µ(dx) =

∫

θ(x− S(x))µ(dx) > Tθ(S#µ, µ)

> inf
γ�ν,γ∈Im(µ)

Tθ(γ, µ).

Therefore taking the infimum over p yields to the desired inequality.
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Now we turn to the proof of the inequality T θ(ν|µ) 6 infγ�ν,γ∈Im↑(µ) Tθ(γ, µ). Assume

that γ � ν and that γ = S#µ for some non-decreasing map S ; according to Strassen’s
Theorem, there exists a coupling π1 with first marginal γ and second marginal ν such that
π1(dxdy) = p1(x, dy)γ(dx) and x =

∫

R
yp1(x, dy), γ almost everywhere. For all x ∈ R,

define probability measure p(x, dy) := p1(S(x), dy). Then for all bounded continuous
function f , it holds

∫∫

f(y)p(x, dy)µ(dx) =

∫∫

f(y)p1(S(x), dy)µ(dx)

=

∫∫

f(y)p1(x, dy) γ(dx) =

∫

f(y) ν(dy).

Thus the coupling π(dxdy) = p(x, dy)µ(dx) has µ as first marginal and ν as second.
Moreover, by definition of p1 and p, µ almost everywhere, it holds

∫

yp(x, dy) =

∫

yp1(S(x), dy) = S(x).

Since S is non-decreasing, it realizes the optimal transport between µ and ν for the cost
Tθ and so it follows that

Tθ(γ, µ) =

∫

θ(|x− S(x)|)µ(dx)

=

∫

θ(|x−
∫

yp(x, dy)|)µ(dx) > T θ(ν|µ)

�

We now turn to the proof of Theorem 1.3.
Let us emphasize that the probability γ̂ depends on µ and ν but not on the cost function

θ. This will be crucial in the sequel.
Proof of Theorem 1.3.

Step 1. We first treat the case where

µ =
1

n

n
∑

i=1

δai
and ν =

1

n

n
∑

i=1

δbi
,

with a1 < a2 < . . . < an and b1 < b2 < . . . < bn. We denote by a = (a1, . . . , an) and
b = (b1, . . . , bn). According to Theorem 2.9, there exists some ĉ ∈ Perm(b) such that
a− ĉ � a− c, for all c ∈ Perm(b). Moreover the coordinates of ĉ satisfy ĉi 6 ĉi+1. Let us
denote by γ̂ = 1

n

∑n
i=1 δĉi

. The probability ν dominates γ̂ for the stochastic order and if
θ : R+ → R

+ is a convex cost function, it holds

(6)
1

n

n
∑

i=1

θ(|ai − ĉi|) 6 inf
c∈Perm(b)

1

n

n
∑

i=1

θ(|ai − ci|).

Since the coordinates of ĉ are non-decreasing,

Tθ(γ̂, µ) =
1

n

n
∑

i=1

θ(|ai − ĉi|).

On the other hand, according to Proposition 3.1,

T θ(ν|µ) = inf
γ�ν,γ∈Im↑(µ)

Tθ(γ, µ)

(here we use that for such a distribution µ, it holds Im(µ) = Im↑(µ)). A probability γ such
that γ � ν, γ ∈ Im↑(µ) is of the form γ = 1

n

∑n
i=1 δci

with ci 6 ci+1 and c = (c1, . . . , cn) ∈
Perm(b), and for such a c, it holds Tθ(γ, µ) = 1

n

∑n
i=1 θ(|ai −ci|). So, using (6) we conclude

that

Tθ(γ̂, µ) = T θ(ν|µ).
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Step 2. In this second step, we treat the general case using a natural approximation
argument.

Let µ and ν be two elements of P1(R). By assumption,
∫ |x|µ(dx) < ∞ and

∫ |x| ν(dx) <
∞, so, according to the de la Vallée-Poussin theorem, there exists an increasing convex
function β : R+ → R

+ such that β(t)/t → ∞ as t → ∞ and such that
∫

β(|x|)µ(dx) < ∞
and

∫

β(|x|) ν(dx) < ∞.
Now let us construct discrete approximations of µ and ν. According to Varadarajan’s

theorem, if Xi is an i.i.d sequence of law µ, then, with probability 1, the empirical measure
LX

n := 1
n

∑n
i=1 δXi

converges weakly to µ. On the other hand, according to the strong law of

large numbers, with probability 1, 1
n

∑n
i=1 |Xi| → ∫ |x|µ(dx) as n to ∞. Let us take (xi)i>1

a positive realization of these events and set µn = 1
n

∑n
i=1 δx

(n)
i

, where x
(n)
1 6 x

(n)
2 6 . . . 6

x
(n)
n denotes the increasing re-ordering of the vector (x1, x2, . . . , xn). Then the sequence
µn converges weakly to µ and

∫ |x|µn(dx) → ∫ |x|µ(dx). According to Theorem 6.9 of
[32], this is equivalent to the convergence for the W1 distance : W1(µn, µ) → 0 as n → ∞.

Note that one can assume that the points x
(n)
i are distinct. Indeed, if this is not the case,

then letting x̃
(n)
i = x

(n)
i + i/n2 one obtains distinct points and it is not difficult to check

that µ̃n = 1
n

∑n
i=1 δx̃

(n)
i

still weakly converges to µ (for instance the W1 distance between

µn and µ̃n is easily bounded from above by (n + 1)/(2n2)). The same argument yields a

sequence νn = 1
n

∑n
i=1 δy

(n)
i

with y
(n)
i < y

(n)
i+1 converging to ν in the W1 sense. It is not

difficult to check (invoking the strong law of large numbers again) that one can further
impose that

∫

β(|x|) νn(dx) → ∫

β(|x|) ν(dx), as n → ∞.
For all n > 1, one applies the result proved in the first step : there exists a unique

probability measure γ̂n � νn such that

T θ(νn|µn) = Tθ(γ̂n, µn),

for all convex cost function θ. Let us show that one can extract from γ̂n a sub-sequence
converging to some γ̂ in P1(R) for the W1 distance. By construction

∫

β(|x|) νn(dx) →
∫

β(|x|) ν(dx) and so M = supn>1

∫

β(|x|) νn(dx) is finite. Since γ̂n � νn and since the
function x 7→ β(|x|) is convex, it thus holds

∫

β(|x|) γn(dx) 6
∫

β(|x|) νn(dx) 6 M. In
particular, setting c(R) = inft>R β(t)/t, R > 0, Markov’s inequality easily implies that

∫

[−R,R]c
|x| γ̂n(dx) 6

∫

β(|x|) νn(dx)

c(R)
6

M

c(R)
.

Consider γ̃n defined by dγ̃n

dγ̂n
(x) = 1+|x|

∫

1+|x| γ̂n(dx)
. Then it holds,

sup
n>1

γ̃n([−R,R]c) 6
2M

c(R)
, ∀R > 1

and so the sequence γ̃n is tight. Therefore, according to Prokhorov theorem, extracting
a subsequence if necessary, one can assume that γ̃n converges to some γ̃ for the weak
topology. Extracting yet another subsequence if necessary, one can also assume that
∫

(1 + |x|) γn(dx) converges to some number Z > 0. The weak convergence of γ̃n to γ̃
means that

∫

ϕdγ̃n → ∫

ϕdγ for all bounded continuous ϕ, which means that
∫

(1 + |x|)ϕ(x) γ̂n(dx) →
∫

(1 + |x|)ϕ(x) γ̂(dx),

where γ̂(dx) = Z
1+|x| γ̃(dx) ∈ P1(R). According to Theorem 6.9 of [32], this implies γ̂n → γ̂

as n → ∞ for the W1 distance.
Now let us check that γ̂ is such that Tθ(ν|µ) = Tθ(γ̂, µ) for all convex cost function

θ : R+ → R
+. First we assume that θ is Lipschitz, and we denote by Lθ the Lipschitz
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constant of θ. According to Theorem 2.11 of [18], the following Kantorovich duality
formula holds

T θ(νn|µn) = sup
ϕ

{∫

Qθϕ(x) νn(dx) −
∫

ϕ(y)µn(dy)

}

,

where the supremum is taken over the set of convex functions ϕ bounded from below, with
Qθϕ(x) = infy∈R{ϕ(y) + θ(|x− y|)}, x ∈ R. Define ϕ̄(y) = supx∈R{Qθϕ(x) − θ(|x− y|)}.
Then it is easily checked that ϕ̄ 6 ϕ, ϕ̄ is bounded from below and Qθϕ̄ = Qθϕ. Moreover,
being a supremum of convex and Lθ-Lipschitz functions, the function ϕ̄ is also convex
and Lθ-Lipschitz. Therefore, the supremum in the duality formula above can be further
restricted to the class of convex functions which are Lθ-Lipschitz and bounded from below.
Using the fact that W1(νn, ν) = sup{∫ f dνn − ∫

f dν} where the supremum runs over
1-Lipschitz function and the fact that Qθϕ is Lθ-Lipschitz (being an infimum of such
functions), we easily get the following inequality

|T θ(νn|µn) − T θ(ν|µ)| 6 LθW1(νn, ν) + LθW1(µn, µ).

A similar (but simpler reasoning) based on the usual Kantorovich duality for Tθ yields the
inequality

|Tθ(γ̂n, µn) − Tθ(γ̂, µ)| 6 LθW1(γ̂n, γ̂) + LθW1(µn, µ).

Passing to the limit as n → ∞ in the identity T θ(νn|µn) = Tθ(γ̂n, µn), we en up with
T θ(ν|µ) = Tθ(γ̂, µ).

Now we want to extend this identity to general convex functions θ not necessarily
Lipschitz. Let θ : R

+ → R
+ be a convex cost function (such that θ(0) = 0) and for

all n > 1, let θn be the convex cost function defined by θn(x) = θ(x) if x ∈ [0, n] and
θn(x) = θ(n) + θ′(n)(x − n), if x > n, where θ′ denotes the right derivative of θ. It is
easily seen that θn is Lipschitz and that Qθn

ϕ converges to Qθϕ monotonically as n → ∞,
for any function ϕ bounded from below. Therefore, the monotone convergence theorem
implies that for any probability measure γ, it holds

∫

Qθϕdγ = supn>1

∫

Qθn
ϕdγ. We

deduce from this that T θ(ν|µ) = supn>1 T θn
(ν|µ) and Tθ(γ̂|µ) = supn>1 Tθn

(γ̂, µ). Since

T θn
(ν|µ) = Tθn

(γ̂, µ) for all n > 1, this ends the proof. �

Corollary 3.3. Let α and β be two convex cost functions, then for all probability measures
µ, ν ∈ P1(R), it holds

T α+β(ν|µ) = T α(ν|µ) + T β(ν|µ).

Proof of Corollary 3.3. According to Corollary 1.3, there exists some γ̂ ∈ P1(R) such that

T θ(ν|µ) = Tθ(γ̂, µ),

for the three functions θ ∈ {α, β, α+ β}. The result then follows from the additivity of Tθ

in dimension one :
Tα+β(γ̂, µ) = Tα(γ̂, µ) + Tβ(γ̂, µ).

�

4. Dual formulation for weak transport-entropy inequalities.

Let us recall the dual formulations in terms of infimum convolution inequalities of the
transport-entropy inequality T(θ) defined at (1) and the weak transport-entropy inequal-
ities presented in Definition 1.1. The following result is stated in dimension one only, but
its conclusion is very general (see for instance [18]).

Lemma 4.1. Let µ ∈ P1(R) and θ : R
+ → R

+ be a convex cost function and, for all
function g : R → R bounded from below, consider

Qtg(x) = inf
y∈R

{

f(y) + tθ

( |x− y|
t

)}

, t > 0.
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(1) The probability measure µ satisfies T(θ) if and only if

exp

(∫

Q1g dµ

)

exp

(

−
∫

g dµ

)

6 1,

for all continuous function g : R → R bounded from below.

(2) The probability measure µ satisfies T
+

(θ) if and only if

exp

(∫

Q1g dµ

)∫

exp(−g) dµ 6 1,

for all convex function g : R → R bounded from below.

(3) The probability measure µ satisfies T
−

(θ) if and only if
∫

exp(Q1g) dµ exp

(

−
∫

g dµ

)

6 1,

for all convex function g : R → R bounded from below.
(4) If µ satisfies T(θ), then it satisfies

(7)

∫

exp(Qtg) dµ

∫

exp(−g) dµ 6 1,

with t = 2.
Conversely, if µ satisfies (7) for some t > 0, then it satisfies T(tθ( · /t)).

Proof. The first item is due to Bobkov and Götze [6]. The proof is an easy combination of
well known duality formulas for the relative entropy and for the transport cost Tθ given by
Kantorovich duality theorem (see e.g [32]). Items (2) and (3) generalize the first point to
the framework of weak transport-entropy inequalities. We refer to Proposition 4.5 of [18]
for a more general statement and a proof (based on an extension of Kantorovich duality
to a more general optimal transport costs also obtained in [18]). Let us sketch the proof
of Item (4) (which already appeared in a slightly different form in [16] Propositions 8.2

and 8.3). By definition if µ satisfies T(θ) then it satisfies T
±

(θ). Therefore, it satisfies the
exponential inequalities given in Items (2) and (3). Note that if g is convex and bounded
from below then Q1g is also convex and bounded from below. Therefore it holds

exp

(∫

Q1g dµ

)∫

exp(−g) dµ 6 1

and
∫

exp(Q1(Q1g)) dµ exp

(

−
∫

Q1g dµ

)

6 1.

Multiplying these two inequalities and noticing that Q1(Q1g) = Q2g (for a proof of this
well known semi-group property, see e.g Theorem 22.46 of [32]) gives (7). The converse
implication simply follows from Jensen inequality. �

5. A transport form of the convex Poincaré inequality

This section is devoted to the proof of Theorem 1.4. In this statement, from [5], we have
the equivalence between (a) and (b), and it is easy to prove (c) ⇒ (b). To complete the
proof, we thus have to show that if µ satisfies (a) and (b) it also satisfies (c). Our strategy
is the following. We will first prove a modified logarithmic Sobolev inequality for the
exponential probability measure τ . Considering a probability measure µ satisfying Items
(a) (and (b)) above, we will then deduce (using a transport argument involving the map Uµ)
a modified logarithmic Sobolev inequality for µ restricted to convex or concave Lipschitz
functions. This last property will finally imply (following the well known Hamilton-Jacobi
interpolation technique of [4]) the desired transport inequality.

First, let us state the modified logarithmic Sobolev inequality for the exponential prob-
ability measure τ .
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Theorem 5.1. There exist K > 0 and 1 > c > 0 such that for all non-decreasing function
f with f(x) − f(x− 1) 6 c for all x, it holds

(8) Entτ (ef ) 6 K

∫

R

(f(x) − f(x− 1))2 efdτ.

and

(9) Entτ (ef ) 6 K

∫

R

(f(x+ 1) − f(x))2 efdτ.

This result is a variant of an analogous result by Bobkov and Ledoux [7]. The main
difference between the two results is that in the version given above, the entropy of ef is
controlled by some integral involving the discrete gradient of f instead of the usual first
derivative of f. The proof of Theorem 5.1 adapts different arguments appearing in [7].
The proof is postponed to the Appendix.

Now let us deduce from Theorem 5.1 modified logarithmic Sobolev inequalities for
probability measures satisfying Item (a) of Theorem 1.4. In what follows, if g is a convex
or a concave function on R, we will use the notation |∇g| to denote the function defined
by

(10) |∇g|(x) = min{|θg′
−(x) + (1 − θ)g′

+(x)|; θ ∈ [0, 1]},
where g′

− and g′
− denote the left and right derivatives of the function g (which are well

defined everywhere). So in the convex case, it holds

|∇g|(x) = min(|t|; t ∈ [g′
−(x), g′

+(x)]) =







|g′
+(x)| if g′

+(x) 6 0
0 if g′

−(x) 6 0 6 g′
+(x)

g′
−(x) if g′

−(x) > 0

and in the concave case

|∇g|(x) = min(|t|; t ∈ [g′
+(x), g′

−(x)]) =







|g′
−(x)| if g′

−(x) 6 0
0 if g′

+(x) 6 0 6 g′
−(x)

g′
+(x) if g′

+(x) > 0

Corollary 5.2. Assume that µ satisfies Item (a) of Theorem 1.4 with a constant h > 0,
then for all convex or concave and l-Lipschitz function g with l 6 c/h, it holds

(11) Entµ(eg) 6 Kh2
∫

R

|∇g(x)|2eg(x)µ(dx),

where the constants K and c are those appearing in Theorem 5.1.

Proof. Case of convex functions. We will first prove (11) for a convex non-decreasing and
l-Lipschitz function g with l 6 c/h. Set f = g ◦ Uµ, then

f(x) − f(x− 1) 6 g(Uµ(x)) − g(Uµ(x) − h) 6 lh 6 c,

for all x ∈ R. Since µ is the image of τ under the map Uµ, applying (8) to f leads to

Entµ(eg) 6 K

∫

R

(g(x) − g(x− h))2 eg(x)µ(dx) 6 Kh2
∫

R

g′
−(x)2eg(x)µ(dx),

where the second inequality is due to the fact that g is convex and non-decreasing and
therefore satisfies 0 6 g(x) − g(x − h) 6 g′

−(x)h.
Now suppose that g is convex, non-increasing and l-Lipschitz with l 6 c/h and set

f(x) = g(Uµ(−x)). The function f is non-decreasing and satisfies

f(x) − f(x− 1) = g(Uµ(−x)) − g(Uµ(−x+ 1)) 6 g(Uµ(−x)) − g(Uµ(−x) + h) 6 c.

Applying (8) to this function f and using that τ is symmetric and that Uµ transforms τ
into µ yields to

Entµ(eg) 6 K

∫

R

(g(x) − g(x+ h))2 eg(x)µ(dx) 6 Kh2
∫

R

g′
+(x)2eg(x)µ(dx),
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where we used that 0 6 g(x) − g(x+ h) 6 g′
+(x)(−h).

Finally, let us consider an arbitrary convex and l-Lipschitz function g with l 6 c/h.
We can assume that g is not monotone. Being convex, there exists some a ∈ R such
that g restricted to (−∞, a] is non-increasing and g restricted to [a,∞) is non-decreasing.
Subtracting g(a) if necessary, one can further assume that g(a) = 0. Set g1 = g1(−∞,a] and
g2 = g1(a,∞). The functions g1 and g2 are convex, monotonic and l-Lipschitz. Therefore,
according to what precedes, it holds

Entµ(eg1) 6 Kh2
∫

(−∞,a]
g1

′
+(x)2eg(x) µ(dx) = Kh2

∫

(−∞,a]
|∇g(x)|2eg(x) µ(dx)

and

Entµ(eg2) 6 Kh2
∫

[a,+∞)
g2

′
−(x)2eg(x) µ(dx) = Kh2

∫

(a,+∞)
|∇g(x)|2eg(x) µ(dx),

where we used that g1
′
+(a) = g2

′
−(a) = |∇g(a)| = 0. So all what remains to prove is the

following subbadditivity property of the entropy functional:

Entµ(eg1+g2) 6 Entµ(eg1) + Entµ(eg2).

Since
∫

geg dµ =
∫

g1e
g1 dµ+

∫

g2e
g2 dµ it is enough to prove that

∫

eg dµ log

(∫

eg dµ

)

>

∫

eg1 dµ log

(∫

eg1 dµ

)

+

∫

eg2 dµ log

(∫

eg2 dµ

)

.

Set t = µ(−∞, a] and A =

∫ a

−∞
eg dµ

t > 1 and x =

∫ +∞

a
eg dµ

1−t > 1, then the inequality above
amounts to prove that for all x > 1

ϕ(x) := (tA+ (1 − t)x) log(tA+ (1 − t)x) >

(tA+ (1 − t)) log(tA+ (1 − t)) + (t + (1 − t)x) log(t+ (1 − t)x) := ψ(x)

Since ϕ(1) = ψ(1), it is enough to compare the first derivatives of ϕ and ψ. But

ϕ′(x) = (1 − t)[1 + log(tA+ (1 − t)x)]

and

ψ′(x) = (1 − t)[1 + log(t + (1 − t)x)].

and since A > 1, it holds ϕ′(x) > ψ′(x) which completes the proof.

Case of concave functions. Now assume that g is a differentiable, concave, non-decreasing
and l-Lipschitz function with l 6 c/h. Set f = g ◦ Uµ, then f(x+ 1) − f(x) 6 g(Uµ(x) +
h) − g(Uµ(x)) 6 lh 6 c. Using this time (9) yields to

Entµ(eg) 6 K

∫

R

(g(x+ h) − g(x))2 eg(x)µ(dx) 6 Kh2
∫

R

g′
+(x)2eg(x)µ(dx),

where the second inequality uses the fact that g is non-decreasing and concave. The
extension of this inequality to all concave l-Lipschitz functions follows exactly the same
line as what precedes. (Note that if x,A 6 1, then ϕ(1) = ψ(1) and ϕ′(x) 6 ψ′(x) which

implies that ϕ(x) = ϕ(1) − ∫ 1
x ϕ

′(u) du > ψ(x).) �

Proof of Theorem 1.4. Let us show that (a) implies (c). The proof of this implication
closely follows the proof of Corollary 5.1 in [4], so we will only sketch the main arguments
and refer to [4, 17, 18] for details. According to Corollary 5.2, under (a) the inequality
(11) holds for all convex or concave differentiable function g which is lo-Lipschitz with
l 6 c/h := lo. Consider the function α defined by

α(u) =

{

u2

4Kh2 if |u| 6 2loKh
2

l|u| − l2oKh
2 if |u| > 2loKh

2 ,
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whose convex conjugate functions α∗(v) = supu{uv − α(u)} satisfies

α∗(v) =

{

Kh2v2 if |v| 6 lo
+∞ if |v| > lo

.

With these notations (11) reads

(12) Entµ(eg) 6

∫

α∗(|∇g|)eg dµ,

for all convex or concave function g : R → R.
Introduce the operators Qt t ∈ (0, 1] defined by

Qtf(x) = inf
y∈R

{

f(y) + tα

(

x− y

t

)}

, x ∈ R, t ∈ (0, 1],

which makes sense for instance for any lo-Lipschitz function f or for any function f
bounded from below. The operators Qt have the following important properties. Let
f be an lo-Lipschitz function, then the following holds:

• If f is convex, then Qtf is convex: the property is easy to check and is actually a
general fact about infimum convolution of two convex functions,

• If f is concave, then Qtf is concave: namely

(13) Qtf(x) = inf
u

{

f(x− u) + tα

(

u

t

)}

and so Qtf is an infimum of concave functions and is therefore also concave.
• The function Qtf is l-Lipschitz: namely according to (13), it is an infimum of
l-Lipschitz functions. Note that if f is assumed to be bounded from below, then,

as observed above Qtf is well defined, and since the functions x 7→ tα
(

x−y
t

)

are

lo-Lipschitz, the function Qtf is also lo-Lipschitz.
• The function u(t, x) = Qtf(x) satisfies the following Hamilton-Jacobi equation:

(14)
d

dt+
u(t, x) + α∗(|∇−u|)(t, x) = 0,

for all t ∈ (0, 1] and all x ∈ R, where d/dt+ is the right time derivative and

|∇−u(t, x)| = lim sup
y→x

[u(t, y) − u(t, x)]−
|y − x| .

For this last point we refer to [17] or [1].

Let f be a convex function bounded from below or a concave and l-Lipschitz function
with l 6 lo ; then following [4], define

F (t) :=
1

t
log

(∫

R

etQtf dµ

)

, t ∈ (0, 1].

The function F is right differentiable at every point t > 0 and it holds (see e.g. [17] for
details)

F ′(t) =
1

t2
1

∫

R
etQtf dµ

(

Entµ

(

etQtf
)

+ t2
∫

R

∂

∂t
Qtfe

tQtf dµ

)

=
1

t2
1

∫

R
etQtf dµ

(

Entµ

(

etQtf
)

−Kh2t2
∫

R

|∇−Qtf |2etQtf dµ

)

6
Kh2

∫

R
etQtf dµ

(∫

|∇Qtf |2etQtf dµ−
∫

R

|∇−Qtf |2etQtf dµ

)

6 0,

where the second equality follows from (14), the first inequality from (12) applied to the
function g = tQtf (which is convex or concave and tlo-Lipschitz) and the second inequality
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from the fact that for a convex or concave function g, |∇g| 6 |∇−g|, where |∇g| was defined
at (10).

The function F is thus non-increasing and so it satisfies F (1) 6 limt→0 F (t) =
∫

f dµ.
In other words,

(15)

∫

eQ1f dµ 6 e
∫

f dµ,

for any convex function bounded from below or for any concave and l-Lipschitz function
f with l 6 lo. In particular, restricting (15) to convex functions bounded from below and
according to Point 3 of Lemma 4.1, one concludes that µ satisfies the transport inequality

T
−

(α):

T α(µ|ν) 6 H(ν|µ), ∀ν ∈ P1(R).

Applying the inequality to f = −Q1g with g a convex function bounded from below (this
function f is concave and lo-Lipschitz) yields to

e
∫

Q1g dµ
∫

eQ1(−Q1g) dµ 6 1.

It is easy to check that Q1(−Q1f) > −f and so it holds

e
∫

Q1g dµ
∫

e−g dµ 6 1,

for all convex function g bounded from below. According to Point 2 of Lemma 4.1, this

implies that µ satisfies the transport inequality T
+

(α):

T α(ν|µ) 6 H(ν|µ), ∀ν ∈ P1(R).

This completes the proof. �

6. Proof of Theorem 1.2

First, we treat the particular case where the cost function vanishes on a neighborhood
of 0.

Theorem 6.1. Let µ ∈ P1(R) and β : R
+ → R

+ be a convex cost function such that
{t ∈ R

+ : β(t) = 0} = [0, to], where to > 0 is some positive constant. The following
propositions are equivalent:

(1) There is a > 0 such that µ satisfies the transport-entropy inequality T(β(a · )).
(2) There is a′ > 0 such that µ satisfies the weak transport-entropy inequality T(β(a′ · )).
(3) There are b > 0 and K > 0 such that max(K+(b),K−(b)) 6 K, where

K+(b) = sup
x>m

1

µ(x,∞)

∫ ∞

x
eβ(b(u−x))µ(du),

and

K−(b) = sup
x6m

1

µ(−∞, x)

∫ x

−∞
eβ(b(x−u))µ(du),

where m is a median of µ. (Here we use the convention 0/0 = 0.)
(4) There is d > 0 such thatw

|Uµ(u) − Uµ(v)| 6 1

d
β−1(|u− v|), ∀u 6= v ∈ R.

(Note that β−1 is well defined on (0,∞).)

In particular, (2) implies (4) with d = a′ to

8β−1(log 3)
and (4) implies (2) with a′ = d to

9β−1(2)
.
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Proof of Theorem 6.1. The equivalence between assertions (1), (3) and (4) was first proved
in [15] (see Theorem 2.2). Let us complete the proof of Theorem 6.1 by showing that
(1) ⇒ (2) ⇒ (3).

First of all, it follows easily from Jensen inequality that

Tβ(a · )(µ, ν) > max
(

Tβ(a · )(ν|µ); Tβ(a · )(µ|ν)
)

.

Therefore (1) implies (2) with a′ = a.
Now let us show that (2) implies (3). Suppose that µ satisfies T(β(a · )) for some a > 0.

According to Item (4) of Lemma 4.1, for all convex function g : R → R bounded from
below, it holds

∫

exp(Qf) dµ

∫

e−f dµ 6 1,

where

Qf(x) = inf
y∈R

{f(y) + 2β(a|y − x|/2)}.

Consider the convex function fx which equals to 0 on (−∞, x] and ∞ otherwise, then
Qf(y) = 0 on (−∞, x] and Qf(y) = 2β(a(y − x)/2) on (x,∞). Applying the inequality
above to fx thus yields

(

µ(−∞, x] +

∫

(x,∞)
e2β(a(y−x)/2)µ(dy)

)

µ(−∞, x] 6 1.

Considering x > m yields that K+(a/2) 6 3. One proves similarly that K−(a/2) 6 3.
This shows that (2) implies (3) with b = a/2 and K = 3. �

We are now in position to prove Theorem 1.2.

Proof of Theorem 1.2. Let θ : R+ → R
+ be a convex cost function such that θ(t) = t2 on

[0, to] for some to > 0. Let us define θ1(t) = t2 on [0, to] and θ1(t) = 2tto − t2o on [to,+∞)
and θ2(t) = [θ(t) − t2]+. Note that θ1 and θ2 are both convex and that θ2 vanishes on
[0, to] and that max(θ1, θ2) 6 θ 6 θ1 + θ2.

First assume that µ satisfies the weak transport-entropy inequality T(θ(a · )) for some
a > 0. Then, since θ > θ2 it clearly satisfies T(θ2(a · )). According to Theorem 6.1, the
mapping Uµ sending the exponential measure on µ satisfies the condition:

(16) sup
x∈R

Uµ(x+ u) − Uµ(x) 6
1

b
θ−1

2 (u), ∀u > 0,

with b = aκ, where κ = to/(8θ
−1
2 (log 3). Since θ−1

2 (u) = θ−1(u+ t2o) this proves the claim.
Now let us assume that µ satisfies (16) for some b > 0 and let us show that it satisfies

T(θ(a · )) for some a > 0. First of all, taking u = 1 and using Theorem 1.4, one concludes

that µ satisfies T(ᾱ) with α defined by α(u) = ᾱ(u/
√

2D), with D = 2K
(

θ−1(1 + t2o)
)2 1

b2

and

ᾱ(v) =

{

v2 if |v| 6 c
√
K

c
√

2Kv − c2K if |v| > c
√
K

It is not difficult to check that ᾱ compares to θ1: for all v ∈ R,

ᾱ(v) > θ1

(

max(c
√
K/to; 1)v

)

.

Therefore one concludes that µ satisfies T(θ1(a1 · )), with

a1 =
max((c

√
K)/to; 1)

2
√
Kθ−1(1 + t2o)

b.
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On the other hand, according to Theorem 6.1, µ also satisfies T(θ2(a2 · )), with a2 =
to

θ−1(2+t2
o)b. Letting a = min(a1, a2), one concludes that µ satisfies both T(θ1(a · )) and

T(θ2(a · )), so since θ(at) 6 θ1(at) + θ2(at) and according to Corollary 3.3, it holds

Tθ(a · )(ν|µ) 6 Tθ1(a · )+θ2(a · )(ν|µ) = Tθ1(a · )(ν|µ) + Tθ2(a · )(ν|µ)

6 2H(ν|µ),

and so µ satisfies T
+

(1
2θ(a · )). By convexity of θ and since θ(0) = 0, it holds 1

2θ(2at) >

θ((a/2)t), and so µ satisfies T
+

(θ((a/2) · )). The same reasoning yields to the conclusion

that µ satisfies T
−

(θ((a/2) · )), which completes the proof. �

Appendix : Proof of Theorem 5.1

The proof of Theorem 5.1 is a consequence of the following simple lemma of independent
interest. This lemma is a new discrete Hardy type inequality. Hardy inequalities are
commonly used to characterize measures that satisfy Poincaré inequality on the real line.
We refer to [2] for more developments about the classical Hardy’s inequality (see Theorem
6.2.1 in [2]).

Lemma 6.2. Let h be a positive number and m be a positive measure on R invariant by
translation of h. Let µ and ν be some non-negative measure on R with respective densities
f and g with respect to m. Define, for all y ∈ R,

Gh(y) =
∞
∑

ℓ=0

1ℓh6y

g(y − ℓh)
, and Fh(y) =

∞
∑

ℓ=0

f(y + ℓh),

with the convention 1/0 = +∞, and

Bh = sup
y>0

Gh(y)Fh(y), Nh = sup
y>0

Gh(y − h)

Gh(y)
, Mh = sup

y>0

Fh(y + h)

Fh(y)
,

where the supremum is the essential supremum with respect to the measure m. For all
ϕ : R → R satisfying ϕ(y) = 0 for all y < 0, it holds

∫

ϕ2 dµ 6 Bh

(

1 +
√

Nh

) (

1 +
√

Mh

)

∫

(ϕ(y) − ϕ(y − h))2 dν(y).

The proof of this lemma is postponed at the end of the Appendix.
In any case, we may observe that Mh 6 1 and Nh 6 1.
One typical example for which this result apply is when µ = ν is the exponential

probability measure on R
+ denoted by τ+ and defined by

τ+(dx) = e−x dx

For simplicity, let us choose h = 1. In that case, one has

G1(y) =
∑

06ℓ6y

ey−ℓ =
ey+1 − ey−⌊y⌋

e− 1
, F1(y) =

∞
∑

ℓ=0

e−y−ℓ =
e−y

1 − e−1
,

where ⌊y⌋ denotes the integer part of y. It follows that

B1 6
e2

(e− 1)2
, N1 = M1 =

1

e
.

And therefore Lemma 6.2 provides that for all function ϕ with ϕ(y) = 0 for y < 0,
∫

ϕ2dτ+ 6
e

(
√
e− 1)2

∫

(ϕ(y) − ϕ(y − 1))2 dτ+(y).
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Let f : R → R be a function which is non-decreasing on [−1,∞) and such that f(0) = 0 ;
choosing ϕ(y) = f(y)1y>0, and noting that e/(

√
e− 1)2 6 7, one gets

∫

f2 dτ+
6 7

∫ 1

0
f(y)2dτ+(y) + 7

∫ ∞

1
(f(y) − f(y − 1))2 dτ+(y).

Since f is non-decreasing on [−1,∞) with f(0) = 0, one has for all y ∈ [0, 1], f(y)2 6

(f(y) − f(y − 1))2, and we obtain the following key lemma for the proof of Theorem 5.1.

Lemma 6.3. For any function f : R → R non-decreasing on [−1,∞) and satisfying
f(0) = 0, one has

∫

f2 dτ+
6 7

∫

(f(y) − f(y − 1))2dτ+(y).

We now turn to the proof of Theorem 5.1 which is an adaptation of the proof of the
modified logarithmic Sobolev inequality for the exponential measure given in [7].

Proof of Theorem 5.1. We first prove (8), and then show that (9) is a simple consequence
of (8).

The statement (8) is invariant by translation of the non-decreasing function f . There-
fore, we may assume without loss of generality that f(0) = 0. We also consider the
non-decreasing function f̃ defined on R by

f̃(y) = −f(−y), y ∈ R.

Since u log u > u− 1 for all u > 0, one has

Entτ (ef ) 6

∫

(fef − ef + 1) dτ =

∫ (∫ 1

0
tf2etfdt

)

dτ

=
1

2

∫ ∞

0
f2
(∫ 1

0
tetf dt

)

dτ+ +
1

2

∫ ∞

0
f̃2
(∫ 1

0
te−tf̃ dt

)

dτ+

6
1

4

∫

f2ef dτ+ +
1

4

∫

f̃2 dτ+,

where the last inequality comes from the fact the f and f̃ are non-negative on R
+. Now

suppose that the function f is such that f(y) − f(y− 1) 6 c for all y ∈ R and some c > 0.
The inequality (8) follows from the two next inequalities,

(17) A =

∫

f̃2 dτ+
6 14e

√
7c+1

∫

(f(y) − f(y − 1))2ef(y) dτ(y),

and if c 6
√

2/
√

7 then

(18) B =

∫

f2ef dτ+
6

28

2 − 7c2

∫

(f(y) − f(y − 1))2ef(y) dτ(y).

Thus we obtain (8) with the constant K = 7
2−7c2 + 7

2e
√

7c+1.

Let us prove (17). By Lemma 6.3 applied to the function f̃ , one has

A 6 7

∫

(f̃(y) − f̃(y − 1))2 dτ+(y)

6 7 exp

(

∫

f̃(y)(f̃ (y) − f̃(y − 1))2 dτ+(y)
∫

(f̃(y) − f̃(y − 1))2 dτ+(y)

)

∫

(f̃(y) − f̃(y − 1))2e−f̃(y) dτ+(y).
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The last inequality is a consequence of the inequality 1 6
∫

e−f̃ dν e
∫

f̃ dν for the probability
measure ν with density

dν

dτ+
(y) =

(f̃(y) − f̃(y − 1))2

∫

(f̃(y) − f̃(y − 1))2 dτ+(y)
.

By Cauchy-Schwarz inequality and using Lemma 6.3 again, one has
∫

f̃(y)(f̃(y) − f̃(y − 1))2 dτ+(y)

6

(∫

(f̃(y) − f̃(y − 1))4 dτ+(y)

)1/2 (∫

f̃2 dτ+
)1/2

6
√

7c

∫

(f̃(y) − f̃(y − 1))2 dτ+(y).

It follows that

A 6 7e
√

7c
∫

(f̃(y) − f̃(y − 1))2e−f̃(y) dτ+(y)

= 7e
√

7c
∫ 0

−∞
(f(y + 1) − f(y))2ef(y)ey dy

= 7e
√

7c−1
∫ 1

−∞
(f(y) − f(y − 1))2ef(y−1)ey dy

6 14e
√

7c+1
∫ 1

−∞
(f(y) − f(y − 1))2ef(y) dτ(y).

Now, let us prove (18). To that purpose, we want to apply Lemma 6.3 to the function

g = fef/2. First let us show that g is non-decreasing on [−1,∞). Since the function

x 7→ xex/2 is non-increasing on [−2,∞) and f is non-decreasing on R, it is enough to
check that f > −2 on [−1,∞). But, f(−1) > f(0) − c = −c > −1 since by assumption

c 6 1. Applying Lemma 6.3 to the function fef/2 and using the inequality

0 6 beb/2 − aea/2 6 (b− a)(1 +
b

2
)eb/2, −2 6 a 6 b,

one gets

B 6 7

∫

(

f(y)ef(y)/2 − f(y − 1)ef(y−1)
)2

dτ+(y)

6 14

∫

(f(y) − f(y − 1))2ef(y) dτ+(y)

+
7

2

∫

f2(y)(f(y) − f(y − 1))2ef(y) dτ+(y)

6 14

∫

(f(y) − f(y − 1))2ef(y) dτ+(y) +
7c2

2
B.

This provides inequality (18) when c 6
√

2/
√

7. The proof of the first inequality (8) of
Theorem 5.1 is completed.

To obtain the second inequality (9) of Theorem 5.1 from (8), it suffices to observe that
by a simple change of variables

∫

(f(y) − f(y − 1))2ef(y) dτ(y) =

∫

(f(x+ 1) − f(x))2ef(x+1) e
−|y+1|

2
dy

6 ec+1
∫

(f(x+ 1) − f(x))2ef(x) dτ(x).

This ends the proof of Theorem 5.1. �
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Proof of Lemma 6.2. Since ϕ(y) = 0 for all y < 0, one has for all y > 0

ϕ(y) =
∑

k∈N,hk6y

(ϕ(y − kh) − ϕ(y − (k + 1)h)).

By Cauchy-Schwarz inequality, it follows that

ϕ2(y) 6

( ∞
∑

k=0

(ϕ(y − kh) − ϕ(y − (k + 1)h))2g(y − kh)
√

Gh(y − kh)

)

( ∞
∑

k=0

1hk6y

g(y − hk)
√

Gh(y − kh)

)

.

As a consequence, by Fubini’s theorem, by the translation invariant property of the mea-
sure m, and since H(y) = 0 for y < 0, one has

∫

ϕ2 dµ 6

∞
∑

k=0

∫

R+
(ϕ(y − kh) − ϕ(y − (k + 1)h))2g(y − kh)

√

Gh(y − kh)

( ∞
∑

ℓ=0

1ℓh6y

g(y − hℓ)
√

Gh(y − ℓh)

)

f(y) dm(y)

=
∞
∑

k=0

∫

R+
(ϕ(y) − ϕ(y − h))2g(y)

√

Gh(y)

( ∞
∑

ℓ=0

1hℓ6y+kh

g(y + kh− ℓh)
√

Gh(y + kh− ℓh)

)

f(y + kh) dm(y)

=

∫

R+
(ϕ(y) − ϕ(y − h))2g(y)

√

Gh(y)Ch(y) dm(y),

where Ch(y) =
∞
∑

k=0

( ∞
∑

ℓ=0

1hℓ6y+kh

g(y + kh− ℓh)
√

Gh(y + kh− ℓh)

)

f(y + kh).

To end the proof of Lemma 6.2, it remains to show that for m-almost every y > 0,

√

Gh(y)Ch(y) 6 (1 +
√

Nh)Bh(1 +
√

Mh).

Observe that Gh = 0 on (−∞, 0) and that

1

g(y + kh− ℓh)
= Gh(y + kh− ℓh) −Gh(y + kh− (ℓ+ 1)h), hℓ 6 y + kh,

and

f(y + kh) = Fh(y + kh) − Fh(y + (k + 1)h), y + kh > 0.
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Therefore, using the definitions of the constants Mh, Nh and Bh, we get for all y > 0

Ch(y) =
∞
∑

k=0





∑

ℓ,hℓ6y+kh

Gh(y + kh− ℓh) −Gh(y + kh− (ℓ+ 1)h)
√

Gh(y + kh− ℓh)



 f(y + kh)

6

∞
∑

k=0





∑

ℓ,hℓ6y+kh

(

√

Gh(y + kh− ℓh) −
√

Gh(y + kh− (ℓ+ 1)h)

)

(1 +
√

Nh)





· f(y + kh)

= (1 +
√

Nh)
∞
∑

k=0

√

Gh(y + kh)f(y + kh)

≤ (1 +
√

Nh)
√

Bh

∞
∑

k=0

f(y + kh)
√

Fh(y + kh)

= (1 +
√

Nh)
√

Bh

∞
∑

k=0

Fh(y + kh) − Fh(y + (k + 1)h)
√

Fh(y + kh)

6 (1 +
√

Nh)
√

Bh(1 +
√

Mh)
∞
∑

k=0

(

√

Fh(y + kh) −
√

Fh(y + (k + 1)h)

)

= (1 +
√

Nh)
√

Bh(1 +
√

Mh)
√

Fh(y)

6 (1 +
√

Nh)Bh(1 +
√

Mh)
1

√

Gh(y)

The last equality above holds since Fh(y + kh) → 0 when k → ∞. The proof of Lemma
6.2 is completed. �
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3

30. Volker Strassen, The existence of probability measures with given marginals, Ann. Math. Statist. 36

(1965), 423–439. MR-0177430 5, 7
31. Michel Talagrand, Transportation cost for Gaussian and other product measures, Geom. Funct. Anal.

6 (1996), no. 3, 587–600. MR-1392331 1
32. Cédric Villani, Optimal transport, Grundlehren der Mathematischen Wissenschaften [Fundamen-

tal Principles of Mathematical Sciences], vol. 338, Springer-Verlag, Berlin, 2009, Old and new.
MR-2459454 1, 15, 17

33. Neng-Yi Wang, Concentration inequalities for Gibbs sampling under dl2
-metric, Electron. Commun.

Probab. 19 (2014), no. 63, 11. MR-3262069 2
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