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Abstract

In this report, we investigate the performance analysis of uncertain large scale sys-

tems. Due to their complexity, the usual robustness analysis methods based on e.g:

µ or Integral Quadratic Constraints (IQC) cannot be practically applied. In order to

address this problem, in [1], we propose to represent a large scale system as an inter-

connection of sub-systems and to perform a hierarchical analysis by propagating the

IQC characterization of each uncertain sub-system through the interconnection. For

a given computational time, the conservatism of the analysis dramatically depends on

the class of IQC under consideration. In this report, we propose a new class of IQC

which characterizes the phase of uncertain system. An application to the robustness

analysis of a PLL network reveals that the use of this class of IQC improves the trade-

o� between conservatism and computation time.

Keywords Uncertain large scale system, phase uncertainty, robustness analysis, cone

sector, hierarchical approach, convex optimisation



1 Introduction

Large scale systems (LSS) such as networks or interconnected systems have become impor-

tant nowadays. With the technological development and the miniaturization of components,

high complexity systems are designed in order to achieve a high level of performance, see e.g.

Phase Locked Loop (PLL) networks in synchronous multi-core microprocessor systems [2,3].

However, during the fabrication process, technological dispersions, system ageing, etc. could

dramatically a�ect the performance level: so it is crucial to a priori ensure that the desired

level of performance is obtained when the system is realized. Since the �rst step of the design

is to obtain a mathematical model of the system, the di�erences between the realized system

and the model can be expressed as an uncertain model. Ensuring a certain level of per-

formance then reduces to a worst case performance analysis problem (robustness analysis).

Robustness analysis investigates the stability and the performance of uncertain Linear Time

Invariant (LTI) models. Within this framework, even if the underlying problem is NP hard,

many e�cient methods were developed based on relaxations as convex optimization problem

under Linear Matrix Inequality (LMI) constraints [4], see e.g. the µ upper bound [5] in the

µ-analysis approach [6] or the Integral Quadratic Constraint (IQC) approach [7].

Nevertheless, these methods can not be practically applied to uncertain large scale sys-

tems, since the computation time of the robustness analysis becomes dramatically important.

In order to avoid the direct µ-analysis approach and to reduce the computational load,

many techniques are used depending on the nature of the interconnection topology: nor-

mal [8] or unitarily diagonalized [9] and [10] (with a normal adjacency matrix). In these

works, the authors exploit the particular structure of the interconnection topology and IQC

characterization of sub-systems and/or interconnections to derive scalable robust stability

conditions. In [11], the authors propose scalable stability test based on Nyquist-like condi-

tions. However, it could be applied only for SISO interconnected systems. An interesting

approach is proposed in [12] and [13] where the authors exploit the sparse structure of the

interconnection. Based on an IQC characterization of the interconnection, a sparse frequency

dependent LMI condition is obtained ensuring robust global stability. This condition can be

then solved e�ciently based on Cholesky factorization techniques [14] assuming a chordal

patterns for interconnection topology. However, it could be di�cult, for a given LSS, to
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model it with an interconnection which has a chordal pattern especially if, besides the sta-

bility, global system performance is under consideration.

In this report we rather propose an alternative to [12] and [13] approach for robust perfor-

mance analysis of LSS without any assumption on the interconnection topology: Hierarchical

approach. Initially introduced by Safonov [15], it exploits a hierarchical structure of the in-

terconnection and splits the overall analysis problem into several low dimensional problems.

The coupling between these problems is ensured by appropriate IQC conditions such that it

implies overall system robust analysis result including stability and performance.

According to the hierarchical approach, a large scale system is represented as a tree with

leafs (an interconnection of N systems). Each system j can be described as the interconnec-

tion of sub-systems which are the leafs of system j and so on until having sub-systems that

can only be described as the certain interconnection of parametric or dynamical uncertain-

ties. Since the e�ect of an uncertainty and a level of (e.g. H∞) performance can be expressed

as Integral Quadratic Constraints on input-output signals, the hierarchical approach con-

sists on the recursive propagation of the IQC of the uncertainties to the IQC which de�nes

the performance of the large scale system i.e. propagate the local input-output behaviour

evaluated using IQC through the network layer by layer, see [1, 16] for the details. Even if

the hierarchical robustness analysis is possibly more conservative than the usual one, the

bene�t is to reduce the computational time. Furthermore, in order to perform the prop-

agation, it is necessary to compute a set of IQC satis�ed by the input and output of an

interconnection whose sub-systems are de�ned by a set of IQC. A set of IQC is generated by

combining elementary classes of IQC. In [1, 16], we investigate the computation of di�erent

classes of IQC. Nevertheless, these classes were not adapted for describing (uncertain) phase

which is crucial e.g. in vibration control applications. In this report, in order to improve

the trade-o� between the conservatism and the computation time of the hierarchical ap-

proach, we investigate the computation of an IQC corresponding to the phase information

of an interconnection of sub-systems. If the phase of a Single Input Single Output (SISO)

system can be easily de�ned, its de�nition for a Multiple Input Multiple Output (MIMO)

system is more di�cult. To address this problem, researchers had de�ned many concepts

such as principal phases [17], phase spread [18], phase matching [19], multi-variable phase
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margin [20], phase envelope [21], phase sensitive structured value [22] and structured phase

margins [23].

In this report, we reveal that the de�nition based on the numerical range of a complex

matrix Γ [18] is a nice candidate to evaluate the uncertain phase since it can be expressed

as a quadratic constraint on z and w with z = Γw. In [22], the authors consider that

each uncertainty block can be phase characterized inside a cone sector and then investigate

the stability according to those phase information. The uncertainty phase characterization

of [22] can be seen as a special case of the phase characterization presented in this report

in the sense that for the phase rotation a matrix is used rather than a scalar in [22]. The

advantage of this rotation matrix is to allow to characterize the phase uncertainty according

to any point in the complex plane and not just the origin as in [22]. In this report, the

problem considered is di�erent and more challenging than the robust stability analysis with

phase information considered in [22].

In the case of SISO transfer function, the proposed de�nition reduces to the usual one.

Furthermore, using the separation of graph theorem [24], we reveal that an IQC correspond-

ing to the phase information of an interconnection of sub-systems can be computed using

quasiconvex optimization involving LMI constraints. We then use the proposed IQC in order

to reduce the conservatism of the hierarchical analysis of a PLL network.

This report is organized as follows: Section 2 presents the problem formulation of the

uncertain phase characterization. Some preliminary background is presented followed by the

proposed approach in Section 3 and Section 4. The main results are presented in Section 5

with some illustrative examples in Section 6. The advantage of using the phase uncertainty

to perform the hierarchical analysis on a PLL network is illustrated in Section 7.

Notations RHn×m
∞ denotes the set of matrices rational transfer functions with m in-

puts and n outputs. A∗ (respectively AT ) is the complex conjugate (respectively transpose)

of a the matrix A. Re(A) (respectively Re(x)) represents the real part of a complex ma-

trix A (respectively the complex vector x) and Im(A) (respectively Im(x)) represents the

imaginary part. To simplify the notations, AR (respectively xR ) will be used to denote

the real part and AI (respectively xI) for the imaginary part. In and 0n×n is the iden-
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tity and the zero matrices respectively, when their dimensions are not speci�ed, it is as-

sumed they are know from the context. The ? denotes the Redhe�er star product [25]:

∆ ? M = M22 +M21∆ (I −M11∆)−1M12. bdiag(A,B, . . . ) denotes the block diagonal ma-

trix whose diagonal blocks are A,B, . . . .

2 Problem formulation

Let be the uncertain system G = {∆ ? M |∆ ∈∆}, that is, an uncertain system is represented

as the interconnection of a certain partM ∈ RH(nz+nq)×(nw+np)
∞ and an uncertain part ∆ ∈∆

where ∆ denotes the set of uncertainties traditional in robust analysis literature:

∆ =


∆

||∆||∞ < 1

∆ = bdiag(δr1Ir1 , . . . , δ
r
nrIrnr ,

, δc1Ic1 , . . . , δ
c
ncIcnc ,

,∆1, . . . ,∆nf )


where

• δrj ∈ R is a real rj times repeated uncertainty,

• δcj ∈ C is a complex cj times repeated uncertainty,

• ∆j ∈ Ckjl×k
j
m is a full block of complex uncertainties.

see Fig. 1. In the sequel, for the sake of briefness, the uncertain system is denoted ∆ ? M .

Furthermore, for a given frequency ω0, let us denote Gω0 the set {∆(jω0) ? M(jω0) | ∆ ∈∆}.

The numerical range of a complex matrix Γ, denoted N (Γ), can be used to de�ne the

phase of MIMO systems. It is de�ned to be a compact and convex set of C given by [18]:

N (Γ) = {w∗z | z = Γw,w ∈ Cnw and ‖w‖ = 1} (1)

In the case of a MIMO system G, Γ represents the frequency response of G at the fre-

quency ω0. In order to de�ne the phase of an uncertain MIMO system ∆?M , the numerical

range is extended to the union of the numerical ranges N (G(jω0)) for any G ∈ G which will

be referred to as union of numerical ranges. Let us de�ne in the complex plane the cone sec-

tor as the sector containing all these numerical ranges. It is de�ned by a spread angle α and
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Figure 1: Uncertain linear system

the angle γ measured between the bisectrix of α and the real axe direction, see Fig. 2 where

a sampling of the set of numerical ranges, for a given frequency ω0, and the cone sector with

a centre at the origin are represented. For any numerical range N (Γ) which is not contained

in the right half plane, one can make N (Γ) rotated by an angle −γ such that the resulting

numerical range N (e−jγΓ) will be centred around the real axis in the right half plane with

a new γ̃ = 0. To improve the �exibility of the results, this rotation e−jγ can be generalized

to be an homothetic transformation and a rotation using a scaling matrix Ω ∈ Cnz×nw . The

resulting numerical range is N (Ω∗Γ) and it belongs to the sector centred at the origin with

an angle spread α denoted sec(0, α). This scaling matrix is a generalization of the rotation

introduced in [22]. The uncertain phase problem can then be formulated as follows.

Problem 2.1 Let G be an uncertain system. For a given frequency ω0, �nd the smallest α

such that:

∃ Ω ∈ Cnz×nw ,∀Γ ∈ Gω0 ,N (Ω∗Γ) ⊂ sec(0, α).

Remark 2.1 For SISO LTI systems without uncertainty, the numerical range reduces to

one point N (Γ) = G(jω0); in this case α = 0 and Ω = ej arg(G(jω0)).

In the general case, one can de�ne an o�set characterized by C ∈ Cnz×nw and seek the

smallest sector with the corresponding notation sec(C, α). This problem can be solved by

�nding the cone sector containing all the numerical ranges of Γ− C. Hence, one can search
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Figure 2: Cone sector containing, at a frequency ω0, N (G(jω0) for any G ∈ G

for the smallest α such that the numerical range N (Ω∗(Γ − C)) will be on the right half

plane and centred at the origin.

Problem 2.2 Let G be an uncertain system. For a given frequency ω0 and a given o�set C,

�nd the smallest α such that:

∃ Ω ∈ Cnz×nw ,∀Γ ∈ Gω0 ,N (Ω∗(Γ− C)) ⊂ sec(0, α).

3 Preliminary and De�nitions

3.1 Uncertain systems

The uncertain system of Fig. 1 can be described as an interconnection G = ∆ ? M with

∆ ∈ ∆. Introducing the internal signals and using the Fourier transform, we obtain the
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following system description:

p(jω) = ∆(jω) q(jω)(
q(jω)
z(jω)

)
=

(
M11(jω) M12(jω)
M21(jω) M22(jω)

)
︸ ︷︷ ︸

M(jω)

(
p(jω)
w(jω)

)
(2)

where w(jω) and z(jω) are respectively the Fourier transform of the input and the output

signals w(t), of size nw, and z(t) of size nz.

The signal p(t) and q(t) are internal signals, of size np and nq respectively, with their cor-

responding Fourier Transform p(jω) and q(jω). The external input/output signals w and z

in (2) are used to de�ne and evaluate system performance (as it will be explained later).

However, if the aim is only to investigate the system stability these external signals could

be suppressed and the system description becomes a feedback connection between M11 and

∆ as follows:
p(jω) = ∆(jω) q(jω)

q(jω) = M11(jω) p(jω)
(3)

3.2 Dissipativity properties

De�nition 3.1 The stable system G is said to be {X(jω), Y (jω), Z(jω)} dissipative for ev-

ery ω ∈ [0,+∞], with X(jω) = X∗(jω) ∈ Cnz×nz , Y (jω) ∈ Cnz×nw and Z(jω) = Z∗(jω) ∈ Cnw×nw

if for every z(jω) and w(jω) such that z(jω) = G(jω)w(jω):(
z(jω)
w(jω)

)∗(
X(jω) Y (jω)
Y (jω)∗ Z(jω)

)(
z(jω)
w(jω)

)
< 0 ∀ω ∈ [0,+∞] (4)

Remark 3.1 Dissipativity properties de�ne a set of relations describing the input-output

behaviour of a system G. They represent a set of Quadratic Constraints (QC) involving the

input-output signals in the case of LTI systems. In a more general framework, for non linear

systems, they can be generalized to a set of Integral Quadratic Constraints (IQC) [7]. Note

that in the case of LTI systems, IQC are simpli�ed to QC.

Without lost of generality, the frequency dependence will be dropped in the sequel. A

frequency gridding is de�ned and the di�erent operations and ideas will be introduced for a
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given frequency ω0 i.e. the {X(jω0), Y (jω0), Z(jω0)} dissipativity will be written as:(
z
w

)∗(
X Y
Y ∗ Z

)(
z
w

)
< 0 (5)

3.3 Robust stability

In the case where only the stability of uncertain systems is considered as in (3), robust

stability can be de�ned.

De�nition 3.2 An uncertain system ∆?M11 is said to be robustly stable if for any ∆ ∈∆,

the system ∆ ? M11 is stable.

Theorem 3.1 of robust stability is presented. It is the same as Theorem 4.1 in [24] after

adapting it to our notations with a slight di�erence.

Theorem 3.1 (Theorem 4.1 in [24]) The feedback connection M11−∆ is robustly stable if

and only if there exists a hermitian matrix Φ = Φ∗ with Φ from jR into C(np+nq)×(np+nq)

such that for all ∆ ∈∆

1. (
∆
I

)∗(
Φ11 Φ12

Φ∗12 Φ22

)(
∆
I

)
> 0

and

2. (
I
M11

)∗(
Φ11 Φ12

Φ∗12 Φ22

)(
I
M11

)
< 0

Remark 3.2 In Theorem 3.1, stability is characterized with dissipativity properties for all

∆ ∈∆. It is a well known result in graph separation argument which states that if there is a

function Φ de�ning two complementary dissipative properties of two interconnected operators

than the overall stability can be proved. Theorem 3.1 is a counterpart of Theorem 1 in [7]

for LTI case. The only di�erence is that the uncertainty set considered here is not restricted

to "star-sets", but could be any bounded and connected set ∆.

9



3.4 Robust performance

De�nition 3.3 An uncertain system ∆ ? M is said to be {X,Y, Z} dissipative if for any

∆ ∈∆, the system ∆ ? M is {X,Y, Z} dissipative.

The following theorem gives necessary and su�cient conditions to have robust analysis.

Theorem 3.2 The uncertain system ∆ ? M is stable and {X, Y, Z} dissipative for every

∆ ∈∆ if and only if there exists a hermitian matrix Φ = Φ∗ such that:

1. (
∆
I

)∗(
Φ11 Φ12

Φ∗12 Φ22

)(
∆
I

)
> 0 ∀∆ ∈∆

and

2. (
M
I

)∗
Φ22 0 Φ∗12 0
0 X 0 Y
Φ12 0 Φ11 0
0 Y ∗ 0 Z

(MI
)
< 0

Proof See appendix 2

Remark 3.3 If conditions 1) and 2) of Theorem 3.2 are satis�ed for all ω and since ∆

is a connected set that contains 0 then the stability is guaranteed, see Theorem 4.1 of [24].

Furthermore, when ∆ is not a ball of center 0, conditions 1) and 2) still imply the results of

Theorem 3.2 if ∆ is a connected set with ∆0 such that ∆0 ? M is stable.

Remark 3.4 Theorem 3.2 presents necessary and su�cient conditions for the uncertain

system ∆ ? M to be {X, Y, Z} dissipative. Testing these conditions can be expressed as the

optimization problem of �nding Φ such that conditions 1) and 2) are satis�ed. However,

condition 1) makes the optimization problem in�nite dimensional since it has to be tested

for all ∆ ∈∆, which is di�cult from a computational point of view. The complexity can be

reduced by introducing an a�ne set Φ∆ such that for any Φ ∈ Φ∆, condition 1) is satis�ed.

The set Φ∆ depends on the nature of ∆. In this case, Theorem 3.2 gives only su�cient

conditions for all ∆ ∈∆ and the conditions of Theorem 3.2 de�ne a �nite dimensional LMI

optimization problem that consists in �nding one Φ ∈ Φ∆ such that the second condition of

Theorem 3.2 is satis�ed. From a computational point of view, this problem can be e�ciently
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solved. The consequence of this parametrization of Φ is a possible conservatism in the ob-

tained results. However, this last can be reduced by an appropriate choice of Φ∆ depending

on the class of the uncertainties ∆.

4 Proposed approach

Finding a cone sector sec(0, α) of Problem 2.1 (that contains N (Γ),∀Γ ∈ Gjω0) can be

formulated as �nd b such that:

Re(w∗Ω∗z)− βIm(w∗Ω∗z) > 0 β = ±b

∀ z, w such that ∃ ∆ ∈∆ and z = (∆ ? M)w
(6)

b > 0 de�nes a slope of two lines forming the cone sector and is related to α by

tan
(α

2

)
=

1

b
. Please note that the matrix Ω is used to rotate all numerical ranges in the

right half plane such that γ = 0, see Fig. 3. Inequalities (6) represent a couple of Quadratic
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Figure 3: Illustration of N (Γ) and the cone sector sec(0, α)

Constraints (QC) characterizing the input output behaviour of the system G with its input

and output signals w and z. The cone sector can hence be formulated as:(
z
w

)∗(
0 Ω(−I + jβI)

(Ω(−I + jβI))∗ 0

)(
z
w

)
< 0 (7)
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For any other given C 6= 0 i.e. as de�ned in Problem 2.2, the cone sector sec(C, α) is given

by: (
z
w

)∗(
X Y
Y ∗ Z

)(
z
w

)
< 0

Where:

X = 0, Y = Ω(−I + jβI), Z = −(Y ∗C + C∗Y )

(8)

With β = ±b, the inequalities of (8) de�ne two dissipativity properties {X1, Y1, Z1} for

β = +b and {X2, Y2, Z2} for β = −b.

5 Main results

Theorem 5.1 For a given C, given α and for the uncertain system ∆ ? M . If there exist:

Ω, (Φ111,Φ121,Φ221) ∈ Φ∆ and (Φ112,Φ122,Φ222) ∈ Φ∆ such that:

(
M
I

)∗
Φ22i 0 Φ∗12i 0
0 Xi 0 Yi
Φ12i 0 Φ11i 0
0 Y ∗i 0 Zi

(MI
)
< 0 i = 1, 2

Where:

X1 = 0, X2 = 0

Y1 = Ω(−I + j cot
(α

2

)
I), Z1 = −(Y ∗1 C + C∗Y1)

Y2 = Ω(−I − j cot
(α

2

)
I), Z2 = −(Y ∗2 C + C∗Y2)

Then, the cone sector sec(0, α) contains all the numerical ranges of the uncertain sys-

tem ∆ ? M − C scaled by Ω:

N (Ω∗(∆ ? M − C)) ⊂ sec(0, α) ∀∆ ∈∆

Proof Theorem 5.1 is a direct application of Theorem 3.2, with {X, Y, Z} dissipativity as

shown in (8) for b = cot
(α

2

)
and by choosing some particular structure de�ned by Φ∆, see

Remark 3.4. 2

Theorem 5.1 de�nes an optimization problem. The decision variables are: Ω, Φ111, Φ121,

Φ221, Φ112, Φ122, and Φ222. It proposes only su�cient conditions for the existence of a cone
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sector sec(0, α) containing all the numerical ranges. Testing them is a �nite dimensional

feasibility problem involving LMI which can be e�ciently solved [26].

If a cone sector exists, it is possible to search for the smallest one. To this purpose, we intro-

duce a size measure for the cone sector. The objective is to minimize α. Since tan(
α

2
) =

1

b
and b > 0:

min
α

α ⇔ min
α

tan(α/2)

⇔ min
b

1/b

Then, 1/b represents a size measure for the cone. Since the conditions of Theorem 5.1

are only su�cient, minimizing 1/b such that they are satis�ed implies the minimization of

an upper bound α̃ on the spread angle α. Nevertheless, how this upper bound is close to

real spread depends on the choice of Φ∆, see Remark 3.4.

After de�ning the size measure of the cone sector sec(C, α), Problem 2.2 can be addressed

such that an upper bound on the angle α can be computed e�ciently.

Theorem 5.2 An upper bound on the angle α de�ned in Problem 2.2 can be obtained by

�nding Ω, D̂1, Ĝ1, D̃1, G̃1, D̂2, Ĝ2, D̃2, and G̃2 that minimize λ in the following Generalized

Eigenvalues Problem (GEVP):

min
λ,Ω

D̂1, Ĝ1, D̃1, G̃1

D̂2, Ĝ2, D̃2, G̃2

λ

1.

λ

(
D̂1 0

0 D̂2

)
+

(
D̃1 0

0 −D̃2

)
> 0

λ


M 0
I 0
0 M
0 I


∗(

B1 0
0 B2

)
M 0
I 0
0 M
0 I

+ . . .

· · ·+


M 0
I 0
0 M
0 I


∗(

A1 0
0 A2

)
M 0
I 0
0 M
0 I

 > 0
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2. (
D̂1 0

0 D̂2

)
> 0


M 0
I 0
0 M
0 I


∗(

B1 0
0 B2

)
M 0
I 0
0 M
0 I

 > 0

with i = {1, 2}, Bi and Ai are given by:

Bi =


−D̂i 0 −Ĝ∗i 0

0 0 0 Ω

−Ĝi 0 D̂i 0
0 Ω∗ 0 −(Ω∗C + C∗Ω)



Ai =(−1)i−1


−D̃i 0 −G̃∗i 0

0 0 0 −jΩ
−G̃i 0 D̃i 0

0 (−jΩ)∗ 0 −j(Ω∗C − C∗Ω)


with: D̂i > 0 and D̃i > 0 are hermitian matrices while Ĝi and G̃i are skew hermitian.

Proof For the cone sector de�ned by the dissipativity inequality (8) and using Theo-

rem 5.1, Problem 2.2 can be solved with �nding a minimum upper bound α̃ on α such that

sec(C, α) ⊂ sec(C, α̃). Hence, Problem 2.2 becomes:

Find Φi = {Φ11i,Φ12i,Φ22i} ∈ Φ∆, Xi, Yi, and Zi, i = {1, 2}, that maximize b such that:

(
M
I

)∗
− Φ22i 0 − Φ∗12i 0

0 −Xi 0 −Yi
− Φ12i 0 − Φ11i 0

0 −Y ∗i 0 −Zi

(MI
)
> 0 i = 1, 2 (9)

where Xi, Yi and Zi de�ned as in (8) for β = +b and β = −b. Let us de�ne Φ1 and Φ2 as:

Φ1 = Φ̂1 + bΦ̃1 Φ2 = Φ̂2 − bΦ̃2 (10)

where Φ̂i and Φ̃i are chosen in the form of DG scaling presented in [5]:

Φ̂i =

(
−D̂i Ĝi

Ĝ∗i D̂i

)
Φ̃i =

(
−D̃i G̃i

G̃∗i D̃i

)
In order to make sure that Φi ∈ Φ∆, one needs to guarantee that:

D̂1 + bD̃1 > 0 D̂2 − bD̃2 > 0 (11)
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Then, inequalities (9) become:

(
M
I

)∗ 

−D̂i 0 −Ĝ∗i 0

0 0 0 Ω

−Ĝi 0 D̂i 0
0 Ω∗ 0 −(Ω∗C + C∗Ω)

 + . . .

· · ·+ (−1)i−1b


−D̃i 0 −G̃∗i 0

0 0 0 −jΩ
−G̃i 0 D̃i 0

0 (−jΩ)∗ 0 −j(Ω∗C − C∗Ω)


(MI

)
> 0

(12)

Evaluating for i = {1, 2} and since b > 0, inequalities (11) and (12) become:

1

b
D̂1 + D̃1 > 0

1

b
D̂2 − D̃2 > 0

1

b

(
M
I

)∗
B1

(
M
I

)
+

(
M
I

)∗
A1

(
M
I

)
> 0

1

b

(
M
I

)∗
B2

(
M
I

)
+

(
M
I

)∗
A2

(
M
I

)
> 0

The last inequalities can be combined together as it is shown in the �rst condition of

Theorem 5.2. Hence, minimizing 1/b such that the last inequalities holds is a Generalized

Eigenvalues Problem since condition 2) of Theorem 5.2 holds. 2

Remark 5.1 Theorem 5.2 is a Generalized Eigenvalues Problem, it has been proved that it

is a quasiconvex optimization problem [26]. It can be solved e�ciently using the projective

method described in [27]. Nevertheless, since the conditions are su�cient, Theorem 5.2

allows to compute a sector sec(C, α̃) which contains the smallest cone sector sec(C, α). The

conservatism can be reduced by an appropriate choice of Φ∆ depending on the nature of

uncertainties: D scaling [6], DG scaling [5] or DGL scaling [28]. Here the DG scaling

is chosen to characterize Φi for illustration purposes. Nevertheless, one can choose other

types of scaling depending on the nature of uncertainties. In this case, the structure of

parametrization matrices Φi will be di�erent but the idea remains the same i.e. decomposing

Φi into two parts: Φ̂i and Φ̃i.

Remark 5.2 With respect to Theorem 5.1, Theorem 5.2 introduces an extra condition (con-

dition 2) in order to obtain a Generalized Eigenvalues problem due to the advantage of this
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optimization problem. This condition has two nice justi�cations: �rst, it guarantees that the

interconnection ∆?M, ∀∆ ∈∆ is stable. Second, it guarantees that N (Ω∗(Γ−C)) is located

in the right half plane. Then, one needs to minimize the upper bound α̃:

α̃ ∈
[
−π

2
,+

π

2

]
s.t N (Ω∗(Γ− C)) ⊂ sec(0, α̃)

On the other side, introducing this condition enforces more constraints on Φ1 ∈ Φ∆ and

Φ2 ∈ Φ∆ if they are chosen as in (10) with Φ̃i = 0: they must satisfy that all the numerical

ranges N (Ω∗(Γ − C)) are in the right half plane and respect their dissipative properties at

the same time. Hence, an extra conservatism may appear (besides that of Remark 5.1). To

overcome this issue, Φ1 and Φ2 are chosen of the form (10). Here, D̂i and Ĝi ensure that

the interconnection ∆ ? M is stable and N (Ω∗(Γ− C)) is in the right half plane. While D̃i

and G̃i introduce an additional degree of freedom to ensure that N (Ω∗(Γ− C)) ⊂ sec(0, α̃).

Hence, with this choice, the conservatism is reduced.

6 Illustration Examples

In this section, we will show some examples that illustrate our results graphically.

6.1 SISO Uncertain Systems

The following example is inspired from [1]. Let us consider the following SISO example with

structured scalar uncertainties:

GSISO(jω0) =
−ω2

0 + 2ξnωn(jω0) + ω2
n

−ω2
0 + 2ξdωd(jω0) + ω2

d

with ω0 = 1 rad/s, ξn = 0.7 and ξd = 0.01. The uncertainties are parametric and they are

de�ned by: ωn ∈ [0.1, 0.5] and ωd ∈ [9, 10]. The results are illustrated in Fig.4.

The sampling of the uncertain response presented in green dots is obtained for a gridding

of ωn and ωd equal to 0.01 and 0.001 respectively. The nominal response is equal to 21 + 45i

and it is presented with a red dot. The cone o�set C was �xed arbitrary at C = 60 + 80i.

The obtained results shows very low conservatism and de�ne a cone angle α̃ = 49.52◦.
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Figure 4: Visualisation of cone sector for SISO example

6.2 MIMO Uncertain Systems

For MIMO case, a simple example can be given by:

GMIMO(jω0) = odir ×GSISO(jω0)× idir − C

with same frequency ω0 = 1 rad/s, odir = [1 − 1.5]T , idir = [1 2] and C = 50(1 + 5i)I2.

Fig. 5 shows a sampling of the union of numerical ranges while Fig. 6. shows a sampling of

the union of numerical ranges scaled by Ω∗ with the obtained cone sector.
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Figure 5: Visualisation of the nominal and the uncertain numerical ranges
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Figure 6: Visualisation of the scaled nominal and the uncertain numerical ranges

As it can be seen in Fig 5 and Fig 6, the numerical range Γ(N − C) which was located

in the left half plane was rotated and scaled in size by Ω∗. Once it is in the right half plane,

a cone sector sec(0, α̃) is found: α̃ = 25◦. See Fig. 6 for illustration purposes, please note

that in the imaginary and the real axes scales are not equal.
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7 Large Scale System Hierarchical Analysis

An interesting application of the previous result is the problem of the performance analysis

of linear large scale uncertain systems. A large scale uncertain system is a system composed

of N uncertain sub-systems which are interconnected according to a given topology. It can

be represented by a feedback of the sub-systems Gi regrouped into a block diagonal operator

Gg and an interconnection operator Mint, see Fig.7 and (13).

 

            

 

   

 

    
 

  
 

 

 

 

 

 

 

 

 

 

Figure 7: Global uncertain large scale system

[
W
zg

]
= Mint

[
Z
wg

]
and Z =

Gg︷ ︸︸ ︷
bdiagi (Gi) W

(13)

where W = [wi, . . . , wN ]T , Z = [zi, . . . , zN ]T . zg and zg are the global input/output perfor-

mance signals.

Each sub-system Gi is an interconnection of the nominal sub-system part Mi and the

uncertainty ∆i belonging to the uncertainty set ∆i which de�nition is similar to the set ∆:[
qi
zi

]
= Mi

[
pi
wi

]
and pi = ∆i qi (14)

with the dimensions of the vectors qi, pi, wi and zi equal to niq, n
i
p, n

i
z and n

i
w.
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The following formulation of the performance analysis problem is proposed.

Problem 7.1 For a given large-scale system de�ned by (13) and (14), a given frequency

gridding vector vω = {ωk} and given the uncertainty set ∆i for all i ∈ {1, . . . , N} �nd

a frequency depending upper bound {γ (ωk)} on the (H∞) performance transfer function

between global external input wg and output zg signals.

As discussed in the introduction, the hierarchical approach is composed of two steps:

1. for each uncertain sub-system Gi, �nd one or several dissipativity property ΦPi that

describes its input-output behaviour;(
zi
wi

)∗(
Xk
i Y k

i(
Y k
i

)∗
Zk
i

)(
zi
wi

)
< 0

where k = 1, . . . , p where p is the number of the obtained dissipativity properties.

2. In the global step, the input/output signals W and Z of the uncertain bloc Gg are

characterized with:



z1
...
zN
w1
...
wN



∗



p∑
k=1

τ1kX
k
1 ... 0

p∑
k=1

τ1kY
k

1 ... 0

...
...

...
...

...
...

0 ...

p∑
k=1

τNkX
k
N 0 ...

p∑
k=1

τNkY
k
N

p∑
k=1

τ1k

(
Y k

1

)∗
... 0

p∑
k=1

τ1kZ
k
1 ... 0

...
...

...
...

...
...

0 ...

p∑
k=1

τNk
(
Y k
N

)∗
0 ...

p∑
k=1

τNkZ
k
N


︸ ︷︷ ︸

ΦPg



z1
...
zN
w1
...
wN


< 0

where τik are positive scalars. The uncertain large scale system performance is mea-

sured by its frequency response magnitude. For a given frequency ω0, The performance

dissipativity property is thus chosen of the form(
X Y
Y ∗ Z

)
=

(
I 0
0 −γ2(ω0)I

)
(15)

Hence, Problem 7.1 can be solved using Theorem 3.2 where the uncertainty block ∆

is the block Gg which characterised by ΦPg i.e. Φ of Theorem 3.2 is equal to −ΦPg .
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Let us consider the example of the performance analysis of the active clock distribution

network of [2]. It is composed of N = 16 mutually synchronized Phase Locked Loop (PLL)

delivering the clock signals to the chip. In order to synchronize all the network, the PLLs

exchange information through an interconnection structure. This example is suitable for

illustration of the proposed hierarchical analysis approach as the performance is naturally

evaluated in the frequency domain [16].

PLL network description

In this application, all the PLLs are homogeneous i.e. have the same description and un-

certainty set ∆. Due to the manufacturing process, technological dispersions are inevitable.

They can be presented as parametric uncertainties belonging to the same set ∆. Then, the

description of the N PLLs is:

Gi(jω0) =
ki(jω0 + ai)

−ω2
0 + kijω0 + kiai

∀i ∈ {1, . . . , N}

Where ki ∈ [0.76, 6.84]×104, ai ∈ [91.1, 273.3] and ω0 is the current frequency de�ned by

griding. Furthermore, Gi(jω0) can be written as the interconnection of certain and uncertain

part:

Gi(jω0) = ∆i ? MPLL ∆i ∈∆

With ∆i is given by:

∆ =

{
∆i =

(
δki 0
0 δai

)
||∆i||∞ ≤ 1

}
The performance of this network can be characterized by its global input and out-

put wg and zg using the global frequency response magnitude bound as in (15), while the

exchange of information between PLLs is modelled by an interconnection matrix Mint:
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7.1 Application of the Hierarchical Approach on the PLL network

For the PLL network, the hierarchical approach consists of two steps:

7.1.1 Local step

Characterize the input-output behaviour of each PLL using dissipativity properties. In

addition to the cone sector, one can use other quadratic constraints that can be interpreted

by simple geometric forms: disc and band, see [1] and [16]) for more details. Since all the

PLLs are homogeneous, the dissipativity properties obtained for one PLL are valid for all

the 16 PLL.

The disc dissipativity property used in this report is the same as in [1]. Unlike [16], the band

dissipativity property is slightly di�erent: the orientation of the band is not �xed.

For the cone sector, the o�set is �xed as C = cdisc + irdisc where cdisc and rdisc are the

disc centre and radius respectively obtained from the disc dissipativity properties [1]. For

illustration purpose, Figure 8 displays the obtained dissipativity properties of a PLL for

di�erent frequencies. The sampling of the uncertain responses are presented in green dots

while the nominal responses are presented with a red dot. The black circle The black circle

(the black star is its center) and the black lines represent the disc dissipativity while the

blue lines represent the cone sector.
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Figure 8: Visualisation of the three dissipativity properties of a PLL

7.1.2 Global step

Evaluate the performance of the network by �nding a minimal upper bound on its frequency

response magnitude using the dissipativity properties describing the PLLs and obtained

in the local step. See [15], [1] and [16] for more details. In this step, one can combine the

di�erent dissipativity properties of each PLL: disc, disc+band, disc+cone, etc. and propagate

this input-output characterization of each sub-system to investigate the performance of the

network.
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7.2 The PLL network performance analysis

The performance analysis results of the PLL network presented in Fig. 9 and summarized

in TABLE 1. The direct µ-analysis approach presents the less conservative results with
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Direct approach: 346.7 sec

Hierarchical approach disc: 16 sec

Hierarchical approach disc+band orientation: 46.4 sec

Hierarchical approach disc+cone: 43.1 sec

Figure 9: The PLL network performance analysis

a maximum peak of 6.01dB comparing to the di�erent hierarchical approaches. However,

computation time is signi�cant: 346.7s.

Approach Maximum peak Computation time
µ-analysis 6.01dB 347.6s

Hierarchical: disc 13.44dB 16s
Hierarchical: disc+band 12.97dB 46.4s
Hierarchical: disc+cone 6.45dB 43.1s

Table 1: Comparison between the di�erent approaches

To overcome the time issue, the authors of [1] and [16] introduced the hierarchical ap-

proach for the PLL network performance analysis with two sub-system characterizations:

disc and band QC. The results of the disc [1] and of the disc+band [16] characterizations

are presented in Fig. 9. It is clear that the performance analysis is much faster but also

more conservative. This paper introduces a new QC: cone sector which considers the phase

information. The cone sector is used in combination with the disc QC obtained in [1]. It is
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clear that this combination is more suitable for the PLL network where the obtained result is

almost the same as the result of direct µ-analysis approach but in much less time, see Fig. 9.

In a general way, the conservatism of the hierarchical approach can be reduced by com-

bining multiple dissipativity properties from the local step: disc+bands+cones. However, to

obtain precise result it is better to combine the dissipativity properties of di�erent nature.

Of course, the computation time will increase with the number of dissipativity properties

used, however since they are used in local step, and thus potentially for a system of small

dimensions (local sub-system), this increase is limited within a reasonable time. The contri-

bution of this paper, is an introduction of a new QC that take into account the information

on uncertain sub-system phase. One can thus better de�ne a trade-o� between conservatism

and e�ciency.

8 Conclusion

In this report, the performance analysis of uncertain large scale systems is considered. In

order to reduce the complexity and the computation time, the hierarchical approach is used

to investigate the performance of a PLL network. A new IQC is proposed for the local

step which is the phase uncertainty characterization. SISO and MIMO examples are used

to illustrate the e�ciency of this characterization. This new IQC con�rms its advantage

in obtaining less conservative results in the hierarchical approach comparing with the al-

ready existing IQC in literature. For the future work, it would be interesting to investigate

the appropriate decomposition of the network into sub-networks in order to have the less

conservative results in a reasonable time i.e. add an additional indicator de�ning conser-

vatism/computation time trade-o�.
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A Appendix

Theorem 3.2 states that ∆ ? M is stable and {X, Y, Z} dissipative if and only if:

1. (
∆
I

)∗(
Φ11 Φ12

Φ∗12 Φ22

)(
∆
I

)
> 0 ∀∆ ∈∆ (16)

and

2. (
M
I

)∗
Φ22 0 Φ∗12 0
0 X 0 Y
Φ12 0 Φ11 0
0 Y ∗ 0 Z

(MI
)
< 0 (17)

Hence, the proof will be done for stability and dissipativity.

A.1 Stability proof

The stability proof consists on proving that the conditions of Theorem 3.2 are equivalent to

the conditions of Theorem 3.1

The �rst condition of Theorem 3.1 is already given by (16).

Post and pre multiplying (17) by

(
p
w

)
yields

(
p
q

)∗(
Φ11 Φ12

Φ∗12 Φ22

)(
p
q

)
+

(
z
w

)∗(
X Y
Y ∗ Z

)(
z
w

)
< 0

Since we are interested only in stability, we consider

(
z
w

)
=

(
0
0

)
(

I
M11

)(
Φ11 Φ12

Φ∗12 Φ22

)(
I
M11

)
< 0

which is the second condition of Theorem 3.1. Hence, the conditions of Theorem 3.2 are

equivalent to the conditions of Theorem 3.1.

A.2 Dissipativity proof

Necessity The necessity is proved by supposing that ∆ ?M is {X, Y, Z} dissipative and

proving (16) and (17). By de�nition: for any ∆ ∈ ∆, the uncertain system ∆ ? M is

26



{X, Y, Z} dissipative if:(
p
w

)∗(
M21 M22

0 I

)∗(
X Y
Y ∗ Z

)(
M21 M22

0 I

)(
p
w

)
< 0 (18)

such that:
p = ∆ q

q =
(
M11 M22

) (
p
w

)
This last equality can be rewritten as:

(
I −∆

)( I 0
M11 M12

)(
p
w

)
= 0.

that is: (
p
w

)∗(
I 0
M11 M12

)∗(
I
−∆∗

)(
I −∆

)( I 0
M11 M12

)(
p
w

)
= 0 (19)

Using the S procedure [29] and [26], condition (18) holds such that (19) if and only if

there exist τ such that for any1 ∆ ∈∆

(
M21 M22

0 I

)∗(
X Y
Y ∗ Z

)(
M21 M22

0 I

)
+ . . .

· · ·+ τ

(
I 0
M11 M12

)∗(
I
−∆∗

)(
I −∆

)( I 0
M11 M12

)
< 0

which can be rewritten as:
M21 M22

0 I
I 0
M11 M12


∗

X Y
Y ∗ Z

0

0 τ

(
I
−∆∗

)(
I −∆

)



M21 M22

0 I
I 0
M11 M12

 < 0.

Let
(
µ1 µ2

)
be such that2

(
µ1 µ2

)
⊥ =


M21 M22

0 I
I 0
M11 M12

 ,

1In fact, τ should depend on ∆, that is τ∆. As shown in [30], it can be used a continuous function τ(∆)

on the closure of ∆. But as ∆ is bounded, it can be selected independent of ∆ (take the maximum on the

closure of ∆). This fact will be used several times.
2A⊥ denotes the orthogonal of A i.e. AA⊥ = 0
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then, by applying Finsler's lemma3 [26], we get the equivalent condition: there exists τ and

η such that for any ∆ ∈∆,
X Y
Y ∗ Z

0

0 τ

(
I
−∆∗

)(
I −∆

)
+ η

(
µ∗1
µ∗2

)(
µ1 µ2

)
< 0

It is equivalent by Schur's lemma to:

(
X Y
Y ∗ Z

)
+ ηµ∗1µ1 < 0

τ

(
I
−∆∗

)(
I −∆

)
+ ηµ∗2µ2 − ηµ∗2µ1

[(
X Y
Y ∗ Z

)
+ ηµ∗1µ1

]−1

ηµ∗1µ2 < 0

Thus there exists τ , η and ε > 0 such that for any ∆ ∈∆,

τ

(
I
−∆∗

)(
I −∆

)
+ ηµ∗2µ2 − ηµ∗2µ1

[(
X Y
Y ∗ Z

)
+ ηµ∗1µ1

]−1

ηµ∗1µ2 − εI < 0

Let us de�ne

Φ = −

(
ηµ∗2µ2 − ηµ∗2µ1

[(
X Y
Y ∗ Z

)
+ ηµ∗1µ1

]−1

ηµ∗1µ2 − εI

)
.

Then, using Finsler's lemma, there exist τ such that for any ∆ ∈∆,

τ

(
I
−∆∗

)(
I −∆

)
− Φ < 0

is equivalent to for any ∆ ∈∆, (
∆
I

)∗
Φ

(
∆
I

)
> 0.

That is (16).

For the remaining part, let us notice that

Φ + ηµ∗2µ2 − ηµ∗2µ1

[(
X Y
Y ∗ Z

)
+ ηµ∗1µ1

]−1

ηµ∗1µ2 < 0.

Then by Schur's lemma, it is equivalent to X Y
Y ∗ Z

0

0 Φ

+ η

(
µ∗1
µ∗2

)(
µ1 µ2

)
< 0.

3B∗AB < 0⇔ A+ ηB∗⊥B⊥ < 0
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Applying Finsler's lemma, it is equivalent to
M21 M22

0 I
I 0
M11 M12


∗ X Y

Y ∗ Z
0

0 Φ




M21 M22

0 I
I 0
M11 M12

 < 0

which is exactly (17) after rearrangement.

Su�ciency The necessity can be proved by supposing (16) and (17) and prove that the

system ∆ ? M is {X, Y, Z} dissipative.

(16) is equivalent to:

−
(
p
w

)∗(
I 0
M11 M12

)∗
Φ

(
I 0
M11 M12

)(
p
w

)
< 0 (20)

(17) after rearrangement can be written as:
M21 M22

0 I
I 0
M11 M12


∗ X Y

Y ∗ Z
0

0 Φ




M21 M22

0 I
I 0
M11 M12

 < 0

which can be decomposed to:(
M21 M22

0 I

)∗(
X Y
Y ∗ Z

)(
M21 M22

0 I

)
+

(
I 0
M11 M12

)∗
Φ

(
I 0
M11 M12

)
< 0

Post and pre multiplying by

(
p
w

)
yields

(
p
w

)∗(
M21 M22

0 I

)∗(
X Y
Y ∗ Z

)(
M21 M22

0 I

)(
p
w

)
+ . . .

· · ·+
(
p
w

)∗(
I 0
M11 M12

)∗
Φ

(
I 0
M11 M12

)(
p
w

)
< 0

(21)

Adding (20) to (21) gives(
p
w

)∗(
M21 M22

0 I

)∗(
X Y
Y ∗ Z

)(
M21 M22

0 I

)(
p
w

)
< 0

That is the system ∆ ? M is {X, Y, Z} dissipative.
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