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Abstract: As the Higgs boson properties settle, the constraints on the Standard Model

extensions tighten. We consider all possible new fermions that can couple to the Higgs,

inspecting sets of up to four chiral multiplets. We confront them with direct collider

searches, electroweak precision tests, and current knowledge of the Higgs couplings. The

focus is on scenarios that may depart from the decoupling limit of very large masses and

vanishing mixing, as they offer the best prospects for detection. We identify exotic chiral

families that may receive a mass from the Higgs only, still in agreement with the hγγ

signal strength. A mixing θ between the Standard Model and non-chiral fermions induces

order θ2 deviations in the Higgs couplings. The mixing can be as large as θ ∼ 0.5 in

case of custodial protection of the Z couplings or accidental cancellation in the oblique

parameters. We also notice some intriguing effects for much smaller values of θ, especially

in the lepton sector. Our survey includes a number of unconventional pairs of vector-like

and Majorana fermions coupled through the Higgs, that may induce order one corrections

to the Higgs radiative couplings. We single out the regions of parameters where hγγ and

hgg are unaffected, while the hγZ signal strength is significantly modified, turning a few

times larger than in the Standard Model in two cases. The second run of the LHC will

effectively test most of these scenarios.
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1 Introduction

When the Large Hadron Collider (LHC) began its data taking, possible extensions of the

Standard Model (SM) at the TeV scale were already severely constrained: electroweak

(EW) precision measurements accurately confirmed the structure of the gauge sector [1–3],

a number of flavour violating observables showed no significant deviation from the SM

predictions [4, 5], all direct searches of non-standard particles at LEP and Tevatron gave

null results [2, 6, 7]. After the first run of the LHC, the lower bounds on the masses of new

particles increased substantially [8, 9]. The crucial discovery of the Higgs boson [10, 11]

and the measurement of some of its properties [12–14] supported the minimal realisation

of electroweak symmetry breaking (EWSB), as predicted by the SM. Thus, the room for

SM extensions further compressed.

In this phase, it is essential to reassess the possibilities still open for non-standard

physics close to the TeV scale. In this paper, we focus on new spin-1/2 degrees of freedom.

In particular, we will assume that the scalar and gauge sector is the SM one, with one

standard Higgs doublet. In general, additional dynamics in the EWSB sector may well be

present, including corrections to the Higgs boson couplings to the electroweak gauge bosons,

as well as additional scalar or vector states: here we do not consider these possibilities,

assuming that such dynamics takes place at sufficiently higher scale, or it is sufficiently

weakly coupled to the SM. In other words, we will study effective field theories containing

the SM degrees of freedom plus additional fermions only, being agnostic on the ultraviolet

completion at higher energy.

When wondering what fundamental fermions exist in Nature, one may notice that the

fermion field content of the SM appears whimsical in some respects. Each fermion family is

a set of five chiral multiplets, lL, eR, qL, uR and dR, whose gauge quantum numbers are not

explained within the SM, with the remarkable property to be anomaly-free. The number of

families, three, is unexplained too. All SM fermions are massless before EWSB and, when

the Higgs develops a vacuum expectation value (vev), they acquire a mass proportional

to their Yukawa coupling to the Higgs doublet. The structure of the Yukawa coupling

matrices is not determined by the SM symmetries either. Of course, some of these issues

may find a convincing interpretation in very high energy extensions of the SM, such as

grand unification or flavour theories, but in this paper we will take a phenomenological

point of view and centre on the TeV scale only.

Additional chiral fermions that are massless before EWSB are definitely worth to look

for, as their mass is bound to the TeV scale; the classical example of a chiral fourth family,

with the same field content as the SM ones, was ruled out long ago [15], but we will show

that more exotic possibilities exist. On the other hand, chiral fermions that transform in

a real representation or form vector-like pairs, with respect to the SM gauge group, can

acquire a mass before EWSB. While in general such mass can be much larger than the EW

scale, in a number of well-motivated extensions of the SM there are new, fermionic degrees

of freedom close to the TeV scale. Here are some familiar examples:

• Non-zero neutrino masses may be generated through the mixing with heavier fermions,

typically sterile neutrinos. The latter may have a mass close to the EW scale. How-
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ever very different scenarios are possible, spanning from the eV scale to the grand

unification scale.

• The dark matter energy density may be carried by new, weakly interacting fermions.

If thermally produced, their mass should be close to the EW scale.

• If the quantum stability of the EW scale is guaranteed by supersymmetry broken

at the TeV scale, the SM gauge bosons shall be accompanied by gauginos, and the

scalar bosons by higgsinos.

• If the weak scale is stabilised by dimensional transmutation, via a new strongly-

coupled sector that condenses at the TeV scale, a number of composite spin-1/2

resonances may be present in the low energy spectrum. For example, in the scenario

of partial compositeness [16, 17], the SM chiral fermions, or at least the heaviest ones,

are accompanied by vector-like composite partners with the same gauge quantum

numbers.

Given the diversity of phenomenological and theoretical motivations, and the wide-

ranging discovery reach of the LHC, in section 2 we undergo a classification of the fermionic

extensions of the SM, as general as possible. Theoretical consistency requires the absence of

gauge anomalies. In addition, all new fermions should acquire a large mass to comply with

null direct searches. As we want to explore the new constraints that materialised after the

Higgs discovery, we limit ourselves to those fermions that interact with the Higgs doublet via

Yukawa couplings. We provide the full list of SM extensions with these properties, formed

by up to four new chiral multiplets, and comment on larger sets of new fermions. We note

in passing that there may be alternative phenomenological motivations to study fermions

that do not interact with the Higgs, for example to avoid the flavour problem altogether,

or to look for generic dark matter candidates; some complementary classifications along

this line can be found e.g. in refs. [18–20].

The rest of the paper is dedicated to the phenomenology of the fermionic SM exten-

sions, in particular to identify the regions of parameters that survive to three broad classes

of constraints: (i) EW precision tests; (ii) collider direct searches; (iii) Higgs boson cou-

plings. Our purpose is to provide a comprehensive, comparative description of all possible

sets of fermions, that are presently allowed and may have an observable effect at the second

run of the LHC. Such analysis has several limitations that one should keep in mind:

• We compute only the leading order corrections to the Higgs and gauge boson couplings

due to the extra fermions, and we roughly extract the collider bounds on their masses

and couplings from the available experimental papers. A precision analysis would

require a dedicated study for each given set of new fermions (and it is already available

for several specific cases).

• We assume that the new fermions do not mix with the first and second SM families,

in order to avoid the strong constraints coming from flavour observables (tree-level

flavour changing neutral currents are absent). Indeed, the mixing with the third
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family is sufficient to characterise the corrections to the EW and Higgs observables,

that are our main subject of interest. In addition, the Higgs couplings to the light

families are presently unconstrained. Note that the mixing with the third family can

still induce flavour violating processes at one loop, especially in B-meson decays or

oscillations, when the top or bottom quarks mix with new fermions. However, the

corrections are suppressed with respect to the SM by the masses of the new fermions

and their mixing with the SM ones. The constraints are typically mild, but in some

cases may be complementary to those discussed in this paper, see e.g. refs. [21–23].

• The new fermions are not supposed to form an ultraviolet complete theory, consistent

up to a scale much larger than the TeV. Therefore, we do not impose constraints

coming from the coupling evolution at high energies, such as vacuum stability, absence

of Landau poles, or gauge unification. We have no pretension to determine the

full theory.

• We do not restrict the possible SM extensions using cosmological considerations,

that rely in most cases on specific assumptions on the early Universe evolution. For

example, we do not impose bounds on the relic abundance of the new fermions, based

on the assumption of an initial thermal abundance.

As a matter of fact, these points can be addressed only in a model-dependent manner. In

specific, well-motivated scenarios, it would be worth to perform more precise computations

and include additional constraints from the other sectors of the theory.

In section 3 we discuss purely chiral sets of fermions, that is, fermions that are massless

before EWSB. Fermions with an EW-invariant mass, that is, either a Majorana or a vector-

like mass term, are discussed in section 4, if they are colourless, and in section 5, if they are

coloured. With a little abuse of terminology, we will call ‘leptons’ all the colourless fermions,

even when they do not mix with the SM leptons, and ‘quarks’ all the coloured ones, even

when they do not transform in the fundamental representation of the colour group SU(3)c.

Finally, in section 6 we recapitulate the most interesting results of our analysis.

For each sets of new fermions, we were confronted with the need to compute EW

precision observables and Higgs couplings. Thus, we took the opportunity to collect all

the relevant formulas in the appendices, that generalise well-known results to the case of

a generic fermionic extension of the SM. In appendix A, we present the fermion-gauge

boson couplings, the corrections to the S and T parameters, as well as to the Zff̄ vertex.

In appendix B, we discuss the fermion-Higgs boson couplings, both the tree-level and the

loop-induced ones, and we briefly summarise the present experimental constraints on the

Higgs couplings.

2 Minimal fermionic extensions of the SM

Let us consider the extension of the SM by additional fermions, classified according to their

transformation under the SM gauge group SU(3)c × SU(2)w × U(1)Y , whose irreducible

representations can be denoted by (Rc, Rw, Y ). The SM extension is defined by the most

general renormalizable Lagrangian involving the SM fields and a given set of extra chiral

fermion multiplets.
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We wish each set of new fermions (i) to be phenomenologically viable, (ii) to be theo-

retically self-consistent, and (iii) to modify the Higgs couplings. This leads to the following

series of requirements:

(i) No massless fermions after EWSB, except for the three SM neutrinos and gauge

singlets. Indeed, massless fermions are phenomenologically forbidden, unless they

have no colour (Rc = 1), no electric charge (Q = T3 + Y = 0), and no coupling

to the Z-boson (T3 − tan2 θwY = 0). The latter two conditions imply Y = T3 = 0.

These conditions would allow for a massless neutral component in the chiral multiplet

(1, Rw, 0) with Rw odd, however the gauge symmetries permit a Majorana mass term

for such a multiplet.

(ii) No SM gauge anomalies. The fermionic extensions of the SM under consideration are

intended as effective theories valid up to the multi-TeV scale, therefore they should

cancel all SM anomalies self-consistently. (Extra fermions much heavier than the EW

scale play no role in the anomaly cancellation, since they form vector-like pairs with

respect to the SM gauge group.) Since the SM field content is anomaly-free by itself,

the anomaly-cancellation conditions must be imposed on the set of new fermions only.

As we require the absence of massless coloured states, the new fermions form a

(reducible) real representation of SU(3)c, therefore the SU(3)c-cubic anomaly is au-

tomatically vanishing. Denoting the new fermion representations by (Rci, Rwi, Yi),

for i = 1, . . . , n, the remaining anomaly-cancellation conditions read

SU(3)c − SU(3)c −U(1)Y :
∑n

i=1NwiC(Rci)Yi = 0 ,

SU(2)w − SU(2)w −U(1)Y :
∑n

i=1NciC(Rwi)Yi = 0 ,

U(1)Y −U(1)Y −U(1)Y :
∑n

i=1NciNwiY
3
i = 0 ,

grav − grav −U(1)Y :
∑n

i=1NciNwiYi = 0 ,

(2.1)

where Nw ≡ dim(Rw), Nc ≡ dim(Rc) — this notation is redundant for SU(2) but not

for SU(3) — and the index C(R) of a given representation is defined by Tr(T aRT
b
R) =

C(R)δab, with the index of the fundamental conventionally normalised to C(N) = 1/2

for SU(N). In the case of SU(2) one has C(Rw) = Nw(N2
w − 1)/12. In the case of

SU(3) each representation Rc is characterised by two integer Dynkin labels (a1, a2)

with ai ≥ 0, and one has Nc = (1 + a1)(1 + a2)(1 + a1/2 + a2/2) and C(Rc) =

Nc(a
2
1 + 3a1 + a1a2 + 3a2 + a2

2)/24.

Additionally, the SU(2)w gauge group has a global anomaly, that cancels only when

the sum
∑n

i=1NciC(Rwi) is an integer number [24]. Note that C(Rw) is half-integer

for Nw = 2 + 4n, n = 0, 1, 2, . . . , and integer in all other cases. As for the previous

anomalies, this condition must be satisfied by the fermions below the multi-TeV

scale. (Heavier fermions, decoupled from the EW scale, necessarily give an integer

contribution to the sum: only an even number of multiplets with Nw even can acquire

a vector-like mass.)

– 5 –
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(iii) Non-zero corrections to the Higgs boson couplings. This corresponds to consider only

new fermions with a Yukawa coupling to the SM Higgs doublet. More precisely, any

subset of new fermions that satisfies the requirements (i) and (ii) by itself — any

subset with no massless states nor anomalies — should have a non-zero Yukawa cou-

pling to the Higgs. Otherwise, such subset would interact with the SM only through

gauge interactions; strictly speaking, it can still affect the Higgs boson couplings at

the two-loop level, but here we neglect such small effects.

We stress that the three requirements above are independent, in the sense that none is

automatically implied by the others. In particular: vector-like fermions are automati-

cally massive and anomaly-free, but they may not couple to the Higgs doublet; chiral

fermions that have non-zero masses, such as an extra family of quarks, can be anomalous;

an anomaly-free set of fermions, such as zero-hypercharge fermions, may contain some

massless components.

In the following we classify the sets of n chiral fermions that satisfy the requirements

(i), (ii) and (iii), for n = 1, 2, 3, 4, and we briefly comment on larger sets. For convenience,

we will mark with the symbol � each viable set that is identified.

2.1 One multiplet

If we add to the SM only one new chiral fermion ψ ∼ (Rc, Rw, Y ), the only possibility to

avoid massless states with non-zero SM gauge charges is the presence of a Majorana mass

term mψψψ, that requires Rc = Rc, Y = 0 and Nw odd. Such multiplet is anomaly-free.

The additional requirement to couple to the Higgs doublet, H ∼ (1, 2, 1/2), restricts the

possibilities to Rc = 1 and Rw = 1 or 3, that is,

� N ∼ (1, 1, 0) or Σ ∼ (1, 3, 0) . (2.2)

In both cases a Yukawa coupling is allowed among the new fermion, H and the SM lepton

doublet l ∼ (1, 2,−1/2).

Since N (Σ) forms by itself a self-consistent extension of the SM that modifies the

Higgs couplings, n replicas of N (and/or Σ) also define a set of new fermions satisfying

all our criteria. We will analyse their phenomenology in section 4.1. Of course, there may

also be consistent sets of n new fermions that are partly formed by replicas of N or Σ, and

partly by different multiplets, as we will see in the following sections.

2.2 Two multiplets

Let us classify the possible pairs of chiral fermions ψ1 and ψ2 that can be added consistently

to the SM and that modify the Higgs couplings. The fermion ψ1 can satisfy all requirements

without ψ2 only if it transforms as (1, 1, 0) or (1, 3, 0), as shown in section 2.1. In this case

the three obvious possibilities are

� N1 +N2 , Σ1 + Σ2 , N + Σ . (2.3)

For all other representations, a coupling between ψ1 and ψ2 is necessary: either there is

a vector-like mass term m12ψ1ψ2, or a Yukawa coupling ψ1ψ2H(H̃). The latter possibility

– 6 –
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leads to an inconsistent mass spectrum: one has Nw1 = Nw2 + 1 (or vice versa) and the

unbalanced component of ψ1 has T3 6= 0, therefore it cannot be massless. Then, either

ψ1 admits a Majorana mass term or it couples to a SM fermion too. One can check that,

in both cases, either another unwanted massless state is left, or a SM neutrino acquires a

large mass too. An alternative way to exclude the case of the Yukawa coupling ψ1ψ2H(H̃)

is to solve the anomaly system (2.1) for n = 2: one obtains Nc1 = Nc2, C(Rc1) = C(Rc2),

Rw1 = Rw2 and Y1 = −Y2. Thus, we conclude that the two chiral fermions should form a

vector-like pair,

� ψ1 ∼ (Rc, Rw, Y ) , ψ2 ∼ (Rc, Rw,−Y ) . (2.4)

In order to modify the Higgs couplings, at least one among ψ1 and ψ2 should have a

Yukawa coupling with a SM fermion and the Higgs doublet. We take conventionally all

chiral fermions to be left-handed. A SM family is formed by l ∼ (1, 2,−1/2), ec ∼ (1, 1, 1),

q ∼ (3, 2, 1/6), uc ∼ (3̄, 1,−2/3), and dc ∼ (3̄, 1, 1/3). In order to have a Yukawa coupling

with these representations, the new fermions should transform under SU(3)c either as

singlets or triplets. The former mix with SM leptons and can be called vector-like leptons

(VLLs), the latter mix with SM quarks, hence the name vector-like quarks (VLQs). Under

SU(2)w they can transform as singlets, doublets or triplets. All possible vector-like fermions

with a Yukawa coupling to the SM fermions are listed in table 1.

To analyse the phenomenology of vector-like fermion multiplets, it is useful to name

the components with different electric charge Q. The possible components of the VLLs

have charges Q(N) = 0, Q(E) = −1 and Q(F ) = −2. Then, the self-conjugate leptons N

and Σ and the four VLLs can be written as

N, Σ =

EcN
E

 ; E, L =

(
N

E

)
, Λ =

(
E

F

)
, ∆ =

NE
F

 . (2.5)

After EWSB, N , E and Ec can mix with the SM leptons ν, e and ec, respectively, while F

does not mix with the SM. We will discuss the phenomenology of these VLLs in section 4.2.

The possible components of the VLQs have charges Q(X) = 5/3, Q(T ) = 2/3, Q(B) =

−1/3 and Q(Y ) = −4/3. They are embedded in seven possible VLQ multiplets,

T, B, XT =

(
X

T

)
, Q =

(
T

B

)
, YB =

(
B

Y

)
, XQ =

XT
B

 , YQ =

TB
Y

 . (2.6)

After EWSB, T , T c, B and Bc can mix with the SM quarks t, tc, b and bc, respectively.

On the contrary, the components X, Y and their conjugate do not mix with the SM. We

will discuss the phenomenology of these VLQs in section 5.1.

2.3 Three multiplets

Let us classify the possible sets of three chiral fermions ψ1,2,3 that can be added to the SM

consistently with the requirements of section 2. Of course, there is the trivial possibility

to combine smaller sets that are already consistent on their own:
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ψL1 ψL2 coupling to

E ∼ (1, 1,−1) Ec ∼ (1, 1,+1) l, ec

L ∼
(
1, 2,−1

2

)
Lc ∼

(
1, 2,+1

2

)
l, ec

Λ ∼
(
1, 2,−3

2

)
Λc ∼

(
1, 2,+3

2

)
ec

∆ ∼ (1, 3,−1) ∆c ∼ (1, 3,+1) l

T ∼
(
3, 1,+2

3

)
T c ∼

(
3, 1,−2

3

)
q, uc

B ∼
(
3, 1,−1

3

)
Bc ∼

(
3, 1,+1

3

)
q, dc

XT ∼
(
3, 2,+7

6

)
Xc
T ∼

(
3, 2,−7

6

)
uc

Q ∼
(
3, 2,+1

6

)
Qc ∼

(
3, 2,−1

6

)
q, dc, uc

YB ∼
(
3, 2,−5

6

)
Y c
B ∼

(
3, 2,+5

6

)
dc

XQ ∼
(
3, 3,+2

3

)
Xc
Q ∼

(
3, 3,−2

3

)
q

YQ ∼
(
3, 3,−1

3

)
Y c
Q ∼

(
3, 3,+1

3

)
q

Table 1. Vector-like pairs of left-handed chiral fermions, that provide a consistent extension of the

SM and modify the Higgs boson couplings.

� Three copies of N ∼ (1, 1, 0) and/or of Σ ∼ (1, 3, 0).

� A vector-like fermion from table 1 plus one copy of N or Σ. As the latter couples to

the SM lepton doublet l, there may be a non-trivial interplay with the VLLs E, L

and ∆, that also couple to l. We will discuss this case in section 4.4.

To explore all the other possibilities, note that there are two patterns for the colour repre-

sentations of ψ1,2,3, that guarantee the absence of massless coloured states:

• Rc1 = Rc1 plus a vector-like pair Rc2 = Rc3 6= Rc1. The only choice allowing for

couplings to the Higgs is Rc1 = 1 and Rc2 = 3. In this case the two subsets ψ1 and

ψ2,3 do not interact with each other, therefore each should be a consistent extension

of the SM by itself, reducing to the trivial possibilities already listed above.

• Rc1 = Rc2 = Rc3. These can be either real or complex representations. One may

have considered three real representations of SU(3)c not all equal to each other; in

this case, however, it is not possible to allow Yukawa couplings to the Higgs and to

give a mass to all coloured components, at the same time.

In the only non-trivial case, Rc1 = Rc2 = Rc3 or permutations, the anomaly conditions in

eq. (2.1) reduce to 
N3
w1Y1 +N3

w2Y2 +N3
w3Y3 = 0 ,

Nw1Y1 +Nw2Y2 +Nw3Y3 = 0 ,

Nw1Y
3

1 +Nw2Y
3

2 +Nw3Y
3

3 = 0 .

(2.7)

The possible solutions of this system (with Nwi positive integers) are
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(a) Yi = 0 and Nwi arbitrary, for i = 1, 2, 3.

(b) Y1 = 0 with Nw1 arbitrary, Y2 = −Y3 6= 0 with Nw2 = Nw3, or permutations.

(c) For any pair of integer numbers n,m ≥ 0,
Nw1 = 1 + n , Nw2 = 2 + n+m, Nw3 = 3 + 2n+m,

Y1 6= 0 arbitrary, Y2 = −Y1
Nw1(N2

w3 −N2
w1)

Nw2(N2
w3 −N2

w2)
, Y3 = Y1

Nw1

Nw3

N2
w2 −N2

w1

N2
w3 −N2

w2

,
(2.8)

or permutations.

Let us consider these solutions in turn, to analyse whether they can satisfy the other

requirements of section 2.

(a) In order to couple to the Higgs boson, one needs Rci = 1 and Rwi = 1 or 3 for

i = 1, 2, 3, that is three copies of N or Σ: a trivial possibility already considered.

(b) Suppose first that ψ2 and ψ3 form a vector-like pair, that is, Rc1 = Rc2 = Rc3.

But, to avoid unpaired complex representations of SU(3)c, one needs Rc1 to be real.

Barring the trivial cases where ψ1 and ψ2,3 form self-consistent extensions of the SM

separately, the necessary condition to modify the Higgs couplings is to allow for a

Yukawa coupling between ψ1 and ψ2,3. This leads to

� ψ1 ∼ (Rc, Rw, 0) , ψ2 ∼
(
Rc, Rw ± 1,

1

2

)
, ψ3 ∼

(
Rc, Rw ± 1,−1

2

)
, Rc = Rc .

(2.9)

The choice of Rw is arbitrary up to the SU(2)w global anomaly: for Nw = 2 + 4n,

one needs Nc to be even. The colourless case Rc = 1 will be discussed in section 4.4.

The coloured case Rc = 8, 27, . . . will be discussed in section 5.3.

Next, suppose that ψ2 and ψ3 do not form a vector-like pair, that is, a complex

representation Rc1 = Rc2 = Rc3. In order to have the same number of colour-

conjugate representations one needs Nw1 = 2Nw2. A Yukawa coupling is also needed

among ψ1 and ψ2,3 to provide masses, so the only possibility is

� ψ1 ∼ (Rc, 2, 0) , ψ2 ∼
(
Rc, 1,

1

2

)
, ψ3 ∼

(
Rc, 1,−

1

2

)
, Rc 6= Rc . (2.10)

The SU(2)w global anomaly further requires that Nc must be even. Note that this

is the minimal, consistent set of chiral fermions that has no vector-like mass terms,

rather it acquires a mass from the Yukawa couplings only. The phenomenology of

purely chiral fermions is discussed in section 3.

(c) For (n,m) 6= (0, 0), one has Nw3 ≥ 4. Then, ψ3 does not couple to the SM nor to ψ1,

and even the possible Yukawa coupling to ψ2 cannot provide a mass to all the Nw3

components of ψ3. Therefore, let us take (n,m) = (0, 0), that implies

ψ1 ∼ (Rc, 1, Y ) , ψ2 ∼
(
Rc, 2,−

4

5
Y

)
, ψ3 ∼

(
Rc, 3,

1

5
Y

)
. (2.11)
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By requiring an equal number of components with opposite electric charge, one finds

Y = ±1/2 or Y = ±1/6. In both cases one can check that some components of

the new fermions remain massless, therefore no consistent SM extension of this type

exists.

2.4 Four multiplets

In the previous sections we derived the list of all the consistent sets of n new chiral fermions,

with n ≤ 3, discussing in detail how to implement the requirements of section 2. Here we

provide the complete list for n = 4, without displaying the lengthy and involved analysis

needed to prove this result.

First of all, there are a number of possibilities to combine smaller subsets of new

fermions that are already consistent by themselves. It is worth to list them for bookkeeping

and to point out those combinations with special phenomenological relevance:

� Four copies of N and/or Σ.

� Two copies of N and/or Σ plus a vector-like fermion from table 1. In particular,

the set (N,Σ, L, Lc) corresponds to the neutralinos and charginos of the minimal

supersymmetric SM: bino, wino and the two higgsinos. This case is discussed in

section 4.4.

� Two vector-like fermions Ψ1 and Ψ2 from table 1. A non-trivial interplay occurs when

Ψ1 and Ψ2 couple both to a given SM fermion, as indicated in the last column of

table 1, and/or when there is a Yukawa coupling between Ψ1 and Ψ2: this happens

for E or ∆ with L or Λ; T or XQ with XT or Q; B or YQ with Q or YB. In

models of partial compositeness, a SM fermion acquires its mass by mixing with two

vector-like composite fermions, with the same quantum numbers as the SM left- and

right-handed components: Q and T for the top quark, Q and B for the bottom quark,

L and E for the tau lepton. This case is discussed in section 4.3 for leptons and 5.2

for quarks.

� One copy of N or Σ and a set of three fermions from eq. (2.9) or eq. (2.10). A

non-trivial interplay occurs in the case (1, 3, 0) + (1, 5, 0) + (1, 4, 1/2) + (1, 4,−1/2),

discussed in section 4.4.

Let us come to the consistent sets of four fermions that are not the union of two smaller

self-consistent sets. We found that non-trivial solutions are possible only when the four

colour representations Rci are all equal or conjugate to each other. After all requirements

of section 2 are taken into account, only two possible patterns emerge:

• For arbitrary Rc and Rw, a viable set of four multiplets is provided by

� (Rc, Rw − 1, 0) + (Rc, Rw + 1, 0) + (Rc, Rw, 1/2) + (Rc, Rw,−1/2) , (2.12)

with one exception: if Nw is odd, then either C(Rw− 1) or C(Rw + 1) is half-integer,

therefore one needs Nc even to cancel the global SU(2)w anomaly.

– 10 –



J
H
E
P
0
1
(
2
0
1
6
)
0
3
6

The case Rc = 1 can be described as two Majorana leptons plus a vector-like lepton

(see section 4.4). The case Rc = Rc 6= 1 is the analogue for coloured fermions

(section 5.3). Finally, the case Rc 6= Rc is purely chiral, with no masses before

EWSB (section 3).

• For arbitrary Rc, Rw and Y , a viable set of four multiplets is

� (Rc, Rw, Y )+(Rc, Rw,−Y )+(Rc, Rw+1, Y−1/2)+(Rc, Rw+1,−Y+1/2) . (2.13)

For the first time we encounter a pattern where the hypercharges of the new fermions

are not determined uniquely.

The case Rc = 1 corresponds to two VLLs (section 4.3), except when Y = 0 with Nw

odd, or Y = 1/2 with Nw even: then, one has two Majorana leptons plus one VLL

(section 4.4). The case Rc 6= 1 corresponds to two VLQs (section 5.2), except when

Rc = Rc and Y = 0 with Nw odd, or Y = 1/2 with Nw even: then, one has two

Majorana quarks plus one VLQ (section 5.3).

We found that all other sets of four multiplets relevant for Higgs couplings are not viable:

either some component remains massless, or a gauge anomaly is present.

2.5 Larger sets of new fermions

We do not attempt a general classification for n ≥ 5 new chiral fermions. On the one

hand, the general principles and the different phenomenological possibilities are already

well illustrated by more minimal sets of fermions. On the other hand, a detailed analysis is

worth only in the context of a specific, well-motivated theory beyond the SM. Here we shall

mention some prominent examples that have been extensively studied, to situate them in

the context of our classification.

• We have shown that there are two sets of purely chiral fermions, displayed in eq. (2.10)

and in eq. (2.12), formed by three and four multiplets, respectively. The more tra-

ditional chiral extension of the SM is a fourth family, formed by the five multiplets

q′L, t′R, b′R, l′L and τ ′R. It was already excluded at the time of LEP, because the Z

invisible width forbids a fourth massless neutrino, but it could be rescued adding a

sixth multiplet, a sterile neutrino ν ′R. It is by now excluded by the measurement of

the Higgs boson couplings [25], as we will review at the end of section 3.

• The minimal supersymmetric extensions of the SM predicts fermionic partners for the

gauge bosons and for the two Higgs doublets. This amounts to five chiral multiplets: a

bino∼ (1, 1, 0), a wino∼ (1, 3, 0), two higgsinos ∼ (1, 2,±1/2) and a gluino ∼ (8, 1, 0).

The latter does not enter in our classification, since it does not couple to the Higgs

doublet. Concerning the other four multiplets, supersymmetry restricts the possible

couplings among them and to the SM, therefore it corresponds to a special case in the

parameter space of the SM extension by the set (N,Σ, L, Lc). We will briefly discuss

the related phenomenology in section 4.4. Of course, our purely fermionic extension

of the SM corresponds to the limit where the scalar supersymmetric partners are

significantly heavier than neutralinos and charginos.
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• Another scenario addressing the hierarchy problem is compositeness. An effective

way to couple the SM fermions to a composite Higgs doublet amounts to a partial

fermion compositeness: each SM chiral fermion mixes with a composite vector-like

fermion with the same quantum numbers. Thus, to induce a Yukawa coupling among

two SM fermions and the composite Higgs one needs two vector-like fermions. There-

fore, a SM extension by four chiral multiplets is suitable to study this mechanism for

one SM Yukawa coupling at a time. Indeed, partial compositeness corresponds to a

special subspace of parameters, because the symmetries of composite models restrict

the couplings of the new fermions and of the SM ones. We will briefly discuss the phe-

nomenology of τ -compositeness in section 4.4 and the case of b and t-compositeness

in section 5.2. Of course, realistic models of partial compositeness require more than

two vector-like fermions, e.g. to induce the Yukawa couplings of all the heavy, third

family fermions. The interplay between the Higgs and composite vector-like fermions

is studied in detail e.g. in refs. [26–30].

3 Phenomenology of new chiral fermions

In this section we study purely chiral sets of new fermions, that is to say, one cannot write

any fermion mass term before EWSB, thus their masses are generated by the Higgs vev

only. These sets do not contain vector-like pairs of chiral multiplets, that would admit a

Dirac mass, nor multiplets in the representations (Rc, Rw, 0) with Rc = Rc and Rw odd,

that would admit a Majorana mass. A purely chiral set, consistent with the requirements of

section 2, constitutes a new fermion ‘family’, very much analogue to the three SM families.

We identified two classes of purely chiral sets, formed by three and four multiplets

respectively, displayed in eq. (2.10) and eq. (2.12). We will discuss the phenomenology of

these two classes in some detail. In the last part of the section, we will investigate whether

larger chiral sets of fermions may be compatible with present Higgs data.

• Three chiral multiplets. The only consistent ‘family’ formed by three chiral multi-

plets is

ψ1L ∼ (Rc, 2, 0) , ψ2R ∼
(
Rc, 1,

1

2

)
, ψ3R ∼

(
Rc, 1,−

1

2

)
, Rc 6= Rc , Nc even , (3.1)

the smallest viable representation being Rc = 6. The Yukawa interactions are

− LY = λ12ψ1LH̃ψ2R + λ13ψ1LHψ3R + h.c. . (3.2)

Here and in the rest of the paper we do not display the obvious kinetic terms, that must

be added for each new fermion. After EWSB one is left with two mass eigenstates F12 and

F13 in the same colour representation Rc, with charge Q = ±1/2 and mass m12 = λ12v/
√

2

and m13 = λ13v/
√

2, respectively.

The lightest new fermion is stable and forms hadrons with exotic charges, that are

constrained to be heavier than several hundreds of GeVs. Indeed, the searches for R-

hadrons [31, 32] assume the existence of a stable stop or sbottom (scalar with Rc = 3), or of
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a stable gluino (fermion with Rc = 8). In the latter case one finds mRc=8 & 1320 GeV [33],

and we expect a similar (stronger) bound for Rc = 6 (larger colour representations), as

these fermions are pair-produced through their coupling to gluons. To roughly estimate the

limit on a stable sextet, we rescale the gluino bound by computing the ratio between the

sextet and octet production cross section at tree level. Taking into account the different

colour contractions and the interference of the s, t and u-channel, we obtain a lower bound

mRc=6 & 1400 GeV. Further discussions and references on the constraints on R-hadrons

can be found e.g. in refs. [20, 34]. This limit from direct searches already leads to some

tension with the perturbativity upper bound, m12,13 � (4π)v/
√

2 ' 2.2 TeV.

The contribution of F12,13 to the oblique parameters reads

S ' Nc

6π
, T ' Nc

16πs2
wc

2
wm

2
Z

(
m2

12 +m2
13 − 2

m2
12m

2
13

m2
12 −m2

13

ln
m2

12

m2
13

)
. (3.3)

Note that for (m12−m13)→ 0 one finds T ∝ (m12−m13)2, because in the degenerate limit

the custodial symmetry is restored: for λ12 = λ23 eq. (3.2) has a global SU(2)R symmetry

with ψ2R and ψ3R transforming as a doublet. The value of S can lie within the 3σ ellipse,

but only if Nc = 6 and T ' 0.3 at the same time (see figure A.2). This can be achieved for

(m12 +m13)/2 ' 1500 GeV and (m12−m13) ' 50 GeV. Thus, this ‘family’ of new fermions

is marginally compatible with direct searches and EW precision tests.

After the Higgs discovery, however, one can definitely exclude such a set of new

fermions. As they are heavier than the Higgs boson and do not mix with the SM fermions,

the Higgs decay width at tree-level are unchanged. However, a huge deviation occurs in

the loop-induced Higgs coupling to gluons,

Rgg ≡
σ(gg → h)

σSM(gg → h)
' [1 + 4C(Rc)]

2 . (3.4)

where we have taken the limit m2
t ,m

2
12,m

2
13 � m2

h/4 in the loop form factor (see ap-

pendix B.2). Even the smallest possible colour representation has C(6) = 5/2, leading to

a huge Rgg = 121, totally incompatible with LHC data.

• Four chiral multiplets. Let us move to the only consistent ‘family’ formed by four

chiral multiplets,

ψ1L ∼ (Rc, Rw−1, 0), ψ2L ∼ (Rc, Rw+1, 0), ψ3R ∼
(
Rc, Rw,

1

2

)
, ψ4R ∼

(
Rc, Rw,−

1

2

)
,

(3.5)

with Rc 6= Rc to prevent vector-like or Majorana mass terms, and with Nc even if Nw is

odd, to prevent a global SU(2)w anomaly. The allowed Yukawa interactions are

− LY = λ13ψ1LH̃ψ3R + λ14ψ1LHψ4R + λ23ψ2LH̃ψ3R + λ24ψ2LHψ4R + h.c. . (3.6)

where the explicit SU(2)w contractions are defined in eq. (B.4). After EWSB the compo-

nents of ψ1,2L combine with those of ψ3,4R to forms 2Nw mass eigenstates: one with charge

Q = Nw/2; two mixed states with Q = Nw/2 − 1, . . . ,−Nw/2 + 1; one with Q = −Nw/2.
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As they have (half-)integer charges, they do not mix with the SM quarks and the lightest

state is stable and hadronises, with collider bounds above 1 TeV, analogue to those dis-

cussed above. The discussion of oblique parameters is also similar to the previous case:

one can be marginally consistent with data, by choosing the parameters to realise an ap-

proximate custodial protection.

The way to definitely exclude this set of chiral fermions is, once again, their contribu-

tion to the Higgs boson coupling to gluons. Note that each of the 2Nw mass eigenstates

belongs to the same colour representation Rc and must be (much) heavier than the top

quark, therefore one finds

Rgg ' [1 + 2(2Nw)C(Rc)]
2 . (3.7)

Even in the minimal case with Nw = 2 and C(3) = 1/2, one finds a very large Rgg ' 25,

incompatible with the LHC Higgs data.

• Larger sets of chiral multiplets. Let us ask the question whether we can exclude any

set of purely chiral fermions, even when it is formed by more than four multiplets. Indeed,

the Higgs coupling to gluons implies that any new chiral fermion should be colourless,

because even the minimal set of chiral coloured fermions, formed by a weak doublet and

two weak singlets with Rc = 3, leads to a large Rmin
gg ' 9. This is not compatible with the

range currently allowed by global fits, 0.5 . Rgg . 1.8 at 99 % C.L. [35] (see appendix B.3

for details). In particular, in this way one can exclude [25] a fourth SM family, formed by

the six multiplets q′L, t′R, b′R, l′L, τ ′R and ν ′R. Recall that the sterile neutrino is required

to avoid an additional massless neutrino, that is forbidden by the Z invisible width; then

this set of fermions is not purely chiral, but one may invoke a lepton number symmetry to

forbid the sterile neutrino Majorana mass. Let us remark that coloured chiral fermions may

be allowed in the case of extended Higgs sectors, not considered in the present paper. For

example, adding an Higgs triplet, it is possible to rescue the fourth family [36]. Another

example is provided by coloured chiral fermions receiving their mass from a second Higgs

doublet [37].

Coming to colourless chiral fermions, some of the mass eigenstates are necessarily

charged and thus contribute to the Higgs width to photons as

Rγγ =

∣∣AγγSM +Aγγnew

∣∣2∣∣AγγSM

∣∣2 , Aγγnew '
4

3

∑
k

Q2
k , (3.8)

where Rγγ is defined in eq. (B.41), the SM amplitude is AγγSM ' −6.5 and the sum runs

over the new fermion mass eigenstates. Note that, to derive eq. (3.8) from eqs. (B.21)

and (B.22), we took (i) 2mi � mh, that is accurate enough, even though the lower bounds

on heavy charged lepton masses are weaker than those on coloured particles; (ii) Higgs-

fermion couplings yi = mi/v and ỹi = 0, that is the case for purely chiral fermions, because

their mass matrices are proportional to the Higgs vev v, see eq. (B.6). Note also that the

result is independent from potential mixing between the new fermions and the SM leptons.

The presently allowed range is 0.5 . Rγγ . 1.9 at 99 % C.L. [35]. For n chiral multiplets
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(Rwi, Yi), one finds

Aγγnew '
2

3

n∑
i=1

Nwi∑
k=1

Q2
k =

2

3

n∑
i=1

Nwi(N
2
wi + 12Y 2

i − 1)

12
. (3.9)

We added an overall factor 1/2 to take into account that each massive fermion is formed by

two chiral components. Equivalently, one may take the sum only over fermions of a given

chirality. For example, a minimal set is formed by a weak doublet 2L of hypercharge Y

paired with two weak singlets (1 + 1)R, giving a contribution Aγγnew = 2(1 + 4Y 2)/3 ≥ 2/3.

The next-to-minimal set (2 + 2)L paired with (1 + 1 + 1 + 1)R implies Aγγnew > 4/3, that

is still allowed by the present constraint on Rγγ , while for example (3 + 2)L gives already

Aγγnew > 10/3, that is almost excluded. Since the SM amplitude has opposite sign w.r.t.

the one of new fermions, one can also envisage the contrived possibility of a large Aγγnew ∼
−2AγγSM ' 13.

This shows that there are purely chiral sets of n fermions that satisfy the γγ con-

straint. However, we have also shown before that no set exists for n ≤ 4, that satisfies

the consistency requirements of section 2. It is non-trivial to check whether purely chiral

sets with n > 4 could be consistent. Consider for example the case of two weak doublets

plus four weak singlets. In order for all components to receive a mass from the Yukawa

couplings to the Higgs doublet, the hypercharges must be chosen as

(2, Y1) , (2, Y2) ,

(
1,−Y1 +

1

2

)
,

(
1,−Y1 −

1

2

)
,

(
1,−Y2 +

1

2

)
,

(
1,−Y2 −

1

2

)
,

(3.10)

in the convention where all multiplets have the same chirality. The absence of anomalies

requires eq. (2.1) to hold, and this leads to Y1 = −Y2 ≡ Y . As a consequence, three vector-

like mass terms are allowed and such set of fermions does not qualify as purely chiral.

At this point one should recall that, in this paper, we took the point of view that all

mass terms and interactions allowed by the gauge symmetries are present. In alternative,

one can easily introduce some global symmetry to forbid possible vector-like mass terms,

thus imposing by hand that a given set of fermions is chiral. For example in eq. (3.10) take

a U(1) symmetry with charge +1 for doublets and −1 for singlets. If one takes this point

of view, the set of fermions in eq. (3.10) qualifies as the minimal still viable set of purely

chiral fermions. Indeed, besides being consistent with all the requirements of section 2, it

can be compatible with direct searches, EW precision tests, and constraints from the Higgs

couplings.

Concerning direct collider searches, as the new leptons have charges Q = Y ± 1/2,

they do not mix with the SM leptons (except for |Y | = 1/2 or 3/2) and the lightest state

is stable. There are severe bounds on the number density of such charged relics [20], but

they depend on cosmological assumptions: e.g. for a reheating temperature below their

mass, they were never produced in the early Universe. Limits on heavy stable leptons are

of the order of a few hundreds of GeVs, and are displayed in table 2 for some representative

values of Q. For a review on heavy stable particles see ref. [34].

The contributions to the S and T parameters of a fermion ‘family’ formed by one

doublet and two singlets are given in eqs. (A.25) and (A.26). In the present case we have
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|Q| 1/3 2/3 1 2 3 4 5 6 7 8

bound in GeVs 200 480 574 685 752 793 796 781 757 715

Table 2. The 95 % C.L. lower bounds on the mass of heavy stable leptons, from the CMS

collaboration [32]. The production is assumed to occur through the Drell-Yan process only. Limits

are obtained for SU(2)w singlets, but they remain similar in general [20]. The ATLAS collaboration

obtains comparable but less stringent limits in the range 2 ≤ |Q| ≤ 6 [38]. For larger values of Q

see ref. [39].

two such ‘families’ with Nc = 1 and opposite hypercharges ±Y , and one can easily lie

within the 3σ ellipse of figure 10. For example in the custodial limit where the two mass

eigenstates of each ‘family’ are degenerate, one finds T ' 0 and S ' 0.1. Concerning the

Higgs couplings, one finds Aγγnew = 4(1 + 4Y 2)/3, that lies in the allowed range of Rγγ for

|Y | . 0.3 and 1.4 . |Y | . 1.6.

Finally, it is interesting to compare eq. (3.9) with the analogue amplitude for the Higgs

boson coupling to γZ. For n chiral multiplets (Rwi, Yi), one finds

AγZnew '
2

3

n∑
i=1

Nwi∑
k=1

Qk
T3k − s2

wQk
c2
w

=
2

3

n∑
i=1

Nwi(N
2
wi − 12Y 2

i tan2 θw − 1)

12
, (3.11)

where we used eq. (B.31) particularised to the case of chiral fermions, in the same way we

did above for the γγ case. Note that, when summing over the mass eigenstates of equal

charge Q, the mixing matrices disappear from the Z couplings in eq. (A.6), therefore one

reduces to a sum over the interaction eigenstates. For example, the set in eq. (3.10) gives

AγZnew ' 2
[
1−

(
1 + 8Y 2

)
tan2 θw

]
/3.

4 Phenomenology of non-chiral leptons

In this section we discuss new colourless fermions, which admit either a Majorana or a

vector-like mass term before EWSB.

4.1 Majorana leptons

Let us consider leptons that admit a Majorana mass term. The latter requires a vanishing

hypercharge, Y = 0. The two possibilities relevant for the Higgs couplings are sterile neu-

trinos N ∼ (1, 1, 0), and weak triplets Σ ∼ (1, 3, 0).

• Sterile neutrinos. In the case of one sterile neutrino, the SM Lagrangian is extended

to L = LSM + LN , where

LN = −lLαλNαH̃NR −
1

2
N c
RMNNR + h.c. . (4.1)

Only one linear combination νL of the three active neutrinos νLα couples to NR, and

since we are not concerned with flavour issues we will drop the index α in the following.

After EWSB, νL and N c
R mix and combine into two Majorana fermions νl and νh with
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definite masses, mνl ≤ mνh ; active neutrino mass searches imply mνl . 1 eV. If one takes

the limit mνl � mh, the type I seesaw mechanism is realised: mνl ' λ2
Nv

2/(2MN ) and

mνh 'MN . The Higgs boson couplings to νlνl and νhνh are proportional to mνl/v, and the

coupling to νlνh is proportional to
√
mνlmνh/v, leading to a negligibly small decay width,

Γ(h → νlνh) < m2
h/(8πv

2)mνl . 10−8 MeV. Also, one can check that the decay widths of

the Z-boson receive negligible corrections, always proportional to mνl/v. For mνh above

the EW scale, one can compute the νh contribution to the S and T parameters, that turns

out to be suppressed by the tiny ratio mνl/mνh .

In the case of two or more sterile neutrinos Ni, in most of the parameter space the

arguments above apply to each Ni separately: either the Majorana mass Mi is as small as

the eV scale, or the active-sterile mixing θi ≡ λNi(v/
√

2)/MNi is suppressed, |θ2
iMNi | ∼

mνl . 1 eV. In either case the corrections to the Higgs and Z/W -boson couplings are tiny.

The only exception occurs when much larger θi are tuned among each other, in order for

the Ni contributions to the light neutrino mass to cancel. Consider for simplicity two sterile

neutrinos N1,2. At leading order in the mixing angles θi one has

mνl ' |θ2
1MN1 + θ2

2MN2 | . 1 eV . (4.2)

The two summands have a physical relative phase, therefore they can be orders of magni-

tude larger than mνl , if there is a strong cancellation between the two: the active-sterile

mixing can be large, no matter how large the sterile masses mνh1,2 are. Even though this

scenario requires a severe tuning of parameters to lead to observable effects, it may be justi-

fied by some symmetry. For example, in the so-called inverse seesaw model [40–42] (see also

ref. [43]), the lepton number symmetry U(1)L is broken by a small mass parameter, and

the cancellation occurs naturally in the limit where this parameter goes to zero. Therefore,

it is worth to analyse the phenomenological consequences of a large active-sterile mixing:

both Higgs couplings and EW gauge boson couplings can be significantly modified.

Consider first the neutrino mass eigenstates νl, νh1, νh2 in the regime mνl � mνh1,2 �
mh,mZ . One finds that the decay widths of the Higgs boson can be significantly modified,

in particular Γ(h→ νlνhi) ' mhm
2
νhi
|θi|2/(8πv2) and Γ(h→ νhiνhi) ' mhm

2
νhi
|θi|4/(4πv2).

These rates can be easily as large as the total SM Higgs width, ΓSM
h ' 4 MeV, therefore

the LHC experiments already constrain θi and mνhi . Note that both invisible and visible

decay channels are affected, since νh1,2 decay not only into light neutrinos, but also into SM

particles e.g. via virtual W -bosons. Detailed analyses of the parameter space and of various

constraints can be found e.g. in refs. [44–48]. Note that the Z-boson invisible width ΓinvZ ,

that is measured at the few per mil level, is not significantly affected for mνh1,2 . 1 MeV,

with νh1,2 decaying mostly invisibly into three νl: even in the presence of large mixing, only

the active components of νl,h1,h2 couple to the Z-boson, and one recovers the SM value

of ΓinvZ once the sum over all neutrino pairs is taken. On the contrary, for larger mνh1,2

the heavy neutrinos mediate visible Z-decays, therefore ΓinvZ is depleted and a significant

upper bound applies on |θi|.
Consider next the complementary regime mh,mZ . mνh1,2 . In this case the Higgs and

Z decay width are not modified, but a significant active neutrino fraction in νh1,2 can still

have observable consequences. Direct searches of EW scale sterile neutrinos through their
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mixing with active neutrinos have been performed e.g. by ATLAS [49, 50] and CMS [51, 52].

Here we would like to point out that the EW precision parameters S and T can also receive

important corrections, that constrain the masses and mixing of the sterile neutrinos. To

understand this quite surprising fact, that is generally overlooked, it is convenient to write

the 3× 3 neutrino mass matrix in the basis (νL, N
c
R1, N

c
R2) as

Mν = U∗diag(mνl ,mνh1 ,mνh2)U † , (4.3)

with U unitary and subject to the constraint 0 = (Mν)11 ' U∗212mνh1 + U∗213mνh2 , where

we neglected the tiny mνl . Then, the active neutrino fractions U1i contained in the mass

eigenstates can be parametrized in full generality as follows: U13 = θ taken to be real,

U12 = iθ/
√
rh with rh ≡ mνh1/mνh2 and |U11|2 = 1 − θ2(1 + rh)/rh. The 3σ lower bound

on ΓinvZ implies θ2(1 + rh)/rh . 0.015. We computed T and S using the formulas in

appendix A, as a function of θ, rh and rZ ≡ mZ/mνh2 , neglecting the mass of the SM

leptons and including a symmetry factor 1/2 for loops of Majorana fermions. Here we

report the result in some physically interesting limits:

(a) mνh2 = mνh1 � mZ : T ' θ4

4πs2
wc

2
w

m2
νh2

m2
Z

, S ' 2θ2

9π

(
4 + 3 log

m2
νh2

m2
Z

)
;

(b) mνh2 � mνh1 = mZ : T ' θ4

8πs2
wc

2
w

m2
νh2

m2
Z

(
3− log

m2
νh2

m2
Z

)
, S ' θ2

4π

mνh2

mZ
.

(4.4)

In case (a), taking the maximal allowed value θ2
max ' 0.007, the correction to T grows

quadratically with the sterile neutrino mass: requiring to remain in the 3σ ellipse in the

S − T plane (see figure 10), one finds the upper bound mνh2 . 8.5 TeV. This sensitivity

to very large scales is due to the significant fraction of the active neutrino in the heavy

states; note that this non-decoupling effect requires a strong tuning among the two sterile

neutrino parameters. In case (b), the active fraction in the heaviest sterile neutrino is

rather θ2
max ' 0.015(mZ/mνh2), therefore T grows only logarithmically with mνh2 , while S

remains constant: one remains in the ellipse for mνh2 as large as the Planck scale.

• Weak triplets with zero hypercharge. In the case of a weak triplet ΣR ∼ (1, 3, 0),

the SM Lagrangian is extended by

LΣR = −
√

2

3
lLαλΣαΣRH̃ −

1

2
Tr
(
Σc
RMΣΣR

)
+ h.c. , (4.5)

where we adopted the matrix notation

ΣR ≡
√

2Σa
Rτ

a =
1√
2

(
Σ3
R Σ1

R − iΣ2
R

Σ1
R + iΣ2

R −Σ3
R

)
≡
(

1√
2
Σ0
R −Σ+

R

Σ−R − 1√
2
Σ0
R

)
(4.6)

and we normalised the triplet Yukawa coupling according to appendix B.1. After EWSB,

the neutral component Σ0
R and a linear combination of active neutrinos combine into two

Majorana fermions ν and Σ0, in complete analogy to the case of νl and νh discussed above.
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As usual, we will consider only the mixing with the third lepton family, taking λΣe,Σµ = 0

and λΣτ ≡ λΣ. Indeed, flavour changing neutral current processes such as µ → eγ or

µ→ 3e are strongly constrained [53, 54]. In the limit λΣv �MΣ one realises the so-called

type III seesaw mechanism: mν ' λ2
Σv

2/(6MΣ) and mΣ0 'MΣ. The charged components

(Σ+
R)c and Σ−R mix with the SM charged leptons τL and τR respectively, to form the mass

eigenstates τ and Σ−. Then, three real parameters — the Yukawa coupling λΣ, the mass

MΣ and the SM tau Yukawa coupling λτ — determine the mass of four physical states,

mν and MΣ0 in the neutral sector, mτ and MΣ− in the charged sector. The mixing angles

for neutrinos and left-handed charged leptons are suppressed by
√
mν/MΣ0 ; the mixing of

right-handed charged leptons receives an additional suppression by mτ/MΣ− .

The couplings of Σ0 to the Z and Higgs bosons are exactly the same as the couplings

of νh discussed above. In particular, for vanishing mν all Z and Higgs couplings reduce to

their SM values, therefore the corrections are negligibly small. At tree level, MΣ− −MΣ0

also vanishes with mν , however it is well-known that at one loop weak interactions induce a

mass split, MΣ−−MΣ0 ' 170 MeV (see e.g. ref. [18]). Neglecting the tiny mixing angles, the

only heavy lepton couplings are ZΣ+Σ− and W+Σ−Σ0; other mixing-suppressed couplings

are relevant for Σ-decays [55]. The contribution of Σ to the EW precision parameters S

and T is vanishingly small, as EWSB is felt only through the mixing angles and through

the loop-induced mass splitting among the Σ-components, and both are very small.

Coming to direct searches, LEP looked for new charged leptons pair produced and

decaying to Wν, setting a lower bound MΣ− & 100 GeV [56]. At the LHC heavy leptons

are mostly pair-produced via Z∗/γ∗ → Σ+Σ− and W±∗ → Σ±Σ0. The fraction of Σ

that decays into each lepton flavour, bα = θα/(θe + θµ + θτ ), characterises the final state.

CMS [57] considered either be = bµ = bτ = 1/3, be = 1 or bµ = 1, obtaining constraints in

the range MΣ ≥ 180 − 210 GeV. The most stringent constraint comes from ATLAS [58],

with MΣ ≥ 325 GeV for be = 1 and MΣ ≥ 400 GeV for bµ = 1. We expect a weaker bound

in the case bτ = 1, that we assumed above. Other decay channels relevant for Σ searches at

the LHC are discussed in ref. [55], including displaced vertexes, as Σ becomes long-living

in the limit of very small mixing.

In the case of two or more lepton triplets Σi, the phenomenology is similar, except

when the mixing between the SM leptons and the new leptons is not suppressed. As in

the case of sterile neutrinos, this is possible only by severely tuning the Yukawa couplings

of the various Σi to keep mν small. In the case of two triplets, the neutrino mass matrix

is diagonalised as in eq. (4.3), while the charge lepton mass matrix can be written as

Me = ULdiag(mτ ,MΣ1 ,MΣ2)U †R. Neglecting mν and mτ , the left-hand mixing matrix UL
coincides with the neutrino mixing matrix up to a

√
2 factor: (UL)13 '

√
2θ, (UL)12 '

i
√

2θ/
√
rh and |(UL)11|2 ' 1 − 2θ2(1 + rh)/rh, with rh = MΣ1/MΣ2 , while the mixing

angles in UR are further suppressed by mτ/MΣi . When θ is large, the corrections to S and

T may become significant as already discussed for sterile neutrinos. In addition, the new

charged leptons, that are necessarily above the EW scale, could contribute significantly to

h → γγ, γZ. Before computing these corrections, one should notice that a strong upper

bound on the mixing comes from the Z coupling to τ+τ−. The LEP measurement of

Γ(Z → τ+τ−) [3] implies 2θ2(1 + rh)/rh . 0.004 at 3σ.
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Let us describe in some detail the main corrections to Rγγ and RγZ , defined by

eq. (B.41). Similar analytic approximations could be used for the models analysed in

the next sections as well. For the diphoton channel, using the results of appendix B.2.2

one finds

Rγγ '

∣∣∣AγγSM + (|(UL)11|2 − 1)A1/2(ττ ) + |(UL)12|2A1/2(τΣ1) + |(UL)13|2A1/2(τΣ2)
∣∣∣2∣∣AγγSM

∣∣2
'

∣∣∣∣AγγSM + 2θ2 1 + rh
rh

A1/2(τΣk)

∣∣∣∣2∣∣AγγSM

∣∣2 ' 1− 4θ2 1 + rh
rh

A1/2(τΣk)∣∣AγγSM

∣∣ & 0.998 , (4.7)

where we took the maximal allowed values for the mixing angle and the form factor,

A1/2(τΣk) ' 1.5 for MΣk ' 100 GeV. Note that Rγγ ' µγγ , because the Higgs produc-

tion rate and the total Higgs width are not significantly modified with respect to the

SM. Thus the diphoton signal strength can be slightly reduced (the fermionic part of the

amplitude slightly increases and interferes destructively with the W -loops), but only at

a few permil level. For the γZ channel the new physics contribution can be written as

AγZnew = AγZΣ,diag + AγZΣ,off−diag. Using the results of appendix B.2.3, the loops involving a

single mass eigenstate give

AγZΣ, diag '
[(
|(UL)11|2 − 1

) 1− 4s2
w

4c2
w

A1/2(ττ , λτ )

+ |(UL)12|2A1/2(τΣ1 , λΣ1) + |(UL)13|2A1/2(τΣ2 , λΣ2)

]
,

(4.8)

where we took the Z couplings to the interaction eigenstates, thus neglecting corrections

of higher order in the small mixing. The loops involving two mass eigenstates give

AγZΣ, off−diag ' −
∑
k=2,3

|(UL)11|2|(UL)1k|2
4c2
w

× (4.9)

×
[
MΣk +mτ√
mτMΣk

A1/2(ττ , λτ , τΣk , λΣk)− iMΣk −mτ√
mτMΣk

B1/2(ττ , λτ , τΣk , λΣk)

]
.

Retaining only terms of order θ2 and neglecting mτ/MΣk , the rate relative to the SM can

be written as

RγZ ' 1− 4θ2 1 + rh
rh

A1/2(τΣk , λΣk)− 1

4c2
w

√
MΣk

mτ
A1/2(ττ , λτ , τΣk , λΣk)∣∣∣AγZSM

∣∣∣ . (4.10)

We neglected the B1/2 term, as it interferes only with the very small imaginary part of

the SM amplitude. The diagonal and off-diagonal form factors have comparable size,

A1/2(τΣk , λΣk) ' 1.3 and
√
MΣk/mτA1/2(ττ , λτ , τΣk , λΣk) ' 1, where we took the large

MΣk limit. Replacing the maximal allowed value for the mixing, we find RγZ & 0.998,

with a suppression at the few permil level, of the same order as for Rγγ .
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Finally, let us note that, with two or more sterile neutrinos Ni (or triplets Σi) the CP

symmetry can be broken. In general, the Higgs couplings to the fermion mass eigenstates

are not real, and the off-diagonal couplings of the Z-boson can be complex as well. This

does not modify any of the above results, because the CP violating effects vanish in the

limit mνl/mνhk → 0 (and mτ/mΣk → 0 in the triplet case), therefore they are subleading.

4.2 One vector-like lepton

Let us consider the addition to the SM of one vector-like lepton (VLL). The four different

possibilities are a weak singlet E, a weak doublet L or Λ, a weak triplet ∆, whose charges

are displayed in table 1. As usual, we restrict ourself to mixing with the third SM family,

i.e. with τ and ντ . The SM Lagrangian is extended by

−Lψ = λψlLHψR +MψψLψR + h.c. , ψ = E,∆ , (4.11)

−Lψ = λψψLH(H̃)τR +MψψLψR + h.c. , ψ = L(Λ) , (4.12)

where the SU(2)w contractions are understood (see appendix B.1 for details). In the case

of E (L) one could write an additional mass term mEELτR (mLlLLR), but such term can

be removed by choosing conveniently the basis for the two fields ER and τR (lL and LL),

that have identical charges. Thus, in each case there are only two real parameters: the

vector-like mass Mψ and the Yukawa coupling λψ; the mixing among the new leptons and

the SM ones vanishes for vanishing λψ. There is no CP violation.

The components of each multiplet ψ are listed in eq. (2.5). The doubly-charged com-

ponent F does not mix as there is no SM counterpart with Q = 2, therefore m2
F = M2

ψ.

The Q = 1 component E mixes with the SM τ to form the two physical mass eigenstates

τ ′ and τ . The mass matrix is given by

Me =

(
λτ

v√
2
κψλψ

v√
2

0 Mψ

)
, ψ = E,∆ , Me =

(
λτ

v√
2

0

κψλψ
v√
2
Mψ

)
, ψ = L,Λ . (4.13)

The SU(2)w Clebsch-Gordan coefficient κψ is equal to one, except in the triplet case,

κ∆ =
√

1/3. The rotation to the mass basis can be parametrized as

Me = VL

(
mτ 0

0 mτ ′

)
V T
R , VL,R =

(
cL,R sL,R
−sL,R cL,R

)
. (4.14)

The triangular mass matrix structure of eq. (4.13) implies some strict relations among the

mixing angles and the mass eigenvalues. For the case of L and Λ, one finds

tan θL =
mτ

mτ ′
tan θR � tan θR , sL =

mτ

Mψ
sR , cL =

mτ ′

Mψ
cR . (4.15)

For the case of E and ∆, the same relations hold with L ↔ R. Note that direct searches

of charged leptons at LEP [56] require mτ ′ & 100 GeV , therefore one angle is at least

two orders of magnitude smaller than the other. In the following we will refer only to the

dominant mixing angle θψ for each ψ, dropping the subscript L,R on (co)sines. Note that
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m2
τ ′ 'M2

ψ/c
2
ψ ≥M2

ψ. The neutral component N does not mix with the SM neutrino ντ in

the case of L. In the case of ∆ there is mixing in the neutral sector, described by

Mν =

(√
1
3λ∆v

M∆

)
= UL

(
0

mν′

)
, UL =

(
c̃ s̃

−s̃ c̃

)
, (4.16)

with s̃2 ' 2s2
∆/(1 + s2

∆) ≥ s2
∆. One neutrino remains massless, while the second acquires

a mass m2
ν′ ' (1 + s2

∆)m2
τ ′ ≥ m2

τ ′ . In summary, the tree-level spectrum of heavy leptons

satisfies

ME ≤ mτ ′ (ψ = E) , mF = M∆ ≤ mτ ′ ≤ mν′ (ψ = ∆) ,

mν′ = ML ≤ mτ ′ (ψ = L) , mF = MΛ ≤ mτ ′ (ψ = Λ) . (4.17)

with the mass splitting controlled by the mixing, ∆m2(ψ) ∼ s2
ψM

2
ψ.

Let us briefly discuss the collider bounds on Mψ. In first approximation one can neglect

the mass splitting. It is possible to recast some LHC multi-lepton searches to put bounds

on VLLs. The limits on Mψ strongly depend on the SM generation that couples to the

heavy leptons. For couplings only to the third one and for the doublet L, ref. [59] reports

ML & 280 GeV, while the LEP limit remains more constraining in the case of the singlet

E, ME & 100 GeV. For the exotic doublet Λ with a doubly-charged component, ref. [60]

reports MΛ & 320 GeV. To the best of our knowledge, no similar analysis is available for the

triplet ∆. We expect a bound comparable or slightly stronger than to the one for Λ. These

bounds only apply for promptly decaying particles. We will only consider this possibility,

because heavy leptons become long-lived (cτ & 1m) for a tiny mixing sψ ' 10−8 − 10−9,

and the mixing suppresses all the deviations from the SM that we are interested in. More

details on the collider phenomenology of Λ and ∆ can be found in refs. [61] and [62, 63],

respectively.

It is mandatory to require that the Yukawa coupling λψ lies in the perturbative regime,

|λψ| � 4π. This consistency requirement translates into an upper bound on the product

of the heavy lepton mass and the mixing angle,

|λψ| '
∣∣∣∣∣
√

2

κψ

mτ ′

v
sψ

∣∣∣∣∣� 4π . (4.18)

The perturbativity constraint on the SM Yukawa coupling λτ is satisfied a fortiori. The

non-zero couplings of the physical Higgs boson to the charged mass eigenstates, using the

convention of eq. (B.5), are given by

yττ = c2
ψ

mτ

v
, yτ ′τ ′ = s2

ψ

mτ ′

v
, yττ ′ = cψsψ

mτ +mτ ′

2v
, ỹττ ′ = ±cψsψ

mτ ′ −mτ

2vi
. (4.19)

where the plus (minus) sign holds in the case of E and ∆ (L and Λ). In the case of ∆,

there are also non-zero couplings to neutral leptons,

yν′ν′ = s̃2mν′

v
, yνν′ = c̃s̃

mν′

2v
, ỹνν′ = c̃s̃

mν′

2vi
. (4.20)
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Important constraints come from the Z-decays into SM leptons. The couplings of the

fermion mass eigenstates to the Z are defined in eq. (A.6). The couplings to the SM leptons

τL, ντL and τR are modified if they mix with new leptons with a different weak isospin T3.

Neglecting (mτ/mZ)-corrections, at tree level one finds

R(Z → τ+τ−) ' (gVττ )2 + (gAττ )2

(gV,SMττ )2 + (gA,SMττ )2
, (4.21)

where gV,Aττ receive a correction of order s2
ψ with respect to the SM. The experimentally

allowed range given in eq. (A.29) implies an upper bound on the mixing angle, for any

VLL: we find sE,∆ . 6.0 · 10−2 and sL,Λ . 6.7 · 10−2. In addition, in the case of ∆ there is

a correction to the Z-coupling to neutrinos, and thus to the Z-invisible width,

R(Z → inv) ' 2

3
+

1

3

(gVνν)2 + (gAνν)2

(gV,SMνν )2 + (gA,SMνν )2
. (4.22)

The couplings gV,Aνν receive a correction of order s̃2, that leads to a comparable limit s∆ .
8.2 · 10−2. Extracting the couplings of W±µ , W 3

µ and Bµ from eq. (A.4), one can calculate

the S and T parameters with the general formulas in appendix A.2. We find, at leading

order in the mixing angle,

T ' 1

16πc2
ws

2
w

s4
ψ

(
aTψ
m2
τ ′

m2
Z

)
, S ' 1

6π
s2
ψ

(
aSψ + bSψ log

m2
τ ′

m2
Z

)
(4.23)

where aTψ , aSψ and bSψ are numerical coefficients of order one. Taking into account the upper

bound sψ . 0.06 from Z → τ+τ−, as well as the perturbativity bound from eq. (4.18),

(mτ ′/mZ)sψ . 10, we checked that S and T always lie in the allowed ellipse of figure 10.

Coming to the Higgs boson signals, we first recall that all the dominant Higgs pro-

duction channels at the LHC are not affected by the new leptons, as they leave the Higgs

couplings to gluons and quarks unchanged. The total Higgs width also receives negligible

corrections, as new leptons affect only the partial widths Γ(h→ α), for α = τ+τ−, γγ, γZ.

Therefore the Higgs signal is given by the ratio of partial widths in the model w.r.t. the SM,

µα ' Rα. The tree-level Higgs decays are directly controlled by the couplings in eq. (4.19)

and eq. (4.20), in particular

Rττ = (1− s2
ψ)2 & 0.99 , (4.24)

where we used the bound from Z → τ+τ−. There is also the marginal possibility that

the new leptons are lighter than the Higgs boson, thus opening the channels h→ ττ ′ and

h→ νν ′. However, direct searches seem to allow the singlet E only to be sufficiently light.

Using equation (B.7) and neglecting mτ/mτ ′ , we find

Γ(h→ τ+τ ′−) ' c2
Es

2
Em

2
τ ′

16πv2
mh

(
1− m2

τ ′

m2
h

)2

. 0.2 MeV . (4.25)

Note that both the couplings yττ ′ and ỹττ ′ contribute equally to the decay width, see

eq. (4.19). We maximised the product s2
Em

2
τ ′ by taking sE = 6 · 10−2 and mτ ′ = 100 GeV.
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As the SM total Higgs width is Γh ' 4.1 MeV, an enhancement of order 5% may be possible.

Note that experimental searches at the LHC concentrated on h→ ττ [64, 65], τµ [66, 67]

and µµ [68, 69]. These channels are suppressed due to the small masses of the SM leptons,

in contrast with the Higgs decays into a SM lepton plus a heavy lepton. It would be

interesting to perform a dedicated search for this channel.

For the photon-photon channel we find

Rγγ =

∣∣∣AγγSM + s2
ψ

[
A1/2(ττ ′)−A1/2(ττ )

]∣∣∣2∣∣AγγSM

∣∣2 ' 1− 2s2
ψ

A1/2(ττ ′)∣∣AγγSM

∣∣ , (4.26)

where the form factors are defined in appendix B.2.2. The addition of a VLL amounts to

an additional τ ′-loop and a modified τ -loop, that interfere destructively with the W -loops.

Maximising the mixing and choosing mτ ′ = 100 GeV (the form factor decreases for larger

masses), we find δRγγ ' −1.9 · 10−3, a permil reduction of the signal strength. For the γZ

channel the relevant Z couplings, gV,Aττ,ττ ′,τ ′τ ′ , receive corrections of order s2
ψ relatively to

their unmixed values, as follows from eq. (A.6). At leading order in the small mixing and

neglecting mτ , we find

RγZ ' 1 + 2s2
ψ

(
T 3
E,ψ + s2

w

)
A1/2(ττ ′ , λτ ′)±

1

4

√
mτ ′

mτ
A1/2 (ττ , λτ , ττ ′ , λτ ′)

c2
w

∣∣∣AγZSM

∣∣∣ , (4.27)

where T 3
E,ψ is the isospin of the Q = −1 component of the multiplet ψ, and the plus

(minus) sign in front of the off-diagonal term corresponds to the case ψ = L (ψ = E,Λ,∆).

As a consequence, the diagonal and off-diagonal terms always interfere destructively. The

relative magnitude of the form factors is given below eq. (4.10). The size of the correction

change depending on the VLL under consideration, but it is always very small. The

maximal deviation is obtained for Λ, with δRγZ ' 1.3 · 10−3.

4.3 Two vector-like leptons (including τ compositeness)

Let us consider a SM extension by two VLLs. They may couple to each other by a Yukawa

interaction or not.

• Two VLLs not coupled to each other. In this case, each VLL must be a consistent

extension of the SM by itself, therefore it should have the quantum numbers of E, L,

Λ or ∆, that are displayed in table 1. The six possible pairs of VLLs decoupled from

each other are (ψ,ψ′) = (E,E′), (L,L′), (Λ,Λ′), (∆,∆′), (E,∆) and(L,Λ). In the first four

cases the additional mass term ψψ′ can be rotated away without loss of generality. The

phenomenological effects are a trivial sum of those discussed in section 4.2 for a single VLL,

with one noticeable exception.

When L and Λ have the same Yukawa coupling to the SM and the same mass, the

Lagrangian

− LL,Λ =
λψ√

2

(
LL ΛL

)(H
H̃

)
τR +Mψ

(
LL ΛL

)(LR
ΛR

)
+ h.c. (4.28)
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preserves a global SU(2)L × SU(2)R symmetry. In this custodial limit the corrections to

the T parameter vanish, and those to the coupling ZτRτR vanish as well [70]. This is the

smallest set of tau custodians [71, 72]. A linear combination of the charge-one components

of L and Λ, τ ′′ ≡ (E(L) − E(Λ))/
√

2, does not mix. The orthogonal combination, E ≡
(E(L) + E(Λ))/

√
2, mixes with the SM exactly as shown in eqs. (4.13)–(4.15), to form the

mass eigenstates τ ′ and τ . The spectrum reads mτ ′′ = mN = mF = Mψ ≤ mτ ′ ' Mψ/cR.

As discussed in section 4.2, direct searches already require all these states to be heavier

than the Higgs boson. Thanks to the custodial symmetry, the Z couplings to leptons

do not constrain the right-handed mixing sR between τ and τ ′: one has δgRττ = 0 and

δgLττ = s2
L/2 = (mτ/Mψ)2s2

R/2, that is negligibly small. The Zνν̄ coupling is SM-like as

well. The T parameter is almost SM-like as no additional sources of custodial breaking are

introduced, and the correction to the S parameter is within the experimental range.

The most stringent constraint on sR comes from Rττ ' (1− s2
R)2. Using the 3σ lower

bound Rττ & 0.2 (see table 4), one finds sR . 0.7. Indeed, the mixing can be large

and reduce significantly the hττ coupling. As a consequence, the total Higgs width may

be slightly reduced and, correspondingly, the signal strength for the other Higgs decay

channels, defined in eq. (B.40), may augment by a factor ΓSM
h /Γh . 1.04. The deviation in

the γγ channel has the same form as in eq. (4.26): imposing the constraint from h → ττ ,

one finds a lower bound µγγ & 0.86, that is close to the present experimental sensitivity.

Coming to the γZ channel, the loop involving both τ and τ ′ vanishes when one neglects

the tiny left-handed mixing sL, because the custodial symmetry imposes gRττ ′ = 0. Then,

eq. (4.27) reduces to

RγZ ' 1 + 2s2
R tan2 θw

A1/2(ττ ′ , λτ ′)

|AγZSM|
, (4.29)

with a maximal correction δµγZ ' 0.12. In the near future the increasing experimental

precision on µττ can further constrain or eventually determine the mixing parameter sR in

this custodial limit.

• Two VLLs coupled to each other, not mixing with the SM fermions. Next, we

have to discuss the case of two VLLs coupled through a Yukawa interaction. The most

general assignment for their four chiral components is

ψ1L, ψ1R ∼ (1, Rw, Y ) , ψ2L, ψ2R ∼
(

1, Rw + 1, Y +
1

2

)
, (4.30)

with the Lagrangian

− Lψ1ψ2 = λ12ψ1LH̃ψ2R + λ21ψ2LHψ1R +M1ψ1Lψ1R +M2ψ2Lψ2R + h.c. . (4.31)

The four phases of λ12, λ21, M1 and M2 cannot be all rotated away: one phase is physical

and allows for CP violation. In the special case Y = 0 (Y + 1/2 = 0) and Rw odd (even),

one should add Majorana mass terms for ψ1L,R (ψ2L,R): we postpone to section 4.4 the

discussion of sets formed by one VLL plus Majorana leptons. For a few other values of

Rw and Y , displayed in eq. (4.41), interaction terms between ψ1,2 and the SM leptons are
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allowed and should be added to the Lagrangian. We discuss first the no-mixing case and

postpone to the end of this section the discussion of the mixing with the SM. In the absence

of mixing, the lightest new lepton ψlight is stable, at least at the renormalizable level. If

Y is an integer multiple of 1/2, ψlight may decay into a SM lepton through some higher

dimensional operator. For all other values of Y , this state is absolutely stable and it has

non-zero electric charge. Collider searches put a lower bound on the mass of stable heavy

leptons as a function of their charge Q, see the discussion in section 3 and the limits in

table 2. The effect of the set of fermions in eq. (4.30) on h→ γγ was studied e.g. in ref. [73].

Let us begin by analysing the case Rw = 1. There is one state with Q = Y + 1 and

mass M2, and two states with Q = Y that mix, with mass matrix

MY =

(
M1 m12

m21 M2

)
, m12 =

λ12v√
2
, m21 =

λ21v√
2
. (4.32)

As MY is the most general 2× 2 matrix, it is useful to parametrize it in terms of the five

physical parameters,

MY = UL

(
m1 0

0 m2

)
U †R, UL =

(
cL sL
−sL cL

)(
eiϕ 0

0 1

)
, UR =

(
cR sR
−sR cR

)
, (4.33)

where m1,2 are the real and positive masses of the eigenstates f1,2, the mixing angles θL
and θR vary between 0 and π/2, and the CP violating phase ϕ varies between 0 and 2π.

The only restriction comes from the perturbativity of the Yukawa couplings,

|λ12|=
√

2|m2sLcR −m1e
iϕcLsR|

v
�4π , |λ21|=

√
2|m2cLsR −m1e

iϕsLcR|
v

�4π. (4.34)

These relations imply e.g. an upper bound on the masses for fixed values of the mixing

angles. Vice versa, as the masses become larger and larger, the mixing angles vanish and

the new fermions decouple from the EW scale.

The Higgs boson couplings to f1,2 are directly obtained from eq. (B.5). Taking for

illustration the limit where f1 and f2 are mass-degenerate, one has |M1| = |M2| ≡ M ,

|m12| = |m21| ≡ µ and m1 = m2 =
√
M2 + µ2 ≡ mψ. In this case the contribution to the

amplitude for h→ γγ is

Aγγf1,f2 = 2Q2F (θL, θR, ϕ)A1/2 (τψ) , F (θL, θR, ϕ) = s2
Lc

2
R + c2

Ls
2
R − 2cLsLcRsR cosϕ .

(4.35)

The CP-odd contribution vanishes because ỹ11 = −ỹ22 in the degenerate limit. The per-

turbativity conditions in eq. (4.34) reduce to F (θL, θR, π) � 8π2v2/m2
ψ. The interference

with the SM is destructive as Aγγf1,f2 ≥ 0. There are two allowed regions of parameters:

(i) A SM-like region for small Q: the smallness of the charge ensures a small, negative

departure from the SM.

(ii) A cancellation region at large Q: for Q2 ' 4.8/F (θL, θR, ϕ), the rate is accidentally

close to the SM as Aγγf1,f2 ' −2AγγSM.
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Figure 1. Signal strengths µγγ (red) and µγZ (blue) in the case of two VLLs ψ1 ∼ (1, 1, Q)

and ψ2 ∼ (1, 2, Q + 1/2), as a function of Q. We chose the following mass matrix parameters,

defined by eq. (4.33): m1 = m2 = 800 GeV, ϕ = 0, and three values for the relevant mixing angle,

θL − θR = π/8 (dotted), π/10 (dashed), π/12 (solid). The grey parts of the curves are excluded by

S and T , see eq. (4.36). The shaded horizontal band is the presently allowed range for µγγ at 1σ

(dark) and 3σ (light).

This behaviour is illustrated in figure 1 for the CP conserving case ϕ = 0, where F (θL, θR, 0)

= sin2(θL − θR). Indeed the amplitude grows from ϕ = 0 to ϕ = π, as F (θL, θR, π) =

sin2(θL + θR). Further constraints on the parameters come from the EW precision tests.

In the limit mψ � mZ we find

S ' 1

6π

[
F (θL, θR, ϕ) + 4

(
Q+

1

2

)
ln
m2
ψ

M2

]
,

T ' 1

8πs2
wc

2
wm

2
Z

[
m2
ψ − 3M2 +

2M4

m2
ψ −M2

ln
m2
ψ

M2

]
, (4.36)

where M is the mass of the unmixed state with Q = Y + 1. Therefore, for fixed values of

the mixing parameters, S and T constrain the charge Q, as illustrated in figure 1.

It is interesting to analyse the value of µγZ in the allowed space of parameters. Using

eqs. (A.6) and (B.31), the CP-even amplitude for h→ γZ is given by

AγZf1,f2 =
Q

c2
w

F (θL, θR, ϕ)
(
gV11 + gV22

)
A1/2 (τψ, λψ) , gV11 + gV22 = −1

2
− 2Qs2

w . (4.37)

Note that the loops involving both f1 and f2 vanish as they are proportional to the Higgs

coupling y12, or to the form factor B1/2 defined in eq. (B.39), and they both vanish for

m1 = m2. As the SM amplitude is negative, the new contribution interferes constructively

as long as Q(1 + 4s2
wQ) > 0. The CP-odd amplitude ÃγZf1,f2 is also non zero, because
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gV11 6= gV22, and it can be sizeable for large values of sinϕ. Let us distinguish the two regions

of parameters allowed by µγγ :

(i) In the SM-like region at small Q, varying (θL − θR) we find −0.01 . δµγZ . +0.08.

(ii) In the fine-tuned region at large Q we find 2.5 . µγZ . 3.2 for ϕ = 0. This range

slightly depends on the sign of Q, see figure 1. It is actually possible to obtain an

even larger µγZ , while keeping µγγ close to one. For example, taking for simplicity

sR = 0, the CP-odd amplitude reads

ÃγZf1,f2 = −4Q2cLsL tan2 θw sinϕ Ã1/2 (τψ, λψ) . (4.38)

For sinϕ of order one, this contribution becomes important and one can reach

µγZ ' 7.

When one allows for the two mass eigenstates f1,2 to be non-degenerate, m1 < m2, the

amplitudes for the diphoton channel become

Aγγf1,f2 ' 2Q2

[
s2
Lc

2
R + c2

Ls
2
R −

(
m1

m2
+
m2

m1

)
cLsLcRsR cosϕ

]
A1/2 (τ1) ,

Ãγγf1,f2 ' 2Q2

(
m2

m1
− m1

m2

)
cLsLcRsR sinϕ Ã1/2 (τ1) .

(4.39)

where we made the approximation A1/2 (τ1) ' A1/2 (τ2), that is accurate for 4m2
1,2 �

m2
h. For sufficiently large mass splitting the interference of Aγγf1,f2 with the SM can be

constructive. In the γZ channel the analytic form of the amplitude becomes more involved,

in particular the loops involving both f1 and f2 are non-zero, and the interference with

the SM strongly depends on the ratio m1/m2. One can tune the parameters to cancel the

corrections to µγγ in eq. (4.39), e.g. taking ϕ = 0 and m1/m2 = (tL/tR)±1. For the same

set of parameters large contributions to the γZ channel are possible. For example one can

reach µγZ ' 2 for θL ' π/6, θR ' π/10, m1/m2 ' 1.8, m2 ' 800 GeV and Q ' 9. This

region is compatible with S, T and all other constraints.

A similar analysis can be performed when Rw = 2 or larger in eq. (4.30). In this case

there are Nw pairs of mixing states, with Q = −(Nw − 1)/2 + Y, . . . , (Nw − 1)/2 + Y . For

each such sector, the mass matrix is

MQ =

(
M1 κQm12

κQm21 M2

)
, (4.40)

where κQα is the Clebsch-Gordan coefficient coming from the SU(2)w contraction, deter-

mined by eq. (B.4), therefore each sector is controlled by the same physical parameters. In

other words, the two mass eigenvalues, the two mixing angles and the CP-violating phase

of a given sector determine univocally the other sectors too. The corrections to µγγ and

µγZ are obtained summing over the contributions of Nw sectors, each being qualitatively

analog to the case Rw = 1 analysed above. Note that, however, one cannot take Q→ 0 to

recover the SM limit, because there are at least two sectors with different values of Q. Of

course, the SM is still recovered for small values of the mixing angles. The two fine-tuned
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regions with µγγ ' 1 and large µγZ are still possible. On the one hand, the different

sectors can add up to realise Aγγnew ' −2AγγSM. On the other hand, for Rw = 2 we found a

choice of mixing parameters such that Aγγf1,f2 vanishes in both the sectors with Q = Y ±1/2.

• Two VLLs coupled to each other, mixing with the SM fermions. Finally, let us

discuss the possible interactions between ψ1,2 in eq. (4.30) and the SM leptons. A non-zero

mixing occurs if and only if ψ1 and/or ψ2 are identified with the states E, L, Λ or ∆ listed

in table 1. There are six such cases,

Rw = 1 : E + L (Y = −1), E + Λ (Y = 1),

Rw = 2 : L+ ∆ (Y = 1/2), Λ + ∆ (Y = −3/2), Λ + ∆G (Y = 3/2),

Rw = 3 : ∆ + Ω (Y = −1), ∆ + ΩG (Y = 1).

(4.41)

There are three cases with an additional weak multiplet: a triplet ∆G = (E,F,G) ∼
(1, 3,−2), and two quartets Ω = (Ec, N,E, F ) ∼ (1, 4,−1/2) and ΩG = (N,E, F,G) ∼
(1, 4,−3/2), with Q(G) = −3. They do not couple directly to the SM leptons. In these

three cases the Q = 2 sector couples to the Higgs and therefore may contribute significantly

to hγγ and hγZ. We have shown in section 4.2 that the mixing angles between the SM

leptons and E, L, Λ or ∆ must be very small, due to the strong constraints coming from

the Zττ couplings. With two VLLs the mass matrices become larger, but we expect the

phenomenology to be qualitatively the same, up to possible fine-tuned cancellations in

some observable. A crucial effect of the mixing is to make the new leptons decay into

SM leptons. The components with Q = 2, 3 decay more slowly, since their decay chains

require a virtual exchange of other components of the multiplet. We already reviewed in

section 4.2 the direct bounds on heavy leptons with charge Q = 1, 2, decaying promptly

into SM leptons. We are not aware of any dedicated search for a Q = 3 heavy lepton.

A detailed analysis of the parameter space is worth only in the context of a specific,

well-motivated model, and it goes beyond the scope of this paper. The case E + L is

analyzed in ref. [74]. The phenomenology of a fourth vector-like family of leptons, L+E+N ,

is studied in detail in ref. [75]. Here we comment only on the interesting possibility to

generate the τ mass entirely from the mixing with the VLLs, in the limit where the SM

Yukawa coupling lτLHτR vanishes. There are various ways to induce such coupling through

mixing, that are illustrated in figure 2:

(a) In the case of E only, one can proceed through a Yukawa coupling connecting lτL to

ER, followed by two singlet vector-like mass terms.

(b) Analogously, with L only, one employs two doublet vector-like mass terms and a

Yukawa connecting LL to τR.

(c) In the case of E + L, one can employ a vector-like mass term both for the singlets

and the doublets, with a Yukawa coupling involving only the new fermions. This case

is particularly interesting, since it corresponds to the scenario of partial composite-

ness [16] in the τ sector: the SM leptons are elementary fields that mix linearly with

composite VLLs, which couple in turn to a composite Higgs doublet. The SM leptons
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τL τR

(d)

M∆ MΛ

τL τR

(b)

mL ML

τL τR

(a)

ME mE

τL τR

(c)

ME mEmL ML

Figure 2. Different ways to generate the τ mass through mixing between the SM leptons and

VLLs. The dashed lines stand for Higgs vev insertions, the small dots represent a mass mixing

between a SM lepton and a VLL, and the big dots correspond to the mass of a VLL. The case (c)

corresponds to the scenario of τ partial compositeness.

feel EWSB only through the mixing with heavy composite leptons. The Q = 1 mass

matrix and its smallest eigenvalue take the form

Me =

 0 mL 0

0 ML
λLEv√

2

mE
λELv√

2
ME

 , mτ '
mL

ML

mE

ME

λLEv√
2

. (4.42)

The mixing with the heavy leptons also controls the deviations in the Z couplings,

δgRττ '
1

2

(
mE

ME

)2

, δgLττ '
1

2

(
mL

ML

)2

. (4.43)

As these corrections are bounded by R(Z → ττ), as shown in eq. (A.28), we find

that the physical value of mτ can be generated for λEL & 2.5, pointing indeed to

a strong-coupling regime. The phenomenology of τ partial compositeness is studied

e.g. in ref. [76].

(d) Finally, in the case (ψ1, ψ2) = (Λ, E), (L,∆) or (Λ,∆), the τ mass can be induced by

three Yukawa couplings, connecting lτL to ψ2, τR to ψ1, and ψ1 to ψ2, respectively.

Focusing on (Λ,∆) for definiteness, one finds

mτ '
λ∆v√
3M∆

λΛv√
2MΛ

λ∆Λv√
6
' 2
√
δgRττδg

L
ττ

λ∆Λv√
6

. (4.44)

For λ∆Λ & 4.5 the physical value of mτ can be generated.

4.4 Vector-like plus Majorana leptons (including higgsinos plus gauginos)

In this section we consider the interplay between Majorana leptons and VLLs, related

by one or more Yukawa couplings. If there were no such couplings, the phenomenology

would reduce to a trivial addition of the effects of Majorana leptons, see section 4.1, and of

VLLs, see sections 4.2 and 4.3. For reference, the smallest sets of this kind are formed by

three (four) chiral multiplets: (two copies of) NR or ΣR, plus a vector-like pair (EL, ER),

(ΛL,ΛR) or (∆L,∆R).

• One VLL plus one Majorana lepton. The most general set formed by one Majorana

lepton interacting with one VLL pair is

χR ∼ (1, Rw, 0) , ψL, ψR ∼ (1, Rw ± 1,−1/2) , (4.45)
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with Nw 6= 2 + 4n to avoid the global SU(2)w anomaly. The corresponding Lagrangian is

−Lχψ = 1
2MχχcRχR +MψψLψR + λ̃ψLH̃χR + λχcRHψR + h.c. . (4.46)

The Majorana mass Mχ is absent in the case of even SU(2)w representations, Nw = 4n: in

this case there is a conserved ‘new lepton’ number, and all multiplet components combine

into Dirac fermions. There is a unique physical complex phase, that can be associated to

Mχ, choosing Mψ, λ̃ and λ real. Each component of the new leptons has a (demi-)integer

charge Q, therefore it can decay to SM leptons, either through renormalizable interactions

or higher dimensional operators. For Rw = 1 or 3, couplings to the SM leptons can be

added to the Lagrangian, as we will discuss later.

In the case ψ ∼ (Rw + 1), after EWSB one identifies: one pair of states with charges

Q = ±(Nw + 1)/2, that combine in a VLL of mass Mψ; three pairs of states with Q =

±(Nw − 1)/2, ±(Nw − 3)/2, . . . , down to Q = ±1 (±1/2) for Nw odd (even); when Nw

is odd, three additional states with Q = 0. The 3 × 3 mass matrix in each sector takes

the form

MQ =

 Mχ κQλ̃v κ−Qλv

κ−Qλ̃v 0 Mψ

κQλv Mψ 0

 , (4.47)

where we chose Q ≥ 0 and a basis with the components of charge Q (−Q) on the left(right)-

hand side of MQ. The SU(2)w Clebsch-Gordan coefficients κ±Q are defined by eq. (B.4),

and they also include for convenience the factor 1/
√

2 from the Higgs doublet vev,

κ±Q =
1√
2

√
Nw + 1± 2Q

Nw(Nw + 1)
. (4.48)

In the case ψ ∼ (Rw − 1), there are three pairs of states with Q = ±(Nw − 3)/2,±(Nw −
5)/2, . . . , and three states with Q = 0 when Nw is odd. The 3× 3 mass matrix in each of

these sectors has the form of eq. (4.47), but with Clebsch-Gordan coefficients given by

κ±Q =
1√
2

√
Nw − 1∓ 2Q

Nw(Nw − 1)
. (4.49)

There are also two pairs of states with Q = ±(Nw − 1)/2 and mass matrix

MQ =

(
Mχ κ−Qλv

κ−Qλ̃v Mψ

)
. (4.50)

This is the same structure of eq. (4.32), that was extensively studied in section 4.3.

Note that each 3× 3 or 2× 2 sector depends on the same five parameters: two masses,

two Yukawa couplings, and one physical phase. They determine all the mass eigenvalues

and the mixing matrices. We do not attempt a scan of the parameter space here. The

corrections to S, T , µγγ and µγZ from a sector with the mass matrix of eq. (4.50) were

analysed in section 4.3. We expect corrections of the same order from the other sectors.

Coming to collider searches, for Nw 6= 1, 3 there is no mixing with the SM and the lightest
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mass eigenstate is stable, at least at the renormalizable level. When it is charged, one can

apply the limits on stable leptons reported in table 2. For Nw odd, the lightest state may

be neutral, with the typical collider phenomenology of a dark matter candidate.

The phenomenology is radically different when Nw is even. In this case the Majorana

mass is absent, Mχ = 0, and the χ components are massless before EWSB, therefore one

mass eigenvalue for each sector is of the order λλ̃v2/Mψ. This implies that all masses are

bound to the EW scale, whence the situation resembles the one of purely chiral sets of

new fermions. In particular, one finds a correction to h → γγ that depends only on Q:

taking Mχ = 0 in the mass matrix (4.47) or (4.50), and using the LET approximation of

eq. (B.24), we find a CP-even amplitude Aγγχψ,Q ' 8Q2/3 for a 3 × 3 sector, and the same

for a 2 × 2 sector. For comparison, when Nw is odd the Majorana mass is allowed and

one finds

Aγγ,3×3
χψ,Q ' −8

3

λv

Mχ

λ̃v

Mψ
Q2
(
κ2
−Q + κ2

Q

)
, Aγγ,2×2

χψ,Q ' −8

3

λv

Mχ

λ̃v

Mψ
Q2κ2

−Q , (4.51)

where we made the approximation λv, λ̃v � Mχ,Mψ. The correction grows as the χ − ψ
mixing parameters of the type λv/M increase, on the other hand S and T generally put a

significant upper bound on these parameters. Obviously, in each model the total Aγγnew is

the sum over all the sectors with different Q.

Let us say a few more words on the cases where χ and/or ψ mix with the SM leptons.

• N + L: for Rw = 1, the Majorana fermion is a sterile neutrino N , the vector-like

fermion is a lepton doublet L, and the Lagrangian in eq. (4.46) is extended to include

λN lLH̃NR+λLLLHτR+h.c.. The full parameter space includes two real masses, four

reals Yukawa couplings and two physical phases, that can be associated e.g. to λ and

λ̃. The 2×2 mass matrix in the Q = ±1 sector is given by eq. (4.13): the mixing with

the SM is small due to the strong constraint from the Zττ couplings, implying small

deviations in µγγ and µγZ . The 4 × 4 mass matrix in the Q = 0 sector is obtained

by adding to eq. (4.47) a first row and a first column of the form (0, λNv/
√

2, 0, 0).

There are some simple limiting cases. If λ, λ̃→ 0, the matrix reduces to two diagonal

blocks, as N and L decouple from each other, and the phenomenology reduces to the

one of the previous sections. If ML,N/v are much larger than the Yukawa couplings,

all the mixing angles are small and the smallness of the light neutrino mass follows

from the usual seesaw mechanism, mν ' λ2
Nv

2/(2MN ). Still, mν can be small even

in the presence of large Yukawa couplings. In particular, for λv, λ̃v ∼ MN,L, large

mixing angles are possible, and, correspondingly, such intricate neutral sector may

induce significant corrections to the S and T parameters.

• For Rw = 3, the Majorana fermion is the triplet Σ and the vector-like fermion is the

doublet L or the quartet Ω.

Σ+L: the Lagrangian in eq. (4.46) is extended to include λΣlLH̃ΣR+λLLLHτR+h.c..

Up to different Clebsch-Gordan coefficients, the 4 × 4 neutral sector is the same as
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in the N + L case. The mass matrix in the charged sector is

M1 =


√

1
2λτv

√
1
3λΣv 0

0 MΣ

√
1
3λv√

1
2λLv

√
1
3 λ̃v ML

 . (4.52)

The Zττ couplings constrain both mixing parameters λΣv/MΣ and λLv/ML to be

small, as explained in sections 4.1 and 4.2, respectively. When the mixing with

the SM is neglected, one is left with a special case of eq. (4.50), which corresponds

to the chargino mass matrix in supersymmetry. Note that, in the limit where λτ
vanishes, there is still a contribution to the τ mass, mτ ' (λΣλLλv

3)/(3
√

2MΣML),

as illustrated in figure 2(d). Despite the constraint on the mixing from the Zττ

couplings, one can accommodate the correct size of mτ for λ & 3, see the discussion

below eqs. (4.42) and (4.44).

Σ + Ω: the Lagrangian in eq. (4.46) is extended to include λΣlLH̃ΣR + h.c., as the

quartet does not mix with the SM. The 4 × 4 neutral sector has the same structure

as in the N +L and Σ+L cases. The Q = 1 sector also has a 4×4 mass matrix, that

is obtained from eq. (4.47) by adding a first row (λτv/
√

2, λΣ/
√

3, 0, 0), and a first

column (λτv/
√

2, 0, 0, 0). In addition, there is a Q = 2 state with mass MΩ. There

are no significant phenomenological novelties, as the effects of the SM mixing with Σ

and of the Σ mixing with Ω mixing do not interfere significantly.

• One VLL plus two Majorana leptons. Let us come to sets of two Majorana leptons

both interacting with one vector-like pair. One obvious possibility is to take two copies of

the same Majorana lepton, that is, to replace χR in eq. (4.45) with χiR, i = 1, 2, with the

obvious doubling of each coupling involving χ in the Lagrangian. Note that Nw can be

arbitrary and, for even Nw, the Majorana mass terms are forbidden but a Dirac mass term

Mχχc1Rχ2R is allowed. In all other respects, the mass matrix structures and the inherent

phenomenology are a straightforward generalisation of those discussed above.

The second and last possibility to couple two Majorana leptons to one VLL is provided

by the set

χ1R ∼ (1, Rw, 0) , ψL, ψR ∼ (1, Rw + 1,−1/2) , χ2R ∼ (1, Rw + 2, 0) , (4.53)

with Nw necessarily odd, and Lagrangian

−Lχψ = MψψLψR +
∑2

i=1

[
1
2Mχiχ

c
iRχiR + λ̃iψLH̃χRi + λiχcRiHψR

]
+ h.c. . (4.54)

There are two pairs of states with Q = ±(Nw+1)/2, with a mass matrix given by eq. (4.50)

with Mχ, λ, λ̃→Mχ2 , λ2, λ̃2. In addition, there are four pairs of states with Q = ±(Nw −
1)/2,±(Nw − 3)/2, . . . ,±1, and four states with Q = 0. The 4 × 4 mass matrix in each

such sector takes the form

MQ =


Mχ1 0 κ1,Qλ̃1v κ1,−Qλ1v

0 Mχ2 κ2,Qλ̃2v κ2,−Qλ2v

κ1,−Qλ̃1v κ2,−Qλ̃2v 0 Mψ

κ1,Qλ1v κ2,Qλ2v Mψ 0

 , (4.55)
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with κ1,±Q given by eq. (4.48), and κ2,±Q given by eq. (4.49) with Nw → Nw + 2. As in

eq. (4.51), one can estimate the contribution of this mass matrix to the hγγ coupling, by

taking the LET approximation,

Aγγ,4×4
χ1χ2ψ,Q

' −8

3

∑
i=1,2

λiv

Mχi

λ̃iv

Mψ
Q2
(
κ2
i,−Q + κ2

i,Q

)
. (4.56)

Let us discuss the minimal cases Rw = 1 and Rw = 3, that admit a mixing with the

SM leptons.

• N + L + Σ: for Rw = 1, the new fermions have the gauge quantum numbers of the

bino, the higgsinos and the wino in supersymmetry. Thus, the mass matrices (4.50)

and (4.55) are a generalisation of the chargino (Q = ±1) and neutralino (Q = 0) mass

matrices, respectively (for a review see ref. [77]). Supersymmetry restricts the Yukawa

couplings to λ̃1,2/λ1,2 = − tanβ, λ1/λ2 = λ̃1/λ̃2 = − tan θw/
√

3, and λ1 = − cosβg′.

The effect of charginos and neutralinos on the Higgs boson couplings is analysed e.g.

in refs. [78–81]. In particular, the chargino loop contributing to hγγ and hγZ is

controlled by the weak coupling g, and it is typically subleading compared to the SM

top quark loop. Without the supersymmetry constraints, the most general chargino

mass matrix has the structure of eq. (4.32), therefore one can apply the results of

section 4.3 for the Higgs decay amplitudes into γγ and γZ.

In the absence of (R-parity conserving) supersymmetry, not only the four Yukawa

couplings λ1,2 and λ̃1,2 are unconstrained, but in addition a mixing with the SM lep-

tons is allowed: one should add to the Lagrangian in eq. (4.54) the terms λN lLH̃NR+

λΣlLH̃ΣR+λLLLHτR+h.c.. The Q = ±1 mass matrix becomes the one in eq. (4.52),

and the Q = 0 mass matrix becomes 5 × 5, and it is obtained from eq. (4.55) by

adding a first row and column of the form (0, λNv/
√

2, λΣv/
√

6, 0, 0). Therefore, one

can observe the phenomenological effects of N , Σ and L individually, as analysed in

sections 4.1 and 4.2, as well as their interplay, already described above for (N + L)

and (Σ + L). As usual, the mixing with the SM leptons is typically constrained to

be small by the smallness of mν and by the Zττ couplings, thus the modifications

to the hνν and hττ couplings are suppressed. However, even a very small mixing

with the SM offers decay modes to the heavy fermions, such that none is stable. A

dedicated analysis of the full parameter space would be interesting, to characterise

quantitatively the correlations among the different observables, and especially the

deviations from the supersymmetric limit.

• Σ+Ω+Ξ: for Rw = 3, the new fermions are a Majorana triplet, a vector-like quartet,

and a Majorana quintuplet Ξ. There is a 2×2 sector with Q = ±2 given by eq. (4.50).

As the triplet mixes with the SM through λΣlLH̃ΣR + h.c., there is a 5 × 5 sector

with Q = ±1, that is obtained by adding to the matrix in eq. (4.55) a first row

(λτv/
√

2, λΣv/
√

3, 0, 0, 0) and a first column (λτv/
√

2, 0, 0, 0, 0). This large number

of charged states with potentially large mixing can give a significant correction to

µγγ and µγZ . For concreteness, neglecting the mixing with the SM and using the
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LET approximation, we find

AγγΣψΞ ' −
8

3

(
1

3

λ1v

MΣ

λ̃1v

MΩ
+
λ2v

MΞ

λ̃2v

MΩ

)
, (4.57)

to be compared with the SM top contribution, Aγγt ' 16/9. One should take into

account the constraints (in particular S and T ) on the mixing parameters ∼ λv/M .

The neutral sector has also a 5 × 5 mass matrix, obtained by adding a first column

and row (0, λΣv/
√

6, 0, 0, 0) to to the matrix in eq. (4.55). As usual, the vanishing

neutrino mass requires λΣv/MΣ to be very small.

5 Phenomenology of non-chiral quarks

In this section we discuss new coloured fermions that either form vector-like pairs, or

admit a Majorana mass term. We will dub them ‘quarks’ even when they are not in the

fundamental representation of SU(3)c.

5.1 One vector-like quark

There are seven possible VLQs that mix with the SM quarks, as listed in table 1. They have

been extensively studied under various respects in the literature (see e.g. refs. [22, 82–87]).

Here we describe in a compact, systematic way the leading order constraints coming from

EW precisions tests, direct searches at colliders, and Higgs couplings. As usual we restrict

ourselves to mixing with the third family. In the top (bottom) sector, a mixing appears

whenever the VLQ contains a component T (B) with the same charge as t (b). The

components of each multiplet are displayed in eq. (2.6). In the case of weak singlets or

triplets, the SM Lagrangian is extended by

− Lψ = λψqLH̃(H)ψR +MψψLψR + h.c. , for ψ = T,XQ(B, YQ) , (5.1)

and, in the case of weak doublets, by

−Lψ = λtψψLH̃(H)tR + λbψψLH(H̃)bR +MψψLψR + h.c. , for ψ = Q(XT , YB) , (5.2)

with the further restriction λbXT = λtYB = 0. The structure of the top (bottom) sector mass

matrix is very close to the charged lepton one in the case of one VLL, therefore we will

frequently refer to section 4.2. In the top sector one has

Mt =

(
λt

v√
2
κtψλψ

v√
2

0 Mψ

)
, ψ = T,XQ, YQ , Mt =

(
λt

v√
2

0

κtψλ
t
ψ
v√
2
Mψ

)
, ψ = Q,XT , (5.3)

with Clebsch-Gordan coefficients κtT,Q,XT = 1, κtXQ =
√

1/3 and κtYQ =
√

2/3. The

rotation to the mass basis is parametrized as Mt = ULdiag(mt,mt′)U
†
R, in analogy with

eq. (4.14). In the bottom sector one has

Mb =

(
λb

v√
2
κbψλψ

v√
2

0 Mψ

)
, ψ = B,XQ, YQ , Mb =

(
λb

v√
2

0

κbψλ
b
ψ
v√
2
Mψ

)
, ψ = Q,YB , (5.4)
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with κbB,Q,YB = 1, κbXQ =
√

2/3 and κbYQ =
√

1/3, and one can write Mb =

ŨLdiag(mb,mb′)Ũ
†
R.

In all cases except Q, the vector-like mass Mψ and the three independent Yukawa

couplings can be taken to be real. In the case of Q, there are four Yukawa couplings and

one complex phase φ is physical. In full generality, one can choose λt,b and λt,bQ real, and

add a matrix Pφ = diag(eiφ, 1) on the left of Mb. Then, eq. (A.4) and eq. (B.5) show

that φ appears in the W couplings to the fermion mass eigenstates, while the Z and h

couplings are independent from φ. It is very difficult to observe such CP-violating effect

in the charged current, since it vanishes for λb → 0, that is, it is always suppressed by the

small ratio mb/v. Coming to the mixing angles, the left- and right-hand ones are related

as in the case of VLLs, see eq. (4.15): in the case of weak doublet VLQs one finds

tan θL =
mt

mt′
tan θR < tan θR , tan θ̃L =

mb

mb′
tan θ̃R � tan θ̃R , (5.5)

while for singlet or triplet VLQs, the same relations hold with L ↔ R. In the following

we will drop the subscripts L,R and denote θψ (θ̃ψ) the largest mixing angle in the top

(bottom) sector, for any given VLQ ψ. For the multiplets with both the T and B com-

ponents, the mass eigenvalues and the mixing angles in the top and bottom sectors are

strictly related, {
m2
t′ −m2

b′ = s2
ψ(m2

t′ −m2
t )− s̃2

ψ(m2
b′ −m2

b)

sψcψ(m2
t′ −m2

t )rψ = s̃ψ c̃ψ(m2
b′ −m2

b)
, (5.6)

where rXQ =
√

2, rYQ = 1/
√

2, and rQ ≡ λbQ/λ
t
Q. Therefore, one can determine the

bottom sector parameters, mb′ and θ̃ψ, as a function of the top sector one, mt′ and θψ, or

vice versa. In the case ψ = Q, there is the additional freedom of the choice of rQ. Note

that the custodial symmetry is preserved in the Q sector if rQ = 1, see eq. (5.2). The mass

splitting among the heavy quarks is controlled (at tree level) by the mixing with the SM.

The mass ordering is determined as

T : MT ≤ mt′ , B : MB ≤ mb′ ,

XT : mX = MXT ≤ mt′ , YB : mY = MYB ≤ mb′ ,

XQ : mX = MXQ ≤ mt′ ≤ mb′ , YQ : mY = MYQ ≤ mb′ ≤ mt′ ,

(5.7)

where we took implicitly into account the experimental upper bounds on the mixing and

on mt/mt′ , when needed to establish the ordering. In the case of Q, for rQ = 1 one finds

MQ ≤ mb′ ≤ mt′ , but the ordering between b′ and t′ can change for different values of rQ.

Masses and mixing angles are constrained by the perturbativity of the Yukawa cou-

plings, ∣∣λtψ∣∣ '
∣∣∣∣∣
√

2

κtψ
sψ
mt′

v

∣∣∣∣∣� 4π ,
∣∣∣λbψ∣∣∣ '

∣∣∣∣∣
√

2

κbψ
s̃ψ
mb′

v

∣∣∣∣∣� 4π . (5.8)

Note that we do not impose a stronger upper bound such as 4π/
√
Nc, for reasons discussed

in appendix B.1. The perturbativity of the SM couplings λt and λb is guaranteed a fortiori.

For definiteness, in figures 3–6 we delimit with a black dotted line the region of parame-

ters where at least one Yukawa coupling becomes larger than 2π. In the case of Q both
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Figure 3. Constraints on the weak singlet VLQs B (left panel) and T (right panel), as a function

of the mass of b′ (t′) and of the mixing angle between bL and b′L (tL and t′L). The region above

the dotted black line is excluded by perturbativity. The blue-shaded region is excluded by the Zbb

couplings. The (light) yellow-shaded region is excluded by the S and T parameters at (68%) 99%

C.L.. The green-shaded region is just the intersection of the previous two. The grey-shaded region

is excluded by the collider searches summarised in table 3. The region above the solid black line is

excluded by a rough global fit of the Higgs couplings at 99% C.L.. The dashed blue (dotted red)

lines correspond to a few relevant values of the signal strength µγZ (µγγ).

inequalities must be satisfied at the same time, therefore a large departure from rQ = 1

leads to a stronger constraint, as illustrated by the comparison of the left and right panels

of figure 6.

Important constraints come from the Z couplings to quarks, that are affected by the

mixing as shown in eq. (A.6). The tree-level deviations with respect to the SM are given by

δgL
Zbb

= s̃2
L

(
1

2
+ T 3

B

)
, δgR

Zbb
= s̃2

RT
3
B , δgLZtt = s2

L

(
−1

2
+ T 3

T

)
, δgRZtt = s2

RT
3
T ,

(5.9)

where T 3
B (T 3

T ) is the weak isospin of the B (T ) component of the VLQ under investigation.

The Zbb couplings are measured less precisely than their leptonic analog, the Zτ+τ− cou-

plings, but nonetheless they are strongly constrained, especially for bL. The top couplings

to the Z boson are poorly constrained directly, however they also contribute at one loop to

Zbb. These constraints are summarised in appendix A.3 and they exclude the blue-shaded

region in figures 3–6. Deviations in ZbLbL are present at tree level in the case of B, YB, YQ
and XQ. However, in the case of the doublet YB, the deviation is suppressed by (mb/m

′
b)

2

and the most important correction is the one to ZbRbR. In the case of T and XT , there is

no bottom partner and the deviation to ZbLbL is induced at one loop mostly through δgL
Ztt

,

leading to a relatively weak constraint. Finally, in the case of Q, δgR
bb

is generated at tree

level and δgL
bb

at one loop, the strongest constraint coming from the right-handed coupling.
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Figure 4. Constraints on the weak doublet VLQs YB (Y = −5/6, left panel) and XT (Y = +7/6,

right panel) as a function of the mass of b′ (t′) and of the mixing angle between bR and b′R (tR and

t′R). The notation is the same as in figure 3.

The VLQ couplings to the EW gauge bosons are also constrained by the EW precision

parameters S and T , whose expressions are provided in appendix A.2. Note that, in

contrast with the tau and bottom sectors, in the top sector contributions proportional to

powers of mt/mZ are not suppressed. In figures 3–6 we display in (light) yellow the region

corresponding to the (68%) 99% C.L. ellipse of figure 10. Since S and T are proportional

to the mixing between the SM quarks and the VLQ, one typically observes an upper bound

sψ, s̃ψ . 0.05 − 0.20, depending on the VLQ under consideration. Note that this bound

relaxes as the heavy quark mass decreases, because S and T eventually vanish in the limit

mt′ → mt or mb′ → mb. Note also that a cancellation is possible among relatively large

contributions to S and T , such that large mixing angles may be allowed in a fine-tuned

region of parameters. This is especially relevant in the case of XT , because such region is

not excluded by other constraints. Indeed, we find

T (XT ) '
3s2
XT

16πc2
ws

2
w

m2
t′

m2
Z

[
4

3
s2
XT

+
m2
t

m2
t′

(
4 ln

m2
t

m2
t′

+ 6

)]
, S(XT ) '

s2
XT

2π

(
4

3
ln
m2
t

m2
t′

+ 5

)
,

(5.10)

where we dropped terms subleading in sXT and mt/mt′ . As the logarithm is large and

negative, a cancellation is possible in the T parameter even for large mixing: this explains

the allowed strip in figure 4, that reaches sXT ' 0.5. A comment is in order for the case

of Q: one would expect a milder constraint from T when the two Yukawa couplings λt,bQ
respect the custodial symmetry, i.e. when rQ = 1. However, even in this case there is

an important deviation from the SM, because the residual custodial-breaking parameter,

(λt − λb), differs from the SM one,
√

2(mt −mb)/v, as soon as the mixing is non-zero.
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Figure 5. Constraints on the weak triplet VLQs YQ (Y = −1/3, left panel) and XQ (Y = +2/3,

right panel) as a function of the mass of t′ and of the mixing angle between tL and t′L. The notation

is the same as in figure 3.

Figure 6. Constraints on the weak doublet VLQ Q as a function of the mass of t′ and of the

mixing angle between tR and t′R. The left panel corresponds to λtQ = λbQ (rQ = 1), and the right

one to 4λtQ = λbQ (rQ = 4). The notation is the same as in figure 3.

Let us now turn to the direct searches of VLQs at colliders. As they are coloured, it is

easier to produce them at the LHC, relatively to VLLs. Below ∼ 1 TeV they are dominantly

produced in pairs through strong interactions, while for higher masses single production

by EW interactions can become dominant [83, 88]. The pair production mechanism, that

dominates in the mass range probed at the 8 TeV LHC, is independent from the VLQ (all
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are colour triplets) and from the mixing parameters. The ATLAS and CMS searches focus

on the following decay channels for the heavy quark mass eigenstates:

X → tW+ , t′ → tZ, th, bW+ , b′ → bZ, bh, tW− , Y → bW− . (5.11)

Note that t′ and b′ can decay via neutral current at leading order, owing to their vector-

like nature. Decays into another heavy quark coming from the same multiplet, such as

t′ → XW−, are kinematically suppressed; decays through loops may also be possible, but

they are typically negligible [84]. Here we will disregard these sub-leading channels, and

assume that the decay channels in eq. (5.11) have unit branching ratio. In addition, the

decays are assumed to be prompt, that is the case whenever the mixing angles are large

enough to have an observable effect on the Higgs couplings.

The relative branching ratios of t′ and b′ in the three decay channels depend mostly

on the weak isospin of the VLQ and on the mixing angles. Indeed, since the heavy quarks

are already constrained to be heavier than a few hundred GeVs, in good approximation

one can neglect the final state masses and find

Γ(t′ → ht) ' mt′

16π

(
|ytt′ |2 + |ỹtt′ |2

)
,

Γ(t′ → Zt) ' m3
t′

32πm2
Z

(
|(cZL)tt′ |2 + |(cZR)tt′ |2

)
,

Γ(t′ →Wb) ' m3
t′

32πm2
W

(
|(cWL )bt′ |2 + |(cWR )bt′ |2

)
,

(5.12)

and the same for t′ ↔ b′ and t ↔ b. Here the Higgs couplings are defined by eq. (B.5),

and the Z and W couplings by eq. (A.4). By a straightforward computation, one finds

Br (t′ → ht) ' Br (t′ → Zt) and

T : Br (t′ → Zt) ' 1

2

1− s2
T

2− s2
T

, Br (t′ →Wb) ' 1

2− s2
T

;

XT : Br (t′ → Zt) ' 1

2
, Br (t′ →Wb) ' 0 ;

Q : Br (t′ → Zt) ' 1

2

1 + s2
Q(r2

Q − 1)

r2
Q + 1 + s2

Q(r2
Q − 1)

, Br (t′ →Wb) '
r2
Q

r2
Q + 1 + s2

Q(r2
Q − 1)

;

XQ : Br (t′ → Zt) ' 1

2

1 + s2
XQ

2 + s2
XQ

, Br (t′ →Wb) ' 1

2 + s2
XQ

;

YQ : Br (t′ → Zt) ' 1

2
, Br (t′ →Wb) ' 0 .

(5.13)

As before, we neglected the SM masses and, therefore, the subdominant mixing angles in

eq. (5.5). Note however that some branching ratios are proportional to the SM masses at

leading order, for example in the case of XT one finds Br (t′ →Wb) ' m2
t /(c

4
XT
m2
t′). In

the cases where both t′ and b′ are present, we used the relation tan θ̃ψ ' rψ tan θψ, that

follows from eq. (5.6) if one neglects mb and mt. The b′ branching ratios are obtained from

eq. (5.13) by the replacements T → B, XT → YB, XQ ↔ YQ, t′ → b′, t ↔ b, rQ → 1/rQ
and sψ → s̃ψ for each ψ.
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heavy quark branching ratios multiplets mass bound

X (Q = 5/3) BrWt = 1 XT , XQ mX ≥ 840 GeV [91]

t′ (Q = 2/3) BrWb = 1
2 , BrZt = Brht = 1

4 T , XQ, Q(rQ = 1) mt′ ≥ 800 GeV [89]

BrWb = 0, BrZt = Brht = 1
2 XT , YQ, Q(rQ � 1) mt′ ≥ 855 GeV [89]

BrWb = 1, BrZt = Brht = 0 Q(rQ � 1), Q+ YB mt′ ≥ 920 GeV [96]

BrWb = BrZt = 0, Brht = 1 XT +Q mt′ ≥ 950 GeV [89]

BrWb = Brht = 0, BrZt = 1 XT +Q mt′ ≥ 800 GeV [89]

BrWb +BrZt +Brht = 1 T , XT , Q, YQ, XQ mt′ ≥ 720 GeV [96]

b′ (Q = −1/3) BrWt = 1
2 , BrZb = Brhb = 1

4 B, YQ, Q(rQ = 1) mb′ ≥ 735 GeV [89]

BrWt = 0, BrZb = Brhb = 1
2 YB, XQ Q(r2

Q � 1) mb′ ≥ 755 GeV [92]

BrWt = 1, BrZb = Brhb = 0 Q(r2
Q � 1), XT +Q mb′ ≥ 810 GeV [91]

BrWt = BrZb = 0, Brhb = 1 Q+ YB mb′ ≥ 846 GeV [94]

BrWt = Brhb = 0, BrZb = 1 Q+ YB mb′ ≥ 775 GeV [89]

BrWt +BrZb +Brhb = 1 B, YB, Q, YQ, XQ mb′ ≥ 582 GeV [95]

Y (Q = −4/3) BrWb = 1 YB, YQ mY ≥ 770 GeV [89]

Table 3. Lower bounds at 95 % C.L. on the heavy quark masses mX ,mt′ ,mb′ and mY . The

experimental searches assume pair production via strong interactions and prompt decays in the

indicated channels. In the second column we specify the assumption on the heavy quark-decay

branching ratios. Here BrZt stands for Br (t′ → Zt), and so forth. In the third column we list

the VLQ multiplets that correspond to those branching ratios, in the small mixing approximation.

Here “XT +Q” and “Q+YB” refer to pairs of VLQs with a custodial symmetry, that are discussed

in section 5.2.

The experimental lower bounds on the mass of t′ and b′ are presented as a function

of two independent branching ratios [89, 90]. We choose, in the plane of branching ratios,

their approximate values for the VLQ under consideration. To this purpose, we take the

limit sψ → 0 in eq. (5.13) (s̃ψ → 0 in the case of b′), because the collider bound is relevant

at small mixing angles, see figures 3–6). The only exception is XT , where large mixing is

possible, but in this case the strongest collider bound is the one on the component X. The

lower bounds on each heavy quark mass are collected in table 3, and vary between ∼ 600

and 900 GeV [89, 91–95]. The region excluded at 95 % C.L. is shaded in grey in figures 3–6.

A detailed analysis of the lower bound on m′t is presented in ref. [23] for the case of the

VLQ T , taking also into account indirect constraints from B-physics observables.

Let us now discuss the corrections induced by the VLQ on the Higgs boson couplings.

The couplings of t, t′, b and b′ to the Higgs have the same form as those of τ and τ ′ in

eq. (4.19), with the obvious replacement of masses and mixing angles. The heavy quarks

X and Y do not couple to the Higgs. The Higgs signal strengths at the LHC µα, defined in
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eq. (B.40), are the product of three factors: Higgs production rate, partial decay rate and

lifetime. While new leptons affect significantly the partial decay rate only, new quarks can

modify substantially each factor. In particular, the Higgs production via gluon fusion is

sensitive to a VLQ, and the mixing in the bottom sector can change significantly the total

Higgs width Γh. Let us remind that, as discussed below eq. (5.4), the Higgs couplings are

CP-conserving for any VLQ.

When the VLQ contains a B component, the Higgs width into bb is modified, with

respect to the SM, by a factor Rbb = (1 − s̃2
ψ)2 that, in the light of previously discussed

constraints, can be as small as ∼ 0.9. Since in the SM h→ bb is the dominant decay channel,

this correction enhances µα for all other decay channels, through the factor ΓSM
h /Γh. The

Higgs production via gluon fusion is modified by a factor

Rgg =

∣∣∣AggSM + 3
4s

2
ψ

[
A1/2(τt′)−A1/2(τt)

]
+ 3

4 s̃
2
ψ

[
A1/2(τb′)−A1/2(τb)

]∣∣∣2∣∣AggSM

∣∣2 , (5.14)

where the form factors are defined in appendix B.2.1. The effect of the top sector is

qualitatively different from the bottom one: given the collider lower bound on mt′,b′ , their

form factors are very close to the asymptotic value, A1/2(0) = 4/3. While the t loop is

also close to this value, the b has a small mass and a suppressed form factor: A1/2(τt′) −
A1/2(τt) ' −0.04 and A1/2(τb′)−A1/2(τb) ' +1.41 Therefore, when a b′ is present (for ψ =

B, YB, Q,XQ, YQ), its effect dominates and the interference with the SM is constructive.

An exception is possible for ψ = Q, where s̃Q/sQ � 1 for rQ � 1, see eq. (5.6). In the

latter case, and when only a t′ is present (for ψ = T,XT ), there is a slight destructive

interference with the SM. The tt̄h production mode is also modified respect to the SM in

the presence of t− t′ mixing, with a cross-section reduced by a factor c4
ψ .

In the diphoton channel

Rγγ =

∣∣∣AγγSM + 4
3s

2
ψ

[
A1/2(τt′)−A1/2(τt)

]
+ 1

3 s̃
2
ψ

[
A1/2(τb′)−A1/2(τb)

]∣∣∣2∣∣AγγSM

∣∣2 . (5.15)

Here the SM amplitude is negative, therefore the interference pattern is reversed with

respect to Rgg. A few different values of the signal strength µγγ are shown in figures 3–6

by dotted red lines. Once the other constraints are taken into account, one finds at most

δµγγ ∼ 0.3. Finally, for the Higgs decay into a photon and a Z, the new physics amplitude

writes

AγZSM+ψ−A
γZ
SM '

∑
α=t,b

3Qα
c2
w

{
δgVααA1/2(τα, λα) + s2

ψ,α

[
gVα′α′A1/2(τα′ , λα′)−gVααA1/2(τα, λα)

]
+cψ,αsψ,α

mα +mα′√
mαmα′

gVαα′A1/2(τα′ , λα′ , τα, λα)
}
, (5.16)

where sψ,t ≡ sψ, sψ,b ≡ s̃ψ, and we neglected the terms proportional to the form factor

B1/2, that are subdominant. Note also that there is no CP-violating amplitude, as both

the h and Z couplings respect CP, see discussion below eq. (5.4). The vector Z couplings
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are obtained from eq. (A.6): one finds δgVαα ≡ (gVαα − gV,SMαα ) ∼ s2
ψ,α and gVαα′ ∼ sψ,α, so

that the new physics amplitude of eq. (5.16) is of the order of the mixing squared. The

interference with the SM may be constructive or destructive depending on the sign of the

Z couplings. A few different values of the signal strength µγZ are shown in figures 3–6 by

dashed blue lines. When a b′ is present, both µγZ and µγγ receive a similar correction,

dominated by the increase of Rgg and ΓSM
h /Γh. A significant correction is possible for

YB, with both δµγZ and δµγγ as large as ∼ 0.3. On the other hand, in the case of T or

XT the corrections to the two channels are significantly different, because the small factor

A1/2(τt′) − A1/2(τt) in eq. (5.15) suppresses the correction to hγγ. In particular, for XT

one can have δµγZ ∼ 0.1 with δµγγ ∼ 0.01.

In our analysis we computed the relevant signal strengths µα for α = bb, γγ, γZ, WW

and ZZ, taking of course into account the corrections to Rgg and Γh. We compared these

predictions with the allowed experimental ranges given in table 4. By simply computing

a χ2 for these five channels, we determined the region of parameters disfavoured at 99%

C.L., that is delimited by the solid black line in figures 3–6.

5.2 Two vector-like quarks (including b and t compositeness)

• Two VLQs not coupled to each other. Let us consider first a pair of VLQs (ψ,ψ′)

that do not couple to each other via a Yukawa coupling. In this case ψ and ψ′ must be

identified with one of the seven VLQs in table 1, and the phenomenological effects are,

in most respects, a trivial addition of those of each VLQ separately, already discussed in

section 5.1.

A noticeable exception occurs when the Yukawa couplings and the vector-like masses of

ψ and ψ′ respect an additional SU(2)R global symmetry, that provides custodial protection

for the EW gauge boson couplings: when the parameters approach this custodial limit, the

constraints from EW precision tests drastically relax with respect to the case of a unique

VLQ. There are four pairs that may form a doublet under SU(2)R: the weak singlets (T,B),

the weak doublets (XT , Q) or (Q,YB), and the weak triplets (XQ, YQ). For illustration, we

will concentrate on the case of doublets.

The two VLQs transform as bi-doublets under a custodial SU(2)L×SU(2)R symmetry,

as long as their Yukawa couplings to the SM fermions and their vector-like masses are equal,

−L(XT ,Q) =
λψ√

2
(XT Q)L

(
H

H̃

)
tR +Mψ(XT Q)L

(
XT

Q

)
R

+ h.c. ,

−L(Q,YB) =
λψ√

2
(Q YB)L

(
H

H̃

)
bR +Mψ(Q YB)L

(
Q

YB

)
R

+ h.c. .

(5.17)

These are the smallest sets of top and bottom quark custodians, respectively [70, 97, 98].

Note that, in this custodial limit, the additional coupling QLHbR (QLH̃tR) must vanish

in the top (bottom) case. Therefore, a mixing occurs only in the top (bottom) sector, and

there are no deviations in the bottom (top) couplings, despite the presence of a b′ (t′) in the

spectrum. The analysis is analogous to the case of τ custodians, discussed in section 4.3.

For example, in the top case the linear combination t′′ ≡ (T (XT ) − T (Q))/
√

2 does not
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couple to the Higgs and therefore it does not mix, while the orthogonal combination mixes

with the SM top quark as in eq. (5.3), to form the mass eigenstates t′ and t. The mass

spectrum is

mt′′ = mb′ = mX = Mψ ≤ mt′ '
Mψ

cR
(XT , Q) ,

mb′′ = mt′ = mY = Mψ ≤ mb′ '
Mψ

c̃R
(Q,YB) .

(5.18)

Due to the custodial symmetry, the values of the heavy quark branching ratios into SM

particles differ from the case of a single VLQ, discussed in section 5.1. We assume that

the decays to another heavy quark are kinematically suppressed, because of the small mass

splitting in eq. (5.18), and once again we neglect the SM masses in the final state, as well

as the t − t′ (b − b′) left-handed mixing angle, that is suppressed by mt/mt′ (mb/mb′).

Consider for example the top case. The decays t′/t′′ →Wb are suppressed as in eq. (5.13)

(here rQ = 0). In addition t′ → Zt vanishes because the Q = 2/3 components of XT and Q

have opposite weak isospin, and t′′ → ht vanishes because t′′ does not couple to the Higgs.

Similar arguments hold in the bottom case. In summary one finds

BR(t′′ → Zt) ' Br(b′ →W−t) ' Br(X →W+t) ' Br(t′ → ht) ' 1 (XT , Q) ,

BR(b′′ → Zb) ' Br(t′ →W+b) ' Br(Y →W−b) ' Br(b′ → hb) ' 1 (Q,YB) .
(5.19)

It is amusing that, in these two models, there is one heavy quark decaying exclusively in

each of the possible decay channels listed in eq. (5.11). The experimental lower bounds on

these heavy quark masses can be read off table 3.

The custodial symmetry protects the Zbb̄ couplings: in the top case δgRtt̄ = 0 and

the small δgL
tt

= (mt/Mψ)2s2
R/2 contributes to Zbb̄ only at one loop; in the bottom case

δgR
bb̄

= 0 and δgL
bb

= (mb/Mψ)2s̃2
R/2 is very suppressed by the bottom mass. Thus, in

this custodial limit large mixing angles are not excluded, as shown in figure 7. Indeed,

one can see that the constraint from the other EW precision parameters is significantly

relaxed too, as T receives a small correction only, from the difference (λt− λb), that is not

SM-like because of the mixing, while S acquires a positive correction that remains in the

ellipse unless the mixing is very large. Note that in the bottom sector the T parameter is

almost independent from mb′ , since the smallness of mb ensures λb ' λSM
b . On the other

hand, when the mixing occurs in the top sector, the coupling λt and consequently the T

parameter strongly depend on mt′ . The dominant constraints at small and large heavy

quark masses come from the direct collider searches and from perturbativity, respectively.

In the top case (right panel of figure 7), the mixing is not constrained by the fit of the Higgs

coupling, as the bottom sector is SM-like. As a consequence, for 1.5 TeV . mt′ . 2 TeV

the mixing can be as large as sR ' 0.8. The γγ Higgs decay channel can be suppressed

at most by δµγγ ' −0.03, while the corrections to the γZ channel may be larger, up to

δµγZ ' +0.13. In the bottom case (left panel of figure 7), the mixing in the bottom sector

enhances all the other Higgs channels, as Rbb = (1 − s̃2
R)2 < 1. This leads to an upper

bound s̃R . 0.35. Significant corrections as large as δµγγ ' δµγZ ' 0.6 are possible. Note

that the Higgs signal strengths in figure 7 are similar to those with YB or XT only, shown

in figure 4. The difference is that the region allowed by EW precision tests largely inflated

here, thanks to the custodial symmetry.
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Figure 7. Constraints on the pairs of VLQs (Q,YB) (left panel) and (XT , Q) (right panel), in the

custodial limit (equal vector-like masses and Yukawa couplings), as a function of the mass of b′ (t′)
and of the mixing angle between bR and b′R (tR and t′R). The notation is the same as in figure 3.

• Two VLQs coupled to each other, not mixing with the SM fermions. Let us

move to the case of two VLQs coupled to each other via Yukawa interactions. Their chiral

components transform as

ψ1L, ψ1R ∼ (Rc, Rw, Y ) , ψ2L, ψ2R ∼
(
Rc, Rw + 1, Y +

1

2

)
, (5.20)

with Rc 6= 1. The corresponding Lagrangian is the same as in the case Rc = 1 (two

VLLs), and it is given in eq. (4.31). We bar the special case Rc = Rc, Y = 0 and Rw odd

(Y + 1/2 = 0 and Rw even), that allows for a Majorana mass terms for ψ1 (ψ2) and will be

discussed in section 5.3. We also bar mixing with the SM quarks, that will be discussed at

the end of the section. The effect of two VLQs on µγγ was discussed in detail in ref. [99].

The number of mass eigenstates with a given electric charge Q and the structure of

their mass matrices are the same as in the case of two VLLs, see eqs. (4.32) and (4.40).

Therefore, there are five physical parameters: two masses m1,2, two mixing angles θL,R
and one phase ϕ, defined by eq. (4.33). The analysis of the parameter space proceeds

exactly as in section 4.3 and will not be repeated here, however the phenomenology is

strongly modified as the colour representation Rc is non-trivial. The main differences are

the following:

• The VLQs are pair-produced via strong interactions and, in the absence of mixing

with the SM, the lightest state is stable and hadronises. The direct collider bounds

on these particle masses are above one TeV, as we already described in some more

detail in section 3.

• The contributions of the VLQs to the S and T parameters, as well as to the Higgs

decay amplitudes into γγ and γZ, have the same form as in eqs. (4.35) to (4.39),

– 45 –



J
H
E
P
0
1
(
2
0
1
6
)
0
3
6

with an additional factor Nc. As in the case of VLLs, for Rw = 1 and large values

of Q we find two regions of the mixing parameters where µγγ remains SM-like, while

µγZ can strongly depart from one. (i) For two degenerate masses m1 = m2, the

interference with the SM amplitude is destructive for γγ and constructive for γZ, as

illustrated in figure 1. Therefore, there are values of the mixing parameters where

accidentally µγγ goes back to the allowed range, while at the same time one can

even saturate the present upper bound µγZ . 10. Note that the gluon-gluon channel

remains nearly SM-like, because its amplitude is not enhanced by the large factor

Q2. (ii) For m1 6= m2, the amplitude Aγγf1,f2 in eq. (4.37) can be tuned to zero, while

at the same time one can have large contributions to µγZ together with sufficiently

small corrections to S and T . E.g. taking Nc = 3, Q ' 8, mixing parameters ϕ = 0,

θL ' π/8, θR ' π/10, m1/m2 ' 1.3 and m2 ' 1 TeV, one obtains µγZ ' 2. For the

cases Rw > 1, we refer to the discussion below eq. (4.40).

• The VLQs also contribute to the Higgs production by gluon fusion, with an amplitude

that can be easily obtained from the γγ one. For the pair of mass eigenstates f1, f2

of charge Q, one has Aggf1,f2 = [3C(Rc)/2]/(NcQ
2)Aγγf1,f2 , see appendix B.2. The

interference with the SM is constructive in the gluon case, thus enhancing the Higgs

production. Note that the gluon-gluon channel also receives a non-zero contribution

from the Q = 0 sector.

For illustration, we display in figure 8 the parameter space for the case Rc = 3, Rw = 1

and Y = −1/3 (Y = −2/3), that corresponds to the pair of VLQs B and Q (T and Q), in

the limit of no-mixing with the SM quarks. In figure 9 we illustrate how the constraints

change for a larger colour representation, as we replaced Rc = 3 by Rc = 8. For definiteness,

we assumed that there is no CP violation, ϕ = 0, and that the two mixing mass eigenstates

f1,2 of charge Q = Y are degenerate in mass, m1 = m2. In the case of colour octets,

larger deviations in the Higgs signal strengths are possible, but the various constraints

are correspondingly stronger. One can reach µγZ ' 1.4 for the octets and µγZ ' 1.2 for

the triplets. In the case Y = −1/3, µγγ and µγZ are very close to each other, because

AγZf1,f2/A
γγ
f1,f2

= (gV11 + gV22)/(Y c2
w) is numerically close to one, see eqs. (4.35) and (4.37),

and AγZSM/A
γγ
SM is close to one as well. The strongest constraint on the mixing among the

heavy states comes from the S and T parameters. In the octet case the fit of the main Higgs

decay channels (see the end of section 5.1 for details) is also a relevant constraint. The

mass scale m1 = m2 is constrained by the searches of stable coloured particles, discussed

in section 3.

• Two VLQs coupled to each other, mixing with the SM fermions. Let us briefly

discuss the possible interactions between the two VLQs ψ1,2 in eq. (5.20) and the SM

quarks. This requires of course Rc = 3. A non-zero mixing with the bottom and/or top

quark can occur if and only if at least one VLQ belongs to the set of seven VLQs in table 1.

The complete list is

singlet + doublet :

{
T +XT (2t′) , T +Q (2t′ + b′) ,

B +Q (t′ + 2b′) , B + YB (2b′) ,
(5.21)
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Figure 8. In the left (right) panel, we show the constraints on the pair of VLQs B and Q (T and Q),

in the limit of vanishing mixing with the SM quarks, degenerate mass eigenvalues mb′ = mb′′ ≡ m1/3

(mt′ = mt′′ ≡ m2/3) and no CP violation, ϕ = 0. In this case the relevant mixing angle is θL − θR,

see eq. (4.35). The notation for the various constraints is the same as in figure 3.

Figure 9. The same as in figure 8, but replacing colour triplets with colour octets.

doublet + triplet :


XT + ZXT (2t′) , XT +XQ (2t′ + b′) ,

Q+XQ (2t′ + 2b′) , Q+ YQ (2t′ + 2b′) ,

YB + YQ (t′ + 2b′) , YB +WYB (2b′) ,

(5.22)

triplet + quartet :

{
XQ + ΩXT (2t′ + 2b′) , XQ + ΩQ (2t′ + 2b′) ,

YQ + ΩQ (2t′ + 2b′) , YQ + ΩYB (2t′ + 2b′) ,
(5.23)

where we indicated in brackets the number of new states mixing with the top and with the
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bottom quark. We also introduced a few new multiplets, with no Yukawa couplings to the

SM fermions: ZXT ∼ (3, 3, 5/3), WYB ∼ (3, 3,−4/3), ΩXT ∼ (3, 4, 7/6), ΩQ ∼ (3, 4, 1/6),

and ΩYB ∼ (3, 4,−5/6). They can be written in components as

ZXT =

ZX
T

 , WYB =

B

Y

W

 , ΩXT =


Z

X

T

B

 , ΩQ=


X

T

B

Y

 , ΩYB =


T

B

Y

W

 , (5.24)

where the two new exotic states Z and W have charges Q(Z) = 8/3 and Q(W ) = −7/3.

Recasting LHC searches, ref. [100] puts a lower bound of 940 GeV on the mass of the

Q = 8/3 state.

When there is only one t′ (b′) state, the mixing in the top (bottom) sector has the

same pattern as in section 5.1. On the other hand, when there are two t′ states, the top

sector mass matrix takes the form

Mt =

λt
v√
2
λ1

v√
2

m2

m1 M1 λ12
v√
2

λ2
v√
2
λ21

v√
2

M2

 , (5.25)

where we dropped possible Clebsch-Gordan coefficients. Here ψ1 (ψ2) is a weak singlet or

triplet (doublet or quartet), m1 (m2) vanishes unless ψ1 = T (ψ2 = Q), and λ1,2 vanishes

if ψ1,2 is one of the multiplets in eq. (5.24). The bottom sector mass matrix in presence of

two b′ states has an analog structure. The mixing with the SM is controlled by ratios of

the type λv/M or m/M . They are mostly constrained by the Zbb̄ couplings and by S and

T . One typically expects |λv/M |,|m/M | . 0.1− 0.2, in analogy with figures 3–6. Possible

cancellations among the various contributions could relax these constraints. A detailed

analysis of the whole parameter space of these models is beyond the scope of this paper.

Some recent study can be found in ref. [101], that discusses the phenomenology of the 2t′

and 2t′ + b′ cases.

Let us focus on the possibility to generate the top mass (and analogously the bottom

one) through the mixing with the VLQs, in the limit where the SM Yukawa coupling λt
(λb) vanishes. This is possible whenever the determinant of Mt in eq. (5.25) is non-zero

for λt = 0, that is, if and only if the two VLQs both couple directly to the SM. The

resulting top mass is of order mt ∼ λv(λv/M)2, λv(m/M) or λv(m/M)2. The latter

possibility is motivated by partial compositeness. In this scenario, the SM fermions do

not couple directly to the composite Higgs, therefore λt = λ1 = λ2 = 0 in eq. (5.25).

Rather, they couple linearly to a composite vector-like fermion with the same quantum

numbers. This corresponds to the VLQs T and Q for the case of the top quark, leading to

mt ' (mT /MT )(mQ/MQ)λQT v/
√

2, and analogously B and Q for the case of the bottom.

The phenomenology of top and bottom partners in composite models, and the associated

constraints, are analysed e.g. in refs. [98, 102, 103] (see also ref. [88] for warped extra

dimensional models).

– 48 –



J
H
E
P
0
1
(
2
0
1
6
)
0
3
6

5.3 Vector-like plus Majorana quarks

We define a Majorana quark to be a Y = 0 fermion multiplet in a non-trivial, real colour

representation, Rc = Rc 6= 1. Such object may couple to the Higgs only in the presence

of a VLQ in the same colour representation. As a consequence, these new fermions do

not mix with the SM ones and the lightest mass eigenstate is stable. For the smallest

possible representation, Rc = 8, the searches for a stable gluino lead to a lower bound

' 1.3 TeV [33]. For bigger representations, Nc ≥ 27, one expects an even more stringent

limit, given the larger production cross-section and a similar hadronisation behaviour.

• One VLQ plus one Majorana quark. The most general set formed by a Majorana

quark coupled to a VLQ can be written as

χR ∼ (Rc, Rw, 0) , ψL, ψR ∼ (Rc, Rw ± 1,−1/2) , Rc = Rc 6= 1 . (5.26)

If Rc is odd, one needs Nw 6= 2 + 4n to avoid the global SU(2)w anomaly. The Lagrangian

and the structure of the mass matrices are identical to the analogue leptonic case Rc = 1,

see eqs. (4.46) to (4.52). Here we discuss only the phenomenological differences due to the

effect of colour. The new states contribute with an additional factor Nc to the one-loop

diagrams for the S and T parameters, as well as for the Higgs signal strengths µγγ and

µγZ . In addition, they also contribute to the Higgs production via gluon fusion, with an

amplitude related to the photon-photon one. For each sector of charge Q that couples to

the Higgs, one has Aγγχψ,Q = (NcQ
2)/[3C(Rc)/2]Aggχψ,Q. The gluon-gluon channel receives

a non-zero contribution even from the Q = 0 sector, that is present when Nw is odd.

Since the new quarks are necessarily heavy, their loop contributions can be estimated

with good accuracy using the LET approximation, as described in appendix B.2 and in

section 4.4. In particular, Aγγχψ,Q is obtained from the amplitude in eq. (4.51), times a

factor Nc. For the gluon-gluon channel, summing over the different sectors one finds

Aggχψ ' KNwC(Rc)
λv

Mχ

λ̃v

Mψ
, (5.27)

where K1 = −4, K2 = −2, K3 = −8/3, K4 = −2, and so on. As the top quark amplitude

is approximately equal to one, Aχψgg gives roughly the ratio between the contribution of new

fermions and the SM one. Note that either constructive or destructive interference with

the SM amplitude is possible. The mixing parameters, of the generic form λv/M , must

satisfy the constraints from Rgg and Rγγ , whose allowed ranges are given in appendix B.3.

In the minimal case with Rc = 8 and Rw = 1, only Rgg receives a correction, leading to

the upper bound |λv/M | . 0.17. One expects similar or even stronger bounds from S and

T , in analogy with the cases of figures 8 and 9. Up to possible cancellations, a larger Rc
leads to stronger constraints on the model, and to larger deviations in the Higgs couplings.

• One VLQ plus two Majorana quarks. Coming to sets formed by two Majorana

quarks plus one VLQ, the first obvious possibility is to add a second copy of χR to the

previous case. The additional Majorana multiplet automatically cancels the global SU(2)

– 49 –



J
H
E
P
0
1
(
2
0
1
6
)
0
3
6

anomaly, therefore Nw is arbitrary. The phenomenology is the generalisation of the one

discussed above.

The second and last possibility is provided by the set

χ1R ∼ (Rc, Rw, 0), ψL, ψR ∼ (Rc, Rw + 1,−1/2), χ2R ∼ (Rc, Rw + 2, 0), Rc = Rc 6= 1 ,

(5.28)

with Nw necessarily odd if Rc is odd. The Lagrangian is the same as in eq. (4.54), and the

structure of the mass matrices is also the same as in section 4.4. Let us just present the

amplitude for Higgs production into gluon-gluon fusion, that is obtained by generalising

eq. (5.27),

Aggχ1χ2ψ
(Rw) ' C(Rc)

(
KNw

λ1v

Mχ1

λ̃1v

Mψ
+KNw+2

λ2v

Mχ2

λ̃2v

Mψ

)
. (5.29)

In the minimal case where Rc = 8 and Rw = 1, the allowed range for Rgg leads to a bound

on the mixing parameters |λv/M | . 0.13, where we assumed there is no hierarchy nor

cancellations among the various mixing parameters. The Rγγ constraint is less restrictive.

6 Conclusions

We undertook a systematic analysis of new fermions interacting with the Higgs boson.

Their properties (gauge charges, masses, Yukawa couplings) are significantly more con-

strained after the measurement of the Higgs mass and couplings at the first run of the

LHC. It is intriguing to identify the few extensions of the SM that outlived this test. We

especially aimed at those scenarios that may depart from the decoupling limit, in which

the new fermions become very heavy and/or their mixing with the SM becomes very small.

In section 2 we presented the complete classification of sets of n chiral fermions interact-

ing with the Higgs, for n ≤ 4. While the minimal possibilities are well-known, already for

n = 3 and 4 we singled out several exotic sets of fermions with a peculiar phenomenology.

They emerge from a non-trivial interplay of several self-consistency conditions: cancellation

of gauge anomalies, absence of charged massless components, non-zero Yukawa coupling

to the SM Higgs doublet. In our classification we recovered as a special case the fermion

content of well-motivated theories beyond the SM, such as the seesaw, supersymmetry, or

partial compositeness. These cases are situated in a more general context, by considering

the most general Lagrangian for the new fermions, not restricted by additional theoretical

considerations. Would the evidence of a new particle emerge from data, one should indeed

explore the full parameter space, before endorsing a specific model. We also argue that

larger sets of new fermions, with n ≥ 5, do not allow for qualitatively different phenom-

ena, as all the possible building blocks of a fermion mass matrix already appeared in our

classification.

In order to examine the phenomenology of the new fermions, in the appendices A

and B we derived the general expression of the fermion couplings to the EW gauge bosons

and to the Higgs boson, for fermions in arbitrary SM representations (Rc, Rw, Y ). We

also provided the formalism to define the gauge and Higgs boson couplings to the fermion

mass eigenstates, after EWSB. Besides these tree-level results, we presented the general
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one-loop amplitudes for the gauge boson vacuum polarisation, ΠV V ′ , that allows to define

the EW oblique parameters S and T , and for the Higgs coupling to gauge bosons, hV V ′,

that allows to compute the rate for h→ gg, γγ, γZ.

Let us summarise the main results of our phenomenological survey of sections 3 to 5:

• Several exotic families of chiral fermions, that receive a mass from EWSB only, are

still marginally compatible with EW precision tests and direct collider bounds. How-

ever, the coloured ones are neatly excluded, as they would greatly enhance the hgg

coupling. On the other hand, a colourless family formed by two weak doublets and

four singlets is still compatible with the measured hγγ coupling.

• The mixing of two or more sterile neutrinos with the SM leptons can have observable

effects, despite the smallness of the neutrino masses. If the sterile neutrinos are

lighter than the EW scale, they may modify significantly the Higgs invisible width;

if heavier, they can appreciably contribute to the S and T parameters.

• In general, a heavy charged lepton τ ′ cannot mix significantly with the τ because

of the Zττ -coupling constraint. Nonetheless, in a few special regions of parameters

interesting phenomena are possible: (i) If mτ ′ < mh, the decay rate for h→ τ ′τ can

be significant despite the small mixing. (ii) When both τL and τR mix with heavy

leptons, it is possible to generate mτ entirely through the small mixing permitted

by the Z couplings, as long as the two heavy leptons are connected by a Yukawa

coupling λ & 3. (iii) If the new lepton sector is arranged to have an approximate

custodial symmetry, the Z couplings are protected. In this case a large τ − τ ′ mixing

is allowed, and it may strongly suppress h→ ττ .

• There are two extended classes of new fermions that can couple to the Higgs dou-

blet without involving the SM fermions: either a pair of vector-like fermions, whose

components can have an arbitrary charge Q, or a pair formed by a vector-like and

a Majorana fermion, whose components have (demi-)integer Q. These fermion pairs

were not studied in full generality in the previous literature, and they can produce

large observable effects, even when the mixing with the SM fermions is zero. By vary-

ing their mass matrix parameters, one can typically scan over the full allowed range

for the signal strength µγγ , while remaining in agreement with direct collider searches

and EW precision tests. In most cases µγZ receives a correction comparable to µγγ ,

but when the latter is accidentally close to one, it is possible to have δµγZ � δµγγ .

We will discuss this point in detail below.

• The mixing θ of a heavy quark t′ or b′ with its SM partner is constrained by the

EW precision tests. Nonetheless, the b− b′ mixing may significantly suppress the hbb̄

coupling, leading to corrections as large as δµγγ ' δµγZ ' 0.6. We also notice two

remarkable circumstances that allow for a large mixing: (i) The corrections to Zbb̄

from t−t′ mixing are loop-suppressed and may be also suppressed by (mt/mt′)
2. The

T parameter receives opposite sign corrections that cancel each other for a specific

value of sin θ ×mt′ . Both conditions can be realised in the case of the VLQ doublet
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(X,T ), allowing for a large sin θ . 0.5. (ii) The Lagrangian of the new quarks can

preserve a custodial symmetry, that suppresses the corrections to T as well as to the

Zbb̄ couplings. In this custodial subspace of parameters, the upper bound on the

mixing relaxes, the exact value depending on the model: for the VLQ doublet Q

coupled to tR and bR we find sin θ . 0.15, while for the two doublets Q+YB coupled

to bR (XT +Q coupled to tR) one can reach sin θ . 0.45 (sin θ . 0.8).

In the course of our analysis, we paid special attention to the relative contribution

of the new fermions to h → γγ and h → γZ, as the former rate is already constrained

to be close to the SM prediction, while the latter could still depart strongly from its SM

value. It is commonly believed that new physics cannot provide a large correction to the

γZ channel without affecting γγ as well. Indeed, let us consider the effective Lagrangian

before EWSB, that corresponds to the limit where the new fermions are heavier than the

EW scale. There are several dimension-six operators involving the Higgs doublet H and

the field-strengths Bµν , W a
µν , listed e.g. in ref. [104]. The operators contributing to hγZ

can be generated, at one loop, only by two fermion multiplets coupled to H. At least

one of these fermions has non-zero hypercharge, thus it necessarily induces the operator

H†HBµνB
µν as well, that contributes to hγγ. One can rephrase the same argument in

terms of the effective Lagrangian for the hV V ′ couplings after EWSB, that is displayed

in eq. (B.8). The coefficients of the dimension-five operators, generated at one loop by

the fermion mass eigenstate fi, are given in eq. (B.22) for hγγ and in eq. (B.34) for hγZ.

The fermion fi cannot contribute to the γZ channel only, simply because one needs a

charge Qi 6= 0 and a non-zero coupling yi (or ỹi) to the Higgs, therefore the γγ channel

receives a contribution too. This argument, however, has some loopholes: first, the sum

over all fermion mass eigenstates can lead to a cancellation in the signal strength µγγ and

not in µγZ , as the summands in the two channels differ by a factor ∼ gVi /Qi; second, hγZ

receives an additional contribution from loops involving two fermion mass eigenstates, with

off-diagonal couplings to both h and Z, see eqs. (B.31) and (B.32).

As a matter of fact, in our survey of fermionic extensions of the SM, we encountered

a few scenarios where δµγZ � δµγγ :

(i) One can exploit the order one differences between the Z and γ couplings and loop

functions. For example, in the case of t−t′ mixing, δµγγ is proportional to A1/2(τt′)−
A1/2(τt), that is very small as both form factors are close to the asymptotic value

A1/2(0). On the contrary, the correction to µγZ is controlled by gVt′t′A1/2(τt′ , λt′) −
gVttA1/2(τt, λτ ), that is in general of order one. Also, off-diagonal loops provide an

additional contribution of the same order. Unfortunately, the absolute size of the

correction is too small to be observed, as the mixing between the SM and new fermions

is subject to the EW precision constraints. We find at best δµγγ � δµγZ ' 0.2, hardly

visible even with 3000 fb−1 at 14 TeV, see table 5.

(ii) A much larger δµγZ is possible when new fermions couple to each other through the

Higgs. Each sector of heavy states with given charges Nc and Q gives a contribution

to the hγγ amplitude proportional to
∑

i yiv/mi. We found that the structure of the
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fermion mass matrix allows this sum to vanish, see the discussion below eq. (4.39).

At the same time, the γZ amplitude is proportional to
∑

i g
V
i yiv/mi. One can obtain

e.g. µγZ ' 2, by means of a pair of states with NcQs
2
ψ ' 3, where sψ is the relevant

mixing parameter. Alternatively, the same effect is produced by several states with

smaller charges. The required set of parameters can be in agreement with S and T

as well. This opens a discovery opportunity for the second run of the LHC.

(iii) There is a second possibility to achieve a large µγZ . The signal strength µγγ may be

accidentally close to the SM, because the amplitude generated by two new fermion

multiplets coupled to the Higgs has sign opposite to the SM one, and for Aγγf '
−2AγγSM one recovers µγγ ' 1. One needs either small weak multiplets with large

charges, NcQ
2s2
ψ ' 5, or larger multiplets with smaller charges. In this region of

parameters the S and T constraint can be satisfied and, moreover, one generically

expects µγZ much larger than one, because for large values of Q the amplitude AγZf
interferes constructively with the SM. We find that one can almost saturate the

present experimental bound µγZ . 10, therefore coming LHC data will be able to

quickly probe this scenario.

In the cases listed above, a mild tuning of the parameters is sufficient to comply with the

presently allowed range for µγγ , shown in table 4. In the future, the room for a large µγZ
will progressively shrink.

The second run of the LHC, that recently started data taking at 13 TeV, will close in on

most of the scenarios we have been considering. The allowed regions of parameters at low

masses will be covered by direct searches for new fermionic resonances. The islands that

survive at large mixing between the SM and new fermions will be probed by the increasing

precision in the Higgs coupling measurements, even though there are models where one

needs to wait for a high accuracy. In the absence of a signal, we shall be virtually cornered

to the region of very heavy masses and/or very small mixing. Even when the new fermions

are too heavy to be directly produced and mix negligibly with the SM, their Yukawa

couplings to the Higgs can be effectively constrained by the radiative Higgs couplings.
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A Electroweak precision tests in presence of new fermions

In this appendix we provide general formulas for the EW gauge boson couplings to fermions,

as well as for their vacuum polarisation amplitudes. This allows to define and compute the
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oblique parameters S and T [105–108]. We discuss the experimental constraints on these

parameters, as well as on the Z couplings to light SM fermions, such as Zbb.

A.1 Electroweak gauge boson couplings

The couplings of the EW gauge bosons to a chiral fermion multiplet in a given representa-

tion (Rw, Y ) of the EW gauge group are determined by the covariant derivative

Dµ = ∂µ − igT aW a
µ − ig′Y Bµ = ∂µ − i

g√
2

(T+W+
µ + T−W−µ )− igT 3W 3

µ − ig′Y Bµ , (A.1)

where T a are the SU(2)w generators for Rw, T± = T 1 ± iT 2 and W±µ = (W 1
µ ∓ iW 2

µ)/
√

2.

In full generality, the resulting non-vanishing couplings are

cW
±

(fm′ , fm) = g√
2
(T±)m′m = g√

2

√
j(j + 1)− T 3

m(T 3
m ± 1)δm′,m±1 ,

cW
3
(fm′ , fm) = gT 3

mδm′m , cB(fm′ , fm) = g′Y δm′m ,
(A.2)

where j = (Nw − 1)/2 is the weak isospin, and the Nw components of Rw are labelled by

m,m′ = −j,−j+1, . . . , j−1, j, and have electric charge Qm = T 3
m+Y . It is straightforward

to derive from eq. (A.2) the couplings of Zµ = cwW
3
µ − swBµ and Aµ = swW

3
µ + cwBµ,

cZ(fm′ , fm) =
g

cw
(T 3
m − s2

wQm)δm′m , cA(fm′ , fm) = eQmδm′m . (A.3)

After EWSB, for each value of the charge Q, the fermion mass term can be written as

fLα(MQ)αβfRβ , where α, β = 1, . . . , nQ run over the nQ fermions of charge Q (in a given

colour representation). In general the mass matrix is not diagonal and the mixing can be

described by fLα = (ULQ)αifLi and fRα = (URQ )αifRi, where fi are the mass eigenstates.

Therefore, the couplings of the gauge bosons to the mass eigenstates are

(cVL,R)ij = (cVL,R)αβ(UL,RQ )∗αi(U
L,R
Q′ )βj , V = W±,W 3, B , (A.4)

where the (cVL,R)αβ are given in eq. (A.2), and Q = Q′ ± 1 for V = W±, Q = Q′ for

V = W 3, B.

The mixing cancels out in the photon couplings, because U(1)em is unbroken, and

one finds immediately (cAL,R)ij = eQδij . The Z-boson couplings to the mass eigenstates,

instead, do depend on the mixing. Using the parametrisation

Lf̄fZ =
g

cw
Zµ
∑
i,j

fiγ
µ
(
gLijPL + gRijPR

)
fj ≡

g

cw
Zµ
∑
i,j

fiγ
µ
(
gVij − gAijγ5

)
fj , (A.5)

one finds

gL,Rij = T 3
αδαβ(UL,RQ )∗αi(U

L,R
Q )βj − s2

wQδij , gV,A ≡ gL ± gR
2

. (A.6)

The matrices gL,R (gV,A) are hermitian, with possibly non-vanishing off-diagonal entries.

Note that the mixing of fermions with equal EW charges does not affect the couplings to

the neutral gauge bosons: if T 3
α (or, equivalently, Yα) is the same for all α, then one can use

(UL,RQ )∗αi(U
L,R
Q )αj = δij , and the couplings to Z (as well as to W 3 and B) reduce to their
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unmixed values. Thus, the neutral-current couplings of SM fermions receive a correction,

only when they mix with new fermions with a different value of T 3 (of Y ). For example,

the mixing of two left-handed fermions fLa and fLb of charge Q amounts to

ULQ =

(
c s

−s c

)
, gL =

(
T 3
a − s2

wQ 0

0 T 3
b − s2

wQ

)
+ (T 3

a − T 3
b )

(
−s2 sc

sc s2

)
.

In this paper we assume that new fermions mix with the third SM family only. Indeed,

flavour-changing neutral currents among the different SM families are strongly constrained

experimentally.

A.2 Constraints from S and T

The vacuum polarisation amplitudes for the EW gauge bosons, defined by the effective

momentum space Lagrangian

LΠ = −W+
µ Πµν

WW (p)W−ν −
1

2
BµΠµν

00 (p)Bν −W 3
µΠµν

30 (p)Bν −
1

2
W 3
µΠµν

33 (p)W 3
ν , (A.7)

can be decomposed into transverse and longitudinal parts,

Πµν
V V ′(p) = ΠT

V V ′(p)(p
2gµν−pµpν)+ΠL

V V ′(p)p
µpν = ΠV V ′(p

2)gµν +(pµpν− terms) . (A.8)

As in the experiments the mass of the external fermions is much smaller than the EW

scale, m2
f � m2

Z , one can drop the pµpν-terms and expand in p2,

ΠV V ′(p
2) = ΠV V ′(0) + p2Π′V V ′(0) +O(p4) . (A.9)

The lowest terms in this expansion are sufficient to describe accurately the effect of heavy

new physics: when new particles at scale mF contribute to the vacuum polarisation am-

plitudes, the higher order corrections are suppressed by powers of m2
Z/m

2
F . Taking into

account that three coefficients can be traded for the experimental values of α, sw and

mZ , and two others are determined by the Ward identities for the photon, one finds that

two parameters are sufficient to characterise the effect of new physics at leading order in

m2
Z/m

2
F [107, 108]. The combination that describes the custodial symmetry breaking at

leading order is given by

T ≡ 1

αc2
wm

2
Z

[
(Π33(0)−ΠSM

33 (0))− (ΠWW (0)−ΠSM
WW (0))

]
. (A.10)

The combination that breaks the weak isospin at leading order, but respects the custodial

symmetry, is given by

S ≡ 4swcw
αm2

Z

[
(Π30(m2

Z)− (Π30(0))− (ΠSM
30 (m2

Z)−ΠSM
30 (0))

]
' 4swcw

α
[Π′30(0)−Π′

SM
30 (0)] .

(A.11)

The approximation in terms of amplitude derivatives evaluated at p2 = 0 is appropriate

only for new physics much heavier than mZ that does not mix with light SM particles;

in the general case one should keep the definition of S in terms of amplitude differences,
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Figure 10. The 68 % (red), 95 % (orange) and 99 % (yellow) C.L. ellipses in the S−T plane, from

the fit of ref. [109], with the other EW parameter U left free. The black dot indicates the best fit,

while the star at S = T = 0 is the SM point, with mt,ref = 173 GeV and mh,ref = 125 GeV.

f1

f2

V µ V ′ν

icVL,RγµPL,R icV
′

L,RγνPL,R

p
−→

Figure 11. Contribution of two fermion mass eigenstates f1 and f2 to the vacuum polar-

isation amplitude for the gauge bosons V µ and V ′ν . The relevant couplings are defined by

Lf̄fV = Vµfiγ
µ[(cVL )ijPL + (cVR)ijPR]fj .

to avoid unphysical singularities that may appear in the derivative. The subtracted SM

contribution is evaluated at a reference point for the SM parameters. Following ref. [109], if

one takes mt,ref = 173 GeV and mh,ref = 125 GeV, the present experimental allowed ranges

are given by

S = 0.05± 0.11 , T = 0.09± 0.13 , (A.12)

with a correlation coefficient ' 0.9. In figure 10 we display the allowed region in the

S − T plane, that we adopt in the rest of the paper to constrain the parameter space of

each model.

In order to estimate the contributions to S and T , in any theory where the new

physics is weakly coupled, one should just compute the one-loop diagram contributing to

the EW gauge boson vacuum polarisation amplitudes, shown in figure 11. The most general

couplings of the EW gauge bosons to the fermion mass eigenstates are defined in eq. (A.4).

The functions ΠV V ′(p
2) defined in eq. (A.8) will receive different contributions from the

left- and right-handed couplings,

ΠV V ′ = cVL c
V ′
L ΠLL + cVRc

V ′
R ΠRR + cVL c

V ′
R ΠLR + cVRc

V ′
L ΠRL . (A.13)
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Performing the computation with dimensional regularisation, one finds the following gen-

eral result:

ΠLL,RR(p2) =
Nc

(4π)2

[
(m2

1 −m2
2)3

6p4
ln
m2

1

m2
2

− (m2
1 −m2

2)2

3p2
− (m2

1 +m2
2)

(
1

ε̄
+ ln

4π2µ2

m1m2
+

1

6

)
+

2

3
p2

(
1

ε̄
+ ln

4π2µ2

m1m2
+

7

6

)
+

(
(m2

1 −m2
2)2

3p2
+
m2

1 +m2
2

3
− 2

3
p2

)
R(p2)

]
,

(A.14)

ΠLR,RL(p2) =
2Ncm1m2

(4π)2

[
−m

2
1 −m2

2

2p2
ln
m2

1

m2
2

+
1

ε̄
+ ln

4π2µ2

m1m2
+

3

2
−R(p2)

]
, (A.15)

where Nc is the dimension of the SU(3)c representation of the fermions f1,2, m1,2 are the

masses of f1,2, ε̄ and µ are defined by d4k ≡ µ4−ndnk and 1/ε̄ ≡ 2/(4− n)− γ − lnπ with

γ ' 0.5772, and finally

R(p2) ≡
√
λ

p2
log

m2
1 +m2

2 −
√
λ− (p2 + iε)

2m1m2
, λ ≡ (m2

1 −m2
2)2 − 2p2(m2

1 +m2
2) + p4 .

(A.16)

Note that R(p2) is invariant for
√
λ→ −

√
λ and it has a non-vanishing imaginary part for

p2 > (m1 +m2)2. When evaluating S in eq. (A.11), one must include only the real part of

R(m2
Z), while the imaginary part contributes to the decay width of the EW gauge bosons,

that may be also modified with respect to its SM value. Note also that, when f1,2 are

Majorana fermions, one must include in the amplitude an additional symmetry factor 1/2.

Let us provide for convenience the form of ΠV V ′(p
2) in some relevant limits. For

m1 = m2 = 0 one has

ΠLL,RR(p2) =
2Nc

3(4π)2
p2

(
1

ε̄
+ log

4π2µ2

−(p2 + iε)
+

7

6

)
, ΠLR,RL(p2) = 0 . (A.17)

This limit is relevant for loops involving the light SM fermions (all but the top quark), whose

mass can be neglected. In order to compute T and S (in the derivative approximation),

it is sufficient to compute the first and second term in the p2-expansion of ΠV V ′(p
2),

respectively:

ΠLL,RR(0) =− Nc

(4π)2

[
(m2

1 +m2
2)

(
1

ε̄
+ ln

4π2µ2

m1m2

)
+
m4

1 +m4
2

m2
1 −m2

2

ln
m2

m1

]
,

ΠLR,RL(0) =
2Ncm1m2

(4π)2

[
1

ε̄
+ ln

4π2µ2

m1m2
+

1

2
+
m2

1 +m2
2

m2
1 −m2

2

ln
m2

m1

]
, (A.18)

Π′LL,RR(0) =
2Nc

3(4π)2

[
1

ε̄
+ln

4π2µ2

m1m2
− 1

6
− 2m2

1m
2
2

(m2
1−m2

2)2
+
m6

1+m6
2−3m4

1m
2
2−3m2

1m
4
2

(m2
1 −m2

2)3
ln
m2

m1

]
,

Π′LR,RL(0) =
Nc

(4π)2

m1m2

(m2
1 −m2

2)3

(
m4

1 −m4
2 + 4m2

1m
2
2 ln

m2

m1

)
. (A.19)

For m1 = 0 and m2 = m (relevant e.g. for the bottom-top quark loop) one obtains

ΠLL,RR(0) = −Ncm
2

(4π)2

(
1

ε̄
+ ln

4π2µ2

m2

)
, Π′LL,RR(0) =

2Nc

3(4π)2

(
1

ε̄
+ ln

4π2µ2

m2
− 1

6

)
,

(A.20)
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and ΠLR,RL(0) = Π′LR,RL(0) = 0. For m1 = m2 = m 6= 0 (loops involving a unique fermion

mass eigenstate) one reduces to

ΠLL,RR(0) = −ΠLR,RL(0) = −2Ncm
2

(4π)2

(
1

ε̄
+ ln

4π2µ2

m2
− 1

2

)
, (A.21)

Π′LL,RR(0) =
2Nc

3(4π)2

(
1

ε̄
+ ln

4π2µ2

m2
− 1

)
, Π′LR,RL(0) =

Nc

3(4π)2
. (A.22)

As an illustrative example, consider the case of a fermion “family” with no mixing

with the SM fermions, formed by one weak doublet QL = (TL, BL) ∼ (Rc, 2, Y ) and two

singlets TR ∼ (Rc, 1, Y +1/2) and BR ∼ (Rc, 1, Y −1/2), with dim(Rc) = Nc. After EWSB

they combine into two mass eigenstates T and B with masses mT and mB; their non-zero

couplings to EW gauge bosons are obtained from eq. (A.2),

cW
±

L (T,B) =
g√
2
, cW

3

L (T ) =
g

2
, cW

3

L (B) = −g
2
, (A.23)

cBL (T ) = cBL (B) = g′Y , cBR(T ) = g′
(
Y +

1

2

)
, cBR(B) = g′

(
Y − 1

2

)
. (A.24)

To compute the correction to S, one should evaluate eqs. (A.14)–(A.15) for p2 = m2
Z and

m1 = m2 = mT,B, while for p2 = 0 one can use directly eq. (A.21) with m = mT,B. Adding

the various contributions to Π30 as shown in eq. (A.13), and replacing into eq. (A.11), the

result is

ST,B =
Nc

6π

[(
1−2Y ln

m2
T

m2
B

)
+
m2
Z

m2
T

(
1

2
+

4Y

3

)
+
m2
Z

m2
B

(
1

2
− 4Y

3

)
+O

(
m4
Z

m4
T,B

)]
. (A.25)

If one adopted the approximate expression for S in terms of derivatives, given by the right-

hand side of eq. (A.11), then using eq. (A.22) one finds only the first term in the squared

bracket of eq. (A.25), which is accurate for mT,B � mZ . To compute the correction to T ,

one should use eq. (A.21) for the T and B loops that contribute to Π33, and eq. (A.18) for

the T/B loop that contributes to ΠWW . Replacing into eq. (A.10) one obtains

TT,B =
Nc

16πc2
ws

2
wm

2
Z

(
m2
T +m2

B − 2
m2
Tm

2
B

m2
T −m2

B

ln
m2
T

m2
B

)
. (A.26)

Particularising these results to the case of the SM top and bottom quarks (Nc = 3,

Y = 1/6), and neglecting the uncertainty on mb as well as (m2
b/m

2
t )-corrections, we can im-

mediately extract the well-known dependence of S and T on the value of the top quark mass,

Stop = − 1

6π
ln

m2
t

m2
t,ref

, Ttop =
3

16πc2
ws

2
w

m2
t −m2

t,ref

m2
Z

. (A.27)

A.3 Constraints from Zff

The Z-boson couplings to the SM fermions are precisely measured. We discuss only those

with the third family, since in this paper we assume that the mixing of the new fermions
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with the light families is negligible. The deviations with respect to the SM can be expressed

in terms of the Z partial decay width into any given final state ff ,

R(Z → ff) ≡ Γ(Z → ff)

ΓSM(Z → ff)
≡ 1 + δR(Z → ff) , f = ντ , τ, b . (A.28)

For each fermion f there are two independent couplings gL,R
ff

as shown in eq. (A.6), that

can be separately constrained if the angular distribution of the fermions is measured.

Beginning from leptons, the Z invisible width and its width into taus are determined at

the per mil level [3], Γ(Z → inv) = 499.0±1.5 MeV and Γ(Z → τ+τ−) = 84.08±0.22 MeV.

Given this precision and the relatively good agreement between the central values and the

SM predictions, we constrain the mixing with the new leptons by imposing a rough 3σ

upper bound,

|δR(Z → inv)| ≤ 9 · 10−3 ,
∣∣δR(Z → τ+τ−)

∣∣ ≤ 8 · 10−3 . (A.29)

Coming to the Z coupling to bottom quarks, a more detailed discussion is worth, to

fairly gauge the resulting constraint on the new fermions. The Zbb̄ Lagrangian can be

written as

LZbb̄ =
g

cw
Zµb γ

µ
[(
gLbb̄,SM + δgLbb̄

)
PL +

(
gRbb̄,SM + δgRbb̄

)
PR

]
b , (A.30)

where the SM couplings at tree-level are given by gL
bb̄,SM

= −1/2+s2
w/3 and gR

bb̄,SM
= s2

w/3.

Deviations at tree-level occur when the bottom quark mixes with a new fermion with a

different value of T 3 (and Y ). The present experimentally allowed range is given by [110]

δgLbb̄ = 0.0016± 0.0015 , δgRbb̄ = 0.019± 0.007 , (A.31)

with a correlation coefficient ' 0.8. In figure 12 we display the allowed region in the

δgR
bb̄
− δgL

bb̄
plane. Note that the left- and right-handed couplings are determined with per

mil and per cent precision, respectively, and the best fit region is incompatible with the SM

at about 99% C.L.. In some analyses, a slightly better agreement is obtained, at about 95%,

due to different details in the global electroweak fit, see e.g. ref. [111]. The discrepancy

with the SM comes mostly from the measurement of the forward-backward asymmetry

AbFB, that may be just an upward statistical fluctuation, an unidentified systematic error,

or alternatively an indication for a significant new-physics contribution. In this paper, in

order to constrain the new fermions that modify the Zbb̄-couplings, we will conservatively

enlarge the 99% C.L. region, by allowing it to shift towards the SM point, till the latter

touches the 68% ellipse, as illustrated in figure 12. Such a shift roughly corresponds to

introduce a systematic error in the measurement of AbFB.

The mixing with new fermions can be such that no tree-level deviations occur in the

Zbb-couplings, but they do occur in the Wtb coupling and/or in the Ztt couplings. These

deviations may affect significantly gL,R
bb̄

, because the contribution of one-loop diagrams

involving the top quark and the W -boson is larger than the experimental uncertainty.

Also new fermions may correct significantly Zbb at the one-loop level, if they are not much
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Figure 12. The 68% (blue), 95% (magenta) and 99% (cyan) C.L. ellipses in the δgR
bb̄
− δgL

bb̄
plane,

extracted from ref. [110]. The black dot indicates the best fit, while the star at the origin represents

the SM. In our analysis, we allow for a larger parameter space, delimited by the dotted line, that

is obtained by shifting the 99% ellipse towards the origin, till the SM point enters the 68% region.

heavier than the top. The detailed structure of the one-loop corrections to Zbb can be found

e.g. in ref. [112], that we employ for our analysis of models with modified top couplings.

For example, the correction to the left-handed coupling, from the top loops only, can be

written as

δgLbb̄ = δgLtt̄fL(mW /mt) + δgRtt̄fR(mW /mt) + δgL
tb
fW (mW /mt) , (A.32)

where δgL,R
tt̄

are defined in analogy to eq. (A.30) with t↔ b, the WtLbL coupling is given

by (g/
√

2)(1 + δgL
tb

), and the functions fL,R,W can be extracted from ref. [112].

B Higgs boson couplings in presence of new fermions

In this appendix we present a general parametrisation for the Yukawa couplings among

the SM Higgs doublet and two arbitrary fermion multiplets. We then analyse the resulting

modifications in the Higgs couplings to the SM particles, at leading order: corrections

at tree-level to the Higgs-fermions couplings, and one-loop corrections to the Higgs-gauge

bosons couplings. Finally, we briefly review the present experimental constraints on these

couplings.

B.1 Tree-level Higgs couplings

The SM Yukawa couplings are given by

− LSM
Y = yuqLuRH̃ + ydqLdRH + yelLeRH + h.c. , (B.1)

where qL = (uL dL)T , H = (H+H0)T and H̃ ≡ iσ2H
∗ are SU(2)w doublets, while uR, dR

and eR are singlets, and flavour indexes are understood.
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In full generality, the Higgs doublet may have a non-zero Yukawa interaction with any

pair of chiral fermions that transform under SU(3)c×SU(2)w×U(1)Y as ψL ∼ (Rc, Rw, Y )

and ψu,dR ∼ (Rc, Rw − 1, Y ± 1
2):

− LY =
∑
ψL

∑
ψuR

yψLψuR

(
ψLψ

u
RH̃
)

+
∑
ψdR

yψLψdR

(
ψLψ

d
RH
)+ h.c. . (B.2)

Here the parentheses stand for the appropriate contraction of the SU(2)w indexes. Let us

denote the components of ψL by the index m = j, j−1, . . . ,−j+1,−j, where j = (Nw−1)/2.

Then, the multiplet ψL with components (ψL)m ≡ (ψL)m transforms in the conjugate

representation R∗w. It is possible to define a multiplet ψL
′

that properly transforms in the

representation Rw, by using the SU(2)w conjugation matrix R, (ψL
′
)m = Rmn(ψL)n ≡

(−1)j−m(ψL)−m. The 2j components of ψuR pair with the upper (lower) 2j components

of ψL
′

to form the upper (lower) component of a weak doublet D. The corresponding

Clebsch-Gordan coefficients are given by〈
j, j − 1

2
;m,−m± 1

2

∣∣∣∣ 1

2
,±1

2

〉
= ±(−1)j−m

√
j ±m

j(2j + 1)
. (B.3)

Contracting D with H̃ into a weak singlet, Da(iσ2)abH̃b, one finds

(
ψLψ

u
RH̃
)
≡

j∑
m=−j+1

√
j +m

j(2j + 1)

[
(ψL)m(ψuR)m− 1

2
H̃ 1

2
+ (ψL)−m(ψuR)−m+ 1

2
H̃− 1

2

]
. (B.4)

The same expression holds for ψuR ↔ ψdR and H̃ ↔ H as well. Of course, all the results

above also apply when one makes everywhere the replacement L↔ R.

The relative size of the Clebsch-Gordan coefficients has important phenomenological

consequences, e.g. the different components of the fermion multiplets acquire a different

mass after EWSB. The overall normalisation of the SU(2)w contraction is also important,

to establish the perturbative range for a Yukawa coupling y: for instance, the contribution

of y to the Higgs wavefunction renormalisation at one-loop goes as y2/(16π2) times the

sum of the Clebsch-Gordan coefficients squared, taken over all possible isospin components

in the loop. Adopting the above conventions, such a sum is normalised to one, and we can

easily define the region where perturbation theory can be trusted, by requiring y/(4π)� 1.

However, we keep the conventional normalisation for the doublet-doublet contraction into

a singlet, with no overall factor 1/
√

2, that strictly-speaking should be included: the issue

of SU(2)w normalisation is more relevant for large weak multiplets.

We note that the perturbative upper bound on a Yukawa coupling y depends on the

process under consideration. Schematically, the next-to-leading order amplitude is given by

the leading order one times a factor yngmFc/(16π2), where g stands for other couplings such

as gauge couplings, and Fc is the colour factor, with typical values Fc = 1, Nc, C(Rc). In

the example of the Higgs wavefunction normalisation adopted above, one has n = 2, m = 0

and Fc = Nc, therefore we could have taken into account the SU(3)c contraction by adding
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a factor 1/
√
Nc on the right-hand side of eq. (B.4), or alternatively requiring y

√
Nc/(4π)�

1. However, the one-loop amplitudes relevant in our analysis (EW precision tests, Higgs

couplings to fermions and gauge bosons, etc.) behave differently from each other, and the

perturbativity criterion varies correspondingly. In some cases the colour enhancement is

absent, or compensated by small gauge couplings, or by a small mixing between new and

SM fermions. Therefore, we find more conservative to stick to the bound y � 4π.

At EWSB, H0 can be replaced by (v + h)/
√

2, to obtain the couplings of the

physical Higgs boson h to the fermions in the interaction basis. All fermions with

equal charge and in the same colour representation may mix, and their mass matrix

M = ULdiag(m1, . . . ,mn)U †R may include both v-independent vector-like mass terms, and

the EWSB contributions ∼ yv. Thus, one can derive the h-couplings to the fermion mass

eigenstates as follows:

−L ⊃ fLα[M(v)]αβfRβ + fLα
∂

∂v
[M(v)]αβ fRβ h+ h.c.

=
∑
i

mifLifRi + fLj

[
U †L

∂M(v)

∂v
UR

]
jk

fRk h+ h.c.

=
∑
i

mififi + fj (yjk + iγ5ỹjk) fk h . (B.5)

where y and ỹ are hermitian matrices defined by

y =
λ+ λ†

2
, ỹ =

λ− λ†
2i

, λ ≡ U †L
∂M(v)

∂v
UR . (B.6)

In the CP-conserving case λ is real, therefore y = yT is real and ỹ = −ỹT is imaginary. In

the case of purely chiral masses (e.g. in the SM), one hasM(v) ∝ v, therefore ∂M(v)/∂v =

M/v, y = λ = diag(m1, . . . ,mn)/v and ỹ = 0. On the other hand, in presence of both

chiral and vector-like masses, the Higgs boson can have both scalar and pseudo-scalar, CP-

even and CP-odd, diagonal and off-diagonal couplings to the fermions mass eigenstates,

and its couplings are not proportional to the fermion masses. A simplification occurs

in those SM extensions such that (∂M/∂v)αβ = Mαβcβ , that is, each row of the mass

matrix has the same dependence on v. In this case U †L and UL cancel out in λ and one

finds λjk = mj
∑

β cβ(U∗R)βj(UR)βk. Similarly, when (∂M/∂v)αβ = cαMαβ , one finds

λjk = mk
∑

α cα(U∗L)αj(UL)αk.

The mixing with new fermions modifies the Higgs boson decay width into SM fermions

at the tree-level. In addition, there may be new Higgs decay channels, with one or more

new fermions in the final state, as long as they are lighter than h. In full generality, the

Higgs decay width into two fermions at leading order is given by

Γtree(h→ fjfk) =
Nc∆jk

8π
mh

[
|yjk|2(β+

jk)
3β−jk + |ỹjk|2β+

jk(β
−
jk)

3
]
θ(mh −mj −mk) , (B.7)

where β±jk ≡ [1 − (mj ± mk)
2/m2

h]1/2, ∆jk = 2 if the final state particles are identical

Majorana fermions (j = k and fj = f cj ), and ∆jk = 1 otherwise.

Besides the Yukawa couplings to fermions, the Higgs boson has tree-level couplings

to WW , ZZ and to itself. In the presence of new fermions, all the tree-level couplings
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may receive corrections at the one-loop level. Even though these corrections may become

relevant in view of precision measurements of the Higgs couplings, they represent in general

a sub-leading effect and we will not discuss them further. In the following subsection we

will focus instead on a more sensitive probe of new physics: those Higgs couplings that are

absent at tree-level in the SM.

B.2 Loop-induced Higgs couplings

At one-loop new couplings are induced between the Higgs boson and the SM particles,

that are absent at tree-level. In particular, U(1)em and SU(3)c gauge invariance prevents

renormalizable couplings to photons and gluons, therefore the tree-level amplitudes for

h → gg, h → γγ and h → Zγ are zero, and in addition the one-loop amplitudes for

these processes are free from divergences. The effective Higgs boson couplings generated

at one-loop can be described in full generality by two dimension-five operators,

LhV V ′ =

(
chV V ′VµνV

′µν +
1

2
c̃hV V ′VµνV

′
ρσε

µνρσ

)
h , (B.8)

where V V ′ = gg, γγ, γZ and Vµν = Gaµν , Fµν , Zµν are the field strength tensors for the

gluon, the photon and the Z, respectively. The CP-even (odd) coefficients chV V ′ (c̃hV V ′)

have mass dimension minus one, and may receive contributions from loops of both SM and

new particles. One should be careful to avoid double-counting: if one considers LhV V ′ as

part of the effective Lagrangian valid below the EWSB scale v, chV V ′ and c̃hV V ′ should

include only the contributions of particles heavier than v.

In momentum space, the hV V ′ couplings are given by

LhV V ′(p, p′) = 2
[
chV V ′(p

′µpν − p · p′gµν) + c̃hV V ′ε
µνρσpρp

′
σ

]
h(p+ p′)Vµ(p)V ′ν(p′) . (B.9)

The decay width of the Higgs boson into two vector bosons is then given by

Γ(h→ V V ′) =
Nc∆V V ′

8π
m3
h β

+
V V ′β

−
V V ′

[
c2
hV V ′

(
β+2
V V ′β

−2
V V ′ +

6m2
Vm

2
V ′

m4
h

)
+ c̃2

hV V ′β
+2
V V ′β

−2
V V ′

]
,

(B.10)

where Nc = 8 (1) for gluons (for γ and Z), ∆V V ′ = 2 for V = V ′ and ∆V V ′ = 1 for V 6= V ′,

and finally β±V V ′ ≡ [1− (mV ±mV ′)
2/m2

h]1/2. In the following, we will match the explicit

loop computation with the effective coefficients chV V ′ and c̃hV V ′ .

B.2.1 Higgs coupling to two gluons

The Higgs-gluon-gluon coupling chgg (c̃hgg) receives a one-loop contribution from each

coloured fermion with a non-zero CP-conserving (CP-violating) Yukawa coupling to the

Higgs boson, see figure 13. The gluon coupling to fermions is determined by SU(3)c gauge

invariance,

Lgf̄f = gs
∑
i

fibγ
µAaµ(T ai )bcfic , (B.11)

where T ai are the SU(3)c generators in the representation Rci of the fermion fi. As the

SU(3)c symmetry is unbroken, there are no ‘off-diagonal’ gluon couplings to two different
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V a
µ (p)

V ′b
ν (p′)

h(p+ p′)

fi

fj

fk

i(yji + iỹjiγ5)

iγµGa
ik

iγνGb
kj

Figure 13. Fermionic triangle loop contributing to the coupling of the Higgs boson to two gauge

bosons. A crossed diagram with the two gauge boson insertions interchanged has to be added too,

and one must sum over all possible sets (fi, fj , fk) of fermion mass eigenstates. For the gluons one

has Gaik = gsδikT
a
i , for the photon Gγik = eδikQi, and for the Z boson GZik = g(gVik − γ5g

A
ik)/cw.

mass eigenstates. Recall that the Higgs is mostly produced via gluon fusion, with a partonic

cross-section that can be expressed as a function of the partial decay width,

σ(gg → h; ŝ) =
π2

8mh
δ(ŝ−m2

h)Γ(h→ gg) . (B.12)

In the SM, the contribution of the quarks triangle loop to h→ gg reads

ΓSM(h→ gg) =
α2
sm

3
h

72π3v2

∣∣∣∣∣34 ∑
q

A1/2(τq)

∣∣∣∣∣
2

, (B.13)

where τq ≡ m2
h/(4m

2
q) and the form factor is given by

A1/2(τ) =
2[τ + (τ − 1)f(τ)]

τ2
, f(τ) =


arcsin2√τ for τ 6 1 ,

−1

4

(
log

1 +
√

1− τ−1

1−
√

1− τ−1
− iπ

)2

for τ > 1 .

(B.14)

As illustrated in figure 14, the top quark gives the dominant contribution, because τt � 1

and τb,c,... � 1. In a generic extension of the SM, the fermions will couple to the Higgs

as in eq. (B.5), but only the diagonal, real couplings yi ≡ yii and ỹi ≡ ỹii are relevant for

h→ gg. One obtains

Γ(h→ gg) =
α2
sm

3
h

72π3v2

(
| Aggf |2 + | Ãggf |2

)
, (B.15)

where the CP-even and CP-odd amplitudes are

Aggf =
3

2

∑
i

C(Rci)
yiv

mi
A1/2(τi) , Ãggf =

3

2

∑
i

C(Rci)
ỹiv

mi
Ã1/2(τi) , Ã1/2(τ) = 2

f(τ)

τ
,

(B.16)

with the Dynkin index C(Rci) defined below eq. (2.1).
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Re A
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1 � 2
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Im A
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1 � 2

Im A 1 � 2
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Τ
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0

1
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3
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5

Τ

Figure 14. Real (blue lines) and imaginary (red lines) parts of the form factors A1/2(τ) (solid lines)

and Ã1/2(τ) (dashed lines). The horizontal lines correspond to the asymptotic values 2, 4/3 and 0.

The vertical lines correspond to the reference values τt ' 0.13, τ = 1, τb ' 230 and ττ ' 1300.

By matching with eq. (B.10), one finds that the contribution of a fermion loop to the

effective hgg-couplings is

cihgg =
αs

8πv
C(Rci)

yiv

mi
A1/2(τi) , c̃ihgg =

αs
8πv

C(Rci)
ỹiv

mi
Ã1/2(τi) , (B.17)

where chgg ≡ |
∑

i c
i
hgg| and c̃hgg ≡ |

∑
i c̃
i
hgg|. In the heavy fermion limit, 2mi � mh, one

can use A1/2(0) = 4/3 and Ã1/2(0) = 2. We note that, in the literature, a factor 1/2 is

sometimes missing in the expression for c̃thgg.

One can use the Low Energy Theorem (LET) [113, 114] (see also [115–117]) to evaluate

the effective hV V ′ couplings induced by states much heavier than the EW scale. For a

given sector of mixing states in the representation (Rc, Q) of SU(3)c × U(1)em, the low

energy result is a function of their mass matrix M only. For the CP -conserving and

CP -violating [118] gluon-gluon case one finds, respectively,

cLEThgg =
αs

12π
C(Rc)

∂

∂v
ln
[
det
(
MM†

)]
, c̃LEThgg =

αs
4π
C(Rc)

∂

∂v
arg [det (M)] . (B.18)

This is very useful in the case of a large, complicated mass matrix M, because this ex-

pression is much easier to evaluate, with respect to an explicit computation of the mass

eigenvalues mi and of the mass eigenstate couplings yi and ỹi. Note, however, that this

approximation requires all the mass eigenstates in a given sector to be heavy, 2mi � mh.

It is easy to check the consistency of eq. (B.17) and eq. (B.18) for one heavy chiral fermion

(e.g. the SM top quark), as Mi = mi = yiv and A1/2(τi) ' 4/3.

B.2.2 Higgs coupling to two photons

The fermions charged under U(1)em contribute to the Higgs-photon-photon couplings chγγ
and c̃hγγ at one loop. In the SM, there is also the contribution from W -boson loops, that
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we include using the SM tree-level couplings of the W to the Higgs and to the photon. The

SM decay width is given by [113, 114, 119]

ΓSM(h→ γγ) =
α2m3

h

256π3v2

∣∣∣∣A1(τW ) +
∑
fi∈SM

NciQ
2
iA1/2(τi)

∣∣∣∣2 , (B.19)

where τW ≡ m2
h/(4m

2
W ), τi ≡ m2

h/(4m
2
i ), and the form factor for the W -loops reads

A1(τ) = −2τ2 + 3τ + 3(2τ − 1)f(τ)

τ2
. (B.20)

The W contribution is dominant, A1(τW ) ' −8.36, and it interferes destructively with the

top-quark loop, NctQ
2
tA1/2(τt) ' 1.83.

In presence of extra fermions, there are new contributions to h→ γγ that depend, as

in the case of h→ gg, on the Yukawa couplings yi and ỹi,

Γ(h→ γγ) =
α2m3

h

256π3v2

[
| A1(τW ) +Aγγf |2 + | Ãγγf |2

]
, (B.21)

where

Aγγf =
∑
i

yiv

mi
NciQ

2
iA1/2(τi) , Ãγγf =

∑
i

ỹiv

mi
NciQ

2
i Ã1/2(τi) . (B.22)

In terms of the coefficients of the effective Lagrangian eq. (B.8), the contribution of each

fermion is given by

cihγγ =
α

8πv

yiv

mi
NciQ

2
iA1/2(τi) , c̃ihγγ =

α

8πv

ỹiv

mi
NciQ

2
i Ã1/2(τi) . (B.23)

The LET approximation, for a set of heavy fermions in the representation (Rc, Q) with a

mass matrix M, is given by

cLEThγγ =
α

12π
Q2Nc

∂

∂v
ln
[
det
(
MM†

)]
, c̃LEThγγ =

α

4π
Q2Nc

∂

∂v
arg [det (M)] , (B.24)

in analogy with eq. (B.18).

B.2.3 Higgs coupling to a Z boson and a photon

The last loop-induced coupling to be considered is hZγ. It is generated by W -boson loops,

that we take to be SM-like, as well as by fermionic triangle loops. The Z-boson couplings

to fermion mass eigenstates are defined in eq. (A.6).

The Higgs decay width into a photon and a Z in the SM is given by [120, 121]

ΓSM(h→ γZ) =
αg2c2

wm
3
h

512π4v2

(
1− m2

Z

m2
h

)3 ∣∣∣∣A1(τW , λW ) +
∑
fi∈SM

NciQig
V
i

c2
w

A1/2(τi, λi)

∣∣∣∣2 ,
(B.25)

where λW ≡ m2
Z/(4m

2
W ) = (mZ/mh)2τW ' 0.52τW , and analogously λi ≡ m2

Z/(4m
2
i ) '

0.52τi. Note that only the Zfifi vector coupling contributes, gVi = T3(fLi)/2−Qis2
w. The

form factors are given by

A1(τ, λ) = 2 [3 + 2τ − 2λ(1 + 2τ)] I1(τ, λ)− 16(1− λ)I2(τ, λ) , (B.26)

A1/2(τ, λ) = 4 [I2(τ, λ)− I1(τ, λ)] , (B.27)
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Figure 15. Real (blue lines) and imaginary (red lines) parts of the form factors A1/2(τ, λ) (solid

lines) and Ã1/2(τ, λ) (dashed lines), for λ = (mZ/mh)2τ ' 0.52τ . The horizontal lines correspond

to the asymptotic values 2, 4/3 and 0. The vertical lines correspond to τt ' 0.13, τ = 1, τ ' 1.9

(λ = 1), τb ' 230 and ττ ' 1300.

where

I1(τ, λ) = − 1

2(τ − λ)
+
f(τ)− f(λ)

2(τ − λ)2
+
λ[g(τ)− g(λ)]

(τ − λ)2
, I2(τ, λ) =

f(τ)− f(λ)

2(τ − λ)
, (B.28)

g(τ) =


√
τ−1 − 1 arcsin

√
τ for τ 6 1 ,√

1− τ−1

2

(
log

1 +
√

1− τ−1

1−
√

1− τ−1
− iπ

)
for τ > 1 .

(B.29)

The normalisation is chosen to match with the γγ form factors: A1(τ, 0) = A1(τ) and

A1/2(τ, 0) = A1/2(τ). The behaviour of A1/2(τ, λ) is displayed in figure 15, for the relevant

case λ = (mZ/mh)2τ . The W -boson and t-quark summands in eq. (B.25) take the value

A1(τW , λW ) ' −6.64 and NctQtg
V
t A1/2(τt, λt)/c

2
w ' 0.37, with the lighter SM fermions

adding a very small contribution.

In a generic fermionic extension of the SM, we find a decay width

Γ(h→ γZ) =
αg2c2

wm
3
h

512π4v2

(
1− m2

Z

m2
h

)3 [
| A1(τW , λW ) +AZγf |2 + | ÃZγf |2

]
, (B.30)

with the CP -even and odd fermionic amplitudes given by

AZγf =
∑
j,k

NckQkv

c2
w
√
mjmk

[
Re(gVkjyjk)a1/2(mj ,mk,mk)+iIm(gAkj ỹjk)b1/2(mj ,mk,mk)

]
, (B.31)

ÃZγf =
∑
j,k

NckQkv

c2
w
√
mjmk

[
Re(gVkj ỹjk)ã1/2(mj ,mk,mk)+iIm(gAkjyjk)b̃1/2(mj ,mk,mk)

]
. (B.32)

The explicit expression of the four independent form factors will be given below. As far as

we know, this expression for Γ(h→ γZ), corresponding to a generic set of fermions, was not
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available in the literature. Here the sum runs over all pairs of fermion mass eigenstates: the

triangular fermion loop is formed by one fj propagator from the h vertex to the Z vertex,

and two fk propagators from Z to γ, and from γ to h. As both h and Z can have off-

diagonal couplings, j and k can be different. Note that only those combination of couplings

that are even under the charge conjugation C contribute, because the transition h → Zγ

is even: under C, one has Q→ −Q, gVij → −gV ∗ij and xij → xji = x∗ij , for x = gA, y, ỹ. The

P and CP-even (odd) amplitude corresponds to an even (odd) number of axial-vector and

pseudo-scalar couplings gA and ỹ.

Let us discuss first the loops involving one fermion mass eigenstate only (j = k). The

diagonal couplings gV,Ai , yi and ỹi are all real, therefore the form factors b1/2 and b̃1/2 are

irrelevant, while the others reduce to

a1/2(m,m,m) = A1/2(τ, λ) , ã1/2(m,m,m) = Ã1/2(τ, λ) ≡ 4I2(τ, λ) . (B.33)

These two form factors are displayed in figure 15 as a function of τ . As usual the normal-

isation matches with the γγ form factors, in particular Ã1/2(τ, 0) = Ã1/2(τ). Comparing

with eq. (B.10), one finds that the contributions of such fermion ‘diagonal’ loop to the

effective hγZ couplings are

cihγZ =
α

4πswcwv

yiv

mi
NciQig

V
i A1/2(τi, λi) , c̃ihγZ =

α

4πswcwv

ỹiv

mi
NcfQig

V
i Ã1/2(τi, λi) .

(B.34)

Let us now discuss the loops involving two fermion mass eigenstates (j 6= k). The form

factors are given by

a1/2(mj ,mk,mk)√
mjmk

= − 4

m2
Z −m2

h

{[
A0(mj)−A0(mk)

m2
h

+ 1

]
(mj +mk)

+
B0(m2

h;mj ,mk)

m2
Z −m2

h

[
(mj +mk)

(
2m2

j − 2m2
k −m2

h +
m2
Z

m2
h

(m2
k −m2

j )

)
+ 2mk(m

2
h −m2

Z)

]
+
B0(m2

Z ;mj ,mk)

m2
Z −m2

h

[
(mj +mk)(m

2
k −m2

j ) +mk(2m
2
Z −m2

h) +mjm
2
h

]
+C0(m2

Z , 0,m
2
h;mj ,mk,mk)

[
2m2

k(mj +mk) +mk(m
2
Z −m2

h)
]}

, (B.35)

ã1/2(mj ,mk,mk)√
mjmk

= −4

[
B0(m2

h;mj ,mk)−B0(m2
Z ;mj ,mk)

m2
Z −m2

h

(mj −mk)

+C0(m2
Z , 0,m

2
h;mj ,mk,mk)mk

]
, (B.36)

b1/2(mj ,mk,mk)√
mjmk

=
a1/2(−mj ,mk,mk)√

mjmk
,

b̃1/2(mj ,mk,mk)√
mjmk

=
ã1/2(−mj ,mk,mk)√

mjmk
,

(B.37)

where A0, B0 and C0 are the standard Passarino-Veltman scalar functions [122, 123], in the

convention of ref. [124]. In the literature, these ‘off-diagonal’ loops are often neglected but,

in models with significant h and Z off-diagonal couplings, they may provide a contribution
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to the decay width of the same order as the ‘diagonal’ loops. For example, the form factors

in eqs. (B.35)–(B.37) have been already employed in supersymmetric models to compute

the charginos loops [125–127].

It is useful to combine all the loops involving two given fermions fj and fk. As

Re(gVkjyjk) = Re(gVjkykj) and Im(gAkj ỹjk) = −Im(gAjkỹkj), the combinations that appear in

the total amplitude are

A1/2(τj , λj , τk, λk) ≡
1

2

[
a1/2(mj ,mk,mk) + a1/2(mk,mj ,mj)

]
, (B.38)

B1/2(τj , λj , τk, λk) ≡
1

2

[
b1/2(mj ,mk,mk)− b1/2(mk,mj ,mj)

]
, (B.39)

and analog definitions for the CP-odd counterparts Ã1/2 and B̃1/2. In figure 16 we illustrate

the behaviour of these four form factors as a function of τ = m2
h/(4m

2), where m is the

mass of the lightest fermion, for a fixed value of the ratio r = m′/m, where m′ is the mass

of the heaviest fermion. In the limit r = 1 one recovers the diagonal form factors, shown

in figure 15. Since m′ is the mass of a new charged fermion, it should be sufficiently large

to comply with experimental lower bounds; requiring for example m′ > mh, one finds that

only the region τ < r2/4 is relevant for phenomenology. Note that the behaviour of the

form factors as τ → 0 is sensitive to the mass ratio: as r increases from 1 to infinity, the

asymptotic regime settles at larger values of τ , and the asymptotic value of the form factors

A1/2 and Ã1/2 tends to zero as 1/
√
r. The form factors B1/2 and B̃1/2 are zero for r = 1,

then become of order one as r grows, then tend to zero in the large-r limit.

B.3 Experimental constraints on the Higgs couplings

Here we collect the constraints on the Higgs couplings that we use in our analysis. For a

given Higgs-decay final state α, the LHC measures the signal strength µα defined as

µα ≡
σ(pp→ h)

σSM(pp→ h)

Br(h→ α)

BrSM(h→ α)
=

σ(pp→ h)

σSM(pp→ h)

Γ(h→ α)

ΓSM(h→ α)

ΓSM
h

Γh
, (B.40)

where Γh is the total Higgs width. In table 4 we report the present determination of µα
for α = γγ, ZZ∗,WW ∗, bb, ττ, γZ, µµ as well as on the invisible width, by the ATLAS

and CMS collaborations. The expected precision for a luminosity of 300 − 3000 fb−1 at

14 TeV [128, 129] is reported for these same channels in table 5.

From a global fit of the Higgs data, one can also extract information on the Higgs

coupling to gluons. Taking a rough extrapolation from the fit in figure 16 of ref. [35], we

find 0.5 . Rgg . 1.8 at 99% C.L., where Rgg is defined in eq. (3.4). In the same way we

extract the analogue quantity for the diphoton channel, 0.5 . Rγγ . 1.9 at 99% C.L., that

we employ throughout this paper.

The new fermions may or may not affect each of the three factors on the right-hand

side of eq. (B.40). Let us discuss first the Higgs production cross section. The dominant

gluon fusion channel can be modified at leading order only by coloured fermions. The

weak-vector-boson fusion and associated production can be modified, at tree level, only

by fermions mixing with the initial state quarks: as we limit our analysis to mixing with
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Figure 16. Form factors for the triangle loops involving two fermions of mass m and m′ = rm,

for r = 3 and r = 10, in the left and right-hand panels, respectively. We show the real (in blue) and

imaginary (in red) parts of A1/2(τ, λ, τ/r2, λ/r2) (solid lines, upper panels), Ã1/2(τ, λ, τ/r2, λ/r2)

(dashed, upper), B1/2(τ, λ, τ/r2, λ/r2) (solid, lower) and B̃1/2(τ, λ, τ/r2, λ/r2) (dashed, lower), as

a function of τ ≡ 4m2
h/m

2, for a fixed value of λ ≡ (mZ/mh)2τ ' 0.52 τ . The horizontal lines

correspond to the asymptotic values for the case r = 1 (see figure 15). The vertical lines correspond

to the third family masses, τt ' 0.13, τb ' 230 and ττ ' 1300, and to the threshold values,

m+m′ = mh [τ = (1 + r)2/4], and m+m′ = mZ [τ = (mh/mZ)2(1 + r)2/4].
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ATLAS CMS ATLAS+CMS

√
s 7+8 TeV 7+8 TeV 7+8 TeV

L 4.7 + 20.3 fb−1 5.1 + 19.7 fb−1

mh 125.36± 0.41 GeV [14] 125.02+0.29
−0.31 GeV [12] 125.09± 0.24 GeV [13]

µγγ 1.17+0.28
−0.26 [14] 1.12± 0.24 [12] 1.13+0.24

−0.21 [35]

µZZ∗→4l 1.46+0.40
−0.34 [14] 1.00± 0.29 [12] 1.29+0.29

−0.25 [35]

µWW ∗ 1.18+0.24
−0.21 [14] 0.83± 0.21 [12] 1.08+0.22

−0.19 [35]

µττ 1.44+0.42
−0.37 [14] 0.91± 0.28 [12] 1.07+0.35

−0.28 [35]

µbb̄ 0.63+0.39
−0.37 [14] 0.84± 0.44 [12] 0.65+0.37

−0.28 [35]

µglobal 1.18+0.15
−0.14 [14] 1.00± 0.14 [12] 1.09+0.11

−0.10 [35]

µγZ < 11.0 [130] < 9.5 [131]

µµµ < 7.0 [68] < 7.4 [69]

Γinvisible/Γh < 0.29 [132] < 0.58 [133]

Table 4. Higgs signal strengths measured by the ATLAS and CMS collaborations at
√
s = 7 and

8 TeV and their combination. The error bars and upper limits correspond respectively to ±1σ and

95% C.L.. In this paper we adopt the value of the Higgs mass and of the signal strengths from the

combined fit of the ATLAS and CMS data, reported in the last column.

the third family, we neglect these modifications. Finally, the tt̄ associated production can

be corrected by those fermions mixing with the top quark. Concerning the total Higgs

decay width Γh, the dominant branching ratio into bb̄ is affected by fermions mixing with

the bottom quark, and the second dominant decay channel into WW ∗ is not modified by

new fermions at leading order. Finally, Γh may be modified significantly by new invisible

decays, that are possible in the presence of sterile neutrinos. When both σ(pp → h) and

Γh are close to their SM value, the signal strength in eq. (B.40) reduces to µα ' Rα, where

Rα ≡
Γ(h→ α)

ΓSM(h→ α)
=
|AαSM +Aαnew|2 + |Ãαnew|2∣∣AαSM

∣∣2 . (B.41)

Here Aαnew and Ãαnew are the parity-even and odd new physics amplitudes, respectively. The

approximation µα ' Rα holds for all colourless new fermions, with the possible exception

of light sterile neutrinos.

Several groups performed global fits of the Higgs couplings to the SM particles, allowing

for deviations in both the fermionic and bosonic decay channels, see e.g. refs. [134–141].

The fit of ref. [142] analyzed deviations in the Higgs couplings in the presence of new

fermions only.
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ATLAS [128] CMS [129]

∆µα/µα 300 fb−1 3000 fb−1 300 fb−1 3000 fb−1

γγ 0.13 0.09 [0.06,0.12] [0.04,0.08]

ZZ 0.11 0.09 [0.07,0.11] [0.04,0.07]

WW 0.13 0.11 [0.06,0.11] [0.04,0.07]

ττ 0.21 0.19 [0.08,0.14] [0.05,0.08]

bb̄ 0.26 0.14 [0.11,0.14] [0.05,0.07]

γZ 0.46 0.30 [0.62,0.62] [0.20,0.24]

µµ 0.39 0.16 [0.40,0.42] [0.20,0.24]

Γinvisible/Γh < 0.22 < 0.14 < [0.17, 0.28] < [0.06, 0.17]

Table 5. Expected relative uncertainty at 1σ on the signal strengths µα for ATLAS and CMS. The

expected precisions correspond to
√
s = 14 TeV and L = 300 and 3000 fb−1. We also display the

expected limit at 95% C.L. on Γinvisible/Γh for the same luminosities. For CMS the two numbers

correspond to two different estimations of the future uncertainties [129].
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