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Abstract

The transverse argumental vibration of a beam excited axially by an
harmonic motion transmitted through intermittent or permanent elas-
tic contact is studied. It is shown that this vibration is governed by a
non-linear argumental equation, namely that a vibration in the funda-
mental transverse mode of the beam can occur when the frequency of
the excitation is many times the frequency of the fundamental transverse
mode. Two cases are considered : the hinged-(hinged-guided) case, and
the clamped-(clamped-guided) case. A “natural” model is given. An
approached smooth model is derived. The averaging method yields a
standard system of differential equations for the smooth model. Numeric
simulations allow a comparison between the natural model and the smooth
model.

Keywords— non-linear; argumental oscillator; beam; axial excitation; trans-
verse; spatial modulation; Van der Pol representation.
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1 Introduction.

The so-called argumental oscillator has a stable motion consisting of a periodic
motion at a frequency next to its natural frequency when submitted to an exter-
nal force whose frequency is close to a multiple of said natural frequency. One
condition for the phenomenon to arise is that the external force be dependent
on the space coordinate of the oscillator. An oscillator exhibiting such charac-
teristics has been described in 1938 [1]. The word ”argumental” was forged in
1973 [12]. Further developments were carried out [9,10], particularly the multi-
ple resonance and the quantum effect. Argumental oscillations have also been
observed and described in [8, 13]. They have also been studied in [3–5].
A typical second-order ordinary differential equation for a one-degree-of-freedom
argumental oscillator is:

ẍ+ 2βω0ẋ+ ω2
0x = g1(x) + g2(x)cos(νt) (1)

where x is the space coordinate, β is the damping factor, ω0 is the natural an-
gular velocity of the oscillator, g1 and g2 are functions of x, and ν is the angular
velocity of the excitation.
In this paper, a beam submitted to an axial harmonic excitation is studied.
When near its resting rectilinear position, the beam ”senses” the excitation,
and when in a sufficiently bended position, it does not sense the excitation any
more. This is realized by way of an intermittent contact. It will be shown that
this system obeys an argumental equation. This configuration should allow to
study the behaviour of a structure when two elements are in contact with each
other, but can become disconnected, depending on their instantaneous trans-
verse deformation. This situation can occur either by design or after damaging.
In this paper, two models are studied, called “natural model” and “smooth
model”. A solution of the differential equations pertaining to the smooth model
is carried out, using the averaging method. A comparison is made between
numerical simulations on the natural model and the solution provided by the
averaging method. In [6], these results are used to establish symbolic properties
of the stationary regime. Experimental results are given in [7].

2 System configuration.

The schematic system configuration is as shown in Fig. 1. A beam is repre-
sented, with its left end S and right end M, in an clamped-(clamped-guided)
configuration. Point M is intermittently pushed to the left by a plate C, which
is linked to a point A via a spring. ~F is the force intermittently applied by plate
C to the beam’s right end in M. F is negative when the beam is in compression.
Point A is in harmonic motion horizontally in the figure, in such a manner that
the contact between plate C and point M be intermittent when the beam and
point A are vibrating. When the beam is in resting (i.e. rectilinear) position
and point A is in center position, the force applied to point M is denoted by F0.
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Figure 1: system configuration. x is the horizontal abscissa, v is the transverse
displacement, t is the time, and ~F is the force applied by plate C to the beam
at point M.

3 Modelling.

In this section, a first model will be studied, called “natural model”, because
it is deduced directly from simple physical laws and the arrangement of the
components beam, spring, and points M and A. This leads to a discontinuous
model, involving a C0-class function for the external force, due to the intermit-
tent nature of the contact at point M.
Then a second model will be studied, called a “smooth model”, because it is
an approximation to the natural model. This model is not as close to physical
reality as the natural model, but, in exchange, involves a C∞-class function for
the external force, easier to manipulate.
Then a solution of the differential equations pertaining to the smooth model
is carried out, using the averaging method. Finally, a comparison is made be-
tween numerical simulations on the natural model and the solution provided by
the averaging method. Using the symbolic relations derived from the averaging
method, properties of the stationary regime are given.

3.1 Expression of point M’s abscissa xM .

This expression will be needed to calculate the force F . As the beam bends,
point M moves to the left. Define L = beam’s length and xM = point M’s
abscissa. On the beam, define the curvilinear abscissa from point S to current
point (x, v) as s(x, v, t). A classical method to calculate xM is as follows.
As the beam is considered inextensible, point M’s curvilinear abscissa is always
equal to L, i.e.

s(xM , v, t) = L =

∫ xM

0

√
1 +

(
∂v(u, t)

∂u

)2

du (2)
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Then, using the limited development

√
1 +

(
∂v(u, t)

∂u

)2

≈ 1 +
1

2

(
∂v(u, t)

∂u

)2

inside Eq. (2), and considering that

∫ xM

0

(
∂v(u, t)

∂u

)2

du ≈
∫ L

0

(
∂v(u, t)

∂u

)2

du,

obtain:

xM ≈ L−
1

2

∫ L

0

(
∂v(u, t)

∂u

)2

du (3)

Then, consider that the transverse motion is expressed as

v(x, t) = Lq1(t)ϕ(x), (4)

where ϕ(x) is the modal form of the first mode and q1(t) is the amplitude as a
function of time, both ϕ(x) and q1(t) being adimensioned.

Hinged-(hinged-guided) case. In this case, consider that the first mode is

ϕ(x) = sin
(
π
x

L

)
(5)

Clamped-(clamped-guided) case. In this case, consider that the modal
form of the first mode is (see [Pecker, chap.8, p.169]):

ϕ(x) = B1 [sin(ax)− 1.0178 cos(ax)− sinh(ax) + 1.0178 cosh(ax)]

with B1 arbitrary.
Approach this modal form with

ϕ(x) =
1

2

(
1− cos

(
2πx

L

))
, (6)

It can be seen in Fig. 2 that, if B1 = 0.6024, the approaching curve is close to
the original curve.

Conclusion about both cases. Substituting expression (5) or (6) into Eq. (4),
then v(x, t) into (3), obtain:

xM (t) ≈ L
(

1− π2

4
q21(t)

)
for both the hinged-(hinged-guided) case and the clamped-(clamped-guided)
case.

3.2 Natural model of force F .

Define xA =point A’s abscissa, xA0 = xA, where the overline notation means the
averaging operation versus time. It can be seen from Fig. 1 that, provided there
is contact between C and M, and denoting by F0 the force F when xA = xA0:

F − F0 = k(xA − xA0 + L− xM ) (7)
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Figure 2: Approached modal form: exact (solid line), approached (dashed line).

where F is the expression of force, k is the spring’s stiffness, and xM is given
by (7).
Define aA as the amplitude of A’s harmonic motion, normalized by L, i.e.
xA(t) = xA0 + L aA cos(νt). Hence, Eq. (7) writes, taking into account (7):

F = F0 + kL

(
aA cos(νt) +

π2

4
q21(t)

)
(8)

If the contact is intermittent, i.e. if, from time to time, points M and A become
sufficiently distant from each other to yield a positive value for the right-hand
member of (8), it holds:F (q1, t) = F0 + kL

(
aA cos(νt) +

π2

4
q21(t)

)
if F0 + kL

(
aA cos(νt) +

π2

4
q21(t)

)
≤ 0

F (q1, t) = 0 otherwise

(9)

where F is denoted F (q1, t) because it depends on q1(t) and t. This constitutes
the natural model of force F .

Upper bound for aA. In this paper, the critical buckling force on the beam
is considered never being reached nor exceeded. Therefore, it is necessary that
|F (q1, t)| < FB at all times, which, knowing that |F (q1, t)| ≤ |F (0, t)| for any
q1 (and that the equality occurs), translates to |F (0, t)| < FB at all times, i.e.
−F0 + kLaA < FB . Finally, the upper bound of aA can be expressed as:

aA <
FB + F0

kL
(10)

This value is referred to in this paper as the “Model validity upper limit”.
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Case of permanent contact. Putting F < 0 in Eq. (8), deduce that the

condition for the contact to be permanent is: aA cos(νt) +
π2

4
q21(t) < −F0/(kL)

at all times. The worst case is when cos(νt) = 1, which leads to:

aA < −
F0

kL
− π2

4
q1(t)2 (11)

This relation will be used hereinafter.

3.3 Smooth model of force F .

In this section, a truncated sinusoid is approximated by a sinusoid of same
frequency and of lower amplitude, whose extremums are adjusted in reference
to the truncated sinusoid. In addition, a truncated parabola is approximated
by a smooth function. The combination of those two approximations leads to a
continuous model.

High line and Low line. An approaching function Fapprox for F (x, t) will be
defined below. Define, for the sake of clarity, yapprox and yexact by yapprox(x, t) =
Fapprox(x, t)/(kL) and yexact(x, t) = F (x, t)/(kL). Also, denote q1(t) by x.
The case where F0/(kL) < 0 when x = 0 will be studied. That is, when the ex-
ternal excitation is off and the beam is at rest, there is contact between points
M and C. In Figs. 3 to 6, various plots of the beam’s transverse motion are
represented. The values of the parameters are as follows: F0/(kL) = −2 10−3,
aA = 1.8 10−3.

The case represented is when
F0

kL
+ aA < 0, i.e. when the beam is at rest and

the excitation is on, the contact between points M and C is never disrupted.
This can be seen in Fig. 3.
The plot of yexact is a sinusoid, which may be truncated or not, represented in
the Figs. 3 to 6 by a solid line, along with the plot of yapprox in dashed line,
and dotted construction lines showing the entirety of the truncated sinusoid, as
well of various indications.
As soon as the sinusoid crosses the line y = 0, it gets truncated, and the only
remaining part is located below said line.
From Eq. (9), it can be seen that the dotted horizontal marker line labelled
F0/(kL) + aA + π2x2/4 locates the top of the untruncated sinusoid, while the
marker line labelled F0/(kL)−aA+π2x2/4 locates the bottom of said sinusoid.
The dotted horizontal markers labelled “High line” and “Low line” locate the
highest (resp. lowest) point of the remaining part of the sinusoid after trunca-
tion.
Knowing that the excitation frequency is significantly greater than the beam’s
frequency (at least four times greater), consider that during one period of the
excitation, the value of x is approximately constant, and the force F can be
represented as a pure sinusoid, possibly truncated. It can be seen that the more
x increases, the more the plot of yexact (solid line) moves to the top of the figure,
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and the less the remaining part of the sinusoid is significant.
Denoting by Hl and Ll the High line’s and Low line’s ordinates, it holds:Hl(x) =

F0

kL
+ aA +

π2x2

4
if

F0

kL
+ aA +

π2x2

4
≤ 0

Hl(x) = 0 otherwise

and Ll(x) =
F0

kL
− aA +

π2x2

4
if

F0

kL
− aA +

π2x2

4
≤ 0

Ll(x) = 0 otherwise

The method employed in this section consists in approximating the exact func-
tion yexact by a full sinusoid yapprox located between the High line and the Low
line. It holds:

yapprox(t) =
High line+ Low line

2
+
High line− Low line

2
cos(νt) (12)

= Mean(yapprox) +Ampl(yapprox) cos(νt) (13)

where Mean(f) denotes the mean value of function f over one period of f and
Ampl(f) denotes the amplitude of function f , i.e. half the difference between
the maximum and minimum values of f(t) over one period of f .

Figure 3: Exact and approached y = F/(kL), with xref = 0.0, aA = −0.9
F0

kL
.

Approximation to a truncated parabola. An approximation to following
class C0−function J will be needed hereinafter. Define function J(x) as follows:{

J(x) = α+ βx2 if α+ βx2 ≤ 0

J(x) = 0 otherwise

9



Figure 4: Exact and approached y = F/(kL), with xref = 0.015, aA = −0.9
F0

kL
.

Figure 5: Exact and approached y = F/(kL), with xref = 0.02, aA = −0.9
F0

kL
.

with α < 0 and β > 0. This is a class C0-function. Consider (see Fig. 7) that
function

Japprox =
α

1 + λβαx
2

(14)

with −8 ≤ λ ≤ −2, is a fair approximation to J(x). Japprox is of class C∞.
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Figure 6: Exact and approached y = F/(kL), with xref = 0.025, aA = −0.9
F0

kL
.

Figure 7: Exact and approached J, with
F0

kL
= −0.1 10−2, aA = 0.05 10−2.

Approximation to the amplitude of function yapprox. Define aAcrit =∣∣∣∣F0

kL

∣∣∣∣ = −F0

kL
, and form the expression of Ampl(yapprox) = (Hl − Ll)/2:


Ampl(yapprox) = aA if

π2

4
x2 ≤ aAcrit − aA

Ampl(yapprox) = −1

2

(
F0

kL
− aA +

π2

4
x2
)

if aAcrit − aA <
π2

4
x2 ≤ aAcrit + aA

Ampl(yapprox) = 0 if aAcrit + aA <
π2

4
x2

which, using (14), can be approximated by:

� if aA < aAcrit:

Ampl(yapprox) ≈ aA
1 +Bx2

(15)
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� otherwise:

Ampl(yapprox) ≈ 1

2

− F0

kL + aA

1 +Bx2
(16)

with B = −π
2kL

4F0
.

Approximation to the mean value of function yapprox. Form the expres-
sion of Mean(yapprox) = (Hl + Ll)/2:
Mean(yapprox) =

F0

kL
+
π2

4
x2 if

π2

4
x2 ≤ aAcrit − aA

Mean(yapprox) =
1

2

(
F0

kL
− aA +

π2

4
x2
)

if aAcrit − aA <
π2

4
x2 ≤ aAcrit + aA

Mean(yapprox) = 0 if aAcrit + aA <
π2

4
x2

which, using (14), can be approximated by:

� if aA < aAcrit:

Mean(yapprox) ≈ F0

kL

1

1 + Cx2
(17)

� otherwise:

Mean(yapprox) ≈ 1

2

F0

kL − aA
1 + Cx2

(18)

with C = −π
2kL

2F0
.

Approximation to the F function. Substituting Equations (15), (16), (17)
and (18) into Eq. (13), and substituting Fapprox for kLyapprox, obtain:

� if aA < aAcrit:

Fapprox = F0

(
1− Cx2

1 + Cx2

)
+

kLaA
1 +Bx2

cos(νt) (19)

� otherwise:

Fapprox =
1

2
(F0 − kL aA)

(
1− Cx2

1 + Cx2

)
− 1

2

F0 − kL aA
1 +Bx2

cos(νt) (20)

with x = q1(t) =temporal adimensioned coordinate vs the first modal com-
ponent of the beam, aA =point A’s adimensioned amplitude, F0 =axial force
applied to the beam when it is rectilinear and point A is in central position,

k =spring’s stifness, L =beam’s length, and C = 2B = −π
2kL

2F0
.
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4 Second-order differential equation of motion.

Eq. (7) gives xM as a function of q1, while Equations (19) and (20) give an
approximated expression of the external force as a function of x and t. Substi-
tuting these expressions into the general equation to the modal coordinates, it
is possible to obtain a second-order ordinary differential equation in x(t).

4.1 Classical transverse motion of an axially-excited beam.

The classical equation of motion of an axially-excited Euler-Bernoulli beam with
nonrotating and planar motion and neglecting stretching is [11, Chap. 14]:

∂2

∂x2

(
EI(x)

∂2v

∂x2

)
+

∂

∂x

(
S(x)

∂v

∂x

)
+m(x)

∂2v

∂t2
= p(x, t) (21)

where v(x, t) is the transverse displacement, E is the elastic modulus, I(x) is
the second moment of area of the beam’s cross-section, S(x) is the axial force,
m(x) is the mass per unit length, and p(x, t) is a transverse distributed force.
Consider herein that p = ρSg, where g =acceleration of gravity.
Next, consider that the axial force S depends only on the beam’s actual defor-
mation state q1 (as defined in Section 3) and on time, which does not change
the form of Equ. (21). Denote said force by −F (q1, t) (so that F (q1, t) < 0
in case of compression, to be consistent with convention of Section 3). Also,
consider that the flexural rigidity EI(x) and the transverse distributed force
are constant over the beam. Moreover, consider that the mass per unit length
is constant over the beam, and denote it by ρS, where ρ is the mass density
and S is the beam’s cross-section area. Finally, use the dot notation to denote
differentiation with respect to time, and classically introduce a damping effect
as 2β′v̇ to obtain

ρSv̈ + EI
∂4v

∂x4
− F (q1, t)

∂2v

∂x2
+ 2β′v̇ = ρSg (22)

Using a change of variables v(x, t) = Lq(t)ϕ(x), obtain:

ρSq̈(t)ϕ(x) + EIϕ(4)(x)q(t)− F (q1, t)ϕ
′′(x)q(t) + 2β′ϕ(x)q̇(t) = ρSg (23)

4.2 Projection onto the first mode.

Projecting Eq. (23) onto the first mode, obtain, for the hinged-(hinged-guided)
case and modal form as per Equ. (2):

q̈1(t) +
2β′

ρS
q̇1(t) +

(π
L

)4 EI
ρS

q1(t) +
(π
L

)2 1

ρS
F (q1, t)q1(t)− 4g

πL
= 0 (24)

with v(x, t) = Lq1(t) sin
(π
L
x
)

.

And for the clamped-(clamped-guided) case:

q̈1(t) +
2β′

ρS
q̇1(t) +

(
2π

L

)4
EI

3ρS
q1(t) +

(π
L

)2 1

ρS
F (q1, t)q1(t)− 2g

3L
= 0 (25)
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with v(x, t) as per (6).
Introduce the beam’s critical buckling force

FB =
π2EI

a23L
2

(26)

where L is the beam’s length and a3 is a coefficient equal to 1 in the hinged-
(hinged-guided) case and 1/2 in the clamped-(clamped-guided) case.
Equations (24) and (25) can be rewritten into a unique expression:

q̈1(t)+
2β′

ρS
q̇1(t)+a1

(π
L

)2 FB
ρS

q1(t)+a1

(π
L

)2 1

ρS
F (q1, t)q1(t)−a2

g

L
= 0 (27)

with a1 = 1, a2 = 4/π and a3 = 1 in the hinged-(hinged-guided) case, and
a1 = 4/3, a2 = 2/3 and a3 = 1/2 in the clamped-(clamped-guided) case.

4.3 Equation of motion with the natural model.

By implementing the natural model of the external force, this second-order
differential equation will be of use below, to assess the quality of the smooth
approximated model which is given in section 3.
Transforming Eq. (27) while denoting q1(t) by y for the sake of clarity, obtain:

ÿ + 2βω0ẏ + ω2
0y = −ω2

0

y

FB/(kL) + C2/(kL)
F (y, t) + a2

g

L

with ω2
0 = a1

(π
L

)2 FB + C2

ρS
, βω0 =

β′

ρS
, and C2 =arbitrary constant.

Then, choosing C2 = F0 to have ω0 consistent with its natural value when
F ≡ 0, obtain:

ÿ + 2βω0ẏ + ω2
0y = −ω2

0

y

FB/(kL) + F0/(kL)
F (y, t) + a2

g

L
(28)

with ω2
0 = a1

(π
L

)2 FB + C2

ρS
and

F (y, t) = F0 + kL

(
aA cos(νt) +

π2

4
y2(t)

)
if F0 + kL

(
aA cos(νt) +

π2

4
y2(t)

)
≤ 0

F (y, t) = 0 otherwise

(29)

4.4 Equation of motion with the smooth model.

By implementing the smooth model of the external force, this second-order
differential equation will allow to use the averaging method, and then to derive

symbolic relations. Recall that aAcrit =

∣∣∣∣F0

kL

∣∣∣∣ = −F0

kL
. Because the expression

of force F in Eq. (27) differs depending on the sign of aA − aAcrit, two cases
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must be distinguished here, depending on the sign of aA − aAcrit. Denoting y
for q1(t), obtain, substituting Fapprox as given in Equations (19) and (20) into
Eq. (27):

� If aA < aAcrit:

ÿ + 2βω0ẏ + ω2
0y = −ω2

1

Cy3

1 + Cy2
+ a2

g

L
+ ω2

1

aA
F0

kL

y

1 +By2
cos(νt)

� If aA ≥ aAcrit:

ÿ + 2βω0ẏ + ω2
0y = −ω2

2

Cy3

1 + Cy2
+ a2

g

L
− ω2

2

y

1 +By2
cos(νt) (30)

with

ω2
0 = a1

(π
L

)2 FB + F0

ρS
, ω2

1 = − F0

FB + F0
ω2
0 ,

ω2
2 = − F0 − aAkL

2FB + F0 − aAkL
ω2
0 , C = 2B = −π

2kL

2F0
. (31)

Those equations are argumental equations similar to Eq. (1).

5 Applying the averaging method.

The averaging method [2] is applied to the second-order differential equation of
motion in y with the approximated (smooth) form of the external force.

5.1 Reduced time.

Introducing the reduced time τ , classically defined as τ = ω0t, and using from
now on the dot notation to denote differentiation with respect to τ , obtain

z̈ + 2βż + z = g1(z) + g2(z)cos

(
ν

ω0
τ

)
(32)

with z(τ) ≡ y(t) and

� If aA < aAcrit:

g1(z) = −ω2
1

Cz3

1 + Cz2
+ a2

g

L
and g2(z) = −ω2

11

z

1 +Bz2

with ω2
1 = − F0

FB + F0
ω2
0 and ω2

11 =
aAkL

FB + F0
ω2
0 .

� If aA ≥ aAcrit:

g1(z) = −ω2
2

Cz3

1 + Cz2
+ a2

g

L
and g2(z) = −ω2

2

z

1 +Bz2

with ω2
2 = − F0 − aAkL

2FB + F0 − aAkL
ω2
0 .
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It should be noted that ω11 and ω2 depend on the excitation’s amplitude aA, and
that it is assumed that |F0 − aAkL| < 2FB . Then, to use the classical averaging
method’s results [2, 10] recalled in [3], in which the second-order reduced-time
differential equation in z writes

z̈ + z = −2βż − g(z) +AH(z)E(τ), (33)

identify (32) with (33), obtaining

g(z) = −g1(z)

ω2
0

AH(z) =
g2(z)

ω2
0

E(τ) = cos

(
ν

ω0
τ

)
with H(z) = − z

1 +Bz2
and


A(aA) =

kLaA
FB + F0

if aA < aAcrit

A(aA) = − F0 − aAkL
2FB + F0 − aAkL

otherwise
(34)

The choice of an expression for H(z) which is the same in both cases allows to
carry out only one calculus when it comes to Fourier decomposition below. And
because A depends on aA, it will be denoted from now on as A(aA).

5.2 Standard system.

Searching for a solution z(τ) close to a slowly-varying sinusoid, carry out the
classical averaging method, beginning by a change of variables as follows:{

z(τ) = a(τ) sin(ρτ + ϕ(τ))

ż(τ) = a(τ)ρ cos(ρτ + ϕ(τ))

and obtain the standard system involving variables a and ϕ, which is the system
which will be averaged:
ȧ =

cos(θ)

ρ

(
−2βρa cos(θ)− g(a sin(θ)) +A(aA)H(a sin(θ))E(τ) + a sin(θ)(ρ2 − 1)

)
ϕ̇ = − sin(θ)

ρa

(
−2βρa cos(θ)− g(a sin(θ)) +A(aA)H(a sin(θ))E(τ) + a sin(θ)(ρ2 − 1)

)
with θ = ρτ + ϕ, ρ =

ω

ω0
, ω= constant to be determined (close to ω0), A(aA)

according to (34) and E(τ) = cos

(
ν

ω0
τ

)
.
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The reciprocal relations are as follows, knowing that a(τ) is always positive:
a(τ) =

√
z2(τ) +

(
ż(τ)

ρ

)2

ϕ(τ) = arctan

(
ρ
z(τ)

ż(τ)

)
− ρτ [2π]

(35)

These relations are of use to interpret the results of a solution to the second-order
equation of the natural or smooth model in terms of Van der Pol representation,
to compare them to the solution given by the averaged smooth model, which is
natively in Van der Pol coordinates.

5.3 Averaged system.

Averaged expression relative to function G. PuttingG(a, aA) = sin(θ)g(a sin(θ)),
where the overline notation denotes averaging with respect to time over one pe-
riod of the solution, and neglecting gravity, obtain:

� If aA < aAcrit:

G(a, aA) = −1

2

F0

FB + F0
a

(
1− 2

Ca2
+

1

Ca2
2√

1 + Ca2

)
(36)

� If aA ≥ aAcrit:

G(a, aA) = −1

2

F0 − aAkL
2FB + F0 − aAkL

a

(
1− 2

Ca2
+

1

Ca2
2√

1 + Ca2

)
(37)

Decomposing function H(a sin(θ)) into a Fourier series of variable θ.
This decomposition will allow an averaging of H(a sin(θ)) hereinafter.
H(a sin(θ)) being an odd function of variable θ, and being of period π, define
its Fourier series coefficients hq by

H(a sin(θ)) =

+∞∑
q=1, q odd

hq sin(qθ)

Then a calculus yields:

� If aA < aAcrit:

hq = −aAkL
2

B
q+1
2

(
√

1 +Ba2 − 1)q√
1 +Ba2aq

� If aA ≥ aAcrit:

hq =
F0 − aAkL

2

2

B
q+1
2

(
√

1 +Ba2 − 1)q√
1 +Ba2aq
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Calculus of H(a sin(θ))E(τ) cos(θ). If
ν

ρω0
is an even integer (denoted by n),

obtain H(a sin(θ))E(τ) cos(θ) =
1

4
Sn sin(nϕ), with Sn = hn−1 + hn+1.

Otherwise, H(a sin(θ))E(τ) cos(θ) = 0.

Calculus of H(a sin(θ))E(τ) sin(θ). If
ν

ρω0
is an even integer (denoted by n),

obtain H(a sin(θ))E(τ) sin(θ) = −1

4
Dn cos(nϕ), with Dn = hn−1 − hn+1.

Otherwise, H(a sin(θ))E(τ) sin(θ) = 0.

Symbolic expressions of functions Sn and Dn . A calculus gives

Sn = − 4

an+1

(
√

1 +Ba2 − 1)n

B
n
2 +1

(38)

Dn =
Sn√

1 +Ba2
(39)

Also:

1

Sn

∂Sn
∂a

=
1

a

(
n√

1 +Ba2
− 1

)
(40)

1

Dn

∂Dn

∂a
=

1

a

(
n√

1 +Ba2
− 2 +

1

1 +Ba2

)
.

ω00 and ρ00. Recall that ω2
0 = a1

(π
L

) FB + F0

ρS
. Put ω00 = ω0|F0=0. It follows

that ω00 is a constant parameter of the physical system. Then, introducing

parameter ρ00, and recalling that ρ =
ν

nω0
:


ω0 = ω00

√
FB + F0

FB

ρ = ρ00

√
FB

FB + F0

ρ00 =
ν

nω00

(41)

It can be seen that ρ00 is also a constant parameter of the physical system.
Because F0 ≤ 0, it holds ρ ≥ ρ00.
Also, define λ = |F0|/FB = −F0/FB .
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Averaged standard system. The classical averaging calculus yields, if n =
ν

ρω0
is an even integer:

ȧ =
A(aA)

4ρ
Sn(a) sin(nϕ)− βa

ϕ̇ =
G(a, aA)

ρa
+
A(aA)

4ρa
Dn(a) cos(nϕ)− ρ2 − 1

2ρ

(42)

with A(aA) defined as per Equ. (34), C by Equ. (31) and G per Equs. (36) and
(37).

If n =
ν

ρω0
is not an even integer, it holds:

ȧ = −βa

ϕ̇ =
G(a, aA)

ρa
− ρ2 − 1

2ρ

that is, the motion equations are the same as if the system were disconnected
from the excitation source.

6 Stationary condition.

Setting ȧ = 0 and ϕ̇ = 0 in system (42) constitutes the equations of the station-
ary condition:

0 =
A(aA)

4ρ
Sn(aS) sin(nϕS)− βaS

0 = G1(aS , aA) +
A(aA)

4aS
Dn(aS) cos(nϕS)− ρ2 − 1

2

(43)

where aS is the motion’s amplitude and ϕS is the phase shift of said motion
with respect to the excitation force, and function G1 is defined as

G1(aS , aA) = G(aS , aA)/aS (44)

β-curve, G-curve and stationary-solutions curve. Writing that sin2(nϕS)+
cos2(nϕS) = 1, obtain from Equs. (43):

(4ρβ)
2

+ 4
S2
n(aS)

D2
n(aS)

(
2G1(aS , aA)− (ρ2 − 1)

)2
=
A(aA)2S2

n(aS)

a2S
(45)

This can then be written:

Fβ(aS) + 4
S2
n(aS)

D2
n(aS)

F 2
G(aS) = 0 (46)

with

Fβ(aS) = (4ρβ)2 −
(
A(aA)Sn(aS)

aS

)2

,
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and
FG(aS , aA) = 2G1(aS , aA)− (ρ2 − 1)

Define the “β-curve” as the curve representing the solution to equation Fβ(aS) =
0. Also, define the “G-curve” as the curve representing the solution to equation
FG(aS , aA) = 0. Finally, define the “Stationary-solutions curve” as the curve
whose each point represents one stationary solution to Eq. (45).

Excitation threshold. It is of interest to be able to assess the minimum
value of aA versus aS along a stationary-solutions curve, because this value of
aA is the excitation threshold allowing the argumental phenomenon with given
parameters n, β, FB , F0, L, k, f00 and ρ00. The numerical plots show that
the minimum of aA seems to be close to an intersection point of the β-curve
and the G-curve. Therefore, it is natural to carry out a local study around said
intersection point to confirm this impression. Said local study, along with other
symbolic calculus, is carried out in [6].

Graphic representation of the stationary solutions in the (aS , aA)-
plane. Fig. 8 shows the implicit stationary-solutions curve, obtained numer-
ically, giving aA against aS for the values of parameters given in the figure’s
legend. The solid-line curve represents the solutions to Eq. (45), with a mini-
mum at point Amin. Observation of Fig. 8 shows that, due to the distinction
pertaining to the position of aA against aAcrit, the solutions to System (43)
can be seen as a set composed of two parts, depending on the position of the
current stationary-solution’s representative point with respect to the horizontal
line aA = aAcrit = |F0|/(kL), herein called the “critical line”:

� An upper part (above said line) composed of two arcs, in contact at their
higher extremities at one point, and at their lower extremities at said line.

� A lower part, constituted by a V-shaped curve, presenting a minimum at
point Amin.

The upper and lower parts are connected at the critical line. The right (resp.
left) arc and the right (resp. left) part of the V-shaped curve represent the
stable (resp. unstable) stationary solutions. For a given value of the excitation,
i.e. a given amplitude aA, there are two possible values for aS , represented by
points S and U . Point S is the stable stationary condition, while point U is the
unstable one. The V-shaped curve represents cases where there is permanent
contact between the beam under test (BUT) and the excitation source when
the BUT is in rectilinear position. In these cases, the contact may or may not
remain permanent when the BUT enters a transversal vibration, depending on
the spring’s stiffness and the amplitudes of transversal vibration of the BUT
and of the excitation source.
Fig. 9 shows the layout of the curves for another set of parameters. In this case,
the intersection between the G-curve and the β-curve never exists under the
critical line, and therefore, the V-shaped part of the stationary-solutions curve
never shows up.
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Figure 8: An example of stationary conditions for the averaged system with the
smooth model of the external force. aS is the stationary-motion’s amplitude, aA
is the excitation’s amplitude. The dash-dotted line shows the value of aA which
will be used for the Van der Pol representation of Fig. 10. The dotted line is the
G-curve. The solid line is the set of stationary solutions to the averaged smooth
model. The dashed line is the β-curve. S and U respectively represent the
stable and unstable stationary conditions. They are located at the intersection
of the stationary-solutions curve and the dash-dotted line. The space-dashed
horizontal line is the “critical line”. Amin is at the minimum of the stationary-
solutions curve. Parameter values are: n = 6, β = 2.4 10−3, FB = 51N , F0 =
−8N , L = 0.95m, k = 130 kN/m, f00 = 6.615Hz, fshaker = 39.500711Hz,
ρ00 = 0.9952308, λ = 0.1569. Model validity upper limit=3.48 10−4.

7 Smooth model of the external force.

In this section, the symbolic expressions found above will be tested and illus-
trated. The approximated smoothed form of the external force is studied using
the numerical solutions to the averaged system (42). By the way, a comparison
between the numerical solutions to the averaged system (42) and the solutions
to the original second-order equation (30) will test the validity of the averaging
method.

7.1 Smooth model of the external force and averaging
method.

Figure 8 shows a plot of the numerical solutions to System (43), giving the
stationary solutions to System (42). The parameters are those of a typical
experimental setup. Each point of the plot represents a stationary motion, i.e.
a motion with constant amplitude and constant phase. The abscissae are the
system’s motion amplitude, while the ordinates are the excitation’s, i.e. the
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Figure 9: Stationary conditions in the case ρ00 > 1 for the averaged system with
the smooth model of the external force. The graphical-element descriptions and
parameter values are the same as for Fig. 8, except fshaker = 39.88845Hz and
ρ00 = 1.005.

motion amplitude of Point A represented in Fig. 1. An example of Van der Pol
plot representing the solutions to the averaged system (42) with the smooth
model is given in Fig. 10 for n = 6. When an attractor center or a saddle
point is identifiable, it is one of the points of a stationary-solutions curve in the
(aS , aA)-plane.

7.2 Smooth model of the external force and original second-
order equation.

An example of Van der Pol plot representing solutions to the original second-
order equation (30) with the smooth model is given in Fig. 11, to be compared
to Fig. 10. It can be seen that the curves are very close to each other.

7.3 Conclusion.

The comparison between the results of the original second-order equation and
those of the averaged system shows that there is almost no difference between
them. Therefore from now on, consider that the comparison between the smooth
model and the natural model will be carried out by comparing the results of the
averaged system for the smooth model and the results of the original second-
order equation for the natural model.
Having carried out the calculus about the smooth model, it remains to be done
the calculus about the natural model.
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Figure 10: Van der Pol plot, averaged system with the smooth model of the
external force. a is the motion’s amplitude, ϕ is the motion’s phase. The value
of aA which is used is 7.5 10−5. The initial values are 0.02 for a and −0.475 for
ϕ. The parameter values are the same as in Fig. 8.

8 Natural model of the external force.

In this section, the natural model of the external force is studied with numerical
solution of the original second-order equation (28). The solutions to the original
second-order equation with the natural model (28), i.e. with the natural form of
the external force as given by Eq. (9), are obtained by the Runge-Kutta solver,
giving y as a function of t. To construct the corresponding Van der Pol plots,
first convert the solution into reduced-time, and then use the reciprocal relations
(35), with ρ = ν/(ω0n) to obtain a(τ) and ϕ(τ). Finally, apply a lowpass filter
on a(τ) and ϕ(τ) to partially cancel out the oscillations of the curves about the
mean trajectory. An example of Van der Pol plot obtained by this method is
given in Fig. 12, to be compared with Figs. 10 and 11. Here the comparison
shows that the curves are similar, but not identical. This is not surprising,
because the smooth model is built upon approximations. Particularly, with
the help of Fig. 22, it can be seen that between the two models, offsets can
be expected on the stationary amplitude aS and on the stationary phase ϕS .
In the Van der Pol plots, these offsets are offsets are in the positions of the
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Figure 11: Van der Pol plot, original second-order equation with the smooth
model of the external force. a is the motion’s amplitude, ϕ is the motion’s
phase. The parameter values and initial values are the same as in Fig. 8.

attractors’ centers and of the saddle points. In the (aS , aA))-plane, the offsets
are directly identifiable as two distinct points, one on a stationary-solutions
curve, the other as a discrete point resulting from a numerical calculus and a
manual identification on a Van der Pol plot.

Construction of the stable and unstable stationary-regime represen-
tative points. In the averaged smooth model, those two points are calculated
for a given excitation aA. In the natural model, they are determined graphi-
cally by observation of the Van der Pol plots. The points representing a stable
stationary condition are the centers of spirals, while those corresponding to an
unstable condition are the saddle type. For instance, in Fig. 12, the stable
S point is at radius 0.0115 and angle 5 π/16, while the unstable U point is
locatable at the peak of the curve near the point at radius 0.008 and angle
π/2 + 0.6π/16, and then, knowing the problem’s invariance through a rotation
of 2π/n, duplicated 6 times around the circle of radius 0.008, yielding a point
U ′ at π/2 + 0.6π/16− 2π/6 ≈ 3.26π/16.
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(a) (b)

Figure 12: Van der Pol plot, original second-order equation with the natural
model of the external force. (a): global view; (b): detailed view. The radius is
the motion’s amplitude, the angle is the motion’s phase. The parameter values
are the same as in Fig. 8, except aA = 6.5 10−5 and initial value of ϕ =−0.565.
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9 Other considerations.

9.1 A case where n = 14.

To illustrate that the argumental phenomenon can arise for values of n greater
than 4 or 6, a plot of the averaged-system’s stationary-solutions for the smooth
model with n = 14 is showed in Figs. 13 and 14.

Figure 13: Stationary condition, averaged system with the smooth model of the
external force. aS is the stationary-motion’s amplitude, aA is the excitation’s
amplitude. S and U are the stable and unstable stationary solutions to the
averaged system when aA = 0.094 10−3. Parameter values are: n = 14, β =
1.6 10−3, FB = 51 N , F0 = −22.95 N , L = 0.95 m, k = 250 kN/m, f00 =
6.615 Hz, fshaker = 92.14695 Hz, ρ00 = 0.995, Model validity upper limit (in
ordinate aA)=1.18 10−4.
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(a) (b)

Figure 14: Van der Pol representation for Fig. 13 when aA = 0.094 10−3. (a):
main view, (b): zoomed view, with more trajectories to bring out the stationary
points.
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9.2 Case of permanent contact.

In this paragraph, it will be shown that, in certain cases, the argumental phe-
nomenon can exist while the contact between the excitation source and the
BUT remains permanent. From Eq. (11), deduce that, in the (aS , aA)-plane,
the equation defining the region where the contact is permanent is:

aA < −
F0

kL
− π2

4
a2S = aAcrit −

π2

4
a2S (47)

This is an arc of parabola with vertex at (aS = 0, aA = aAcrit), and intersecting

the abscissae axis at aS =
2

π

√
aAcrit. Two examples of argumental phenomenon

for a BUT with permanent contact are given, in the (aS , aA)-plane, in Figs. 15
and 18. Fig. 16 is a Van der Pol representation, in rectangular coordinates, of
the motion yielded by the smooth model with the parameters of Fig. 15 and
aA = 5.0 10−5 (aA about half below the Model validity upper limit). A number
of threads can be seen, each thread corresponding to given initial conditions.
Fig. 17 is the same, but with the natural model. For clarity’s sake, there are less
threads represented in Fig. 17 than in Fig. 16; it can be seen that each thread
is shaky (although some filtering has been applied to enhance readability); this
is because the natural model is based on the second-order initial equation of
motion, whose solution renders every detailed motion due to the external force’s
action. The smooth model, after application of the averaging method, cancels
out all tiny vibrations around the slowly-varying sinusoid which is the solution
to the averaged system of equations (42), and it follows that the threads in the
Van der Pol representation for this model are smooth. Comparison of Figs. 16
and 17 shows that the attractors’ centers are localized in the neighbourhood of
each other.
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Figure 15: A case of permanent contact with n = 4. The dash-dotted line is the
border of the region where the contact is permanent. Parameters: n = 4, FB =
51N , F0 = −24.1N , λ = 0.472549, ρ00 = 0.8, β = 0.0024, k = 2.5 105, fshaker =
21.168Hz, f00 = 6.615Hz, L = 0.95m, Model validity upper limit=1.1326 10−4.
Only the part of the stationary-solutions curve (solid line) located below this
limit is relevant.

Figure 16: Smooth-model Van der Pol simulation in rectangular coordinates.
Parameters are those of Fig. 15, plus aA = 5 10−5.
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Figure 17: Natural-model Van der Pol simulation in rectangular coordinates.
Parameters are those of Fig. 16.

Figure 18: A case of permanent contact with n = 6. The dash-dotted line is
the border of the region where the contact is permanent. Parameters: n = 6,
FB = 51N , λ = 0.7862745, ρ00 = 0.75, β = 0.0008, Model validity upper
limit=8.8 10−5. Only the part of the stationary-solutions curve (solid line)
located below this limit is relevant.
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10 Model comparison.

In this section, using the results from sections above, a comparison between the
exact and the approximated forms of the external force will test the validity of
the smooth model versus the natural model.

10.1 Case n = 4.

Figs. 19 and 20 show a comparison between averaged system (with smooth
model) and second-order equation (with natural model) for n = 4. It can be
seen that, for this set of parameters, the smooth model gives results very close to
those of the natural model for low values of the excitation’s amplitude aA. In the
natural model, the “V” part of the curve is skewed, while it is not in the smooth
model. This is because of an approximation made in the smooth model, namely

in the expression of B. A model using the expression B = −π
2

2

1
F0

kL − aA
yields

this skewed layout of the “V” part of the stationary-solutions curve. However,
for simplification purposes, and to allow analytical expression to be brought out,

it has been decided to rather use the expression B = −π
2

4

kL

F0
. It can be seen

that for high values of aA, the smooth model gives solutions which do not exist
in the natural model. However, in the lower region, there is a good agreement
between smooth and natural models.
Fig. 21 gives a few stationary-solutions curves, with parameters of Fig. 19, for
various values of F0.

10.2 Case n = 6.

For n = 6, Fig. 22 uses the same parameters as Fig. 8, except F0 = −7.2N , to
plot the stationary solutions to the smooth model with addition of points repre-
senting the stationary results of the natural-model simulations. The full range
of values for parameter aA yielding a stationary condition in the natural model
have been explored for the parameters mentioned in Fig. 8. Here the value of
F0 is close to the lower limit where the argumental phenomenon disappears. It
can be seen that in this case, the results of the smooth model are not as close
to the natural model as in Fig. 19, but still give a good assessment.
Figure 22 shows that the parameter ranges for the argumental oscillations to
arise turn out to be quite narrow. Hence the knowledge of the symbolic for-
mulas of the smooth model constitute a guide to the choice of parameters for
the natural model, which is closer to physical reality. The comparison of the
curves in Figs. 10 and 11 shows that the averaging method, for the parameters
used, yields very good results. The curves in Fig. 12 are fairly close to those
in Figs 10 and 11. This must be viewed in the global context of Fig. 22, where
it can be seen that the parameter windows for the argumental phenomenon to
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Figure 19: Stationary condition, aA (point A’s amplitude) against aS (sta-
tionary motion’s amplitude). Comparison between second-order equation (with
natural model), represented as diamonds, and averaged system (with smooth
model), represented as a solid line. The G-curve is the dotted line, while the β-
curve is the dashed line. Parameters are: n = 4, FB = 51N , F0 = −6.4N , f00 =
6.615Hz, β = 2.4 10−3, L = 0.95m, k = 200 103N/m, fshaker = 25.849813,
ρ00 = 0.976939, λ = 0.12549. In the same way as in Fig. 8, where stable and
unstable stationary solutions are represented as an infinity of points belonging to
solid lines, a discrete series of stable (solid diamonds) and unstable (diamonds)
stationary points are represented here. Model validity upper limit=2.347 10−4.

Figure 20: This view shows the whole picture containing Fig. 19.
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Figure 21: Stationary condition, aA (point A’s amplitude) against aS (sta-
tionary motion’s amplitude). A few stationary-solutions curves for the smooth
model, for various values of F0, denoted by arrows in the graph. Parameter val-
ues are the same as in Fig. 19. Worst-case (i.e. for F0 = −16.0) Model validity
upper limit=1.84 10−4.

arise are narrow with respect to the possible parameter ranges.

10.3 Discussion.

The necessity that the contact be located in a narrow parameter window ex-
plains why argumental phenomenons arise rarely in the context of structure
vibration. Said windows are even narrower as n increases. The example used
in Figs. 8 to 12 is for n = 6, but Figs. 13 and 14, to be compared with Fig. 8,
show how the situation evolves when n = 14. In this case, the windows for aA
and aS are respectively about 30% and 3% of the central values of aA and aS ,
against 45% and 70% for n = 6; the ratio F0/FB is 78% against 10%.
It can be seen in the Van der Pol plots that if the right amplitude excitation
(aA) is applied and the beam is given an initial amplitude (preferably larger
than the expected stationary amplitude aS), the system’s trajectory will either
end up into an attractor or decrease to zero due to damping, depending on ini-
tial conditions. A study of the capture probability by the attractor (the spiral)
is given in [5].
Fig. 22 shows that the parameter ranges for the argumental oscillations to arise
turn out to be quite narrow. Hence the knowledge of the symbolic formulas of
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Figure 22: Stationary condition, aA (point A’s amplitude) against aS (sta-
tionary motion’s amplitude). Comparison between second-order equation (with
natural model) and averaged system (with smooth model). Parameters are the
same as in Fig. 8, except F0 = −7.2N . In the same way as in Fig. 8, stable and
unstable stationary points are represented. Results of numerical simulations us-
ing the natural model are represented as diamonds (unstable points) and solid
diamonds (stable points). Model validity upper limit=3.54 10−4.

the smooth model constitute a guide to the choice of parameters for the natural
model, which is closer to physical reality.
Figure 23 gives some stationary-solutions curves with same parameters as Fig. 22,
except for F0, which takes a set of values.
The coordinates of points representing the constant-amplitude motion, stable
and unstable stationary condition, show that, given the high sensitivity of the
Van der Pol representation and the zoom window used, the results of the smooth-
model simulation are indeed a good guide to those of the natural model. They
allow to numerically explore the natural model with more efficiency.
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Figure 23: Stationary condition, aA (point A’s amplitude) against aS (sta-
tionary motion’s amplitude). A few stationary-solutions curves for the smooth
model, for various values of F0, denoted by arrows in the graph. Parameter val-
ues are the same as in Fig. 22. Worst-case (i.e. for F0 = −15.5) Model validity
upper limit=2.87 10−4.

35



11 Conclusion.

It has been shown that when a beam under test is submitted, through a perma-
nent or an intermittent elastic contact, to an harmonic axial excitation which is
a multiple of twice the beam’s fundamental transverse frequency, it can enter a
stationary regime, where its transverse vibration has a frequency which is the
beam’s fundamental transverse frequency. Besides the classical resonant case,
where the axial excitation is twice the fundamental frequency of the beam, this
constitutes an argumental phenomenon.
This situation can be encountered when two beams are placed head-to-head,
in axial contact, permanent or intermittent. It could seem intuitive that the
argumental phenomenon is due to the intermittent contact. It can be seen that
the phenomenon can also arise when the contact is permanent. Therefore, to
avoid the argumental phenomenon, it is not sufficient to arrange the system so
as to maintain a permanent contact.
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