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Abstract

The transverse vibration of a beam excited axially by an harmonic
motion transmitted through intermittent contact is studied. It is shown
that this vibration is governed by a nonlinear argumental equation, which
means that a vibration in the fundamental transverse mode of the beam
can occur when the frequency of the excitation is many times the fre-
quency of the fundamental transverse mode. Two cases are considered :
the hinged-(hinged-guided) case, and the clamped-(clamped-guided) case.
A “natural” model is given. An approached model is derived. The av-
eraging method gives a standard system of differential equations for the
approached model. Symbolic relations are derived for the approached
model. Numeric simulations allow a ccomparison between the exact model
and the approached model. They also constitute a guide to the choice of
parameters for the natural model.

Keywords— non-linear; argumental oscillator; beam; axial excitation; trans-
verse; spatial modulation; Van der Pol representation.
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1 Introduction

The so-called argumental oscillator was discovered by Béthenod [1] in 1938, al-
though the word ”argumental” was forged by Russian physicists in 1973 [11] who
studied the phenomenon. Further developments were carried out by Doubochin-
ski [8, 9], particularly the discovery of the multiple resonance and the quantum
effect. The argumental oscillator has a stable motion consisting of a periodic
motion at a frequency next to its natural frequency when submitted to an ex-
ternal force whose frequency is close to a multiple of said natural frequency.
One condition for the phenomenon to arise is that the external force be de-
pendent on the space coordinate of the oscillator. Argumental oscillations have
also been observed and described in [7,12]. They have also been studied in [3–6].

The typical second-order ordinary differential equation for a one-degree-of-
freedom argumental oscillator is:

ẍ+ 2βω0ẋ+ ω2
0x = g1(x) + g2(x)cos(νt) (1)

In this paper, a beam submitted to an axial harmonic ecxitation is studied. The
beam ”senses” the excitation when it is near its resting position, and does not
sense it any more when it is in a sufficiently bended position. This is realized
by way of an intermittent contact. This configuration should allow to study
the behaviour of a structure when two elements are close to each other, but
disconnected, be it by design or after damaging.

2 System configuration.

The schematic system configuration is as shown in Fig. 1. A beam is represented,
with its left end S and right end M, in an hinged-(hinged-guided) configuration.
Point M is intermittently pushed to the left by a plate C, which is linked to a
point A via a spring. ~F is the force intermittently applied by plate C to the
beam’s right end in M. Point A is in harmonic motion horizontally in the figure,
in such a manner that the contact between plate C and point M be intermittent
when the beam is in resting position, and a force F0 is applied to point M when
the beam is in resting position and point A is in center position.

3 Modeling.

In this section, a first model will be studied, called “natural model”, because it
is deduced directly from simple laws. This model involves a C0-class function
for the external force.
Then a second model will be studied, called a “smoothed model”, because it
is an approximation to the natural model. This model involves a C∞-class
function for the external force.
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Figure 1: system configuration. x is the horizontal abscissa, v is the transverse
displacement, t is the time, and ~F is the force applied by plate C to point M.

3.1 Expression of point M’s abscissa xM .

We shall need this expression to calculate the force F . As the beam bends, point
M moves to the left. Define L = beam’s length and xM = point M’s abscissa.
On the beam, define the curvilinear abscissa from point S to current point (x, v)
as s(x, v, t). A classical method to calculate xM is as follows.
As the beam is considered inextensible, point M’s curvilinear abscissa is always
equal to L, i.e.

s(xM , v, t) = L =

∫ xM

0

√
1 +

(
∂v(u, t)

∂u

)2

du (2)

Then, using the limited development

√
1 +

(
∂v(u, t)

∂u

)2

≈ 1+
1

2

(
∂v(u, t)

∂u

)2

in-

side Equ. (2), and considering that

∫ xM

0

(
∂v(u, t)

∂u

)2

du ≈
∫ L

0

(
∂v(u, t)

∂u

)2

du,

one gets:

xM ≈ L−
1

2

∫ L

0

(
∂v(u, t)

∂u

)2

du (3)

Then, consider that transverse motion is expressed as

v(x, t) = Lq1(t)ϕ(x), (4)

where ϕ(x) is the modal form of the first mode and q1(t) is the amplitude as a
function of time.

Hinged-(hinged-guided) case. In this case, consider that the first mode is

ϕ(x) = sin
(
π
x

L

)
. Substituting this expression into Equ. (4), then v(x, t) into
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(3), one gets:

xM (t) ≈ L
(

1− π2

4
q21(t)

)
Clamped-(clamped-guided) case. In this case, consider that the modal
form of the first mode is (see [Pecker, chap.8, p.169]):

ϕ(x) = A1 [sin(ax)− 1.0178 cos(ax)− sinh(ax) + 1.0178 cosh(ax)]

with A1 arbitrary.
Approach this modal form with

ϕ(x) =
1

2

(
1− cos

(
2πx

L

))
, (5)

It can be seen in Fig. ?? that, if A1 = 1.205, the approaching curve is close to
the original curve. Hence, substituting (5) into (4), and then v(x, t) into (3),

Figure 2: Approached modal form.

one gets:

xM (t) = L

(
1− π2

4
q21(t)

)
Conclusion about both cases. Consequently, one can put:

xM (t) = L

(
1− π2

η
q21(t)

)
(6)

with η = 4 for both the hinged-(hinged-guided) case and the clamped-(clamped-
guided) case.
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3.2 Natural model of force F .

Define xA =point A’s abscissa, xA0 = xA, where the overline notation means
the averaging operation versus time. Define

zA(t) =
xA(t)− xA0

L
. (7)

It is easily seen that, provided there is contact between C and M,

F = F0 + kL

(
zA(t) +

π2

η
q21(t)

)
where F is the expression of force, k is the spring’s stiffness, zA is given by
equation (7) and xM is given by Equ. (6).

Define FC(q1, t) = F0 + kL

(
zA(t) +

π2

η
q21(t)

)
. If the contact is intermittent,

one has: {
F (q1, t) = FC(q1, t) if FC(q1, t) ≤ 0

F (q1, t) = 0 otherwise

Define aA as the amplitude of A’s harmonic motion, normalized by L, i.e.
xA(t) = xA0 + L aA cos(νt). Then zA(t) = aA cos(νt), andF (q1, t) = F0 + kL

(
aA cos(νt) +

π2

η
q21(t)

)
if F0 + kL

(
aA cos(νt) +

π2

η
q21(t)

)
≤ 0

F (q1, t) = 0 otherwise

(8)

3.3 High line and Low line.

An approaching function Fapprox for F (x, t) will be defined below. As k is
generally a high value, define, for the sake of clarity, yapprox and yexact by
yapprox(x, t) = Fapprox(x, t)/(kL) and yexact(x, t) = F (x, t)/(kL).
The case where F0/(kL) < 0 when x = 0 will be studied. That is, when the ex-
ternal excitation is off and the beam is at rest, there is contact between points
M and C. In Figs. 3 to 6, various plots of the beam’s transverse motion are
represented. The values of the parameters are as follows: F0/(kL) = −2 10−3,
aA = 1.8 10−3.

The case represented is when
F0

kL
+ aA < 0, i.e. when the beam is at rest and

the excitation is on, the contact between points M and C is never disrupted.
This can be seen in Fig. 3.
The plot of yexact is a truncated sinusoid represented in the Figs. 3 to 6 by a
solid line, along with the plot of yapprox in dashed line, and dotted construction
lines showing the entirety of the truncated sinusoid, as well of various indica-
tions.
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As soon as the sinusoid crosses the line y = 0, it gets truncated, and the only
remaining part is located below said line.
From Equ. (8), it can be seen that the dotted horizontal marker line labelled
F0/(kL) + aA + π2x2/η locates the top of the untruncated sinusoid, while the
marker line labelled F0/(kL)−aA+π2x2/η locates the bottom of said sinusoid.
The dotted horizontal markers labelled “High line” and “Low line” locate the
highest (resp. lowest) point of the remaining part of the sinusoid after trunca-
tion.
Knowing that the excitation frequency is significantly greater than the beam’s
frequency (at least four times greater), consider that during one period of the
excitation, the value of x is approximately constant, and the force F can be
represented as a pure sinusoid, possibly truncated. It can be seen that the more
x increases, the more the plot of yexact (solid line) moves to the top of the figure,
and the less the remaining part of the sinusoid is significant.
Denoting by Hl and Ll the High line’s and Low line’s ordinates, it holds:Hl(x) =

F0

kL
+ aA +

π2x2

η
if

F0

kL
+ aA +

π2x2

η
≤ 0

Hl(x) = 0 otherwise

and Ll(x) =
F0

kL
− aA +

π2x2

η
if

F0

kL
− aA +

π2x2

η
≤ 0

Ll(x) = 0 otherwise

The method employed in this section consists in approximating the exact func-
tion yexact by a full sinusoid yapprox located between the High line and the Low
line. It holds:

yapprox(t) =
High line+ Low line

2
+
High line− Low line

2
cos(νt) (9)

= Mean(yapprox) +Ampl(yapprox) cos(νt) (10)

where Mean(f) denotes the mean value of function f over one period of f and
Ampl(f) denotes the amplitude of function f , i.e. half the difference between
the maximum and minimum values of f(t) over one period of f .

3.4 Approximation to a C0-function.

An approximation to following function J will be needed hereinafter. Define
function J(x) as follows:{

J(x) = α+ βx2 if α+ βx2 ≤ 0

J(x) = 0 otherwise

with α < 0 and β > 0. This is a class C0-function. Consider (see Fig. 7) that

function Japprox =
α

1 + λβαx
2

, with −8 ≤ λ ≤ −2, is a fair approximation to

J(x). Japprox is of class C∞.
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Figure 3: Exact and approached F, xref = 0.0, aA = −0.9
F0

kL
.

Figure 4: Exact and approached F, xref = 0.015, aA = −0.9
F0

kL
.

3.5 Approximation to the Ampl(yapprox) function.

Define aAcrit =

∣∣∣∣F0

kL

∣∣∣∣ = −F0

kL
.

Form the expression of Ampl(yapprox) = (Hl − Ll)/2:

Ampl(yapprox) = aA if
π2

η
x2 ≤ aAcrit − aA

Ampl(yapprox) = −1

2

(
F0

kL
− aA +

π2

η
x2
)

if aAcrit − aA <
π2

η
x2 ≤ aAcrit + aA

Ampl(yapprox) = 0 if aAcrit + aA <
π2

η
x2

which can be approximated by:
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Figure 5: Exact and approached F, xref = 0.02, aA = −0.9
F0

kL
.

Figure 6: Exact and approached F, xref = 0.025, aA = −0.9
F0

kL
.

� if aA < aAcrit:

Ampl(yapprox) ≈ aA
1 +Bx2

(11)

� otherwise:

Ampl(yapprox) ≈ 1

2

− F0

kL + aA

1 +Bx2
(12)

with B = −π
2kL

ηF0
.
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Figure 7: Exact and approached J,
F0

kL
= −0.1 10−2, aA = 0.05 10−2.

3.6 Approximation to the Mean(yapprox) function.

Form the expression of Mean(yapprox) = (Hl + Ll)/2:

Mean(yapprox) =
F0

kL
+
π2

η
x2 if

π2

η
x2 ≤ aAcrit − aA

Mean(yapprox) =
1

2

(
F0

kL
− aA +

π2

η
x2
)

if aAcrit − aA <
π2

η
x2 ≤ aAcrit + aA

Mean(yapprox) = 0 if aAcrit + aA <
π2

η
x2

which can be approximated by:

� if aA < aAcrit:

Mean(yapprox) ≈ F0

kL

1

1 + Cx2
(13)

� otherwise:

Mean(yapprox) ≈ 1

2

F0

kL − aA
1 + Cx2

(14)

with C = −2
π2kL

ηF0
.

3.7 Approximation to the F function.

Substituting Equations (11), (12), (13) and (14) into Equ. (10), and substituting
Fapprox for kLyapprox, one gets:

� if aA < aAcrit:

Fapprox = F0

(
1− Cx2

1 + Cx2

)
+

kLaA
1 +Bx2

cos(νt) (15)
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� otherwise:

Fapprox =
1

2
(F0 − kL aA)

(
1− Cx2

1 + Cx2

)
− 1

2

F0 − kL aA
1 +Bx2

cos(νt) (16)

with C = 2B = −2
π2kL

ηF0
.

4 Second-order differential equation of motion.

Equ. (6) gives xM as a function of q1, while Equations (15) and (16) give an
approximated expression of the external force as a function of x and t. Substi-
tuting these expression into the general equation to the modal coordinates, it is
possible to obtain a second-order ordinary differential equation in x(t).

4.1 Classical transverse motion of an axially-excited beam.

The well-known equation of motion of an axially-excited Euler-Bernoulli beam
is [10]:

ρSv̈ + EIv(4) − F (σ, t)v′′ + 2β′v̇ = f(x, t)

where S is the beam’s cross-section area, E is the elastic modulus, I is the
second moment of area of the beam’s cross-section, F is the axial force, which
may be a function of the beam’s instantaneous state σ and of time t, f(x, t) is
the distributed load, β′ is the damping factor xxx.
Using a change of variables v(x, t) = Lq(t)ϕ(x), one obtains:

ρSq̈(t)ϕ(x) + EIϕ(4)(x)q(t)− F (σ, t)ϕ′′(x)q(t) + 2β′ϕ(x)q̇(t) = f(x, t) (17)

4.2 Projection onto the first mode.

Projecting Equ. (17) onto the first mode, one obtains, for the hinged-(hinged-
guided) case:

q̈1(t) +
2β′

ρS
q̇1(t) +

(π
L

)4 EI
ρS

q1(t) +
(π
L

)2 1

ρS
F (q1, t)q1(t)− 4g

πL
= 0 (18)

with v(x, t) ≈ Lq1(t) sin
(π
L
x
)

.

And for the clamped-(clamped-guided) case:

q̈1(t) +
2β′

ρS
q̇1(t) +

(
2π

L

)4
EI

3ρS
q1(t) +

(π
L

)2 1

ρS
F (q1, t)q1(t)− 2g

3L
= 0 (19)

Introduce the beam’s critical buckling force

FB =
π2EI

a23L
2

(20)
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where L is the beam’s length and a3 is a coefficient equal to 1 in the hinged-
(hinged-guided) case and 1/2 in the clamped-(clamped-guided) case.
Equations (18) and (19) can be rewritten into a unique expression:

q̈1(t)+
2β′

ρS
q̇1(t)+a1

(π
L

)2 FB
ρS

q1(t)+a1

(π
L

)2 1

ρS
F (q1, t)q1(t)−a2

g

L
= 0 (21)

with a1 = 1, a2 = 4/π and a3 = 1 in the hinged-(hinged-guided) case, and
a1 = 4/3, a2 = 2/3 and a3 = 1/2 in the clamped-(clamped-guided) case.

4.3 Second-order differential equation of motion with the
natural model of the external force.

This equation will be of use below, to assess the quality of the approximated
model which is given in section 3.
Substituting F (q1, t) as given in Equ. (8) into Equ. (21) while denoting q1(t) by
y for the sake of clarity, one gets:

ÿ + 2βω0ẏ + ω2
0y = −ω2

0

y

FB/(kL) + C2/(kL)
F (y, t) + a2

g

L
= 0 (22)

with ω2
0 = a1

(π
L

)2 FB + C2

ρS
, βω0 =

β′

ρS
, and C2=arbitrary constant.

4.4 Second-order differential equation of motion with the
smoothed model of the external force.

Two cases must be distinguished, depending on the sign of
F0

kL
+aA = aA−aAcrit.

Denoting B for B(aA) and C for C(aA), and denoting y for q1, one obtains,
substituting Fapprox as given in Equations (15) and (16) into Equ. (21):

� If aA < aAcrit:

ÿ + 2βω0ẏ + ω2
0y = −ω2

1

By3

1 +By2
− a2

g

L
+ ω2

1

aA
F0

kL

y

1 + Cy2
cos(νt)

� If aA ≥ aAcrit:

ÿ + 2βω0ẏ + ω2
0y = −ω2

2

By3

1 +By2
− a2

g

L
− ω2

2

y

1 +By2
cos(νt) (23)

with

ω2
0 = a1

(π
L

)2 FB + F0

ρS
, ω2

1 = − F0

FB + F0
ω2
0 , ω

2
2 = −

F0−aAkL
2

FB + F0−aAkL
2

ω2
0 , C = 2B = −2

π2kL

ηF0

(24)
Those equations are argumental equations similar to Equ. (1).
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5 Applying the averaging method.

The averaging method [2] will be applied to the second-order differential equa-
tion of motion in y with the approximated form of the external force.

5.1 Reduced time.

Introducing the reduced time τ classically defined as τ = ω0t, and using from
now on the dot notation to denote differentiation with respect to τ , one gets

z̈ + 2βż + z = −g(z) +AH(z)cos

(
ν

ω0
τ

)
with

� If aA < aAcrit:

A =
1

FB + F0
(denoted hereafter by A1), g(z) = − F0

FB + F0

Cz3

1 + Cz2
−

a2g

Lω2
0

, and H(z) = −kLaA
z

1 +Bz2

� If aA ≥ aAcrit:

A =
2

2FB + F0 − aAkL
(denoted hereafter byA2), g(z) = − F0 − aAkL

2FB + F0 − aAkL
Cz3

1 + Cz2
−

a2g

Lω2
0

, and H(z) =
F0 − aAkL

2

z

1 +Bz2

5.2 Standard system.

Searching a solution close to a slowly-varying sinusoid, carry out the following
classic change of variables{

y(τ) = a(τ) sin(ρτ + ϕ(τ))

ẏ(τ) = a(τ)ρ cos(ρτ + ϕ(τ))

and obtain the standard system:
ȧ =

cos(θ)

ρ

(
−2βρa cos(θ)− g(a sin(θ)) +AH(a sin(θ))E(τ) + a sin(θ)(ρ2 − 1)

)
ϕ̇ = − sin(θ)

ρa

(
−2βρa cos(θ)− g(a sin(θ)) +AH(a sin(θ))E(τ) + a sin(θ)(ρ2 − 1)

)
with θ = ρτ + ϕ, ρ =

ω

ω0
, ω= constant to be determined (close to 1), and

E(τ) = cos

(
ν

ω0
τ

)
.
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The reciprocal relations are as follows, knowing that a(τ) is always positive:
a(τ) =

√
y2(τ) +

(
ẏ(τ)

ρ

)2

ϕ(τ) = arctan

(
ρ
y(τ)

ẏ(τ)

)
− ρτ [2π]

(25)

5.3 Averaged system.

Averaged expression of function g. Putting G(a) = sin(θ)g(a sin(θ)),
where the overline notation denotes averaging with respect to time over one
period of the solution, one gets:

� If aA < aAcrit:

G(a) = −A1

2
F0a

(
1− 2

Ca2
+

1

Ca2
2√

1 + Ca2

)
(26)

� If aA ≥ aAcrit:

G(a) = −A2

2

F0 − aAkL
2

a

(
1− 2

Ca2
+

1

Ca2
2√

1 + Ca2

)
(27)

Decomposition of function H(a sin(θ)) in Fourier series of variable θ.
H(a sin(θ)) being an odd function of variable θ, and being of period π, define
its Fourier series coefficients hq by

H(a sin(θ)) =

+∞∑
q=1, q odd

hq sin(qθ)

Then a calculus gives:

� If aA < aAcrit:

hq = −aAkL
2

B
q+1
2

(
√

1 +Ba2 − 1)q√
1 +Ba2aq

� If aA ≥ aAcrit:

hq =
F0 − aAkL

2

2

B
q+1
2

(
√

1 +Ba2 − 1)q√
1 +Ba2aq

Calculus of H(a sin(θ))E(τ) cos(θ). If
ν

ρω0
is an even integer (denoted by n),

one gets H(a sin(θ))E(τ) cos(θ) =
1

4
Sn sin(nϕ), with Sn = hn−1 + hn+1.

Otherwise, H(a sin(θ))E(τ) cos(θ) = 0.
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Calculus of H(a sin(θ))E(τ) sin(θ). If
ν

ρω0
is an even integer (denoted by n),

one gets H(a sin(θ))E(τ) sin(θ) = −1

4
Dn cos(nϕ), with Dn = hn−1 + hn+1.

Otherwise, H(a sin(θ))E(τ) sin(θ) = 0.

Symbolic expressions of functions Sn and Dn . A calculus gives

Sn = J
4

an+1

(
√

1 +Ba2 − 1)n

b
n
2 +1

(28)

Dn =
Sn√

1 +Ba2

with J = −aAkL if aA < aAcrit, and J =
F0 − aAkL

2
otherwise.

Also:

1

Sn

∂Sn
∂a

=
1

a

(
n√

1 +Ba2
− 1

)
1

Dn

∂Dn

∂a
=

1

a

(
n√

1 +Ba2
− 2 +

1

1 +Ba2

)

ρ against F0. Recall that ω2
0 = aA

(π
L

) FB + F0

ρS
. Put ω00 = ω0(F0 = 0).

Hence 
ω0 = ω00

√
FB + F0

FB

ρ = ρ00

√
FB

FB + F0

ρ00 =
ν

nω00

(29)

Because F0 ≤ 0, it holds ρ ≥ ρ00. And as it has been showed that ρ > 1 for any
value of F0 in the domain of this study, it consequently holds:

ρ00 ≥ 1 (30)

Averaged standard system. The classical averaging calculus gives, if n =
ν

ρω0
is an even integer:


ȧ =

A

4ρn
Sn(a) sin(nϕ)− βa

ϕ̇ =
G(a)

ρa
+

A

4ρa
Dn(a) cos(nϕ)− ρ2 − 1

2ρ

(31)
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If n =
ν

ρω0
is not an even integer, it holds:

ȧ = −βa

ϕ̇ =
G(a)

ρa
− ρ2 − 1

2ρ

that is, the system behaves like if it were disconnected from the excitation
source.

6 Stationary condition: properties expressed as
symbolic expressions.

Making ȧ = 0 and ϕ̇ = 0 in system (31) constitutes the equations of the sta-
tionary condition:

0 =
A

4ρn
Sn(aS) sin(nϕS)− βaS

0 = G1(aS) +
A

4
Dn(aS) cos(nϕS)− ρ2 − 1

2

(32)

where aS is the motion’s amplitude and ϕS is the phase shift of said motion
with respect to the excitation force, and function G1 is defined as

G1(aS) = G(aS)/aS (33)

From this system, one deduces a number of symbolic relations which give clues
about the stationary condition.
Firstly, writing that sin2(nϕS) + cos2(nϕS) = 1, one gets:

(4ρβ)
2

+ 4
S2
n(aS)

D2
n(aS)

(
2G1(aS)− (ρ2 − 1)

)2
=
A2S2

n(aS)

a2S
(34)

Also, writing that tan(nϕS) =
sin(nϕS)

cos(nϕS)
, one gets:

tan(nϕS) =
Dn(aS)

Sn(aS)

2ρβaS
aS(ρ2 − 1)− 2G(aS)

Fig. 8 shows the implicit curve giving aA against aS for the values of parameters
given in the figure’s legend. The curve marked “Purple Beta alone=1” represents
the solution of the first equation of System (32) in which nϕS = −π/2 is applied.
The curve marked “G alone=0” represents the solution of:

2G1(aS)− (ρ2 − 1) = 0 (35)

The curve marked “Whole equ.” represents the solution of Equ. (34).
Points S, T , Amin−, Amin+ and M1 are all calculated via symbolic formulas

17



Figure 8: Constant-amplitude, constant-phase motion. aS is the motion’s am-
plitude, aA is the excitation’s amplitude. S represents the stable condition, T
the unstable condition. Parameter values are: n = 6, β = 0.0018, FB/(kL) =
0.00328, F0/(kL) = −6 10−5, ρ00 = 1.06, η = 1.4516, aAmax = 0.003283.

given below. Points Amin− and Amin+ are the maximum and the minimum
of the curve representing Equ. (34). Point M1 is the minimum of the curve
“Purple Beta alone=0”.
Observation of Fig. 8 shows that the solution of System (32) can be seen as
composed of two arcs: one upper arc and one lower arc, in contact at each of
their extremities close to points Amin− (on the left) and Amin+ (on the right).
The upper (resp. lower) arc represents the stable (resp. unstable) stationary
solutions. For a given value of the excitation, i.e. a given amplitude aA, there
are two possible values for aS , represented by points S and T . Point S is the
stable stationary condition, while point T is the unstable one.

6.1 G-curve.

An interesting point is to search for a symbolic expression giving the coordinates
of points Amin− and Amin+. Instead of searching for the exact values, which
leads to intricated calculus, notice that these points are close to the intersection
points of the Beta-curve and the G-curve. In this manner, calculus is simpler.
As usual, two cases must be distinguished, depending on the sign of aA−aAcrit.

� If aA < aAcrit:
Substituting the G and G1 function definitions (26) and (33) into the

18



G-curve’s equation (35) yields:

R+ 1− 2

x
+

1

x

2√
x+ 1

= 0 (36)

with
x = Ca2S (37)

and R = (ρ2 − 1)
FB + F0

F0
.

Moreover, due to relations (29), it holds:

R =
(ρ200 − 1)FB − F0

F0

so that R < 0, because of Equ. (30). Then, putting u =
√
x+ 1, one gets:

u2 + u− 2

R+ 1
= 0 (38)

Then knowing that Ca2S > 0, one concludes that a necessary condition for
Equ. (38) to have real solutions is that

−1 < R < 0 (39)

and, therefore, that (FB + F0)/FB < ρ00 < 1, which cannot be realized,
because of (30). In conclusion, the G-curve cannot have any part of it
inside the region aA < aAcrit. Therefore, from here on, only the case
aA ≥ aAcrit will be considered.

� If aA ≥ aAcrit:
In the same manner as in the case aA < aAcrit, substituting the G and G1

function definitions (27) and (33) into the G-curve’s equation (35) yields
formally the same Equ. (36) as hereabove, but with:

R = (ρ2 − 1)
2FB + F0 − aAkL

F0 − aAkL
(40)

One concludes that condition (39) is still necessary, with R depending here
on aA. Substituting (40) into (39) yields:

FB + F0

FB
< ρ200 <

FB + F0

FB + F0−aAkL
2

The inequality on the left is always verified, because F0 < 0 and ρ00 > 1.
The inequality on the right is realizable, because it holds in this case:
aA ≥ aacrit, and therefore F0/(kL) + aA ≥ 0.
The G-curve’s equation can be expressed as a2S versus aA:

x =
2

R(aA) + 1
− 1

2
− 1

2

√
1 +

8

R(aA) + 1
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with x = Ca2S .
Then, an elementary calculus yields:

R(aA) =
2

x

(
1− 1√

x+ 1

)
− 1 (41)

From Equ. (37), (40) and (41), the reciprocal relation giving aA against
aS can be calculated by classical ways. It holds:

aA =
F0

kL
+ 2

FB
kL

ρ2 − 1

ρ2 − 2
Ca2S

(
1− 1√

1+Ca2S

) (42)

with ρ as given by relations (29).

6.2 Beta-curve.

Knowing that the G-curve cannot have any part of it inside the region aA <
aAcrit, and that what is searched for is the intersection between the G-curve
and the Beta-curve, consider only the case where aA ≥ aAcrit when studying
the Beta-curve. The Beta-curve’s equation is:

ρβ

Sn(aS)
= − A

4aS
(43)

with a minus sign because here Sn(aS) < 0 and A = A2 > 0. Substitute
the symbolic expression of Sn, as given by Equ. (28), into (43) to obtain the
Beta-curve’s equation:

−R(aA)
ρβ

ρ2 − 1
=

1

z

(√
1 + z − 1√

z

)n
(44)

with
z = Ba2S (45)

and R(aA) given by (40).

6.3 Intersection of the Beta-curve and the G-curve.

This intersection consists of points Amin− and Amin+. Substituting the expres-
sion of R given by Equ. (41) into Equ. (44) and taking C = 2B gives:

ρβ

ρ2 − 1

(
1 +−1

z
+

1

z
√

2z + 1

)
=

1

z

(√
1 + z − 1√

z

)n
(46)

which is an equation in a2S because of the definition of z in Equ. (45).
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Limit condition for the existence of an intersection. There is a maxi-

mum value of
ρβ

ρ2 − 1
for Equ. (46) to have solutions. A good symbolic approx-

imation of this limit value can be obtained by using Appendix A in Section 13
to find that

� (
ρβ

ρ2 − 1

)
max

≈ 4n2

(n2 − 4)2

(
n− 2

n+ 2

)n/2
; (47)

� the abscissa in z of the tangency point is z = z2max =
n2

4
− 1. Hence,

using Equs.(24) and (45)), the corresponding value aScrit of aS can be
expressed:

aScrit =
√
z2max/B =

2n

n2 − 4

(
n− 2

n+ 2

)n/4√
− ηF0

π2kL

� The ordinate aAcrit of the tangency point is obtained by substituting the
expression of aS hereabove into Equ. (42), yielding

aAcrit =
F0

kL
+ 2

FB
kL

ρ2 − 1

ρ2 −N
(48)

with N =
4

n2 − 4

1− 1√
n2

2 − 1

.

Approximate symbolic solutions for the intersection. If the limit con-
dition hereabove is satisfied, it is possible to solve approximately Equ. (46),
using the following remarks:

� Function 1− 1

z
+

1

z
√

2z + 1
can be approximated by function

√
2z

1 +
√

2z
.

� Function J(z) =
1

z

(√
1 + z − 1√

z

)n
can be approximated by function

K(z) =
hz

bz2 + cz + 1
,

with c = 8
n2 + 4

(n2 − 4)2
, b =

16

(n2 − 4)2
, and h =

4

n2 − 4

(
n− 2

n+ 2

)n/2(
c+

8

n2 − 4

)
=

64n2

(n2 − 4)3

(
n− 2

n+ 2

)n/2
.

Thus, Equ. (46) becomes:

E

√
2z

1 +
√

2z
=

hz

bz2 + cz + 1
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with E =
ρβ

ρ2 − 1
. This is a second-degree equation in z, which, once solved in

z, and due to Equ. (45), yields the abscissae of points Amin− and Amin+. This
second-degree equation in z is:

E
√

2bz2 +
√

2(Ec− h)z + E
√

2− h = 0

The condition to have real roots is: 2(Ec− h)2 − 4E
√

2(E
√

2)− h) ≥ 0. Then,
using Equ. (42), the ordinates of said points can be calculated. Those points
are represented in Fig. 9 hereafter. However, it is worth mentioning that the
limit condition (47) for the existence of solutions is much simpler to use.

7 Numerical simulations.

In this section, the symbolic expressions found above will be tested and illus-
trated. Firstly, using the approximated form of the external force, a comparison
between the numerical solutions of the averaged system and the original second-
order equation will test the validity of the averaging method. Secondly, using
the numerical solutions of the original second-order equation, a comparison be-
tween the exact and the approximated forms of the external force will test the
validity of the smoothed model versus the natural model.

7.1 Averaged system with the smoothed model of the ex-
ternal force: stationary condition.

Figure 9 shows a plot of the solutions of System (32), obtained by numerical
calculus. The parameters are those of a typical experimental setup. Each point
of the plot represents a stationary motion, i.e. a motion with constant amplitude
and constant phase. The abscissae are the system’s motion amplitude, while the
ordinates are the excitation’s, i.e. the motion amplitude of Point A represented
in Fig. 1.

7.2 Original second-order equation with the smoothed model
of the external force.

An example of Van der Pol plot representing the solution of the original second-
order equation (23) with the smoothed model is given in Fig. 10.

7.3 Original second-order equation with the natural model
of the external force.

The solutions of the original second-order equation with the natural model (22),
i.e. with the natural form of the external force, as given by Equ. (8), are
obtained by the Runge-Kutta solver, giving y as a function of t. To construct
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Figure 9: Stationary condition, averaged system with the smoothed model of the
external force. aS is the stationary-motion’s amplitude, aA is the excitation’s
amplitude. Amin− and Amin+ are the calculated points of intersection of the
Beta-curve and the G-curve. M is the calculated minimum of the Beta-curve.
The dash-dotted line shows the value of aA which will be used for the Van der
Pol representation. Parameter values are: n = 6, β = 1.8 10−3, FB = 97, L =
0.95, k = 31.1 103, FB/(kL) = 3.28 10−3, F0/(kL) = −6.0 10−5, ρ00 = 1.06,
η = 1.4516.

the corresponding Van der Pol plots, first convert the solution into reduced-
time, and then use the reciprocal relations (25), with ρ = ν/(ω0n) to obtain
a(τ) and ϕ(τ). Finally, smooth a(τ) and ϕ(τ). An example of Van der Pol plot
obtained by this method is given in Fig. 12.

Construction of the points relative to the natural model. Fig. 13 shows
the same data as Fig. 9, with addition of points representing the results of
the natural-model simulations. The coordinates of said points are determined
graphically by observation of the Van der Pol plots. The points representing a
stable stationary condition are the centers of spirals, while those corresponding
to an unstable condition are the saddle type. The full range of values for param-
eter aA yielding a stationary condition have been explored for the parameters
mentioned in Fig.9. The results are given in Table 1.
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Figure 10: Van der Pol plot, averaged system with the smoothed model of the
external force. a is the motion’s amplitude, ϕ is the motion’s phase. The value
of aA which is used is 9 10−5. The initial values are 0.01 for a and −0.45 for ϕ.
The parameter values are the same as in Fig. 9.

Figure 11: Van der Pol plot, original second-order equation with the smoothed
model of the external force. a is the motion’s amplitude, ϕ is the motion’s
phase. The parameter values and initial values are the same as in Fig. 10.
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Figure 12: Van der Pol plot, original second-order equation with the natural
model of the external force. a is the motion’s amplitude, ϕ is the motion’s
phase. The parameter values are the same as in Fig. 11, except aA = 0.000839,
a’s initial value=0.02, and ϕ’s initial value=−0.75.

8 Energy transfers.

9 Discussion.

The comparison of the curves in Figs. 10 and 11 shows that the averaging
method, for the parameters used, yields very good results.
The curves in Fig. 12 do not seem close to those in Figs 10 and 11. However, this
must be viewed in the global context of Fig. 13, where it can be seen that the
parameter windows for the argumental phenomenon to arise are narrow with
respect to the possible parameter ranges.
The necessity that the contact be intermittent and located in a narrow parame-
ter window explains why argumental phenomenons arise rarely in the context of
structure vibration. Said windows are even narrower as n increases. The main
example used in this paper is for n = 6, but Fig. 14, to be compared with Fig. 9,
shows how the situation evolves when n = 12. In this case, the window for aA
is about 1% of the final value of aA, while it is 50% for n = 6. Moreover, if the
right amplitude excitation (aA) is applied and the beam is given an initial am-
plitude larger than the corresponding aS , the motion’s amplitude will decrease
due to damping, and it will then cross the crescent of Fig. 9, but only rarely be
caught into the spiral, as can be seen on the Ven der Pol plots. A study of the
capture probability by the attractor (the spiral) is given in [6].

Figure 13 shows that the parameter ranges for the argumental oscillations
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Figure 13: Stationary condition, aA (point A’a amplitude) against aS (sta-
tionary motion’s amplitude). Comparison between second-order equation (with
natural model) and averaged system (with smoothed model). Parameters are
the same as in Fig. 9. In the same way as in Fig. 9, stable and unstable station-
ary points are represented.

to arise turn out to be quite narrow. Hence the knowledge of the symbolic
formulas of the smoothed model constitute a guide to the choice of parameters
for the natural model, which is closer to physical reality.

The coordinates of points representing the constant-amplitude motion, sta-
ble and unstable stationary condition, show that, given the high sensitivity of
the Van der Pol representation and the zoom window used, the results of the
smoothed-model simulation are indeed a good guide to those of the natural
model.

10 Experimental setup.

11 Experimental results.

The experimental results are given in Figs.?? to ??.
It can be seen that the results show that the system stays in a limited region
of the polar graph during a long time compared to the system’s natural period.
This region can be considered the neighbourhood of an attractor. The behaviour
is somewhat spurious as compared to the numerical simulations of Figs.10 to
12. This can be due to the non-perfect nature of the intermittent contact by
which the external force is axially applied to the beam: at each shck, a small
random non-modelized phase deviation is applied. But as those deviations can
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Figure 14: Stationary condition, averaged system with the smoothed model of
the external force. aS is the stationary-motion’s amplitude, aA is the excitation’s
amplitude. Amin− and Amin+ are the calculated points of intersection of the
Beta-curve and the G-curve. Parameter values are: n = 12, β = 1.8 10−3,
FB = 97, L = 0.95, k = 31.1 103, FB/(kL) = 3.28 10−3, F0/(kL) = −2.3 10−3,
ρ00 = 1.25, η = 1.4516.

be slightly biased and thus exhibit a non-zero local average versus time, the
plot enters a deviation towards increasing or decreasing phase over time. This
deviation can also change direction, as can be seen in Figs.??, ?? and ??. Those
phase deviations and direction changes have characteristic times much larger
than the system’s period.

12 Conclusion.
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Table 1: aS and aT against aA, as observed on Van der Pol plots like Fig. 12. The
dash symbol means that there is no sattionary condition for the corresponding
value of aA.

aA aS aT
0.000772 - -
0.000773 0.0335 0.0265
0.000774 0.0029 0.0135
0.000775 0.0026 0.0130
0.000780 0.0022 0.0130
0.000800 0.00185 0.0125
0.000830 0.00153 0.0125
0.000835 0.00149 0.0124
0.000839 0.00143 0.0124
0.0008395 - -

Figure 15: Total duration: 358 s. Parameter values are: n = 4, β = 2.7 10−3,
FB = 51, L = 0.95, k = 104N/m, FB/(kL) = 5.4 10−3, F0/(kL) = −xxx 10−3,
ρ00 = 0.95, η = 1.4516.
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Figure 16: Zoomed view of Fig.15.

Figure 17: External force’s 4 ∗ fbeam-component vs time, related to Fig.15.
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Figure 18: External force’s 2 ∗ fbeam-component vs time, related to Fig.19.

Figure 19: Total duration: 358 s. Parameter values are: n = 4, β = 2.7 10−3,
FB = 51, L = 0.95, k = 104N/m, FB/(kL) = 5.4 10−3, F0/(kL) = −xxx 10−3,
ρ00 = 0.95, η = 1.4516.
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Figure 20: Zoomed view of Fig.19.

Figure 21: External force’s 4 ∗ fbeam-component vs time, related to Fig.19.
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Figure 22: External force’s 2 ∗ fbeam-component vs time, related to Fig.19.

Figure 23: Total duration: 358 s. Parameter values are: n = 4, β = 2.7 10−3,
FB = 51, L = 0.95, k = 104N/m, FB/(kL) = 5.4 10−3, F0/(kL) = −xxx 10−3,
ρ00 = 0.95, η = 1.4516.
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Figure 24: Zoomed view of Fig.23.

Figure 25: External force’s 4 ∗ fbeam-component vs time, related to Fig.23.
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Figure 26: External force’s 2 ∗ fbeam-component vs time, related to Fig.23.

Figure 27: Total duration: 358 s. Parameter values are: n = 4, β = 2.7 10−3,
FB = 51, L = 0.95, k = 104N/m, FB/(kL) = 5.4 10−3, F0/(kL) = −xxx 10−3,
ρ00 = 0.95, η = 1.4516.
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Figure 28: Zoomed view of Fig.27.

Figure 29: External force’s 4 ∗ fbeam-component vs time, related to Fig.27.
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Figure 30: External force’s 2 ∗ fbeam-component vs time, related to Fig.27.
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13 Appendix A.

In this Appendix, the tangential condition between the curves representing func-

tion y1(z) = E

(
1− 1

z
+

1

z
√

2z + 1

)
, and function y2(z) =

1

z

(√
1 + z − 1√

z

)n
will be studied for z real positive, n ≥ 4, and E =positive constant.

13.1 Function y1(z) = E

(
1− 1

z
+

1

z
√

2z + 1

)
.

This function is an increasing function for z > 0. Near zero, the function is
equivalent to 3 z/2 − 5 z2/2. The asymptotic limit for z → +∞ is 1. The plot
for E = 1 is in Fig. 31.

Figure 31: Plot of y1(z), with E = 1.

13.2 Function y2(z) =
1

z

(√
1 + z − 1√

z

)n

.

This function is defined for every real positive z, and can be extended to 0 in
z = 0.

Near zero, the function is equivalent to
z

n
2−1

2n
.

Near infinity, the function is equivalent to
1

x

(
1− n√

z

)
.

The function increases from z = 0 to z2max =
n2

4
− 1, then decreases asymptot-

ically to 0.
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The value of the maximum is y2max =
4

n2 − 4

(
n− 2

n+ 2

)n/2
.

The plot for n = 6 is in Fig. 32.

Figure 32: Plot of y2(z), with n = 6.

13.3 Tangency of functions y1(z) and y2(z).

Knowing the behaviour of functions y1 and y2, one is led to consider that
both curves are tangent approximately at the maximum of y2, provided that
y1(z2max) = y2max. Hence the value Etan of E which satisfies this tangency
must verify:

Etan

(
1− 1

z2max
+

1

z2max
√

2z2max + 1

)
=

4

n2 − 4

(
n− 2

n+ 2

)n/2
Taking the approximation

1− 1

z2max
+

1

z2max
√

2z2max + 1
≈ 1− 4

n2
(49)

for n ≥ 4, one finally gets:

Etan ≈
4n2

(n2 − 4)2

(
n− 2

n+ 2

)n/2
(50)

As for the tangency point’s ordinate, assume that it is the same as the maximum

of the y2(z) curve, i.e. y2max. Remark that Etan =
n2

n2 − 4
y2max.

The following hypothesis is made:
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� For E < Etan, the curves of y1 and y2 intersect in z = 0 and at least in
two other points, one located at z < z2max and one at z > z2max.

� For E > Etan, the curves of y1 and y2 intersect in z = 0.

A typical case is represented in Fig. 33 for n = 6 and Etan = 9/512 according to
Equ. (50). On the plots, it can be seen that the value of y1 in z2max is slightly
greater than expected. This is due to approximation (49), which partially com-
pensates for a better tangency estimate. Other values of n give similarly good
results for Etan, except for n = 4, where it is better to use a value of 1.03Etan.

Figure 33: Tangency of y1(z) and y2(z), with n = 6.
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