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Definition of the argumentary oscillator.

Vertical

coil

History: Béthenod, Penner, Doubochinski.

Oscillator often of Duffing type.

Submitted to an external periodic force.

Modulation-coupling by spatial position.

Equation (reduced time):

d2x

dt2
+ 2β

dx

dt
+ x + µx3 = A H(x) F (t)

with F(t)=periodic function of time.

Modelling to find the H-function.
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Setup.

S

F

M AC

Beam:
Articulated on the left (point S)
Articulated-guided on the right (point M)

Point A:
Forced harmonic horizontal movement
Linked to C by a linear spring
C in partial contact with M
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PDE.

v

x

S

F

v(x,t) M AC

Equation of the beam’s motion:

ρSv̈ + EIv(4) − Fv(2) + 2βv̇ = f

where

x = longitudinal coordinate

v(x, t) = transverse coordinate

ρ = density,

S = section area,

e = Yung’s modulus,

I = quadratic moment,

F (t) = axial force applied to M,

β = damping,

f (x, t) = transverse force’s linear density.
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F force.

F (xM , t) = F0 + k(l(t)− l0)
where

l(t) = actual spring length

l0 = idle spring length

k = spring stiffness

F0 = force applied to the beam when beam is in rectilinear position and point A at center position
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First-mode shapes.

Case articulated-(articulated-guided):

q1(x) = sin
(
πx

L

)

Case clamped-(clamped-guided):

q1(x) ≈ b
(

1− cos
( 2πx

L

))
with b = 0.83
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M’s abscissa.

v

x

S

F

v(x,t) M AC

Inextensible beam→ s(xM , v, t) = L :

s(xM , v, t) =

∫ xM

0

√
1 +

(
∂v(u, t)

∂u

)2
du = L

⇒ xM (t) ≈ L−
1

2

∫ L

0

(
∂v(u, t)

∂u

)2
du

Case articulated-(articulated-guided), first mode :

v(x, t) = Lq1(t) sin
(
π

x

L

)
⇒ xM (t) ≈ L

(
1−

π2

4
q2

1 (t)

)

Case clamped-(clamped-guided), first mode :

v(x, t) ≈ b
(

1− cos
( 2πx

L

))
⇒ xM (t) ≈ L

(
1− π2q2

1 (t)
)
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Contact law.

Principle: soft transition between contact and non-contact, by smoothing the curve of y(x) = −
x + |x|

2
.

Purpose: avoid solver’s discrepancies.

y = −
x + |x|

2
a C0 function.

y = −
x +

√
x2 + a2

2
, a C∞ function.

a = 0.1 ...4.1 in figure.
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Modal projection.

For the p-th modal coordinate, case articulated-(articulated-guided):

q̈p(t) + 2
β

ρS
q̇p(t) +

( pπ

L

)4 EI

ρS
qp(t) +

( pπ

L

)2 EI

ρS
F (q1, t)qp(t)−

2

L2ρS

∫ L

0
sin
( pπ

L
x
)

f (x, t)dx = 0

For the first mode, case articulated-(articulated-guided):

q̈1(t) + 2
β

ρS
q̇1(t) +

(
π

L

)4 EI

ρS
q1(t) +

(
π

L

)2 EI

ρS
F (q1, t)q1(t)−

2

L2ρS

∫ L

0
sin
(
π

L
x
)

f (x, t)dx = 0

For the first mode, case clamped-(clamped-guided):

q̈1(t)+2
β

ρS
q̇1(t)+

(
2
π

L

)4 EI

3ρS
q1(t)+

(
2
π

L

)2 EI

3ρS
F (q1, t)q1(t)−

2

3L2ρS

∫ L

0

(
1− cos

2π

L
x
)

f (x, t)dx = 0

In the simulations, we assume f (x, t) ≡ 0.
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Van der Pol amplitude/phase representation.

The averaging method searches an approximate
solution x = a(t) sin(ωt + ϕ(t), where a(t) and
ϕ(t) are slowly-varying functions of time.

(a, ϕ) –> Natural representation: van der Pol.

Example of integral curve winding up around the
origin.

For the simulations: n =
Excitation frequency

Oscillator frequency
=

4 to 10 (even integer), β = 0.0001..0.01.

Polar form is better, due to invariance vs
2π

n
rotation. Radius=a, argument=ϕ.
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Preliminary simulation results: result #1.

Simulation duration: 1 s
Buckling force: 6900 N
Force in point A: 3 N max

f0 = 80 Hz,
ν

ω
= 4,

ω

ω0
= 1.01

E = 70 109 Pa, ρ = 2700 kg/m3, I = 10−8 m4,
S = 10−4 m2, L = 1 m, β = 10−2,
Point A’s amplitude = 4 10−7 m,
F0 = 0.0 N.
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Preliminary simulation results: result #2.

Simulation duration: 1 s
Buckling force: 6900 N
Force in point A: 5.6 N max

f0 = 80 Hz,
ν

ω
= 4,

ω

ω0
= 1.01

E = 70 109 Pa, ρ = 2700 kg/m3, I = 10−8 m4,
S = 10−4 m2, L = 1 m, β = 10−2,
Point A’s amplitude = 4 10−7 m,
F0 = −2.7 N.
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Preliminary simulation results: result #3.

Simulation duration: 1 s
Buckling force: 6900 N
Force in point A: 6.2 N max

f0 = 80 Hz,
ν

ω
= 4,

ω

ω0
= 1.01

E = 70 109 Pa, ρ = 2700 kg/m3, I = 10−8 m4,
S = 10−4 m2, L = 1 m, β = 10−2,
Point A’s amplitude = 4 10−7 m,
F0 = −3.5 N.
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Preliminary simulation results: result #4.

Simulation duration: 1 s
Buckling force: 6900 N
Force in point A: 0 N max

f0 = 80 Hz,
ν

ω
= 4,

ω

ω0
= 1.01

E = 70 109 Pa, ρ = 2700 kg/m3, I = 10−8 m4,
S = 10−4 m2, L = 1 m, β = 10−2,
Point A’s amplitude = 0 m,
F0 = 0 N.
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Future work.

Future work

Simulations based on complete original motion PDE.

Other contact conditions.

Experimentation.
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Thank you for your attention.
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