Transverse subharmonic vibration of an axially-excited beam

D. Cintra P. Argoul

Université Paris-Est
Laboratoire Navier (UMR 8205)
CNRS, ENPC, IFSTTAR

October 14-15, 2015
DYNOLIN Conference, Lyon (France)
Navier - - PAPRIS:-EST

Definition of the argumentary oscillator. Setup.

Definition of the argumentary oscillator.

- History: Béthenod, Penner, Doubochinski.
- Oscillator often of Duffing type.
- Submitted to an external periodic force.
- Modulation-coupling by spatial position.
- Equation (reduced time):

$$
\frac{d^{2} x}{d t^{2}}+2 \beta \frac{d x}{d t}+x+\mu x^{3}=A H(x) F(t)
$$

with $\mathrm{F}(\mathrm{t})=$ periodic function of time.

- Modelling to find the H -function.

Vertical
coil

Setup.

- Beam:
- Articulated on the left (point S)
- Articulated-guided on the right (point M)
- Point A :
- Forced harmonic horizontal movement
- Linked to C by a linear spring
- C in partial contact with M

PDE.

Equation of the beam's motion:

$$
\rho S \ddot{v}+E / v^{(4)}-F v^{(2)}+2 \beta \dot{v}=f
$$

where

- $x=$ longitudinal coordinate
- $v(x, t)=$ transverse coordinate
- $\rho=$ density,
- $S=$ section area,
- $e=$ Yung's modulus,
- $I=$ quadratic moment,
- $F(t)=$ axial force applied to M,
- $\beta=$ damping,
- $f(x, t)=$ transverse force's linear density.

```F force \\ First-mode shapes \\ M's abscissa \\ Contact law \\ Modal projection.```

F force.

$F\left(x_{M}, t\right)=F_{0}+k\left(I(t)-I_{0}\right)$
where

- $I(t)=$ actual spring length
- $I_{0}=$ idle spring length
- $k=$ spring stiffness
- $F_{0}=$ force applied to the beam when beam is in rectilinear position and point A at center position

First-mode shapes.

Case articulated-(articulated-guided):
$q_{1}(x)=\sin \left(\frac{\pi x}{L}\right)$

Case clamped-(clamped-guided):
$q_{1}(x) \approx b\left(1-\cos \left(\frac{2 \pi x}{L}\right)\right)$
with $b=0.83$
with $b=0.83$

M's abscissa.

$$
\text { Inextensible beam } \rightarrow s\left(x_{M}, v, t\right)=L:
$$

$$
\begin{aligned}
& s\left(x_{M}, v, t\right)=\int_{0}^{x_{M}} \sqrt{1+\left(\frac{\partial v(u, t)}{\partial u}\right)^{2}} d u=L \\
& \Rightarrow x_{M}(t) \approx L-\frac{1}{2} \int_{0}^{L}\left(\frac{\partial v(u, t)}{\partial u}\right)^{2} d u
\end{aligned}
$$

Case articulated-(articulated-guided), first mode :

$$
v(x, t)=L q_{1}(t) \sin \left(\pi \frac{x}{L}\right) \Rightarrow x_{M}(t) \approx L\left(1-\frac{\pi^{2}}{4} q_{1}^{2}(t)\right)
$$

Case clamped-(clamped-guided), first mode :

$$
v(x, t) \approx b\left(1-\cos \left(\frac{2 \pi x}{L}\right)\right) \Rightarrow x_{M}(t) \approx L\left(1-\pi^{2} q_{1}^{2}(t)\right)
$$

Contact law.

Principle: soft transition between contact and non-contact, by smoothing the curve of $y(x)=-\frac{x+|x|}{2}$. Purpose: avoid solver's discrepancies.

$$
y=-\frac{x+|x|}{2} \text { a } c^{0} \text { function. }
$$

$$
\begin{aligned}
& y=-\frac{x+\sqrt{x^{2}+a^{2}}}{2}, \text { a } C^{\infty} \text { function. } \\
& a=0.1 \ldots 4.1 \text { in figure. }
\end{aligned}
$$

Modal projection.

For the p-th modal coordinate, case articulated-(articulated-guided):
$\ddot{q}_{p}(t)+2 \frac{\beta}{\rho S} \dot{q}_{p}(t)+\left(\frac{p \pi}{L}\right)^{4} \frac{E I}{\rho S} q_{p}(t)+\left(\frac{p \pi}{L}\right)^{2} \frac{E I}{\rho S} F\left(q_{1}, t\right) q_{p}(t)-\frac{2}{L^{2} \rho S} \int_{0}^{L} \sin \left(\frac{p \pi}{L} x\right) f(x, t) d x=0$

For the first mode, case articulated-(articulated-guided):
$\ddot{q}_{1}(t)+2 \frac{\beta}{\rho S} \dot{q}_{1}(t)+\left(\frac{\pi}{L}\right)^{4} \frac{E l}{\rho S} q_{1}(t)+\left(\frac{\pi}{L}\right)^{2} \frac{E l}{\rho S} F\left(q_{1}, t\right) q_{1}(t)-\frac{2}{L^{2} \rho S} \int_{0}^{L} \sin \left(\frac{\pi}{L} x\right) f(x, t) d x=0$

For the first mode, case clamped-(clamped-guided):
$\ddot{q}_{1}(t)+2 \frac{\beta}{\rho S} \dot{q}_{1}(t)+\left(2 \frac{\pi}{L}\right)^{4} \frac{E I}{3 \rho S} q_{1}(t)+\left(2 \frac{\pi}{L}\right)^{2} \frac{E I}{3 \rho S} F\left(q_{1}, t\right) q_{1}(t)-\frac{2}{3 L^{2} \rho S} \int_{0}^{L}\left(1-\cos \frac{2 \pi}{L} x\right) f(x, t) d x=0$
In the simulations, we assume $f(x, t) \equiv 0$.

Van der Pol amplitude/phase representation.

$v=63.0, \lambda=10.0357, \beta=0.0050, \mu=-0.1667, A=2.100, n=11$.

- The averaging method searches an approximate solution $x=a(t) \sin (\omega t+\varphi(t)$, where $a(t)$ and $\varphi(t)$ are slowly-varying functions of time.
- $(a, \varphi) \rightarrow$ Natural representation: van der Pol.
- Example of integral curve winding up around the origin.
- For the simulations: $n=\frac{\text { Excitation frequency }}{\text { Oscillator frequency }}=$ 4 to 10 (even integer), $\beta=0.0001$..0.01.
- Polar form is better, due to invariance vs $\frac{2 \pi}{n}$ rotation. Radius=a, argument $=\varphi$.

Preliminary simulation results: result \#1.

Equation 2nd ordre dorigine, extraction via x et x point, ae0-0.0003, $\mathrm{\varphi}(1--0.0873009182$, decalage phi0-$-0.8, \mathrm{~A}=0.0004$, ph. offset $-0, \mathrm{n}-4$, nu exciution $=1990.041208$, omega final oscillateur estimée-497.5103019, periodel $=0.01262925669, \beta=0.01, \mu=10000.00000, \mathrm{t}$ max $=1$, nb pnts $=1000$

Simulation duration: 1 s
Buckling force: 6900 N
Force in point A: 3 N max
$f_{0}=80 \mathrm{~Hz}, \frac{\nu}{\omega}=4, \frac{\omega}{\omega_{0}}=1.01$
$E=7010^{9} \mathrm{~Pa}, \rho=2700 \mathrm{~kg} / \mathrm{m}^{3}, I=10^{-8} \mathrm{~m}^{4}$,
$S=10^{-4} \mathrm{~m}^{2}, L=1 \mathrm{~m}, \beta=10^{-2}$,
Point A's amplitude $=410^{-7} \mathrm{~m}$,
$F_{0}=0.0 \mathrm{~N}$.
D. Cintra, P. Argoul

Transverse subharmonic vibration

Preliminary simulation results: result \#2.

Equation 2nd ordre dorigine, extraction via x et x point, ae0 $0=0.00001, \varphi 0-0$, decalage phi0-0, $\mathrm{A}-0.0004$, ph offset-0, $\mathrm{n}=4$, nu excitation-1989,643159, onega final oscillateur estimée-497,4107898, periode 1
$0.01263178330, \beta=0.01, \mu=10004.00160, \mathrm{t}$ max $=1$, nb pats $=1000, \mathrm{x} 0=0, \mathrm{x}=0.004974107898$

Simulation duration: 1 s
Buckling force: 6900 N
Force in point A: 5.6 N max
$f_{0}=80 \mathrm{~Hz}, \frac{\nu}{\omega}=4, \frac{\omega}{\omega_{0}}=1.01$
$E=7010^{9} \mathrm{~Pa}, \rho=2700 \mathrm{~kg} / \mathrm{m}^{3}, I=10^{-8} \mathrm{~m}^{4}$,
$S=10^{-4} \mathrm{~m}^{2}, L=1 \mathrm{~m}, \beta=10^{-2}$,
Point A's amplitude $=410^{-7} \mathrm{~m}$,
$F_{0}=-2.7 N$.
D. Cintra, P. Argoul

Transverse subharmonic vibration

Preliminary simulation results: result \#3.

Equation 2nd ordre dorigine, extraction via x et x point, ae0 $0.00001, \varphi 0-0$, decalage phi0- $0, \mathrm{~A}-0.0004$, ph offset-0, $\mathrm{n}=4$, nu excitation-1989.543636, omega final oscillateur estimée-497.3859091, periode 1
$0.01263241518, \beta=0.01, \mu=10005.00250, \mathrm{t}$ max $=1, \mathrm{nb}$ pats $=1000, \mathrm{x} 0=0, \mathrm{x}=0.004973859090$

Simulation duration: 1 s
Buckling force: 6900 N
Force in point $\mathrm{A}: 6.2 \mathrm{~N}$ max
$f_{0}=80 \mathrm{~Hz}, \frac{\nu}{\omega}=4, \frac{\omega}{\omega_{0}}=1.01$
$E=7010^{9} \mathrm{~Pa}, \rho=2700 \mathrm{~kg} / \mathrm{m}^{3}, I=10^{-8} \mathrm{~m}^{4}$,
$S=10^{-4} \mathrm{~m}^{2}, L=1 \mathrm{~m}, \beta=10^{-2}$,
Point A's amplitude $=410^{-7} \mathrm{~m}$,
$F_{0}=-3.5 N$.
D. Cintra, P. Argoul

Transverse subharmonic vibration

Preliminary simulation results: result \#4.

 offset-0, $0=4.2$, nu excitation- 20089.543268 , omega final oscillateur estiméc-497.5103019, periode $0.01262925669, \beta=0.01, \mu=10000.00000, \mathrm{t}$ max $=1, \mathrm{nb}$ pats $=1000, \mathrm{x} 0=0, \mathrm{x} 1=0.004975103019$

Simulation duration: 1 s
Buckling force: 6900 N
Force in point A: 0 N max
$f_{0}=80 \mathrm{~Hz}, \frac{\nu}{\omega}=4, \frac{\omega}{\omega_{0}}=1.01$
$E=7010^{9} \mathrm{~Pa}, \rho=2700 \mathrm{~kg} / \mathrm{m}^{3}, I=10^{-8} \mathrm{~m}^{4}$,
$S=10^{-4} \mathrm{~m}^{2}, L=1 \mathrm{~m}, \beta=10^{-2}$,
Point A's amplitude $=0 \mathrm{~m}$,
$F_{0}=0 N$.

Future work

- Simulations based on complete original motion PDE.
- Other contact conditions.
- Experimentation.

Thank you for your attention.

