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Abstract

Many uncertainty sets encountered in control systems analysis and design can be
expressed in terms of semialgebraic sets, that is as the intersection of sets described
by means of polynomial inequalities. Important examples are for instance the solu-
tion set of linear matrix inequalities or the Schur/Hurwitz stability domains. These
sets often have very complicated shapes (non-convex, and even non-connected),
which renders very difficult their manipulation. It is therefore of considerable im-
portance to find simple-enough approximations of these sets, able to capture their
main characteristics while maintaining a low level of complexity. For these reasons,
in the past years several convex approximations, based for instance on hyperrect-
angles, polytopes, or ellipsoids have been proposed.

In this work, we move a step further, and propose possibly non-convex approx-
imations, based on a small volume polynomial superlevel set of a single positive
polynomial of given degree. We show how these sets can be easily approximated
by minimizing the L1 norm of the polynomial over the semialgebraic set, subject
to positivity constraints. Intuitively, this corresponds to the trace minimization
heuristic commonly encounter in minimum volume ellipsoid problems. From a com-
putational viewpoint, we design a hierarchy of linear matrix inequality problems to
generate these approximations, and we provide theoretically rigorous convergence
results, in the sense that the hierarchy of outer approximations converges in volume
(or, equivalently, almost everywhere and almost uniformly) to the original set.

Two main applications of the proposed approach are considered. The first one
aims at reconstruction/approximation of sets from a finite number of samples. In
the second one, we show how the concept of polynomial superlevel set can be used to
generate samples uniformly distributed on a given semialgebraic set. The efficiency
of the proposed approach is demonstrated by different numerical examples.
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1 Introduction

In this paper, we address the problem of how to determine “simple” approximations of
semialgebraic sets in Euclidean space, and we show how these approximations can be
exploited to address several problems of interest in systems and control. To be more
precise, given a set

K .
= {x ∈ Rn : gi(x) ≥ 0, i = 1, 2, . . . ,m} (1)

which is compact, with non-empty interior and described by given real multivariate poly-
nomials gi(x), i = 1, 2, . . . ,m, and a compact set B ⊃ K, we aim at determining a so-called
polynomial superlevel set (PSS)

U(p)
.
= {x ∈ B : p(x) ≥ 1}. (2)

that constitutes a good outer approximation of the set K of interest and converges strongly
to K when increasing the degree of the real multivariate polynomial p to be found.

In particular, the proposed PSS is based on an easily computable polynomial approxi-
mation of the indicator function of the set K. In the paper, we show that suitable ap-
proximations of the indicator function can be obtained by solving a convex optimization
problem whose constraints are linear matrix inequalities (LMIs) and that, as the degree
of the approximation increases, one converges in L1-norm, almost uniformly and almost
everywhere to the indicator function of the semialgebraic set K of interest. Moreover, the
set approximations provided in this paper can be thought as a direct generalization of
classical ellipsoidal set approximations, in the sense that if second degree approximations
are used, we exactly recover well-known approaches.

The main motivation for the problem addressed in the paper is the fact that semialge-
braic sets are frequently encountered in control. As an example, consider the Hurwitz or
Schur stability regions of a polynomial. It is a well-known fact that the these regions are
semialgebraic sets in the coefficient space. The polynomial inequalities that define these
stability sets can be derived from well-known algebraic stability criteria. Another classical
example of semialgebraic sets arising in control are LMI feasibility sets, also called spec-
trahedra. Indeed, LMI sets are (convex) basic semialgebraic sets. To see this, consider
the LMI set

KLMI
.
= {x ∈ Rn : F (x) = F0 + F1x1 + · · ·+ Fnxn � 0}

where the matrix F (x) has size m ×m, and observe that a vector x belongs to KLMI if
and only if all the coefficients of the univariate polynomial

s 7→ det (sIm + F (x)) = g1(x) + g2(x)s+ · · ·+ gm(x)sm−1 + sm

are nonnegative, i.e. x belongs to the set K is defined in (1), where the polynomials gi(x)
are by construction sums of principal minors of the matrix F (x). The approach taken
in this paper is the following: given the set K, we search for a minimum volume PSS
that contains the set K. Since there is in general no analytic formula for the volume of
a semialgebraic set, in terms of the coefficients of the polynomials defining the set1, it is

1See however reference [33] which explains how explicit formulas can be obtained with discriminants
in exceptional cases.
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very challenging to solve this optimization problem locally, let alone globally. Instead, the
main contribution of this paper is to describe and justify analytically and geometrically
a computationally tractable heuristic based on L1-norm or trace minimization. Second,
we show that the same approach can be employed to obtain the largest (in terms of the
L1 surrogate for the volume) PSS inscribed in K. Moreover, it is shown how the ideas
put forth in this paper can be used to address two important problems: i) reconstruc-
tion/approximation of a (possibly non-semialgebraic) set from samples belonging to it,
and ii) uniform generation of samples distributed over a semialgebraic set. Examples of
applications in a systems analysis and controller design context are also provided.

The work presented in this paper is an extension of the preliminary results in the con-
ference papers [11] and [12], and it provides a more in depth analysis of both theoretical
and implementation aspects. In particular, with respect to [11], the present manuscript
contains more detailed proofs of the theoretical results, provides detailed algorithmic de-
scriptions, and introduces inner PSS approximations. Similarly, the results on random
sample generation of [12] are here described in more details, and an algorithm is pro-
vided. Finally, all examples in the paper are new, and more control oriented applications
are considered.

1.1 Previous work and related literature

The idea of approximating overly complicated sets by introducing simpler and easy man-
ageable geometrical shapes is surely not new, it has a very long history, and it arises in
different research fields such as optimization, system identification and control. In partic-
ular, in the systems and control community, the most common approach is to introduce
outer bounding sets, that is sets of minimum size which are guaranteed to contain the set
to be approximated. For instance, in the context of robust filtering, set-theoretic state
estimators for uncertain nonlinear dynamic systems have been proposed in [1, 18, 20, 39].
These strategies adopt a set-membership approach [19, 38], and construct (the smallest)
compact set guaranteed to bound the system states that are consistent with the measured
output and the norm-bounded uncertainty. The most common geometrical shape adopted
in these work is the ellipsoidal one, for the double reason that it has a very simple descrip-
tion – the center and the shape matrix are sufficient to provide a complete characterization
– and that its determination usually can be formulated as a convex (usually quadratic)
optimization problem. The use of ellipsoidal sets in the state estimation problems was
introduced in the pioneering work [38] and used by many different authors from then on;
see, for example, [18, 20]. Outer approximation also arise in the context of robust fault
detection problems (e.g., see [26]) and of reachability analysis of nonlinear and/or hybrid
systems [25, 28]. Similarly, inner approximations are employed in nonlinear programming
[34], in the solution of design centering problems [42] and for fixed-order controller design
[24]. In this case, one aims at constructing the set largest size inscribed in the set of
interest.

Besides ellipsoids, other shapes have been considered in the recent literature. The use
of polyhedrons was proposed in [27] to obtain an increased estimation accuracy, while
zonotopes have been also recently studied in [1, 21]. In [7] a heuristic based on polynomial
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optimization and convex relaxations is proposed for computing small volume polytopic
outer approximations of a compact semialgebraic set. More recent works, like for instance
[5, 24, 32], employ sets defined by semialgebraic conditions. The closest approach to the
one proposed in our paper can be found in [32], in which the authors use polynomial
sum-of-squares (SOS) programming to address the problem of fitting given data with a
convex polynomial, seen as a natural extension of quadratic polynomials and ellipsoids.
Convexity of the polynomial is ensured by enforcing that its Hessian is matrix SOS, and
volume minimization is indirectly enforced by increasing the curvature of the polynomial.
In [5] the authors propose moment-based relaxations for the separation and covering
problems with semialgebraic sets, thereby also extending the classical ellipsoidal sets used
in data fitting problems.

Recently, the authors of [14] have proposed an approach based on randomization, which
constructs convex approximations of generic nonconvex sets which are neither inner nor
outer, but they enjoy some specific probabilistic properties. In this context, an approx-
imation is considered to be reliable if it contains “most” of the points in the given set
with prescribed high probability. The key tool in this framework is the generation of ran-
dom samples inside the given set, and the construction of a convex set containing these
samples.

1.2 The sequel

The paper is organized as follows. In Section 2 the notation used in this paper is intro-
duced and the central problem addressed in this paper is defined. In order to be able
to numerically solve the set approximation problem of interest, in Section 3 a related
polynomial optimization problem is introduced and numerical methods for solving it are
described in Section 4. In Section 5, we discuss how the results in this paper can be
used to find inner approximations of semialgebraic sets. A first set of numerical exam-
ples is provided in Section 6. Using the central results on set approximation mentioned
above, in Section 7 we address the problem of reconstructing a set from a finite number
of points in its interior. In Section 8 we provide algorithms for uniform sample generation
in semialgebraic sets and in Section 9 some closing remarks are provided.

2 Problem statement

Before a description of the main problem addressed is provided, we introduce the basic
notation that is used throughout the paper.

2.1 Notation

The notation A � 0 (� 0) means that the symmetric matrix A is positive definite (semidef-
inite), and given two matrices A and B we write A � B whenever A − B � 0. Given a
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set K ⊂ Rn, its indicator function is defined as

IK(x)
.
=

{
1 if x ∈ K
0 if x /∈ K

(3)

and its volume or, more precisely, the Lebesgue measure of K, is denoted by

volK .
=

∫
K
dx =

∫
Rn

IK(x)dx.

The set of all real coefficient polynomials of degree less than or equal to d is denoted by
Pd. The monomial basis for this set is represented by the (column) vector πd ∈ Pd, so
that any p ∈ Pd can be expressed in the following form

p(x) = πTd (x)p = πTdd/2e(x)Pπdd/2e(x)

where p is a real (column) vector2 and P is a symmetric matrix of appropriate size, often
referred to as Gram matrix. Also, we denote by Σ2d the set of polynomials p ∈ P2d that
can be represented as sums of squares of other polynomials, i.e.

p =

np∑
k=1

p2k, pk ∈ Pd, k = 1, . . . , np.

Finally, given a polynomial p ∈ Pd, define its L1 norm over a compact set B, denoted by
L1
B or just L1 when the set B used is clear from the context, as

‖p‖1
.
=

∫
B
p(x)dx.

2.2 Problem Statement

With the notation defined above, we are now ready to define the central problem in this
paper. We consider the basic semialgebraic set K defined in (1), which is assumed to be
compact and with a non-empty interior.

As discussed in the Introduction, the set K has typically a complex description in terms
of its defining polynomials (e.g. coming from physical measurements and/or estimations).
For this reason, we aim at finding a “simpler” approximation of this set which has enough
degrees of freedom to capture its characteristics. This approximation is the polynomial
superlevel set (PSS) U(p) defined in (2) in terms of a real multivariate polynomial p ∈ Pd
of given degree d. This degree controls the complexity of the approximation. Among the
family of possible PSS that can be constructed, we search for the one that provides the
set U(p) of minimum volume while containing the set of interest K, hence capturing most
of its the geometric features. Formally, we define the following optimization problem

2Note that we use p to denote both the polynomial and the vector of its coefficients whenever no
ambiguity is possible.
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Problem 1 (Minimum volume outer PSS) Given d ∈ N and a compact semialge-
braic set K, find a polynomial p ∈ Pd whose PSS U(p) is of minimum volume and contains
K. That is, solve the following optimization problem

v∗d
.
= inf

p∈Pd
vol U(p)

s.t. K ⊆ U(p).
(4)

Note that this problem can be viewed as the natural extension of the problem of computing
the minimum volume ellipsoid containing K. Indeed, if K is convex and the polynomial
p is quadratic (d = 2), then the infimum of problem (4) is attained, and the optimal set
U(p) is given by the unique (convex) ellipsoid of minimum volume that contains K, called
Löwner-John ellipsoid. In particular, if K is the convex-hull of a finite set of points, this
ellipsoid can be computed by convex optimization, see e.g. [4, §4.9].

We remark however that, for d greater than 2, the optimization problem (4) is nonlinear
and semi-infinite, in the sense that the optimization is over the finite-dimensional vector
space Pd, but subject to an infinite number of constraints, necessary to cope with the set
inclusion.

Theorem 1 The sequence of infima of problem (4) monotically converges from above to
volK, i.e. for all d ≥ 1 it holds v∗d ≥ v∗d+1 and limd→∞ v

∗
d = volK.

Proof: As in [23, Section 3.2], let x 7→ d(x,K) be the Euclidean distance to set K and
with εk > 0 let Kε := {x ∈ B : d(x,K) < εk} be an open bounded outer approximation
of K, so that B\Kk is closed with limk→∞ εk = 0. By Urysohn’s Lemma [37, Section 12.1]
there is a sequence of continuous functions (fk)k∈N with fk : B → [0, 1] such that fk = 0
on B\Kk and fk = 1 on K. In particular, notice that volK ≤ volU(fk) ≤ volK+volKk\K
and since limk→∞ volKk\K = 0 it holds limk→∞ vol U(fk) = volK.

By the Stone-Weierstrass Theorem [37, Section 12.3] we can approximate fk uniformly on
B by a sequence of polynomials (p′k,d)d∈N with p′k,d ∈ Pd, i.e. supx∈B |fk(x)− p′k,d(x)| < ε′d
with limd→∞ ε

′
d = 0. Defining pk,d := p′k,d + 2ε′d, the sequence of polynomials (pk,d)d∈N

converges uniformly to fk from above, i.e. pk,d ≥ fk on B and limd→∞ supx∈B |fk(x) −
pk,d(x)| = 0. This implies that v∗k,d := volU(pk,d) ≥ volU(fk) and limd→∞ v

∗
k,d = volU(fk).

Recalling limk→∞ vol U(fk) = vol K, it follows that limk,d→∞ v
∗
k,d = vol K which proves,

up to extracting a subsequence indexed by d, the existence of a minimizing sequence of
polynomials for optimization problem (4).

Finally, the inequality v∗d ≥ v∗d+1 readily follows from the inclusion Pd ⊂ Pd+1. �.

Before introducing the approach we propose for the solution of Problem 1, in the next
subjection we briefly recall some recent results which are closely related to the problem
considered in this paper, for the special case of homogeneous polynomials.

2.3 Remark on a convex conic formulation

In this section, we summarize existing results for the case when the polynomial q ∈ Pd
defined as q(x)

.
= 2− p(x) is assumed to be a homogeneous polynomial, or form, of even
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degree d = 2δ in n variables. First note that, with this change of notation3 the PSS U(p)
corresponds to the unit sublevel set V(q)

.
={x ∈ Rn : q(x) ≤ 1} of the polynomial q. In

[30, Lemma 2.4] it is proved that, when q is homogeneous, the volume function

q 7→ vol V(q)

is convex in q. The proof of this statement relies on the striking observation [33] that

vol V(q) = Cd

∫
Rn
e−q(x)dx

where Cd is a constant depending only on d. Note also that boundedness of V(q) implies
that q is nonnegative, since if there is a point x0 ∈ Rn such that q(x0) < 0, and hence
x0 ∈ V(q), then by homogeneity of q it follows that q(λx0) = λ2δq(x0) < 0 for all λ and
hence λx0 ∈ V(p) for all λ which contradicts boundedness of V(p). This implies that
problem (4), once restricted to nonnegative forms, is a convex optimization problem.

Moreover, in [30, Lemma 2.4] explicit expressions are given for the first and second order
derivatives of the volume function, in terms of the moments∫

Rn
xαe−q(x)dx (5)

for α ∈ Nn, |α| ≤ 2d. In an iterative algorithm solving convex problem (4), one should
then be able to compute repeatedly and quickly integrals of this kind, arguably a difficult
task. Moreover, when q is not homogeneous, we do not know under which conditions on
q the function vol V(q) is convex in q.

Motivated by these considerations, in the remainder of this paper we propose a simpler
approach to the solution problem (4), which is not restricted to forms, and which does
not require the potentially intricate numerical computation of moments (5) of exponen-
tials of homogeneous polynomials. The introduction of this approach is motivated by its
analogy with the well-known trace heuristic for ellipsoidal approximation, and it consists
of approximating the volume by means of the L1-norm of the polynomial p.

3 L1-norm minimization

It is assumed that a “simple set” B ⊂ Rn containing K is known. By “simple” we
mean that analytic expressions of the moments of the Lebesgue measure on B should be
available, so that integration of polynomials can be carried out readily. In the following,
we assume that the set B is an n-dimensional hyperrectangle of the form

B = [a, b]
.
= {x ∈ Rn : ai ≤ xi ≤ bi, i = 1, 2, . . . , n} (6)

with a and b given vectors of Rn. This is a very mild assumption since, given a semial-
gebraic set like the set K above, one can easily compute an hyperrectangle containing it;

3The polynomial q
.
= 2− p is introduced because the results in [30] are derived for sublevel sets, not

superlevel sets.
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see Section 4.1 for details. We note that more complex sets B ⊇ K can be considered,
provided that integration of polynomials over it is easily done.

Assume now, without loss of generality, that the polynomial p used to build the PSS
is non-negative on B. Then, observe that by definition of PSS (see Figure 1 for an
illustration) we have

p ≥ IU(p) on B.

[ ]

Figure 1: Illustration of Chebychev’s inequality: the polynomial is always greater or equal
than the indicator function of p(x) ≥ 1, hence the integral of p over B is always an upper
bound of the volume of U(p).

Hence, integrating both sides we get the following inequality∫
B
p(x)dx ≥

∫
B
IU(p)(x)dx = vol U(p). (7)

This inequality is indeed widely used in probability, where it goes under the name of
Chebyshev’s inequality, see e.g. [2, §2.4.9]. Note that, since the polynomial p is nonneg-
ative on B, then the left-hand side of inequality (7) corresponds to the L1-norm of p on
B, so that the inequality simply becomes

‖p‖1 ≥ vol U(p). (8)

These derivations motivate us to the formulation of the following L1-norm minimization
problem, which we choose as a surrogate of the original minimum volume outer PSS
introduced in Problem 1.

Problem 2 (Minimum L1-norm outer PSS) Given a semialgebraic set K, a bound-
ing set B ⊇ K, and a degree d, solve the optimization problem

w∗d
.
= inf

p∈Pd
‖p‖1

s.t. p ≥ 0 on B
p ≥ 1 on K.

(9)

Note that a L1-norm minimization approach was originally proposed in [23] for the nu-
merical computation of the volume and of the higher order moments of a semialgebraic
set. The intuition underlying the formulation of Problem 2 is similar. We now elaborate
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on some of the characteristics of the minimum L1-norm outer PSS problem defined above.
First note that, for fixed d, when solving Problem 2 we are minimizing an upper-bound
on the volume of the PSS. Thus, the solution is expected to be a good approximation
of the set K. Second, it can be shown that, as the degree d increases, the Chebyshev
bound (8) becomes increasingly tight. Indeed, the following fundamental result shows
that the proposed solution converges to the minimum volume outer PSS.

Theorem 2 Given d ∈ N, the infimum in problem (9) is attained for a polynomial p∗d ∈
Pd. Moreover, w∗d ≥ v∗d and U(p∗d) ⊇ K. Finally w∗d ≥ w∗d+1 and limd→∞w

∗
d = limd→∞ v

∗
d =

volK.

Proof: Let us first extend optimization problem (9) to continuous functions:

w∗
.
= inf

f

∫
B
f(x)dx

s.t. f ∈ C+(B)
f − 1 ∈ C+(K)

(10)

where C+(B) denotes the convex cone of non-negative continuous functions on B. Observe
that since f is non-negative on B, the objective function ‖f‖1 =

∫
B f(x)dx is linear.

Problem (10) is an infinite-dimensional linear programming (LP) problem in cones of
non-negative continuous functions. It has a dual LP, in infinite-dimensional dual cones of
measures:

v∗
.
= sup

µ,µ̂

∫
µ(dx)

s.t. µ(dx) + µ̂(dx) = IB(x)dx
µ̂ ∈ C ′+(B)
µ ∈ C ′+(K)

(11)

where C ′+(B) is the cone of non-negative continuous linear functionals on C+(B), identified
with the cone of Borel regular non-negative measures on B, according to a Riesz Repre-
sentation Theorem [37, Section 21.5]. In LP (11) the right hand side in the equation is the
Lebesgue measure on B. Since the mass of non-negative measures µ and µ̂ is bounded,
it follows from Alaoglu’s Theorem on weak-star compactness [37, Section 15.1] that the
supremum is attained in dual LP (11) and that there is no duality gap between the primal
and dual LP, i.e. v∗ = w∗, see also e.g. [3, Theorem IV.7.2].

Moreover, as in the proof of [23, Theorem 3.1], it holds v∗ = vol K. To see this, notice
first that the constraint µ+ µ̂ = IB jointly with µ ∈ C ′+(K) imply that µ ≤ IK and hence∫
µ ≤

∫
IK = vol K for every µ feasible in LP (11). In particular, this is true for an

optimal µ∗ attaining the supremum, showing
∫
µ∗ = v∗ ≤ vol K. Conversely, the choice

µ = IK is trivially feasible for LP (11) and hence suboptimal, showing v∗ ≥
∫
µ = volK.

From this proof it also follows that the only optimal solution to LP (11) is the pair
(µ∗, µ̂∗) = (IK, IB\K).

Now let us prove the statements of the Theorem:

• Attainment of the infimum in problem (9) follows from continuity (actually linearity)
of the objective function ‖p‖1 =

∫
B p(x)dx = 0 which is a norm (i.e. ‖p‖1 = 0 implies
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p = 0 for p ∈ Pd) and compactness of the set {p ∈ Pd : p ∈ C(B), ‖p‖1 ≤ r} for any
fixed r > 0.

• w∗d ≥ v∗d follows readily from (8).

• w∗d ≥ w∗d+1 follows readily from Pd ⊂ Pd+1.

• Finally, limd→∞w
∗
d = volK is a consequence of v∗ = w∗ = volK (proven above) and

the Stone-Weierstrass Theorem [37, Section 12.3] allowing to approximate uniformly
on B by polynomials any continuous function in a minimizing sequence for LP (10),
i. e. limd→∞w

∗
d = w∗.

�.

Some remarks are at hand regarding the above result, which represents one of the main
contributions of the paper.

Remark 1 (Convergence almost everywhere) Note that Theorem 2 implies that, for
high enough order of approximation, the PSS obtained by minimizing the L1-norm of the
polynomial defining it can be “arbitrarily close” to the semialgebraic set of interest. More
precisely, as d → ∞, ‖p∗d‖1 and, as a consequence vol U(p∗d), converges to vol K. Since,
K ⊆ U(p∗d), the Lebesgue measure of the difference between these sets converges to zero.
In other words, one has almost everywhere convergence. From Theorems 2.5.1 and 2.5.3
in [2] the convergence is also almost uniform, up to extracting a subsequence.

Remark 2 (Trace minimization) We provide a geometric interpretation that further
justifies the approximation of the minimum-volume PSS with the minimum L1-norm PSS.
To this end, we first note that the objective function in (9) reads

‖p‖1 =

∫
B
p(x)dx =

∫
B
πTδ (x)Pπδ(x)dx = trace

(
P

∫
B
πδ(x)πTδ (x)dx

)
= trace PM (12)

where

M
.
=

∫
B
πδ(x)πTδ (x)dx

is the matrix of moments of the Lebesgue measure on B in the basis πδ(x). Note that, if
the basis in equation (12) is chosen such that its entries are orthonormal with respect to
the (scalar product induced by the) Lebesgue measure on B, then M is the identity matrix
and inequality (8) becomes

trace P ≥ vol U(p)

which indicates that, under the above constraints, minimizing the trace of the Gram matrix
P entails minimizing the volume of U(p). It is important to remark that, in the case of
quadratic polynomials, i.e. d = 2, we retrieve the classical trace heuristic used for volume
minimization of ellipsoids, see e.g. [17]. Indeed, if B = [−1, 1]n, then the basis π1(x) =√

6
2
x is orthonormal with respect to the Lebesgue measure on B and ‖p‖1 = 3

2
trace P .

Moreover, note that the constraint that p is nonnegative on B implies that the curvature
of the boundary of U(p) is nonnegative, hence that U(p) is convex. Thus, U(p) is indeed
an ellipsoid.
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Remark 3 (Choice of B) We finally remark that, as previously noted, the assumption
of the bounding set B being an hyperrectangle can be easily relaxed. Indeed, in order to
develop a computationally manageable optimization in Problem 2, B can be selected as a
semialgebraic set, provided that the polynomials defining the set should be such that the
objective function in problem (9) is easy to compute. In particular, if

p(x) = πTd (x)p =
∑
α

pα[πd(x)]α

then ∫
B
p(x)dx =

∑
α

pα

∫
B
[πd(x)]αdx =

∑
α

pαyα

and we should be able to compute easily the moments
∫
B[πd(x)]αdx of the Lebesgue measure

on B with respect to the basis πd(x).

4 LMI hierarchy to compute the PSS

In this section, we provide the basic details on the numerical computation of the solution
of the minimum L1-norm PSS introduced in Problem 2. Note that, in problem (9), we aim
at finding a polynomial p ∈ Pd such that i) p is positive on B, and ii) p− 1 is positive on
K. In order to obtain a numerically solvable problem, we enforce positivity by requiring
the polynomial to be SOS, and use Putinar’s Positivstellensatz; e.g., see [36, 29, 9, 35].
More precisely, fix r ∈ N, and consider the problem

w∗2r,d = min
p∈Pd

∫
B
p(x)dx (13)

s.t.

p(x) = s0,B(x) +
n∑
j=1

sj,B(x)(xj − aj)(bj − xj)

s0,B ∈ Σ2r

sj,B ∈ Σ2(r−1), j = 1, 2, . . . , n

 p(x) positive on B= [a, b]

p(x)− 1 = s0,K(x) +
m∑
i=1

si,K(x)gi(x)

s0,K ∈ Σ2r

si,K ∈ Σ2(r−ri), i = 1, 2, . . . ,m.

 p(x)− 1 positive on K

where ri is the smallest integer greater than half the degree of gi for i = 1, 2, . . . ,m. It
should be noted that the objective function of problem (13) is an easily computable linear
function of the coefficients of the polynomial p. Moreover, the constraints can be recast
in terms of Linear Matrix Inequalities (LMIs); see, for instance, [29]). Several Matlab
toolboxes have efficient and easy to use interfaces to model problems of the form above;
e.g., see YALMIP [31].
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Not only we can numerically solve problem (13), but the following result holds. This
theorem is an immediate consequence of the results in [36].

Theorem 3 Let us denote by p∗2r,d a solution of problem (13). Then, the following hold

i) for each d ∈ N, the value of problem (13) converges to the value of problem (9) as
r →∞, i.e. limr→∞w

∗
2r,d = w∗d,

ii) for any 2r ≥ d, p∗2r,d ≥ 0 on B,

iii) for any 2r ≥ d, p∗2r,d ≥ 1 on K.

We conclude that p∗2r,d can be used to compute a PSS approximation for K. For our
numerical examples, we have used the YALMIP [31] interface for Matlab to model the
LMI optimization problem (13) and the SDP solver SeDuMi [40] to numerically solve the
problem. Since the degrees of the semialgebraic sets we compute are typically low (say
less than 20), we did not attempt to use alternative polynomial bases (e.g. Chebyshev
polynomials) to improve the quality and resolution of the optimization problems; see [23]
for a discussion on these numerical matters in the context of semialgebraic set volume
approximation.

4.1 Computing Bounding Box B

As noted in [8, Remark 1], an outer-bounding hyper-rectangle B = [a, b] of a given semial-
gebraic set K can be found by solving relaxations of the following polynomial optimization
problems

aj = arg min
x∈Rn

xj subject to x ∈ K, j = 1, ..., n,

bj = arg max
x∈Rn

xj subject to x ∈ K, j = 1, ..., n,

which compute the minimum and maximum value of each component of the vector x over
the semialgebraic set K.

To illustrate how this can be done, let us concentrate on approximating the value of
aj. First, note that the problem of computing aj is equivalent to solving the following
polynomial optimization problem

aj = max y subject to xj − y ≥ 0 for all x ∈ K.
Then, formulate the following convex optimization problem

aj,2r = max y

s.t. xj − y = s0(x) +
m∑
i=1

si(x)gi(x)

s0 ∈ Σ2r;

si ∈ Σ2(r−ri); i = 1, 2, . . . ,m.

Using the same reasoning as above, it can be shown that: i) aj,2r ≤ aj for all r, and ii)
limr→∞ aj,2r = aj. Moreover, the problem above can be recast as an LMI optimization
problem.

12



5 Inner approximations

The approach described in the previous sections can be readily extended to derive inner
approximations of the set K, in the spirit of [10, 22, 24]. The idea is just to construct an
optimal outer PSS of the complement set

K .
= B \ K = {x ∈ Rn : g1(x) < 0 or · · · or gm(x) ≤ 0, i = 1, 2, . . . ,m} ∩ B

= (K1 ∪ K2 ∪ · · · ∪ Km) ∩ B,

with Kj
.
= {x ∈ Rn : gj(x) < 0}.

Note that, since the set whose indicator function we want to approximate is a union of
basic semialgebraic sets, the L1 optimization problem to be solved becomes

min
p∈Pd

‖p‖1
s.t. p ≥ 0 on B

p ≥ 1 on K1

p ≥ 1 on K2
...
p ≥ 1 on Km

(14)

and let p∗d attain the minimum. The corresponding optimal inner approximation is given
by the polynomial sublevel set

V(p∗d)
.
= {x ∈ B : p∗d(x) ≤ 1}.

In this case, one can think of the polynomial 1 − p∗d as a lower bound for the indicator
function of the set K.

Given the fact that the optimization problem (14) provides an outer approximation of the
set K, one has the following result whose proof is similar to that of Theorem 2.

Corollary 1 For all d ∈ N it holds V(p∗d) ⊆ K. Moreover limd→∞ vol V (p∗d) = volK.

As before, to be able to numerically approximate the solution of problem (14), we re-
place its polynomial positivity constraints by their LMI approximations as described in
Section 4.

6 Numerical examples

In this section, we present several examples that illustrate the performance of the proposed
approach.
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6.1 Discrete-time stabilizability region

As a control-oriented illustration of the PSS approximation described in this paper,
consider [22, Example 4.4] which is a degree 4 discrete-time polynomial z ∈ C 7→
x2 + 2x1z − (2x1 + x2)z

3 + z4 to be stabilized by means of 2 real control parameters
x1, x2. In other words, we are interested in approximating the set K of values of x1, x2
such that this polynomial has its roots with modulus less than one. An explicit basic
semialgebraic description of the stabilizability region is built using the Schur stability
criterion, resulting in the following basic semialgebraic set:

K = {x ∈ R2 : g1(x) = 1 + 2x2 ≥ 0, (15)

g2(x) = 2− 4x1 − 3x2 ≥ 0,

g3(x) = 10− 28x1 − 5x2 − 24x1x2 − 18x22 ≥ 0,

g4(x) = 1− x2 − 8x21 − 2x1x2 − x22 − 8x21x2 − 6x1x
2
2 ≥ 0}.

This set is nonconvex and it is included in the box B = [−0.8, 0.6]× [−0.5, 1.0]. In Figure
2 we represent the PSS outer approximations of K for d = 6 and d = 12 respectively,
while Figure 3 shows the graph of the degree d = 12 polynomial p∗12,12(x) constructed by
solving optimization problem (13) with 2r = d.

As discussed before, we can also use the approach proposed in this paper to obtain inner
approximations of K. In Figure 4, we depict the inner approximation obtained using
optimization problem (14) with 2r = d = 8.
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Figure 2: Degree 6 and degree 20 outer PSS approximation (red) of stabilizability region
K (inner surface in light blue). The green box corresponds to the bounding set B.
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Figure 3: Degree 20 polynomial approximation (upper surface in red) of the indicator
function (lower surface in blue) of the nonconvex planar stabilizability region K.

6.2 PID stabilizability region

We now turn our attention to an example related to fixed order controller design. Consider
[6, Example 2.2], in which the authors examine the problem of stabilizing the plant

P (s) = N(s)
D(s)

where

N(s) = s3 − 2s2 − s− 1;

D(s) = s6 + 2s5 + 32s4 + 26s3 + 65s2 − 8s+ 1.

by means of a PID controller of the form KPID(s) = kP + kI
s

+kDs. In particular, they are
interested in finding the set of stabilizing PID gains, that is the set of gains for which the
closed-loop characteristic polynomial sD(s) + (kI + kPs+ kDs

2)N(s) is Hurwitz. For this
special class of controllers, the authors provide a method based on the so-called signature
of a set of properly constructed polynomials to determine the set of all PID gains that
stabilize the plant. One should note that this procedure is not easily generalizable to
more general classes of fixed order controllers.

In our setup, we are interested in approximating the set

K = {x ∈ R3 : sD(s)+(kI+kPs+kDs
2)N(s) is Hurwitz, kI = 25(x1−1), kP = 10(x2−1.5), kD = 10(x3−1)}

with bounding box B = [−1, 1]3. As one can see in Figure 5, the approached proposed in
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Figure 4: Left: degree 8 inner PSS approximation (red) of stabilizability region K (inner
surface in light blue). Right: degree 8 polynomial approximation (upper surface in red)
of the indicator function (lower surface in blue of K.

this paper provides a very good approximation of the set of stabilizing gains, even for a
PSS of relatively low order (d = 14).

7 Reconstructing/approximating Sets from a finite

number of samples

A particularly interesting case is when the semialgebraic set K is discrete, that is, it
consists of the union of N points

K =
N⋃
i=1

{x(i)} ⊂ Rn.

This situation arises for instance when the objective is to try to approximate a given set
(possibly non-semialgebraic) from a given number of points in its interior. An example
of this is the reconstruction of reachable sets by using randomly generated trajectories.
This setup is discussed in [14, 13, 25].

From a computation viewpoint, an important feature is that, in the case of a discrete set,
the inclusion constraint K ⊆ U(p) is equivalent to a finite number of inequalities

p(x(i)) ≥ 1, i = 1, . . . , N

which are linear in the coefficients of p. This fact allows to deal with problems with
rather large N . Moreover, in this latter case, where the number of points N is large while

16



Figure 5: Left: set of stabilizing PID gains. Right: its degree 14 optimal outer PSS
approximation.

the dimension n is relatively small, the constraint that p is nonnegative on B can also be
(approximately) handled by linear inequalities

p(z(j)) ≥ 0, j = 1, . . . ,M

enforced at a dense grid of points z(j) ∈ B, for M sufficiently large. Hence, in this case one
can construct a pure linear programming (LP) approach. Note that, even if this approach
does not guarantee that p is nonnegative everywhere on B, it still ensures that K ⊆ U(p),
which is what matters primarily in our approach.

To illustrate the performance of the proposed method, we first consider N = 100 points
in the box B = [−1, 1]2. The points are generated mapping Gaussian points with vari-
ance 0.1I and mean value chosen with equal probability between [0.4, 0.3]T , [−03, −0.5]T ,
[−0.5, 0.4]T . On Figure 6 we represent the solutions p of degrees 2, 5, and 9 of minimiza-
tion problem (9). A few comments about the obtained solution are at hand. First, we see
that the solution for d = 2 corresponds to the Löwner-John ellipsoid, see e.g. [4, §4.9].
Second, it can be observed that, as the degree of p increases, the set U(p) becomes dis-
connected, so as to better capture the different regions where the points are concentrated.
We note that, in the case of discrete points, it is not advisable to select high values of d,
since indeed, in the limit, the optimal polynomial would correspond to a function with
spikes corresponding to the location of the considered points. Finally, we remark that the
possible side effects near the border of B on the right hand side figure can be removed by
enlarging the bounding set B.

As a second illustrative example, we consider N = 10 points in B = [−1, 1]3. The solutions
p of degrees 4, 6, 9, and 14 of minimization problem (9) is depicted in Figure 7. Here
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Figure 6: Minimum L1-norm PSS at 100 points (blue), for degree 2 (left), 5 (center), and
9 (right).

too we observe that increasing the degree of p allows to capture point clusters in distinct
connected components.

8 Uniform sampling over semialgebraic sets

In this section, we consider a problem that can be seen as the “dual” of the one considered
in the previous section; that is, instead of trying to reconstruct/approximate the indicator
function of an unknown set from points belonging to its interior, we aim at developing
systematic procedures for generating uniformly distributed samples in a given semialge-
braic set. This is an important problem since many system specifications lead to sets with
a (complex) closed-form description, and being able to draw samples from these type of
sets provides the means for the design of systems with a complex set of specifications.
In particular, the algorithm presented in this section can be used to generate uniform
samples in the solution set of LMIs.

As before, we assume that the set of interest is a compact basic semialgebraic set defined
as in (1), and that there exists a bounding hyper-rectangle B = [a, b] of the form (6).
Then, the problem we discuss in this section is the following.
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Figure 7: Including the same 10 space points (blue) in PSS of degree 4 (left) and 10
(right).

Problem 3 (Uniform Sample Generation over K) Given a semialgebraic set K de-
fined in (1) of nonzero volume, generate N independent identically distributed (i.i.d.)
random samples x(1), . . . , x(N) uniformly distributed in K.

Let us start by describing the approach proposed to solve this problem. First, we define
the uniform density over the set K as follows

UK
.
=

IK
volK

(16)

where IK is the indicator function of the set K defined in (3). Then, the idea at the
basis of the proposed method is to use a PSS approximation of the set K or, equivalently,
a polynomial over approximation of the indicator function IK, obtained employing the
framework introduced in Sections 2 and 3.

To this end, given a degree d ∈ N, consider the optimization problem (9) and let p∗d be a
polynomial that achieves the optimum. If one examines the proof of Theorem 2, one can
see that this polynomial has the following properties

i) p∗d ≥ IK on B

ii) As d→∞, p∗d → IK both in L1 and almost uniformly on B.

Hence, p∗d can arbitrarily approximate (from above) the indicator function of the set K.,
and therefore it represents a so-called “dominating density” of the uniform density UK on
B. More formally, there exists a value β > 0 such that βp∗d(x) ≥ UK(x) for all x ∈ B.
Hence, the rejection method from a dominating density, discussed for instance in [41,
Section 14.3.1], can be applied leading to the following random sampling procedure.

A graphical interpretation of the algorithm is provided in Figure 8, for the case of a simple
one-dimensional set

K =
{
x ∈ R : (x− 1)2 − 0.5 ≥ 0, x− 3 ≤ 0

}
.
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Algorithm 1 Uniform Sample Generation in Semialgebraic Set K
Given d ∈ N, let p∗d be a solution of

min
p∈Pd

∫
B
p(x)dx

s.t. p ≥ 1 on K
p ≥ 0 on B.

(17)

1. Generate a random sample ξ with density proportional to p∗d over B.

2. If ξ 6∈ K go to step 1.

3. Generate a sample u uniform on [0, 1].

4. If u p∗d(ξ) ≤ 1 return x = ξ, else go to step 1.

First, problem (9) is solved (for d = 8 and B = [1.5, 4]), yielding the optimal solution

p∗d(x) = 0.069473x8−2.0515x7+23.434x6−139.5x5+477.92x4−961.88x3+1090.8x2−606.07x+107.28.

As it can be seen in Figure 8, p∗d is “dominating” the indicator function IK on B. Then,
uniform random samples are drawn in the hypograph of p∗d. This is done by generating
uniform samples ξ distributed according to a probability density function (pdf) propor-
tional to p∗d (step 2), and then selecting its vertical coordinate uniformly in the interval
[0, ξ] (step 3). Finally, if this sample falls below the indicator function IK (blue dots) it
is accepted, otherwise it is rejected (red dots) and the process starts again.

1.5 2 2.5 3 3.5 4
−0.5

0

0.5

1

1.5

Figure 8: Illustration of the behavior of Algorithm 1 in the one-dimensional case. Blue
dots are accepted samples, red dots are rejected samples.

It is intuitive that this algorithm should outperform classical rejection from the bounding
set B, since more importance is given to the samples inside K through the function p∗d.
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To formally analyze the performance of Algorithm 1, we define the acceptance rate (see
e.g. [16]) as the reciprocal of the expected number of samples that have to be drawn
from p∗d in order to find one “good” sample, that is a sample uniformly distributed in K.
Then, the following result, which is the main theoretical result of this section, provides
the acceptance rate of the proposed algorithm.

Theorem 4 Algorithm 1 returns a sample uniformly distributed in K. Moreover, the
acceptance rate of the algorithm is given by

γd =
volK

w∗d
,

where w∗d
.
=
∫
B p
∗
d(x)dx is the optimal solution of problem (9).

Proof: To prove the statement, we first note that polynomial p∗d defines a density

f
.
=
p∗d
w∗d

(18)

over B. Moreover, by construction, we have p∗d ≥ IK on B, and hence

p∗d
w∗d volK

≥ IK
w∗d volK

(19)

f

volK
≥ UKf

w∗d
≥ γdUK

on B. Then, it can be immediately seen that Algorithm 1 is a restatement of the classical
Von Neumann rejection algorithm, see e.g. [41, Algorithm 14.2], whose acceptance rate is
given by the value of γd such that (19) holds, see for instance [15]. �

It follows that the efficiency of the random sample generation increases as d increases,
and becomes optimal as d goes to infinity, as reported in the next corollary.

Corollary 2 In Algorithm 1, the acceptance rate tends to one when increasing the degree
of the polynomial approximation, i.e.

lim
d→∞

γd = 1.

Therefore, a trade-off exists between the complexity of computing a good approximation
(d large) on the one hand, and having to wait a long time to get a “good” sample (γ
large), on the other hand. Note, however, that the first step can be computed off-line for
a given set K, and then the corresponding polynomial p∗d can be used for efficient on-line
sample generation. Finally, we highlight that, in order to apply Algorithm 1 in an efficient
way (step 2), a computationally efficient scheme for generating random samples according
to a polynomial density is required. This is discussed next.
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8.1 Sample generation from a polynomial density

To generate a random sample according to the multivariate polynomial density f defined
in (18), one can use the so-called conditional density method described in [15]. This
is a recursive method in which the individual entries of the multivariate samples are
generated according to their conditional probability density. We now elaborate on this.
We should note that the approach developed in this paper only provides the density up
to a multiplying constant. However, to simplify the exposition to follow, we proceed as if
the polynomial given is indeed a probability density function.

Assume that the bounding set is a hyperrectangle B = [a, b] of the form (6) and that we
have a polynomial density p. We start by computing the marginal density

p1 : x1 7→
∫ b2

a2

· · ·
∫ bn

an

p(x1, x2, . . . , xn) dx2 · · · dxn

and, for each i = 2, . . . , n and given x̄1, . . . x̄i−1, compute conditional marginal densities

pi : xi 7→
∫ bi+1

ai+1

· · ·
∫ bn

an

p(x̄1, . . . , x̄i−1, xi, xi+1, . . . , xn) dxi+1 · · · dxn

and respective (polynomial) cumulative distributions Fi satisfying

dFi
dxi

= pi.

The sampling procedure then starts by computing a sample x̄1 according to F1 and,
iteratively, computing samples x̄i given x̄1, . . . x̄i−1 according to the distribution Fi. The
exact description of this procedure is described in Algorithm 2. One should note that,
given the density p, a closed form is available for all marginal and conditional densities. In
other words, none of the integrations mentioned above needs to be computed numerically.

8.2 Numerical example: sampling in a nonconvex semialgebraic
set

To demonstrate the behavior of Algorithms 1 and 2, we revisit Example 6.1, and generate
uniform samples in the semialgebraic set K defined in (15). As already shown in Figure
3, the indicator function IK is well approximated from above by the optimal PSS p∗d,d for
d = 20. The results of Algorithm 1 are reported in Figure 9. The red points represent the
points which have been discarded. To this regard, it is important to notice that also some
point falling inside K has been rejected. This is fundamental to guarantee uniformity of
the discarded points.

9 Concluding Remarks

In this paper we have introduced the concept of polynomial superlevel sets (PSS) as a
tool to construct “simple” approximations of complex semialgebraic sets. Algorithms are
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Algorithm 2 Generation from a polynomial density

Returns a sample in B[a,b] with density proportional to the polynomial

p : x1, . . . , xn 7→
nα∑
j=1

pj

n∏
`=1

x
αj,`
` (20)

1. Let i = 1

2. Compute the univariate polynomial

F : xi 7→
nα∑
j=1

γi,j(x̄1, . . . , x̄i−1)x
αj,`+1
i (21)

where

γi,j(x̄1, . . . , x̄i−1) =
1

aj,i + 1
pj

(
i−1∏
`=1

x̄
αj,`
`

)(
n∏

`=j+1

1

αj,` + 1

(
b
αj,`+1

` − aαj,`+1

`

))
(22)

3. Generate a random variable w uniform on [F (ai), F (bi)]

4. Compute the unique root ξi in [ai, bi] of the polynomial xi 7→ F (xi)− w

5. Let x̄i = ξi

6. If i < n let i = i+ 1 and go to (2)

7. Return x̄

provided for computing these approximations. Moreover, it is shown how this concept can
be used to solve two important problems: i) reconstruction/approximation of sets from
samples and ii) generation of uniform samples in basic semialgebraic sets. Examples of the
application of these ideas to problems in control engineering are also described. Note that
the methods provided in this paper can be used to obtain probabilistic approximations
of difficult sets, in the spirit of what is discussed in [14]. Also, in [13] the application
of minimum size PSS to the approximation of the one-step reachable set of a nonlinear
discrete-time function is presented, with an extension to nonlinear set filtering. Finally,
we note that similar techniques can also be used to approximate transcendental (i.e.
non-semi-algebraic) sets arising in systems control, e.g. regions of attraction, maximum
positively invariant sets, and controllability regions.
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