John-Eric Dufour 
  
François Hild 
email: hild@lmt.ens-cachan.fr
  
Stéphane Roux 
  
Shape, displacement and mechanical properties from isogeometric multiview stereocorrelation

Keywords: 3D surfaces, Identication, Isogeometric analyses, Kinematic measurements, NURBS, Stereocorrelation

published or not. The documents may come    

These elds are subsequently utilized to update isogeometric analyses to calibrate the elastic properties in a tensile experiment. An alternative route consists of preforming such analyses within an integrated framework.

Introduction

Digital Image Correlation (DIC) has reached a state of development that makes it possible to create new bridges between experiments and simulations [START_REF] Sutton | Computer vision-based, noncontacting deformation measurements in mechanics: A generational transformation[END_REF]. To mention but one example, nite-element based DIC procedures were proposed ten years ago [START_REF] Broggiato | Adaptive image correlation technique for full-eld strain measurement[END_REF][START_REF] Sun | Finite-element formulation for a digital image correlation method[END_REF][START_REF] Besnard | Finite-element displacement elds analysis from digital images: Application to Portevin-Le Châtelier bands[END_REF] and have been used in various applications since then [START_REF] Hild | Digital Image Correlation[END_REF]. Similarly, new tools are currently implemented to integrate Computer-Aided Design (CAD) and Finite Element Analyses (FEA) [START_REF] Cottrell | Isogeometric Analysis: Toward Integration of CAD and FEA[END_REF]. Recently, stereocorrelation approaches have been developed using CAD descriptions of the observed surface [START_REF] Beaubier | CAD-based calibration of a 3D-DIC system: Principle and application on test and industrial parts[END_REF]; FE-based surfaces can also be analyzed [START_REF] Dufour | Displacement measurement using CAD-based stereo-correlation with meshes[END_REF]. `Linking CAD tools, FE simulations and DIC procedures is (thus) becoming possible' [START_REF] Sutton | Recent advances and perspectives in digital image correlation[END_REF].

One area of research that needs strong links between experiments and simulations is the identication and validation of numerical material models. For instance, nite element model updating (FEMU) was introduced very early on to determine elastic parameters [START_REF] Kavanagh | Finite element applications in the characterization of elastic solids[END_REF][START_REF] Kavanagh | Extension of classical experimental techniques for characterizing composite-material behavior[END_REF][START_REF] Collins | Statistical identication of structures[END_REF]. Since the early developments of FEMU, other methods have been proposed, some of them explicitly requiring full-eld measurements [START_REF] Avril | Overview of identication methods of mechanical parameters based on full-eld measurements[END_REF][START_REF]Full-Field Measurements and Identication in Solid Mechanics[END_REF]. In all these approaches, the measurement and identication steps are performed independently and sequentially. An alternative route consists of performing these two steps in an integrated way by either using closed-form solutions (e.g., Brazilian test [START_REF] Hild | Digital image correlation: From measurement to identication of elastic properties -A review[END_REF], cracks in elastic media [START_REF] Roux | Stress intensity factor measurements from digital image correlation: Post-processing and integrated approaches[END_REF]) or numerically generated sensitivity elds [START_REF] Leclerc | Integrated digital image correlation for the identication of mechanical properties[END_REF][START_REF] Réthoré | A fully integrated noise robust strategy for the identication of constitutive laws from digital images[END_REF][START_REF] Mathieu | Estimation of elastoplastic parameters via weighted FEMU and integrated-DIC[END_REF].

In the following, it is proposed to extend all these concepts to isogeometric analyses. The reasons for using the latter ones are two-fold. First, CAD modelers are commonly used in mechanical design and therefore a vast majority of fabricated structures is known virtually via its nominal shape. This is a very precious piece of information that is seldom used in DIC procedures [START_REF] Beaubier | CAD-based calibration of a 3D-DIC system: Principle and application on test and industrial parts[END_REF].

Second, with the development of isogeometric analysis (IGA) frameworks, the other end of the virtual world, namely, mechanical sizing via nite element analyses can be integrated into conventional NURBS-based CAD design tools [START_REF] Piegl | The NURBS Book -2nd Edition[END_REF]. In the experiment / CAD / IGA triptych, the missing link is on the experimental side. The aim of the present paper is to show that it is possible to reconstruct 3D shapes, measure 3D displacement elds and calibrate mechanical properties by resorting to isogeometric stereocorrelation.

In order to observe the whole external surfaces of a structure, a multiview framework is rst introduced within a global stereocorrelation setting. The dierent steps associated with stereocorrelation are discussed in Section 2, namely, calibration, measurement of 3D shapes and 3D displacements. This is all the more true as a model shape is used while the texture (gray levels) is only known from the images. Section 3 is devoted to a discussion of the proposed metric. A proof of concept is then proposed in Section 4 to validate all the various implementations. It consists of performing a tensile test on a squared bar monitored with 4 digital single-lens reex cameras.

From these rst analyses, the complete 3D shape is reconstructed and the 3D displacement elds during the mechanical test are measured. With these data, Section 5 shows that an IsoGeometric Model Updating (IGMU) pro-cedure can be designed to extract elastic constants. Last, a fully integrated isogeometric stereocorrelation approach is also implemented and presented in Section 6.

Multiview system

The description of a specimen that is used in this study is a CAD model.

The external surface of the solid consists of a collection of n s elementary surfaces. Each of the latter ones S s , which is labeled by s = 1, ..., n s , is described in the Non-Uniform Rational B-Spline (NURBS) framework (recalled in Appendix A) where the three-dimensional shape X = (X, Y, Z) is written as X(ξ s ), where ξ s = (u s , v s ) dene the parametric space, conventionally spanning the elementary square [0, 1] 2 . Let us emphasize that what is assumed to be known from the CAD model is the virtual (or nominal) shape of the object. In practice, these surfaces will be decorated by a specic texture (i.e., classically a random speckle pattern is painted on the surface) that is not known from the CAD model.

A number n c of cameras is used to observe the specimen as schematically shown in Figure 1. Each camera C i captures an image f i (x i ) where x i is a point in the (two-dimensional) i-th image plane.

Stereovision consists of registering the dierent images taking into account a projection model in order to measure the specimen shape. The projection model itself has rst to be identied and its parameters evaluated from a calibration step detailed below. The same strategy can be further used to track the change of 3D shape when the specimen is used in a me-Figure 1: Schematic drawing of a stereovision setup with a multisurface object (parallelepiped) in the center observed by a four-camera system. This elementary example will be used in Section 4 to illustrate the proposed methodology. chanical test. This amounts to measuring the 3D displacement of the object surface. In the present case, stereocorrelation, which combines stereovision and image correlation, is used as the matching algorithm to measure 3D shapes and 3D displacement elds.

Calibration of a multiview system

The calibration of the multicamera system is achieved by using a global approach to stereocorrelation [START_REF] Beaubier | CAD-based calibration of a 3D-DIC system: Principle and application on test and industrial parts[END_REF]. In the present case, the object of interest will serve as calibration target since its nominal shape is known. Two formulations of the problem will be introduced below. The rst one is based on camera pairs observing a common surface S s . The second one will be used for the registration of each camera image onto a reference one, which is dened in the parametric space and which will be progressively rened. In the present paper, only the second approach will be followed, the rst one having already been reported and validated for two cameras [START_REF] Beaubier | CAD-based calibration of a 3D-DIC system: Principle and application on test and industrial parts[END_REF][START_REF] Dufour | Shape measurement using CAD-based stereo-DIC[END_REF][START_REF] Dufour | CAD-based measurement of displacement and strain elds. Principle and rst validation[END_REF].

First, the projection matrices [START_REF] Faugeras | Three-dimensional computer vision: a geometric viewpoint[END_REF][START_REF] Sutton | Image correlation for shape, motion and deformation measurements: Basic Concepts, Theory and Applications[END_REF] for each camera C i (i.e., [M i ], which is a 3 × 4 matrix) are calibrated by resorting to integrated DIC [START_REF] Hild | Digital image correlation: From measurement to identication of elastic properties -A review[END_REF][START_REF] Roux | Stress intensity factor measurements from digital image correlation: Post-processing and integrated approaches[END_REF]. The homogeneous coordinates of any 3D point {X} = (X, Y, Z, 1) t are related to the corresponding homogeneous coordinates in each camera plane {x i } = (σ i x i , σ i y i , σ i ) t by the projection matrix [START_REF] Faugeras | Camera self-calibration: Theory and experiments[END_REF] 

{x i } = [M i ]{X} (1)
where σ i is a scale factor. Reverting to the description of each surface S s based on the intrinsic coordinate system ξ s , the points on the actual surface are further written X(ξ s ). These dierent elements, namely, projection matrix, scale factor and surface parameterization, allow the position in the image plane i to be expressed for any point parameterized by ξ s , and is written x i ([M i ], X(ξ s )). The calibration consists of minimizing the sum of squared dierences (Figure 2)

η 2 ([M k=1,nc ]) = ns ∑ s=1 nc-1 ∑ i=1 ∑ j>i f i (x i ([M i ], X(ξ s ))) -f j (x j ([M j ], X(ξ s ))) 2 (2)
with respect to the each unknown matrix [M k ], where f i,j are the image pairs in the reference conguration. The previous minimization is achieved by resorting to Newton-Raphson's method in which linearizations and corrections are performed [START_REF] Hild | Digital Image Correlation[END_REF]. The precise expression of the linearized equations to be solved will depend on the details of the expression of the norm ∥ • • • ∥ used in the weighting of residuals. The latter will be discussed in Section 3.

To initialize the code, the user has to chose at least 6 remarkable points in each considered picture.

In the present setting, modifying the projection matrix [M i ] by small increments δ[M i ] induces a motion of the corresponding point from x i to x i + δx i . The quantity δx i is not a physical displacement, but rather the sensitivity with respect to the parameters of the geometrical projection to be determined here, {δm} namely 11 per camera out of the 12 matrix compo-

nents {δx i } = ∂x i ∂[M i ] ([M i ], X)δ[M i ] ≡ [S M ]{δm} (3) 
where [S M ] gathers the set of 11 × n c sensitivity elds. The remaining unknowns (one per camera) have to be determined from the knowledge of absolute dimensions in the observed structure [START_REF] Beaubier | CAD-based calibration of a 3D-DIC system: Principle and application on test and industrial parts[END_REF].

It is worth noting that the sum appearing in Equation ( 2) is implicitly restricted to cameras C i and C j that both can see the surface S s . In practice, considering all pairs of cameras may be demanding, although it would be required in order to reach the best possible determination of the projection matrices [M i ]. A decimation is possible to reduce this number down to n c -1 camera pairs at most. A dierent formulation proposed below will be preferred but it requires rst an approximate registration to initialize the formulation. Hence, even if the choice of camera pairs is not optimal, it could be rst used to obtain a rst determination of the projection matrices [M i ].

The second proposed formulation, illustrated in Figure 3 circumvents the problem of having to accumulate all possible camera pairs. The main idea is to perform an individual determination of the camera projection matrix [M i ] considering all cameras C i , one after the other, from the registration of the images f i (x i ) onto a reference f (ξ s ), which will be referred to as intrinsic texture in the sequel. As briey discussed in the introduction, it is assumed that the model shape is perfectly known X(ξ) although the intrinsic texture is unknown. Were it be known, then the minimization of the following functional

ϱ 2 ([M k=1,nc ]) = ns ∑ s=1 nc ∑ i=1 f i (x i ([M i ], X(ξ s ))) -f (ξ s ) 2 (4) 
with respect to all [M k ] matrices would deliver an ideal calibration step.

However, if an (even approximate) determination of the projection matrices [M i ] is known, each image point x i can be mapped onto a X(ξ s ) point on surface S s , and hence, averaging over all images observing the same physical surface (possibly after correction) provides such a reference object with its intrinsic texture

f (ξ s ) = ⟨ f i (x i ([M i ], X(ξ s ))) ⟩ i ( 5 
)
where ⟨• • • ⟩ denote averages. In Section 3, possible corrections of f i (e.g., modication of gray levels, spatial ltering) will be discussed in more details. This writing assumes that a gray level is an absolute characteristics of a surface element that is equally well captured by all cameras. This is an over-simplication that will be further discussed and rened in Section 3. The algorithm used in this second formulation is quite close to the previous one with alternate steps. First, the projection matrices [M i ] are corrected, and then, the intrinsic texture is refreshed with the new determination. These two steps are repeated until convergence.

Shape correction

The rst guess of the 3D shape (i.e., its nominal freeform) is projected onto the 2D space using the previously measured calibration matrices [M i ] thereby transporting the parametric space coordinate system ξ s , x i ([M i ], X(ξ s )).

The pictures can be interpolated to create sub-pictures in the parametric space. A global approach to stereocorrelation [START_REF] Beaubier | CAD-based calibration of a 3D-DIC system: Principle and application on test and industrial parts[END_REF] is performed by moving the control points P k of the NURBS patches. These motions induce pseudodisplacements visible for all cameras observing this surface, since the position in the specimen frame, X at xed position in the parametric space ξ, depends on the control points as detailed in Appendix A. To highlight this dependence, the control points are explicitly listed as arguments of the

projection x i ([M i ], X(P k , ξ s )).
Let us however note that in this part the projection matrix [M i ] is known, and to simplify the notations, the latter dependence is omitted to write x i (X(P k , ξ s )). The apparent displacement in the i-th camera plane reads

δx i (ξ s ) = ∂x i ∂X ∂X(P k , ξ s ) ∂P k δP k (6)
This equation denes new sensitivity elds in the same spirit as those introduced above. This leads to an estimate of the increment of control point positions δP k that are added to the previous coordinates (Figure 4).

Paralleling the previous subsection, two formulations can be chosen. The rst one exploits all possible image pairs for each surface. The second one makes use of a reference that is the average of the textures transported into the intrinsic parametric space. Because the latter formulation involves a more limited number of comparisons (i.e., n c rather than n c (n c -1)/2), it The global stereocorrelation shape correction procedure consists of minimizing the sum of squared dierences

ϱ 2 (δP k ) = ns ∑ s=1 nc ∑ i=1 f i (x i (X(P k , ξ s ))) -f (ξ s )) 2 (7) 
with respect to each increment of control points gathered in {δP k }. The minimization is again achieved by resorting to Newton-Raphson's method alternating each iteration with an update of the intrinsic texture f .

3D displacement eld measurements

In this section, the formulation of the 3D displacement eld measurement via stereocorrelation is introduced. For the sake of simplicity, it is assumed hereafter that displacement elds are described in the same setting as the surface itself (i.e., the surface deformation is obtained by moving the control points). It is worth noting that other hypotheses can be made (e.g., nite element descriptions [START_REF] Dufour | Displacement measurement using CAD-based stereo-correlation with meshes[END_REF]). A global approach to stereocorrelation consists of minimizing the functional η

η 2 (dP k (t)) = ns ∑ s=1 nc ∑ i=1 g i (x i (P k + dP k (t), ξ s )) -f i (x i (P k , ξ s )) 2 (8) 
with respect to each coordinate motion dP k (t) of the control points P k for the t-th picture pair. In the present case, f i denotes the picture in the reference conguration for camera C i , and g i the picture from the same camera in the deformed conguration (Figure 5). These control point motions induce (true) displacements in the pictures (see Equation ( 6)). Conversely, the true displacements are described within the language of CAD shape description of the surface. Although this may appear as restric-tive (there is no reason why the changes of shape should comply with the parameters chosen for designing its initial state), it is not. NURBSs are a powerful framework allowing for an easy addition or removal of control points, or local changes of the degree of regularity (e.g., continuous derivatives of chosen order) that can be tailored to t an observed (i.e., continuous) displacement eld at will. This enrichment can easily be pushed to the limit where preserving a good conditioning of the registration procedure can reveal dicult as for any other representation of the displacement eld. Hence, the potential limitation is not a too stringent framework for describing the motion, but on the contrary the exibility of the description leading to poor conditioning if too many degrees of freedom are included. However, in the present study, enrichment of the discretization is not considered, and it is assumed that the initial choice is wide enough to provide a fair description of the kinematics. The minimization is again performed by resorting to Newton-Raphson's scheme whose details will be provided in Section 3.

Gray levels and pixels

Up to this point, images were a theoretical abstraction where f i (x i ) designates a scalar signature of the material point, X, whose position in the i-th image plane is x i . For the sake of simplicity, f i was considered as being independent of the camera provided the position of the pixel would correctly be accounted for. The physics of image formation is however somewhat more complicated. Moreover, optimal performance of stereocorrelation requires the image texture to be rough (i.e., having very sharp gradients at the pixel level). This property is in conict with what would be needed to neglect discretization (i.e., pixelization) eects. Thus, it is essential to express explicitly what is known or assumed with respect to image formation that could be camera-dependent. This procedure is the one that will allow for the formulation of intrinsic characteristics of the images that pertains to the observed material surface and not to the camera system, as well as features of the transformation that are camera-dependent. This partition is essential because when comparing images shot by dierent cameras only intrinsic features should be considered.

In the previous section, it was shown that each point in parametric space ξ s was mapped onto a point in the specimen frame X(ξ s ) via the blending functions (see Appendix A), and further mapped onto the image plane of camera i, x i (ξ s ) = x i (X(ξ s )) with the projection matrices. These maps were used to transport the apparent texture f i (x i ) onto the intrinsic one, f (ξ s ). Therefore, it was assumed that f i (x i (ξ s )) could simply be related to f (ξ s ) by a mere equality. This is at best an approximation, but it is important to go further in order to specify the details of how to design the norm ∥ • • • ∥ used previously in the ϱ or η functionals.

The actual i-th image is related to the intrinsic texture through a transformation T i such that

f i (x i (ξ s )) = T is [ f (ξ s )] ( 9 
)
where T is is generically nonlocal and nonlinear. Lens distortions are responsible for nonlocal corrections in the sense that pixel positions are not where one may naively assume they are. However, the importance of distortions has been discussed at length for stereovision [START_REF] Sutton | Image correlation for shape, motion and deformation measurements: Basic Concepts, Theory and Applications[END_REF] and can be measured beforehand so as to correct pictures as soon as they are captured. Hence distortions are assumed to be corrected in the sequel. Nonlocality also comes from the picture element, namely the pixel, that represents an elementary detector on the camera sensor, which integrates the intrinsic texture over some area.

Optical eects such as out-of-focus regions give rise to blurring that is yet another form of nonlocality. Nonlocality could be ignored only if the gray level dierence between consecutive pixels would be arbitrarily small, a property that is exactly the opposite of what is needed for high accuracy (i.e., high gray level dierence between consecutive pixels ensures a small uncertainty).

Nonlinearity comes from the response of the camera sensor, saturation eects, vignetting, non-ideally isotropic diuse light scattering from the surface, or shadowing, not to mention hidden parts or obscuration.

A common ground for image registration would require T is to be invertible. Unfortunately, this is not the case. For instance, two points being mapped onto the very same pixel cannot be distinguished. However long wavelength features can be inverted, and hence those characteristics that can be shared (and hence compared) among images have to be precisely delineated.

Pixel

Pixels correspond to areas on the detector over which the light intensity is integrated. Hence, below the pixel scale the detailed information is lost. The map x i (ξ s ) may be used to transport the pixel size into the parametric space.

The size of this pixel (or sizes as it is generically anisometric) and main axes orientation are to be known. In mathematical terms, the pixel can be seen as the ultimate dierential element dx i that is mapped in the parametric space onto dξ s by the Jacobian

[J i ] = dξ s dx i (10)
that conveys the information about the pixel size onto the parametric space (Figure 6). The norms that were used in Equations ( 2), ( 4), ( 7) and ( 8) implied an integration over the ξ space. Because the texture is only known from the camera observation, there is no meaning to dene a discretization in ξ space that would be ner than the mapping of the pixel size. The subtle point here is that dierent cameras will map their pixels onto a dierent dξ s . In the comparison between gray levels, a common spatial resolution, hence the coarser, is to be used.

In the example treated below, the above considerations become quite simple as the pixel resolution of all cameras observing a given surface will be quite comparable for symmetry reasons. However, the Jacobians will have two rather dierent eigenvalues, and hence the optimal point sampling in the parametric space will be anisotropic. Let us however stress that this is not a universal statement, and the above considerations lead naturally to an optimal intrinsic texture ltering and point sampling in ξ s space.

Gray levels

Unfortunately, the discreteness of images is not the only aspect that makes the registration dicult. Another phenomenon comes from the fact that very often lighting is an issue, and one camera may receive a gray intensity that greatly diers from another camera image even if the pixel (and its surrounding) has correctly been described. Specular reection of discrete light sources is only one aspect of the problem that may be partly accounted for or limited by using several light sources, optical diusers, and matte surface nish.

A way to introduce a brightness modulation α(ξ s ) in the norm ∥ • • • ∥, is to dene for any eld φ(ξ s )

∥φ∥ 2 = min α(ξ s ) ∫ ∫ [φ(ξ s ) -α(ξ s )] 2 dξ s ( 11 
)
where α is restricted to a low dimensional space of smooth function (e.g., polynomials of low order [START_REF] Hild | Digital Image Correlation[END_REF]). This norm gives less weight to very long range wavelengths where α can compensate φ variations. In contrast, the high frequency content of φ, which generally controls the quality of image registration, is preserved. If a polynomial basis is chosen, then the minimization with respect to α(ξ s ) is nothing but a least squares regression of φ, whose classical residual L2-norm provides ∥φ∥ 2 , in other terms, φ(ξ s ) -α(ξ s ) can be seen as a high-pass ltering of the texture.

Let us mention that contrast modulation may be treated the same way as a multiplicative eld correcting the intrinsic texture, (1 + β(ξ s ))φ(ξ s ),

where the β function is again a smooth function akin to α. It is to be stressed that the above proposed measure of discrepancy is rather a seminorm than a norm, in the sense that some degrees of freedom, considered to be nonintrinsic to the surfaces are discarded from the comparison.

Reference to intrinsic texture

The above considerations also aect the way the second formulation of stereocorrelation is to be formulated. Rather than registering two images shot by two cameras, a procedure based on the registration between an image and the reference one in the parametric space was proposed. The reference image was initially introduced as the average of all available images of the same surface corrected from the projection as if the transformation T is were the identity. The present section is devoted to a discussion of what is intrinsic (and hence can be compared from one camera to another one) and what is camera-dependent (and should be discarded). Filtering at the common pixel size, and gray level transformations are to be accounted for before averaging.

However, one should beware of the fact that the exclusion of some features in the texture such as the mean gray level from the comparison, (or in mathematical terms the recourse to a semi-norm rather than a norm), may lead to an ill-posedness in the norm minimization if all unknowns are to be determined simultaneously. For instance, the mean gray level of the intrinsic texture is undened. This diculty is only apparent as the undetermined degrees of freedom, being extrinsic, have no inuence on the registration.

Various strategies can easily circumvent the problem, either by setting a convention to determine those oating unknowns, (e.g., the mean gray level of the intrinsic texture is set to 0) or by using a staggered procedure where dierent parts of the problem are treated sequentially. Along this second pathway, one may treat the α-eld as xed in a rst stage to perform the registration, and once registered, the α-eld is updated in a second stage.

Repeating those two steps does not lead to degeneracy, albeit the mean intrinsic texture gray level ends up at an arbitrary value. This procedure is the one followed in the sequel.

Proof of concept

In order to demonstrate the feasibility of such a global stereocorrelation approach, an experiment is performed on a simple geometry using 4 DSLR cameras as sketched in Figure 1. The second formulation is followed to perform the calibration of the full multi-view setup. Note however that in the present case, there is no major dierence between the two formulations at convergence as the minimized functionals are proportional to each other when only 2 cameras can see each surface, under the same incidence and magnication

f i -f 2 = f i - f i + f j 2 2 = ∥f i -f j ∥ 2 4 (12) 20 
This form allows brightness corrections to be accounted for very easily. The only dierence that may be expected is prior to complete convergence, where each image is compared to a compromise between both versions of the intrinsic texture, and hence the basin of convergence is expected to be broader, leading to a more robust and faster convergence scheme. This point has however not been validated. an approach with only two cameras in Ref. [START_REF] Beaubier | CAD-based calibration of a 3D-DIC system: Principle and application on test and industrial parts[END_REF].

The formulation ( 8) is followed to measure 3D displacement elds of the whole external surfaces of the sample. Figure 10 shows the displacement along the vertical axis. A small rotation can be noted in addition to the eld associated with pure tension.

To validate these results, the residual maps τ are shown for the four cameras in Figure 11. The residuals are very low for all four cameras. The registration is deemed successful. The levels of the residuals are higher on the vertical edges of the surfaces, which is due to the dierence between the real shape (slightly curved along the edges) and the geometric model used able to have the same formulation for both experimental and numerical tools in order to make the comparison straightforward (i.e., avoiding interpolation, reprojection, or any unnecessary manipulation of the data). This is possible by resorting to an isogeometric code [START_REF] De Falco | GeoPDEs: A research tool for isogeometric analysis of PDEs[END_REF].

Figure 12 illustrates the principle of IGMU. The measured (Dirichlet) boundary conditions are prescribed to the IGA model. As in a FEMU procedure, displacement and load sensitivities with respect to the sought parameters are computed as nite dierences to minimize the chi-squared residuals via, say, a Newton-Raphson scheme [START_REF]Full-Field Measurements and Identication in Solid Mechanics[END_REF]. The material parameters minimizing the cost function are kept, and they can even be used to run a sensitivity analysis to acquisition noise [START_REF] Gras | Identication of a set of macroscopic elastic parameters in a 3D woven composite: Uncertainty analysis and regularization[END_REF].

In the present study, displacement elds U are parameterized by the po-Figure 12: Principle of mechanical identication using IGMU sition of the control points {P } here gathered as a vector for all surfaces and control points k. For simplicity, these parameters will be called displacements, although it is clear that the actual displacement U is computed from the control points positions using the NURBS formalism. The measured displacements {P m } are to be compared to the computed ones {P c } by minimizing the following chi-squared error

χ 2 p ({p}) = ({P m } -{P c }) † [C]({P m } -{P c }) ( 13 
)
where {p} is the vector gathering all unknown material parameters used for the computation of {P c }. The chi-squared error is based on the [C] matrix resulting from the assembly of all elementary matrices according to the chosen formulation as described in Appendix B, Equation [START_REF]Simulation-based engineering sciences[END_REF], as it can be shown that it is proportional to the inverse covariance matrix of the parameters {P } for a white noise on the images [START_REF] Hild | Comparison of local and global approaches to digital image correlation[END_REF].

Finding the best set of parameters {p} consists of seeking the minimum of χ 2 p . The computed displacement eld at the q-th iteration is written as

P c k ({p (q) }, t) = P c k ({p (q-1) , t}) + ∂P c k ∂{p} ({p (q-1) , t}){δp} (14) 
The sensitivity elds [S] = ∂{P c } ∂{p} are numerically computed by resorting to an IGA code [START_REF] De Falco | GeoPDEs: A research tool for isogeometric analysis of PDEs[END_REF] and forward nite dierences. A new set of sensitivity elds is computed at each iteration of the algorithm. Using these elds, the corrections of the sought parameters read

{δp} = ([S (q-1) ] † [C][S (q-1) ]) -1 [S (q-1) ] † [C]({P m } -{P c(q-1) }) (15) 
where [S (q-1) ] gathers all sensitivity elds, [C] gathers correlation matrices (used in the stereocorrelation measurement) for all time steps.

In practice, as only surface measurements are available via stereocorrelation, assumptions have to be make in order to prescribe Dirichlet boundary conditions to the computation. Depending on how much information is available (i.e., how many surfaces are analyzed) the method to create the surface of prescribed displacement used as a boundary condition is dierent. If two opposed surfaces are to be used, a simple linear interpolation between these two surfaces can be considered. If more surfaces are to be observed, the interpolation between the measured curves is performed using Coons interpolation and the surface of Dirichlet conditions is created using a Coons patch [START_REF] Coons | Surface patches and B-spline curves[END_REF], see Figure 13.

Figure 13: Illustration of the creation of a surface of prescribed displacements using four NURBS curves to dene its boundaries thanks to a Coons patch

Virtual experiment

In order to validate the method, a virtual experiment has been created, consisting of a simulated tensile test on a virtual beam sample (see Figure 14(a)).

To measure the displacement elds, pictures taken by two virtual stereo-jigs observing two opposed surfaces of the sample are determined using previously determined camera parameters (see Figure 14(b)). To generate synthetically deformed images, a reference one is created in the parametric space of each surface (Figure 3). In the present case, it corresponds to a true random texture of a biaxial experiment on a cross-shaped sample [START_REF] Roux | Digital image mechanical identication (dimi)[END_REF]. With the blending functions (see Appendix B), it is mapped onto the 3D shape, and projected onto the image plane with the projections matrices. From the computed projections, the gray levels are interpolated for each considered pixel location. The same approach is followed to compute the set of pictures for the deformed congurations. This method is easy to implement but induces more interpolation errors than other techniques such as ray-tracing [START_REF] Garcia | A generic synthetic image generator package for the evaluation of 3d digital image correlation and other computer vision-based measurement techniques[END_REF] (a) (b) The 3D displacement elds are measured on two opposite surfaces of the sample using the CAD-based stereocorrelation technique described earlier.

Boundary conditions are extracted on the top and the bottom parts of each surface and then interpolated to create two surfaces that have prescribed displacements in an IGA code. The virtual experiment is then processed using the identication procedure described above. The two material parameters to be determined are the Young's modulus and Poisson's ratio. Figure 15 shows the change of these two quantities with the iteration number. Convergence is reached after a few iterations and the results are close to the prescribed values (i.e., ≈ 3 % of the reference value). The tensile test is processed using the earlier described method. Two sets of initial parameters are chosen, which are given in Table 1, and then the identication procedure is run using the results obtained from the multiview stereocorrelation as measured displacement elds. Figure 18 shows the results in terms of Poisson's ratio and Young's modulus changes. It is observed that the levels at convergence are very close for the two dierent sets of parameters, although they are not those expected. The converged Young's modulus is higher than the expected value. The articial rigidity introduced in the numerical model (by using too many Dirichlet boundaries in the IGA) can explain part of this eect. Further, the error in the evaluation of the reaction forces may also be caused by a biased estimation of the actual loading direction, which may induce rigid body rotations that can be observed in Figure 10. for two sets of initial parameters given in Table 1 is of the order of 1000 µϵ and the absolute transverse strain of the order of 300 µϵ, which is lower than the corresponding strain resolution. The determination of the Poisson's ratio is very dicult, and the IGMU framework does not provides a good determination of this parameter.

Figure 18 shows the change of the root mean square dierence between the measured and computed displacements. The level at convergence is very small (i.e., 26.5 µm) thereby indicating that it is likely to be very close to the standard displacement resolution. This result conrms that the transverse strains are very dicult to capture with the present approach. To improve the determination of the Poisson's ratio, another framework has to be considered by using even less degrees of freedom in the measurement stage to signicantly lower the measurement uncertainties. Such a procedure will directly rely on the images to avoid intermediate steps. 6 Integrated approach (I-IGMU)

A fully integrated approach is now developed. The kinematic basis then becomes the sensitivity elds to the sought material parameters [START_REF] Leclerc | Integrated digital image correlation for the identication of mechanical properties[END_REF][START_REF] Réthoré | A fully integrated noise robust strategy for the identication of constitutive laws from digital images[END_REF][START_REF] Mathieu | Estimation of elastoplastic parameters via weighted FEMU and integrated-DIC[END_REF].

The corresponding generalized degrees of freedom are the material parameters themselves, which are not as numerous as the degrees of freedom of the NURBS model of the four surfaces. Figure 19 shows the principle of integrated CAD-based stereocorrelation. The main dierence with IGMU procedures is that the kinematic basis of the stereocorrelation procedure is now the set of sensitivity elds, parameterized by {δp} , and no longer any arbitrary eld parameterized by the control points {δP }.

The registration problem of stereocorrelation consists of solving a series of linear systems ) ], which contains the projection of the correlation matrix onto the sensitivity elds, and {d ′ (i) } = [S (i) ] † {d (i) } the projection 

[C ′ (i) ]{δp} = {d ′ (i) } (16) with [C ′ (i) ] = [S (i) ] † [C][S (i

Virtual experiment

The virtual experiment presented in Section 5.1 is analyzed again using the integrated approach and Figure 20 shows the change of the Poisson's ratio during the iterations of the integrated code. It can be noted that the use of integrated stereocorrelation signicantly improves the quality of the identication as the nal value is very close to the prescribed Poisson's ratio (i.e., 0.1% of error at convergence). case is extremely dicult even for an integrated approach. This result also explains that minute uncertainties may hinder the identication procedure as exemplied in the IGMU analysis. In blue, the range lies between 0 and 0.45 with increments of 0.05. In red, the range is 0.23-0.35 and the increment is 0.01. The minimum is reached for ν = 0.29

In the present case, the value of the Young's modulus is identical to the previous one since the Dirichlet boundary conditions are the same in both approaches. It is worth noting that these boundary conditions can become additional unknowns in an integrated approach. This route was not followed herein.

Summary and Outlook

In this paper, a fully integrated framework combining stereovision, NURBSbased surface descriptions, isogeometric analyses to reconstruct dense 3D shapes, measure dense 3D displacement elds and identify material parameters has been presented. This unique combination is made possible thanks to various global stereo-DIC procedures in which the output is either expressed in terms of projection matrices during the calibration step, control points of a NURBS model for 3D shape and displacement measurements, or directly material parameters. This procedure constitutes a novel homogeneous framework bridging the gaps between CAD design and its validation or correction, mechanical tests and their modeling through isogeometric analyses.

Moreover, such a new framework is exible enough to incorporate an arbitrary number of cameras, which is very benecial to the analysis of real structures, as it allows for a complete observation of the specimen or structure. A new formulation has been introduced in which each camera is treated independently and a unique pattern expressed in the parametric space of the CAD model of each surface is transported from the registration of all available pictures. Having access to this additional piece of information makes the present procedure potentially more robust since it is much less prone to acquisition noise.

Let us also note that the CAD-model of the analyzed surfaces being the reference, all the reported results are shown in its unique frame. Consequently, no additional post-processing is needed to stich all stereocorrelation analyses (e.g., by resorting to procedures such as iterative closest point algorithms [START_REF] Besl | A method for registration of 3-D shapes[END_REF][START_REF] Chen | Object modelling by registration of multiple range images[END_REF][START_REF] Zhang | Iterative point matching for registration of free-form curves and surfaces[END_REF][START_REF] Harvent | Multiview dense 3D modelling of untextured objects from a moving projectorcameras system[END_REF]). The latter ones are performed globally and the calibration step allowed all the camera frames to be related to that of the object of interest.

The proof of concept developed herein consists of the analysis of a tensile test on a rectangular bar both for a virtual experiment and for an actual tensile test. In both cases, identication procedures are developed either as a subsequent step after the measurement step by updating isogeometric analyses or in an integrated way by combining the measurement and identication steps. Both approaches are rst validated by resorting to a virtual experiment. For the Young's modulus, higher than expected values are found. At least two reasons may explain such dierences. First, the way the reaction forces are evaluated is delicate with the IGA code used herein. Second, the actual load direction is not necessarily aligned along the longitudinal direction of the sample. For the Poisson's ratio, the IGMU approach does not yield satisfactory levels because the transverse strain levels are very small.

Conversely, the integrated approach by signicantly reducing the number of degrees of freedom of the correlation procedure allows the Poisson's ratio to be identied in a very satisfactory way.

The results obtained herein need to be conrmed by the analysis of other experiments and more complex constitutive models. In particular, the measurement and identication resolutions need to be assessed to know whether the sought parameters are identiable. The careful analysis of the sensitivity elds is needed as proposed in 2D-DIC frameworks [START_REF] Gras | Identication of a set of macroscopic elastic parameters in a 3D woven composite: Uncertainty analysis and regularization[END_REF][START_REF] Mathieu | Estimation of elastoplastic parameters via weighted FEMU and integrated-DIC[END_REF].

As a closure, let us note that from the design of an experiment to the validation of a new structure or assembly, all of the tools can be integrated into a unique toolbox for the modern experimentalist who more often than ever also utilizes CAD and FE softwares. This avoids creating Babel towers as seamless procedures can be developed without having to resort to cumbersome reprojections between experimentally extracted data and numerically computed elds. The framework developed herein aims to unify the worlds of experiments and simulations so that the emergence of simulation-based minimum of the standard L2-norm of the modied residual, θij θij (ξ s ) = f i (x i (ξ s )) -f j (x j (ξ s )) + α ij (ξ s ) [START_REF] Kavanagh | Extension of classical experimental techniques for characterizing composite-material behavior[END_REF] or τ i τ i (ξ s ) = f i (x i (ξ s )) -f (ξ s ) + α i (ξ s )

Last, this norm is obtained numerically by an integration over ξ s , which has to be reduced to a discrete sum of the squared residual over sampling points ξ s n , whose distance is ideally equal to the local eective common pixel size.

In addition to the α minimization, the use of this norm was to optimize the mapping x i (ξ s ) with respect to variations of either projection matrices or control point positions. In all cases, the variation of these parameters, here called a k and gathered in the column vector {a} (be they matrix elements {M } or component of control point displacement {P }), induces a change of the mapping that can be seen as a velocity or sensitivity eld in ξ s plane S i k (ξ s ) = ∂x i (ξ s ) ∂a k [START_REF] Leclerc | Integrated digital image correlation for the identication of mechanical properties[END_REF] whose expression was detailed earlier (see Equations ( 3) and ( 6)).

The minimization of the above norm evaluated over surfaces S s and cam- The second formulation is considered rst as the notations are more compact. Let us introduce Γ such that

Γ i k (ξ s ) = ∇f i (ξ s ) • S i k (ξ s ) (28) 
Sampling Γ i k over the evaluation points ξ s n is recast in a matrix format

[G si ] nk = Γ i k (ξ s n ) (29) 
and similarly for the residuals

{τ si } n = τ i (ξ s n ) (30) 
that allows to express the (s, i) linear system as

[C si ] = [G si ] † [G si ] (31) 
(the matrix multiplication consists of summing over evaluation points) and

{d si } = [G si ] † {τ si } (32)
The notation [G] † refers to the transposed of matrix [G].

For the rst formulation using camera pairs, the spirit is the same but the writing appears less transparent. Using the previously introduced notation as block matrices

[G sij ] nk = [ [G si ] -[G sj ] ] (33) 
and the sampled residual

{θ sij } n = θij (ξ s n ) (34) 
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 2 Figure 2: Determination of the projection matrices via global stereocorrelation for a given pair of cameras C i -C j and surface S s dened via its parametric space
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 3 Figure 3: Determination of the projection matrices via global stereocorrelation for a given cameras C i and surface S s . Here an intrinsic texture is used as the average of the surface texture transported onto the specimen frame X and eventually in the parametric space ξ s
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 4 Figure 4: Measurement of the initial 3D shape via global stereocorrelation for a given camera C i and surface S s for which the intrinsic texture is updated in the parametric space ξ s
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 5 Figure 5: Measurement of 3D displacement elds via global stereocorrelation
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 6 Figure 6: Mapping of a few lines and columns in camera i detector array x i = (x i , y i ) shown in the intrinsic coordinate space ξ s = (u, v). One pixel
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 77 Figures 1 and 7(b)) is composed of four Canon EOS 60D cameras with 50-
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 8899 Figure 8(a) shows the correlation residuals on the sample geometry prior
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 1011 Figure 10: Longitudinal component of the displacement eld (expressed in
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 14 Figure 14: (a) Virtual beam model used in the experiment in its deformed
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 1615 Figure16shows the root mean square displacement error, i.e. dierence between the known U c and measured U m displacement eld at control points,
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 1652 Figure 16: Change of the displacement error ∥{P m } -{P c }∥ 2 during the iterations
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 17 Figure 17: (a) Change of the Poisson's ratio during the iterations (nal values: ν = 0.182 (red), ν = 0.176 (blue)). (b) Change of the Young's modulus
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 18 Figure 18: Change of the displacement error ∥{P m } -{P c }∥ 2 2 during the
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 19 Figure 19: Identication using integrated CAD-based stereocorrelation
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 20 Figure 20: Change of Poisson's ratio during the iterations (in blue) compared

Figure 21 :

 21 Figure 21: Change of the gray level error with respect to the Poisson's ratio.

  era pairs Ci and C j (rst formulation) consists of assembling dierent linear systems to obtain the corrections {δa} to their current estimate[C sij ]{δa} = {d sij } (26)whereas for the second formulation the sum runs over surfaces S s and cameras C i[C si ]{δa} = {d si } (27)47The expressions of matrices[C] and second member {d} are now detailed for both formulations.

  

Table 1 :

 1 Initial parameters used in the IGMU procedure which is of the order of 150 µϵ. Consequently, the transverse strain resolution is of the order of 600 µϵ. The maximum longitudinal strain

		Young's modulus (GPa)	Poisson's ratio
	Set 1	90	0.05
	Set 2	60	0.35
	The dierence between the estimated Poisson's ratio and the expected
	level is close to 40 %. A rough estimate of the strain uncertainties indicates
	that the measurements in the X -Y directions are (at least) 4 times that in
	the Z-direction,		
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A NURBS patch is dened by its order, a network of control points with associated weights, and its knot vector. The surface X(u, v) = (X, Y, Z) is expressed in the parametric space (u, v) as [START_REF] Gras | Identication of a set of macroscopic elastic parameters in a 3D woven composite: Uncertainty analysis and regularization[END_REF] where the blending functions are expressed as

and

where N i,p are mixing functions, P ij the coordinates of control points of the surface, ω ij corresponding weights, (m + 1) × (n + 1) the number of control points and (p, q) the degrees of the surface.

Appendix B: Norm minimization

In Section 2, the projection matrices [M ], 3D shape or 3D displacements dened through the motion of control points P k were optimized from the minimization of the norm of image dierences. It is worth emphasizing that these problems are strongly nonlinear as the variables to be optimized aect the argument of elds describing the texture of the observed sample, texture that is usually a very irregular pattern. However, because the parameterization is well suited to the problem, a Newton-Raphson scheme is used, and this section aims to provide explicit expressions of the iterative linearized problem to solve at each iteration of the this minimization procedure.

In all three recourses to registration, for geometry assessment, for shape correction and for motion estimation, from equations such as such as Eq. ( 2), the quantity to be minimized for each surface and camera pair, i and j, is the norm of a residual written as

When a reference to an intrinsic image texture is used, such as mentioned for Equations ( 4), ( 7) and ( 8), the residual for each camera is the norm of the residual

The previous subsections detailed how this norm is to be interpreted, that is (i) with a suited common spatial resolution, and (ii) tolerance to gray level variations corresponding to treating as additional degrees of freedom smooth elds, α(ξ s ), so that nally, the norm of the above residual reduces to the give the nal expression of matrix

and second member

In the above expression, the gray level corrections are not accounted for.

They can be treated separately, rst correcting for the motion, and then for the gray levels (and in this case, the determination of α is nothing but a least squares t over polynomials). However because of the coupling between gray level corrections and displacements, it may be advantageous in terms of convergence rate to include α in the set of unknowns, using an augmented linear system [START_REF] Hild | Digital Image Correlation[END_REF]. There is no diculty in writing this linear system, but the symbolic notations become prohibitively lengthy, and details are not provided here. This type of correction has been implemented herein.