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Abstract

It is proposed to develop a multiview framework to perform stere-

ocorrelation by resorting to CAD-based descriptions of the observed

3D surfaces. Once the 3D surfaces have been reconstructed, the corre-

sponding 3D displacement �elds are measured within the same space.

These �elds are subsequently utilized to update isogeometric analyses

to calibrate the elastic properties in a tensile experiment. An alter-

native route consists of preforming such analyses within an integrated

framework.
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1 Introduction

Digital Image Correlation (DIC) has reached a state of development that

makes it possible to create new bridges between experiments and simula-

tions [33]. To mention but one example, �nite-element based DIC proce-

dures were proposed ten years ago [5, 32, 4] and have been used in various

applications since then [22]. Similarly, new tools are currently implemented

to integrate Computer-Aided Design (CAD) and Finite Element Analyses

(FEA) [9]. Recently, stereocorrelation approaches have been developed us-

ing CAD descriptions of the observed surface [2]; FE-based surfaces can also

be analyzed [13]. `Linking CAD tools, FE simulations and DIC procedures is

(thus) becoming possible' [34].

One area of research that needs strong links between experiments and

simulations is the identi�cation and validation of numerical material mod-

els. For instance, �nite element model updating (FEMU) was introduced

very early on to determine elastic parameters [24, 23, 7]. Since the early

developments of FEMU, other methods have been proposed, some of them

explicitly requiring full-�eld measurements [1, 18]. In all these approaches,

the measurement and identi�cation steps are performed independently and

sequentially. An alternative route consists of performing these two steps

in an integrated way by either using closed-form solutions (e.g., Brazilian

test [20], cracks in elastic media [29]) or numerically generated sensitivity
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�elds [25, 31, 26].

In the following, it is proposed to extend all these concepts to isogeometric

analyses. The reasons for using the latter ones are two-fold. First, CAD mod-

elers are commonly used in mechanical design and therefore a vast majority

of fabricated structures is known virtually via its nominal shape. This is a

very precious piece of information that is seldom used in DIC procedures [2].

Second, with the development of isogeometric analysis (IGA) frameworks,

the other end of the virtual world, namely, mechanical sizing via �nite ele-

ment analyses can be integrated into conventional NURBS-based CAD design

tools [28]. In the experiment / CAD / IGA triptych, the missing link is on

the experimental side. The aim of the present paper is to show that it is pos-

sible to reconstruct 3D shapes, measure 3D displacement �elds and calibrate

mechanical properties by resorting to isogeometric stereocorrelation.

In order to observe the whole external surfaces of a structure, a multiview

framework is �rst introduced within a global stereocorrelation setting. The

di�erent steps associated with stereocorrelation are discussed in Section 2,

namely, calibration, measurement of 3D shapes and 3D displacements. This

is all the more true as a model shape is used while the texture (gray lev-

els) is only known from the images. Section 3 is devoted to a discussion of

the proposed metric. A proof of concept is then proposed in Section 4 to

validate all the various implementations. It consists of performing a tensile

test on a squared bar monitored with 4 digital single-lens re�ex cameras.

From these �rst analyses, the complete 3D shape is reconstructed and the

3D displacement �elds during the mechanical test are measured. With these

data, Section 5 shows that an IsoGeometric Model Updating (IGMU) pro-
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cedure can be designed to extract elastic constants. Last, a fully integrated

isogeometric stereocorrelation approach is also implemented and presented

in Section 6.

2 Multiview system

The description of a specimen that is used in this study is a CAD model.

The external surface of the solid consists of a collection of ns elementary

surfaces. Each of the latter ones Ss, which is labeled by s = 1, ..., ns, is de-

scribed in the Non-Uniform Rational B-Spline (NURBS) framework (recalled

in Appendix A) where the three-dimensional shape X = (X,Y, Z) is written

as X(ξs), where ξs = (us, vs) de�ne the parametric space, conventionally

spanning the elementary square [0, 1]2. Let us emphasize that what is as-

sumed to be known from the CAD model is the virtual (or nominal) shape of

the object. In practice, these surfaces will be decorated by a speci�c texture

(i.e., classically a random speckle pattern is painted on the surface) that is

not known from the CAD model.

A number nc of cameras is used to observe the specimen as schematically

shown in Figure 1. Each camera Ci captures an image f i(xi) where xi is a

point in the (two-dimensional) i-th image plane.

Stereovision consists of registering the di�erent images taking into ac-

count a projection model in order to measure the specimen shape. The

projection model itself has �rst to be identi�ed and its parameters evaluated

from a �calibration step� detailed below. The same strategy can be further

used to track the change of 3D shape when the specimen is used in a me-
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Figure 1: Schematic drawing of a stereovision setup with a multisurface ob-

ject (parallelepiped) in the center observed by a four-camera system. This el-

ementary example will be used in Section 4 to illustrate the proposed method-

ology.

chanical test. This amounts to measuring the 3D displacement of the object

surface. In the present case, stereocorrelation, which combines stereovision

and image correlation, is used as the matching algorithm to measure 3D

shapes and 3D displacement �elds.

2.1 Calibration of a multiview system

The calibration of the multicamera system is achieved by using a global ap-

proach to stereocorrelation [2]. In the present case, the object of interest

will serve as calibration target since its nominal shape is known. Two for-

mulations of the problem will be introduced below. The �rst one is based

on camera pairs observing a common surface Ss. The second one will be

used for the registration of each camera image onto a reference one, which is

de�ned in the parametric space and which will be progressively re�ned. In
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the present paper, only the second approach will be followed, the �rst one

having already been reported and validated for two cameras [2, 12, 11].

First, the projection matrices [14, 35] for each camera Ci (i.e., [M i], which

is a 3× 4 matrix) are calibrated by resorting to integrated DIC [20, 29]. The

homogeneous coordinates of any 3D point {X} = (X, Y, Z, 1)t are related

to the corresponding homogeneous coordinates in each camera plane {xi} =

(σixi, σiyi, σi)t by the projection matrix [15]

{xi} = [M i]{X} (1)

where σi is a scale factor. Reverting to the description of each surface Ss

based on the intrinsic coordinate system ξs, the points on the actual sur-

face are further written X(ξs). These di�erent elements, namely, projection

matrix, scale factor and surface parameterization, allow the position in the

image plane i to be expressed for any point parameterized by ξs, and is

written xi([M i],X(ξs)). The calibration consists of minimizing the sum of

squared di�erences (Figure 2)

η2([M k=1,nc ]) =
ns∑
s=1

nc−1∑
i=1

∑
j>i

∥∥f i(xi([M i],X(ξs)))− f j(xj([M j],X(ξs)))
∥∥2

(2)

with respect to the each unknown matrix [M k], where f i,j are the image

pairs in the reference con�guration. The previous minimization is achieved

by resorting to Newton-Raphson's method in which linearizations and correc-

tions are performed [22]. The precise expression of the linearized equations

to be solved will depend on the details of the expression of the norm ∥ · · · ∥

used in the weighting of residuals. The latter will be discussed in Section 3.
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To initialize the code, the user has to chose at least 6 remarkable points in

each considered picture.

In the present setting, modifying the projection matrix [M i] by small

increments δ[M i] induces a motion of the corresponding point from xi to

xi + δxi. The quantity δxi is not a physical displacement, but rather the

sensitivity with respect to the parameters of the geometrical projection to be

determined here, {δm} namely 11 per camera out of the 12 matrix compo-

nents

{δxi} =
∂xi

∂[M i]
([M i],X)δ[M i] ≡ [SM ]{δm} (3)

where [SM ] gathers the set of 11 × nc sensitivity �elds. The remaining

unknowns (one per camera) have to be determined from the knowledge of

absolute dimensions in the observed structure [2].

It is worth noting that the sum appearing in Equation (2) is implicitly

restricted to cameras Ci and Cj that both can see the surface Ss. In practice,

considering all pairs of cameras may be demanding, although it would be

required in order to reach the best possible determination of the projection

matrices [M i]. A decimation is possible to reduce this number down to

nc − 1 camera pairs at most. A di�erent formulation proposed below will

be preferred but it requires �rst an approximate registration to initialize the

formulation. Hence, even if the choice of camera pairs is not optimal, it could

be �rst used to obtain a �rst determination of the projection matrices [M i].

The second proposed formulation, illustrated in Figure 3 circumvents the

problem of having to accumulate all possible camera pairs. The main idea

is to perform an individual determination of the camera projection matrix
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Figure 2: Determination of the projection matrices via global stereocorrela-

tion for a given pair of cameras Ci-Cj and surface Ss de�ned via its parametric

space

[M i] considering all cameras Ci, one after the other, from the registration

of the images f i(xi) onto a reference f̂(ξs), which will be referred to as

intrinsic texture in the sequel. As brie�y discussed in the introduction, it is

assumed that the model shape is perfectly knownX(ξ) although the intrinsic

texture is unknown. Were it be known, then the minimization of the following

functional

ϱ2([M k=1,nc ]) =
ns∑
s=1

nc∑
i=1

∥∥∥f i(xi([M i],X(ξs)))− f̂(ξs)
∥∥∥2

(4)

with respect to all [M k] matrices would deliver an ideal calibration step.

However, if an (even approximate) determination of the projection matrices

[M i] is known, each image point xi can be mapped onto a X(ξs) point on
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surface Ss, and hence, averaging over all images observing the same physical

surface (possibly after correction) provides such a reference object with its

intrinsic texture

f̂(ξs) =
⟨
f i(xi([M i],X(ξs)))

⟩
i

(5)

where ⟨· · · ⟩ denote averages. In Section 3, possible corrections of f i

(e.g., modi�cation of gray levels, spatial �ltering) will be discussed in more

details. This writing assumes that a gray level is an absolute characteristics

of a surface element that is equally well captured by all cameras. This is an

over-simpli�cation that will be further discussed and re�ned in Section 3.

Figure 3: Determination of the projection matrices via global stereocorrela-

tion for a given cameras Ci and surface Ss. Here an intrinsic texture is used

as the average of the surface texture transported onto the specimen frame

X and eventually in the parametric space ξs

The algorithm used in this second formulation is quite close to the pre-

vious one with alternate steps. First, the projection matrices [M i] are cor-

rected, and then, the intrinsic texture is refreshed with the new determina-

tion. These two steps are repeated until convergence.
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2.2 Shape correction

The �rst guess of the 3D shape (i.e., its nominal freeform) is projected onto

the 2D space using the previously measured calibration matrices [M i] thereby

transporting the parametric space coordinate system ξs, xi([M i],X(ξs)).

The pictures can be interpolated to create sub-pictures in the parametric

space. A global approach to stereocorrelation [2] is performed by moving

the control points Pk of the NURBS patches. These motions induce pseudo-

displacements visible for all cameras observing this surface, since the po-

sition in the specimen frame, X at �xed position in the parametric space

ξ, depends on the control points as detailed in Appendix A. To highlight

this dependence, the control points are explicitly listed as arguments of the

projection xi([M i],X(Pk, ξ
s)). Let us however note that in this part the

projection matrix [M i] is known, and to simplify the notations, the latter

dependence is omitted to write xi(X(Pk, ξ
s)). The apparent displacement

in the i-th camera plane reads

δxi(ξs) =
∂xi

∂X

∂X(Pk, ξ
s)

∂Pk

δPk (6)

This equation de�nes new sensitivity �elds in the same spirit as those in-

troduced above. This leads to an estimate of the increment of control point

positions δPk that are added to the previous coordinates (Figure 4).

Paralleling the previous subsection, two formulations can be chosen. The

�rst one exploits all possible image pairs for each surface. The second one

makes use of a reference that is the average of the textures transported into

the intrinsic parametric space. Because the latter formulation involves a

more limited number of comparisons (i.e., nc rather than nc(nc − 1)/2), it
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Figure 4: Measurement of the initial 3D shape via global stereocorrelation for

a given camera Ci and surface Ss for which the intrinsic texture is updated

in the parametric space ξs

is the only one considered in the present study (although both have been

implemented and tested).

The global stereocorrelation shape correction procedure consists of mini-

mizing the sum of squared di�erences

ϱ2(δPk) =
ns∑
s=1

nc∑
i=1

∥∥∥f i(xi(X(Pk, ξ
s)))− f̂(ξs))

∥∥∥2

(7)

with respect to each increment of control points gathered in {δPk}. The

minimization is again achieved by resorting to Newton-Raphson's method

alternating each iteration with an update of the intrinsic texture f̂ .

2.3 3D displacement �eld measurements

In this section, the formulation of the 3D displacement �eld measurement

via stereocorrelation is introduced. For the sake of simplicity, it is assumed

hereafter that displacement �elds are described in the same setting as the

surface itself (i.e., the surface deformation is obtained by moving the control

points). It is worth noting that other hypotheses can be made (e.g., �nite
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element descriptions [13]). A global approach to stereocorrelation consists of

minimizing the functional η

η2(dPk(t)) =
ns∑
s=1

nc∑
i=1

∥∥gi(xi(Pk + dPk(t), ξ
s))− f i(xi(Pk, ξ

s))
∥∥2

(8)

with respect to each coordinate motion dPk(t) of the control points Pk for the

t-th picture pair. In the present case, f i denotes the picture in the reference

con�guration for camera Ci, and gi the picture from the same camera in

the deformed con�guration (Figure 5). These control point motions induce

(true) displacements in the pictures (see Equation (6)).

Figure 5: Measurement of 3D displacement �elds via global stereocorrelation

Conversely, the true displacements are described within the language of

CAD shape description of the surface. Although this may appear as restric-
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tive (there is no reason why the changes of shape should comply with the

parameters chosen for designing its initial state), it is not. NURBSs are

a powerful framework allowing for an easy addition or removal of control

points, or local changes of the degree of regularity (e.g., continuous deriva-

tives of chosen order) that can be tailored to �t an observed (i.e., continuous)

displacement �eld at will. This enrichment can easily be pushed to the limit

where preserving a good conditioning of the registration procedure can re-

veal di�cult as for any other representation of the displacement �eld. Hence,

the potential limitation is not a too stringent framework for describing the

motion, but on the contrary the �exibility of the description leading to poor

conditioning if too many degrees of freedom are included. However, in the

present study, enrichment of the discretization is not considered, and it is

assumed that the initial choice is wide enough to provide a fair descrip-

tion of the kinematics. The minimization is again performed by resorting to

Newton-Raphson's scheme whose details will be provided in Section 3.

3 Gray levels and pixels

Up to this point, images were a theoretical abstraction where f i(xi) desig-

nates a scalar signature of the material point, X, whose position in the i-th

image plane is xi. For the sake of simplicity, f i was considered as being

independent of the camera provided the position of the pixel would correctly

be accounted for. The physics of image formation is however somewhat more

complicated. Moreover, optimal performance of stereocorrelation requires

the image texture to be �rough� (i.e., having very sharp gradients at the
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pixel level). This property is in con�ict with what would be needed to ne-

glect discretization (i.e., pixelization) e�ects. Thus, it is essential to express

explicitly what is known or assumed with respect to image formation that

could be camera-dependent. This procedure is the one that will allow for the

formulation of �intrinsic� characteristics of the images that pertains to the

observed material surface and not to the camera system, as well as features

of the transformation that are camera-dependent. This partition is essen-

tial because when comparing images shot by di�erent cameras only intrinsic

features should be considered.

In the previous section, it was shown that each point in parametric space

ξs was mapped onto a point in the specimen frame X(ξs) via the blending

functions (see Appendix A), and further mapped onto the image plane of

camera i, xi(ξs) = xi(X(ξs)) with the projection matrices. These maps

were used to transport the apparent texture f i(xi) onto the intrinsic one,

f̂(ξs). Therefore, it was assumed that f i(xi(ξs)) could simply be related

to f̂(ξs) by a mere equality. This is at best an approximation, but it is

important to go further in order to specify the details of how to design the

norm ∥ · · · ∥ used previously in the ϱ or η functionals.

The actual i-th image is related to the intrinsic texture through a trans-

formation T i such that

f i(xi(ξs)) = T is[f̂(ξs)] (9)

where T is is generically nonlocal and nonlinear. Lens distortions are respon-

sible for nonlocal corrections in the sense that pixel positions are not where

one may naively assume they are. However, the importance of distortions has
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been discussed at length for stereovision [35] and can be measured before-

hand so as to correct pictures as soon as they are captured. Hence distortions

are assumed to be corrected in the sequel. Nonlocality also comes from the

picture element, namely the pixel, that represents an elementary detector

on the camera sensor, which integrates the intrinsic texture over some area.

Optical e�ects such as out-of-focus regions give rise to blurring that is yet an-

other form of nonlocality. Nonlocality could be ignored only if the gray level

di�erence between consecutive pixels would be arbitrarily small, a property

that is exactly the opposite of what is needed for high accuracy (i.e., high

gray level di�erence between consecutive pixels ensures a small uncertainty).

Nonlinearity comes from the response of the camera sensor, saturation e�ects,

vignetting, non-ideally isotropic di�use light scattering from the surface, or

shadowing, not to mention hidden parts or obscuration.

A common ground for image registration would require T is to be invert-

ible. Unfortunately, this is not the case. For instance, two points being

mapped onto the very same pixel cannot be distinguished. However long

wavelength features can be inverted, and hence those characteristics that

can be shared (and hence compared) among images have to be precisely

delineated.

3.1 Pixel

Pixels correspond to areas on the detector over which the light intensity is

integrated. Hence, below the pixel scale the detailed information is lost. The

map xi(ξs) may be used to transport the pixel size into the parametric space.
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The size of this pixel (or sizes as it is generically anisometric) and main axes

orientation are to be known. In mathematical terms, the pixel can be seen as

the ultimate di�erential element dxi that is mapped in the parametric space

onto dξs by the Jacobian

[Ji] =
dξs

dxi
(10)

that conveys the information about the pixel size onto the parametric space

(Figure 6).

Figure 6: Mapping of a few lines and columns in camera i detector array

xi = (xi, yi) shown in the intrinsic coordinate space ξs = (u, v). One pixel

is shown as a gray shaded area. It constitutes a limit in the texture spatial

resolution relative to one camera

The norms that were used in Equations (2), (4), (7) and (8) implied an

integration over the ξ space. Because the texture is only known from the

camera observation, there is no meaning to de�ne a discretization in ξ space

that would be �ner than the mapping of the pixel size. The subtle point

here is that di�erent cameras will map their pixels onto a di�erent dξs. In
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the comparison between gray levels, a common spatial resolution, hence the

coarser, is to be used.

In the example treated below, the above considerations become quite

simple as the pixel resolution of all cameras observing a given surface will be

quite comparable for symmetry reasons. However, the Jacobians will have

two rather di�erent eigenvalues, and hence the optimal point sampling in

the parametric space will be anisotropic. Let us however stress that this is

not a universal statement, and the above considerations lead naturally to an

optimal intrinsic texture �ltering and point sampling in ξs space.

3.2 Gray levels

Unfortunately, the discreteness of images is not the only aspect that makes

the registration di�cult. Another phenomenon comes from the fact that

very often lighting is an issue, and one camera may receive a gray intensity

that greatly di�ers from another camera image even if the pixel (and its

surrounding) has correctly been described. Specular re�ection of discrete

light sources is only one aspect of the problem that may be partly accounted

for or limited by using several light sources, optical di�users, and matte

surface �nish.

A way to introduce a brightness modulation α(ξs) in the norm ∥ · · · ∥, is

to de�ne for any �eld φ(ξs)

∥φ∥2 = min
α(ξs)

∫∫
[φ(ξs)− α(ξs)]2dξs (11)

where α is restricted to a low dimensional space of smooth function

(e.g., polynomials of low order [22]). This norm gives less weight to very
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long range wavelengths where α can compensate φ variations. In contrast,

the high frequency content of φ, which generally controls the quality of image

registration, is preserved. If a polynomial basis is chosen, then the minimiza-

tion with respect to α(ξs) is nothing but a least squares regression of φ, whose

classical residual L2-norm provides ∥φ∥2, in other terms, φ(ξs) − α(ξs) can

be seen as a high-pass �ltering of the texture.

Let us mention that contrast modulation may be treated the same way

as a multiplicative �eld correcting the intrinsic texture, (1 + β(ξs))φ(ξs),

where the β function is again a smooth function akin to α. It is to be

stressed that the above proposed measure of discrepancy is rather a semi-

norm than a norm, in the sense that some degrees of freedom, considered to

be nonintrinsic to the surfaces are discarded from the comparison.

3.3 Reference to intrinsic texture

The above considerations also a�ect the way the second formulation of stere-

ocorrelation is to be formulated. Rather than registering two images shot by

two cameras, a procedure based on the registration between an image and

the reference one in the parametric space was proposed. The reference image

was initially introduced as the average of all available images of the same

surface corrected from the projection as if the transformation T is were the

identity. The present section is devoted to a discussion of what is intrinsic

(and hence can be compared from one camera to another one) and what

is camera-dependent (and should be discarded). Filtering at the common

�pixel� size, and gray level transformations are to be accounted for before
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averaging.

However, one should beware of the fact that the exclusion of some fea-

tures in the texture such as the mean gray level from the comparison, (or in

mathematical terms the recourse to a semi-norm rather than a norm), may

lead to an ill-posedness in the norm minimization if all unknowns are to be

determined simultaneously. For instance, the mean gray level of the intrinsic

texture is unde�ned. This di�culty is only apparent as the undetermined

degrees of freedom, being extrinsic, have no in�uence on the registration.

Various strategies can easily circumvent the problem, either by setting a

convention to determine those �oating unknowns, (e.g., the mean gray level

of the intrinsic texture is set to 0) or by using a staggered procedure where

di�erent parts of the problem are treated sequentially. Along this second

pathway, one may treat the α-�eld as �xed in a �rst stage to perform the

registration, and once registered, the α-�eld is updated in a second stage.

Repeating those two steps does not lead to degeneracy, albeit the mean in-

trinsic texture gray level ends up at an arbitrary value. This procedure is

the one followed in the sequel.

4 Proof of concept

In order to demonstrate the feasibility of such a global stereocorrelation ap-

proach, an experiment is performed on a simple geometry using 4 DSLR

cameras as sketched in Figure 1. Figure 7(a) shows the sample geometry

composed of four orthogonal surfaces sharing their edges. The stereo-jig (see

Figures 1 and 7(b)) is composed of four Canon EOS 60D cameras with 50-
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mm objective lenses. Each camera is observing one edge and two faces of the

sample. This con�guration allows us to obtain four stereo-jigs that are fully

coupled via the CAD model of the observed surfaces. The geometry used

herein is a multi-patch NURBS composed of 4 fourth order patches (i.e., the

control net is made of 4×4 points). The whole geometry has 4×3×4×3=144

degrees of freedom.

(a) (b)

Figure 7: (a) Sample geometry. The coordinates are expressed in mm. (b)

Experimental setup with 4 di�erent DSLR cameras (circled in white) of a

tensile test on an aluminum alloy bar

The second formulation is followed to perform the calibration of the full

multi-view setup. Note however that in the present case, there is no major

di�erence between the two formulations at convergence as the minimized

functionals are proportional to each other when only 2 cameras can see each

surface, under the same incidence and magni�cation∥∥∥f i − f̂
∥∥∥2

=

∥∥∥∥f i − f i + f j

2

∥∥∥∥2

=
∥f i − f j∥2

4
(12)
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This form allows brightness corrections to be accounted for very easily. The

only di�erence that may be expected is prior to complete convergence, where

each image is compared to a �compromise� between both versions of the in-

trinsic texture, and hence the basin of convergence is expected to be broader,

leading to a more robust and faster convergence scheme. This point has how-

ever not been validated.

Figure 8(a) shows the correlation residuals on the sample geometry prior

to the camera calibration procedure. It corresponds to the initialization step

of the calibration procedure for which 6 remarkable features (i.e., two points

on each edge seen by a camera) are manually selected by the user. From

this selection, a �rst set of projection matrices is determined. The RMS

correlation residual at the beginning of the computations was equal to 11 %

of the dynamic range of the cameras, and 3 % at the end of the self-calibration

step. The low value of residual is due to the fact that gray level corrections

have been applied. In the present case, a bilinear �eld is chosen (i.e., a single

NURBS patch of order 2) for each considered surface. The random texture is

fully matched since it disappears in large areas of the reconstructed surface

(Figure 8(b)). This result validates the proposed framework based upon the

search for the intrinsic texture (i.e., second formulation).

Let us stress that three pairs of cameras would be su�cient to calibrate

the geometrical model for the four cameras, i.e., positioning the coordinates

of the camera focal point and optical axis. The use of the fourth pair intro-

duces a redundant information, which is naturally accounted for in the pro-

posed framework, to obtain the best determination of extrinsic parameters

of the cameras (i.e., describing the transformation between the coordinate
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(a) (b)

Figure 8: Correlation residuals (a) at the beginning of the calibration step (η

= 11.16%) and (b) at the end of the calibration step (η = 3.00%). The dy-

namic range of the registered pictures spans over 16-bits. Note that di�erent

dynamic ranges are used in the two sub�gures

system of the NURBS model and that of each camera) without breaking the

uniformity of their role (i.e., no �master� camera is chosen). Further weigh-

ing will o�er the opportunity to account for the trustfulness of the projection

depending on the direction of the surface normal with respect to the optical

axis.

Di�erences between the measured and the nominal shape are shown in

Figure 9. The di�erences are higher on the edges, because the sample shape

does not fully match the geometrical model used. The RMS height di�erences

between the nominal model and the reconstructed shape is equal to 8 µm,

which is very low. The interested reader will �nd other validations of such
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(a) (b)

Figure 9: Di�erences (in mm) along the normal to the surface between the

reconstructed 3D shape and the nominal model. Di�erences are higher along

the edges, where the model does not match the sample shape. Two views are

shown when rotated 180 ◦ about the longitudinal axis

an approach with only two cameras in Ref. [2].

The formulation (8) is followed to measure 3D displacement �elds of the

whole external surfaces of the sample. Figure 10 shows the displacement

along the vertical axis. A small rotation can be noted in addition to the �eld

associated with pure tension.

To validate these results, the residual maps τ are shown for the four

cameras in Figure 11. The residuals are very low for all four cameras. The

registration is deemed successful. The levels of the residuals are higher on

the vertical edges of the surfaces, which is due to the di�erence between the

real shape (slightly curved along the edges) and the geometric model used
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Figure 10: Longitudinal component of the displacement �eld (expressed in

mm) corresponding to the highest loading level of the tensile experiment

herein that does not account for that. New control points would have to

be added to lower the residuals [12]. It was not performed herein. Other

validations have been reported with only two cameras in Ref. [11].

5 Isogeometric model updating (IGMU)

In this part, an identi�cation method is proposed by coupling CAD-based

stereocorrelation and IGAs. The spirit is essentially the same as FEMU but

applied to isogeometric analyses. It is therefore referred to as IsoGeomet-

ric Model Updating (or IGMU). CAD-based stereocorrelation mainly uses

NURBS to describe 3D surfaces and 3D displacement �elds. It is thus desir-
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(a) camera 1 (b) camera 2 (c) camera 3 (d) camera 4

Figure 11: Gray level residuals τ for all four cameras corresponding to the

highest loading level of the tensile experiment. The dynamic range of the

registered pictures spans over 16-bits

able to have the same formulation for both experimental and numerical tools

in order to make the comparison straightforward (i.e., avoiding interpolation,

reprojection, or any unnecessary manipulation of the data). This is possible

by resorting to an isogeometric code [10].

Figure 12 illustrates the principle of IGMU. The measured (Dirichlet)

boundary conditions are prescribed to the IGA model. As in a FEMU proce-

dure, displacement and load sensitivities with respect to the sought parame-

ters are computed as �nite di�erences to minimize the chi-squared residuals

via, say, a Newton-Raphson scheme [18]. The material parameters minimiz-

ing the cost function are kept, and they can even be used to run a sensitivity

analysis to acquisition noise [17].

In the present study, displacement �elds U are parameterized by the po-
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Figure 12: Principle of mechanical identi�cation using IGMU

sition of the control points {P } here gathered as a vector for all surfaces and

control points k. For simplicity, these parameters will be called �displace-

ments,� although it is clear that the actual displacement U is computed

from the control points positions using the NURBS formalism. The mea-

sured displacements {Pm} are to be compared to the computed ones {P c}

by minimizing the following chi-squared error

χ2
p({p}) = ({Pm} − {P c})†[C]({Pm} − {P c}) (13)

where {p} is the vector gathering all unknown material parameters used for

the computation of {P c}. The chi-squared error is based on the [C] matrix

resulting from the assembly of all elementary matrices according to the chosen

formulation as described in Appendix B, Equation (27), as it can be shown

that it is proportional to the inverse covariance matrix of the parameters

{P } for a white noise on the images [21].
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Finding the best set of parameters {p} consists of seeking the minimum

of χ2
p. The computed displacement �eld at the q-th iteration is written as

P c
k ({p(q)}, t) = P c

k ({p(q−1), t}) + ∂P c
k

∂{p}
({p(q−1), t}){δp} (14)

The sensitivity �elds [S] =
∂{P c}
∂{p}

are numerically computed by resorting

to an IGA code [10] and forward �nite di�erences. A new set of sensitivity

�elds is computed at each iteration of the algorithm. Using these �elds, the

corrections of the sought parameters read

{δp} = ([S(q−1)]†[C][S(q−1)])−1[S(q−1)]†[C]({Pm} − {P c(q−1)}) (15)

where [S(q−1)] gathers all sensitivity �elds, [C] gathers correlation matrices

(used in the stereocorrelation measurement) for all time steps.

In practice, as only surface measurements are available via stereocorrela-

tion, assumptions have to be make in order to prescribe Dirichlet boundary

conditions to the computation. Depending on how much information is avail-

able (i.e., how many surfaces are analyzed) the method to create the surface

of prescribed displacement used as a boundary condition is di�erent. If two

opposed surfaces are to be used, a simple linear interpolation between these

two surfaces can be considered. If more surfaces are to be observed, the inter-

polation between the measured curves is performed using Coons interpolation

and the surface of Dirichlet conditions is created using a Coons patch [8], see

Figure 13.

27



Figure 13: Illustration of the creation of a surface of prescribed displacements

using four NURBS curves to de�ne its boundaries thanks to a Coons patch

5.1 Virtual experiment

In order to validate the method, a virtual experiment has been created, con-

sisting of a simulated tensile test on a virtual beam sample (see Figure 14(a)).

To measure the displacement �elds, pictures taken by two virtual stereo-jigs

observing two opposed surfaces of the sample are determined using previously

determined camera parameters (see Figure 14(b)). To generate synthetically

deformed images, a reference one is created in the parametric space of each

surface (Figure 3). In the present case, it corresponds to a true random

texture of a biaxial experiment on a cross-shaped sample [30]. With the

blending functions (see Appendix B), it is mapped onto the 3D shape, and

projected onto the image plane with the projections matrices. From the com-

puted projections, the gray levels are interpolated for each considered pixel

location. The same approach is followed to compute the set of pictures for

the deformed con�gurations. This method is easy to implement but induces
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more interpolation errors than other techniques such as ray-tracing [16]

(a) (b)

Figure 14: (a) Virtual beam model used in the experiment in its deformed

state. (b) Example of an image shot by a virtual camera

The 3D displacement �elds are measured on two opposite surfaces of the

sample using the CAD-based stereocorrelation technique described earlier.

Boundary conditions are extracted on the top and the bottom parts of each

surface and then interpolated to create two surfaces that have prescribed dis-

placements in an IGA code. The virtual experiment is then processed using

the identi�cation procedure described above. The two material parameters

to be determined are the Young's modulus and Poisson's ratio. Figure 15

shows the change of these two quantities with the iteration number. Con-

vergence is reached after a few iterations and the results are close to the

prescribed values (i.e., ≈ 3 % of the reference value).

Figure 16 shows the root mean square displacement error, i.e. di�erence

between the known Uc and measured Um displacement �eld at control points,
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(a) (b)

Figure 15: (a) Change of Poisson's ratio during the iterations (in blue) com-

pared to the prescribed value (in red). (b) Change of Young's modulus during

the iterations (in blue) compared to the prescribed value (in red)

as a function of the iterations. The level of error at convergence is very small

(i.e., 47 µm), which validates the proposed framework. These errors may be

due to inaccuracies and systematic bias in the image generation process.

Figure 16: Change of the displacement error ∥{Pm} − {Pc}∥2 during the

iterations
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5.2 Analysis of the tensile test

The tensile test is processed using the earlier described method. Two sets

of initial parameters are chosen, which are given in Table 1, and then the

identi�cation procedure is run using the results obtained from the multiview

stereocorrelation as measured displacement �elds. Figure 18 shows the results

in terms of Poisson's ratio and Young's modulus changes. It is observed

that the levels at convergence are very close for the two di�erent sets of

parameters, although they are not those expected. The converged Young's

modulus is higher than the expected value. The arti�cial rigidity introduced

in the numerical model (by using too many Dirichlet boundaries in the IGA)

can explain part of this e�ect. Further, the error in the evaluation of the

reaction forces may also be caused by a biased estimation of the actual loading

direction, which may induce rigid body rotations that can be observed in

Figure 10.

Table 1: Initial parameters used in the IGMU procedure

Young's modulus (GPa) Poisson's ratio

Set 1 90 0.05

Set 2 60 0.35

The di�erence between the estimated Poisson's ratio and the expected

level is close to 40 %. A rough estimate of the strain uncertainties indicates

that the measurements in the X − Y directions are (at least) 4 times that in

the Z-direction, which is of the order of 150 µϵ. Consequently, the transverse

strain resolution is of the order of 600 µϵ. The maximum longitudinal strain
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(a) (b)

Figure 17: (a) Change of the Poisson's ratio during the iterations (�nal val-

ues: ν = 0.182 (red), ν = 0.176 (blue)). (b) Change of the Young's modulus

during the iterations (�nal values: E = 86.4 GPa (red), E = 86.3 GPa (blue))

for two sets of initial parameters given in Table 1

is of the order of 1000 µϵ and the absolute transverse strain of the order of

300 µϵ, which is lower than the corresponding strain resolution. The deter-

mination of the Poisson's ratio is very di�cult, and the IGMU framework

does not provides a good determination of this parameter.

Figure 18 shows the change of the root mean square di�erence between

the measured and computed displacements. The level at convergence is very

small (i.e., 26.5 µm) thereby indicating that it is likely to be very close to

the standard displacement resolution. This result con�rms that the trans-

verse strains are very di�cult to capture with the present approach. To

improve the determination of the Poisson's ratio, another framework has to

be considered by using even less degrees of freedom in the measurement stage

to signi�cantly lower the measurement uncertainties. Such a procedure will

directly rely on the images to avoid intermediate steps.
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Figure 18: Change of the displacement error ∥{Pm} − {Pc}∥22 during the

iterations (�nal value: 26.5 µm)

6 Integrated approach (I-IGMU)

A fully integrated approach is now developed. The kinematic basis then be-

comes the sensitivity �elds to the sought material parameters [25, 31, 26].

The corresponding generalized degrees of freedom are the material param-

eters themselves, which are not as numerous as the degrees of freedom of

the NURBS model of the four surfaces. Figure 19 shows the principle of

integrated CAD-based stereocorrelation. The main di�erence with IGMU

procedures is that the kinematic basis of the stereocorrelation procedure is

now the set of sensitivity �elds, parameterized by {δp} , and no longer any

arbitrary �eld parameterized by the control points {δP }.

The registration problem of stereocorrelation consists of solving a series

of linear systems

[C′(i)]{δp} = {d′(i)} (16)

with [C′(i)] = [S(i)]†[C][S(i)], which contains the projection of the correlation

matrix onto the sensitivity �elds, and {d′(i)} = [S(i)]†{d(i)} the projection
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Figure 19: Identi�cation using integrated CAD-based stereocorrelation

of the residual vector. It has to be noted that Equation (16) uses the same

setting as standard DIC formulations, but the problem is directly expressed

in terms of the material parameters rather than the kinematic degrees of

freedom used previously in the CAD-based stereocorrelation.

6.1 Virtual experiment

The virtual experiment presented in Section 5.1 is analyzed again using the

integrated approach and Figure 20 shows the change of the Poisson's ratio

during the iterations of the integrated code. It can be noted that the use

of integrated stereocorrelation signi�cantly improves the quality of the iden-

ti�cation as the �nal value is very close to the prescribed Poisson's ratio

(i.e., 0.1% of error at convergence).
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Figure 20: Change of Poisson's ratio during the iterations (in blue) compared

to the prescribed value (in red). When convergence is reached, the level of

error is close to 0.1% of the reference value, which is signi�cantly lower than

with the IGMU approach

6.2 Analysis of the tensile test

To validate the usefulness of the integrated approach on the extraction of

Poisson's ratio from the tensile test, the change of the gray level residual

divided by the dynamic range of the cameras is investigated and the results

are shown in Figure 21. It is observed that a minimum is found around 0.29

for the Poisson's ratio, which is very close to the expected value. It should

be noted that the values of the residual error does not change much for a

large range of Poisson's ratio values (i.e., 0.27-0.31), which indicates that this

case is extremely di�cult even for an integrated approach. This result also

explains that minute uncertainties may hinder the identi�cation procedure

as exempli�ed in the IGMU analysis.
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Figure 21: Change of the gray level error with respect to the Poisson's ratio.

In blue, the range lies between 0 and 0.45 with increments of 0.05. In red,

the range is 0.23-0.35 and the increment is 0.01. The minimum is reached

for ν = 0.29

In the present case, the value of the Young's modulus is identical to the

previous one since the Dirichlet boundary conditions are the same in both

approaches. It is worth noting that these boundary conditions can become

additional unknowns in an integrated approach. This route was not followed

herein.

7 Summary and Outlook

In this paper, a fully integrated framework combining stereovision, NURBS-

based surface descriptions, isogeometric analyses to reconstruct dense 3D

shapes, measure dense 3D displacement �elds and identify material parame-

ters has been presented. This unique combination is made possible thanks to
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various global stereo-DIC procedures in which the output is either expressed

in terms of projection matrices during the calibration step, control points of

a NURBS model for 3D shape and displacement measurements, or directly

material parameters. This procedure constitutes a novel homogeneous frame-

work bridging the gaps between CAD design and its validation or correction,

mechanical tests and their modeling through isogeometric analyses.

Moreover, such a new framework is �exible enough to incorporate an ar-

bitrary number of cameras, which is very bene�cial to the analysis of real

structures, as it allows for a complete observation of the specimen or struc-

ture. A new formulation has been introduced in which each camera is treated

independently and a unique pattern expressed in the parametric space of the

CAD model of each surface is transported from the registration of all avail-

able pictures. Having access to this additional piece of information makes

the present procedure potentially more robust since it is much less prone to

acquisition noise.

Let us also note that the CAD-model of the analyzed surfaces being the

reference, all the reported results are shown in its unique frame. Conse-

quently, no additional post-processing is needed to �stich� all stereocorrela-

tion analyses (e.g., by resorting to procedures such as iterative closest point

algorithms [3, 6, 36, 19]). The latter ones are performed globally and the

calibration step allowed all the camera frames to be related to that of the

object of interest.

The proof of concept developed herein consists of the analysis of a ten-

sile test on a rectangular bar both for a virtual experiment and for an actual

tensile test. In both cases, identi�cation procedures are developed either as a
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subsequent step after the measurement step by updating isogeometric analy-

ses or in an integrated way by combining the measurement and identi�cation

steps. Both approaches are �rst validated by resorting to a virtual experi-

ment. For the Young's modulus, higher than expected values are found. At

least two reasons may explain such di�erences. First, the way the reaction

forces are evaluated is delicate with the IGA code used herein. Second, the

actual load direction is not necessarily aligned along the longitudinal direc-

tion of the sample. For the Poisson's ratio, the IGMU approach does not

yield satisfactory levels because the transverse strain levels are very small.

Conversely, the integrated approach by signi�cantly reducing the number of

degrees of freedom of the correlation procedure allows the Poisson's ratio to

be identi�ed in a very satisfactory way.

The results obtained herein need to be con�rmed by the analysis of other

experiments and more complex constitutive models. In particular, the mea-

surement and identi�cation resolutions need to be assessed to know whether

the sought parameters are identi�able. The careful analysis of the sensitivity

�elds is needed as proposed in 2D-DIC frameworks [17, 26].

As a closure, let us note that from the design of an experiment to the

validation of a new structure or assembly, all of the tools can be integrated

into a unique toolbox for the modern experimentalist who more often than

ever also utilizes CAD and FE softwares. This avoids creating �Babel towers�

as seamless procedures can be developed without having to resort to cumber-

some reprojections between experimentally extracted data and numerically

computed �elds. The framework developed herein aims to unify the worlds

of experiments and simulations so that the emergence of �simulation-based
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engineering sciences� will be facilitated [27].
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Appendix A: NURBS framework

A NURBS patch is de�ned by its order, a network of control points with

associated weights, and its knot vector. The surface X(u, v) = (X, Y, Z) is

expressed in the parametric space (u, v) as

X(u, v) =
m∑
i=0

n∑
j=0

Bij(u, v)Pij (17)

where the blending functions are expressed as

Bij(u, v) =
Ni,p(u)Nj,q(v)ωij∑m

i=0

∑n
j=0Ni,p(u)Nj,q(v)ωij

(18)

with

∀u ∈ [0, 1], Ni,0(u) =


1 when ui ≤ u ≤ ui+1

0 otherwise

(19)

and

Ni,p(u) =
u− ui

ui+p − ui

Ni,p−1(u) +
ui+p+1 − u

ui+p+1 − ui+1

Ni+1,p−1(u) , (20)

where Ni,p are mixing functions, Pij the coordinates of control points of the

surface, ωij corresponding weights, (m+ 1)× (n + 1) the number of control

points and (p, q) the degrees of the surface.
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Appendix B: Norm minimization

In Section 2, the projection matrices [M ], 3D shape or 3D displacements

de�ned through the motion of control points Pk were optimized from the

minimization of the norm of image di�erences. It is worth emphasizing that

these problems are strongly nonlinear as the variables to be optimized a�ect

the argument of �elds describing the texture of the observed sample, texture

that is usually a very irregular pattern. However, because the parameteriza-

tion is well suited to the problem, a Newton-Raphson scheme is used, and

this section aims to provide explicit expressions of the iterative linearized

problem to solve at each iteration of the this minimization procedure.

In all three recourses to registration, for geometry assessment, for shape

correction and for motion estimation, from equations such as such as Eq. (2),

the quantity to be minimized for each surface and camera pair, i and j, is

the norm of a residual written as

θij(ξs) = f i(xi(ξs))− f j(xj(ξs)) (21)

When a reference to an intrinsic image texture is used, such as mentioned

for Equations (4), (7) and (8), the residual for each camera is the norm of

the residual

τ i(ξs) = f i(xi(ξs))− f̂(ξs) (22)

The previous subsections detailed how this norm is to be interpreted, that is

(i) with a suited common spatial resolution, and (ii) tolerance to gray level

variations corresponding to treating as additional degrees of freedom smooth

�elds, α(ξs), so that �nally, the norm of the above residual reduces to the
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minimum of the standard L2-norm of the modi�ed residual, θ̄ij

θ̄ij(ξs) = f i(xi(ξs))− f j(xj(ξs)) + αij(ξs) (23)

or τ̄ i

τ̄ i(ξs) = f i(xi(ξs))− f̂(ξs) + αi(ξs) (24)

Last, this norm is obtained numerically by an integration over ξs, which has

to be reduced to a discrete sum of the squared residual over sampling points

ξsn, whose distance is ideally equal to the local e�ective common �pixel� size.

In addition to the α minimization, the use of this norm was to optimize

the mapping xi(ξs) with respect to variations of either projection matrices or

control point positions. In all cases, the variation of these parameters, here

called ak and gathered in the column vector {a} (be they matrix elements

{M} or component of control point displacement {P }), induces a change of

the mapping that can be seen as a velocity or sensitivity �eld in ξs plane

Si
k(ξ

s) =
∂xi(ξs)

∂ak
(25)

whose expression was detailed earlier (see Equations (3) and (6)).

The minimization of the above norm evaluated over surfaces Ss and cam-

era pairs Ci and Cj (�rst formulation) consists of assembling di�erent linear

systems to obtain the corrections {δa} to their current estimate

[Csij]{δa} = {dsij} (26)

whereas for the second formulation the sum runs over surfaces Ss and cameras

Ci

[Csi]{δa} = {dsi} (27)
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The expressions of matrices [C] and second member {d} are now detailed

for both formulations.

The second formulation is considered �rst as the notations are more com-

pact. Let us introduce Γ such that

Γi
k(ξ

s) = ∇f i(ξs) · Si
k(ξ

s) (28)

Sampling Γi
k over the evaluation points ξsn is recast in a matrix format

[Gsi]nk = Γi
k(ξ

s
n) (29)

and similarly for the residuals

{τ si}n = τ̄ i(ξsn) (30)

that allows to express the (s, i) linear system as

[Csi] = [Gsi]† [Gsi] (31)

(the matrix multiplication consists of summing over evaluation points) and

{dsi} = [Gsi]† {τ si} (32)

The notation [G]† refers to the transposed of matrix [G].

For the �rst formulation using camera pairs, the spirit is the same but the

writing appears less transparent. Using the previously introduced notation

as block matrices

[Gsij]nk =

[
[Gsi] −[Gsj]

]
(33)

and the sampled residual

{θsij}n = θ̄ij(ξsn) (34)
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give the �nal expression of matrix

[Csij] = [Gsij]† [Gsij] (35)

and second member

{dsij} = [Gsij]† {θsij} (36)

In the above expression, the gray level corrections are not accounted for.

They can be treated separately, �rst correcting for the motion, and then

for the gray levels (and in this case, the determination of α is nothing but a

least squares �t over polynomials). However because of the coupling between

gray level corrections and displacements, it may be advantageous in terms of

convergence rate to include α in the set of unknowns, using an augmented

linear system [22]. There is no di�culty in writing this linear system, but the

symbolic notations become prohibitively lengthy, and details are not provided

here. This type of correction has been implemented herein.
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