
HAL Id: hal-01198918
https://hal.science/hal-01198918

Submitted on 21 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

VerChor: A Framework for the Design and Verification
of Choreographies

Matthias Güdemann, Pascal Poizat, Gwen Salaün, Lina Ye

To cite this version:
Matthias Güdemann, Pascal Poizat, Gwen Salaün, Lina Ye. VerChor: A Framework for the Design
and Verification of Choreographies. IEEE Transactions on Services Computing, 2016, 9 (4), pp.647-
660. �10.1109/TSC.2015.2413401�. �hal-01198918�

https://hal.science/hal-01198918
https://hal.archives-ouvertes.fr

1

VerChor: A Framework for the Design and

Verification of Choreographies
Matthias Güdemann, Pascal Poizat, Gwen Salaün, and Lina Ye

Abstract—Choreographies are contracts specifying from a
global point of view the legal interactions that must take place
among a set of services. Such a contract may serve as a reference
in the development of concurrent distributed system, whether it is
achieved following a top-down or a bottom-up approach. In this
article, we present VerChor, a generic, modular, and extensible
framework for supporting the development based on choreogra-
phies. It relies on a choreography intermediate format (CIF) into
which several existing choreography description languages can be
transformed. VerChor builds around a set of formal properties
whose verification is central to choreography-based development.
To support this development process, we propose a connection
between CIF and the CADP verification toolbox, which enables
the full automation of the aforementioned properties. Finally, we
illustrate a practical use of the VerChor framework through its
integration with the Eclipse BPMN 2.0 designer.

I. INTRODUCTION

A
PPLICATIONS are now often constructed out of the

reuse and assembly of distributed and collaborating

peers, e.g., software components, Web services, or Software

as a Service in cloud environments. In order to facilitate the

integration of these independently developed components, that

may reside in different organizations, the peers participating

in a composition should adhere to a global contract. Such a

contract, called choreography, specifies from a global point of

view the interactions that must take place among a set of peers.

It is a reference for the further development steps, e.g., service

selection, discovery, composition generation and evolution.

OK ?

yesno ✓SUCCESS

!REDESIGN

Design

choreoography
peer

contracts

peer
compositionComposition

Binding
peer
code

Extraction

no
!RE-SELECT

conform

Fig. 1. Bottom-Up Development Process

Choreographies support bottom-up development (Fig. 1).

Several peers have been selected to be composed. They

may exhibit behavioral contracts or behavioral contracts can

be retrieved from them [1]. Here, one has to check that

M. Güdemann is with Systerel, Aix-en-Provence, France.
P. Poizat is with Université Paris Ouest, Nanterre, France and with Sorbonne

Universités, UPMC Univ Paris 06, CNRS, LIP6 UMR 7606, Paris, France.
G. Salaün is with University of Grenoble Alpes, Inria, LIG, CNRS, France.
L. Ye is with CentraleSupélec, Gif sur Yvette, France and with LRI UMR

8623, Univ Paris-Sud 11, France.

OK ?

yesno ✓SUCCESS

!REDESIGN

Design

choreoography

Projection

peer
skeletons

peer
compositionComposition

conform Implementation
peer
code

Realizability

Fig. 2. Top-Down Development Process

the composition of the peers has exactly the same behav-

ior than what was prescribed in the requirements, i.e., the

choreography. That is, that the reused peers are conform [2]

to the choreography. Choreographies also support top-down

development (Fig. 2). Choreographies are first used to ob-

tain local, peer-level, requirements, also called (behavioral)

skeletons. Again, one has to be sure that the composition

of these peer requirements is conform to the specification,

before going on and implementing the peers. The property

checking whether a choreography can be realized or not by a

set of peers is called realizability [3]–[6]. The design of the

peer requirements could be achieved explicitly by a human

as for the choreography. Still, it is much more interesting,

following the generative programming paradigm, to retrieve

the peer requirements automatically from the choreography

specification, in which the peer requirements are implicitly

defined. This can be achieved using projection operations [5],

[6], and thus yields a specific notion of realizability targeted at

automated choreography-based development: a choreography

is realizable if the set of peers that are obtained from it

using projection conforms to the choreography itself. If so,

a developer may implement the peer requirements by adding

business code to them, following the same kind of process

than, e.g., when complementing Java RMI skeletons generated

from purely functional interfaces. The developer may also use

the peer requirements to perform implementation by reuse,

using behavioral discovery approaches [7], or even by adapting

services that would not perfectly match the needs [8]. If the

choreography is not realizable, the designer has to change the

choreography, unless corrective solutions are proposed.

Figure 3 presents a simple example of a conversation

protocol [3], one of the notations existing for describing chore-

ographies, where each transition is labeled with a message

exchanged between two peers, one sender and one receiver.

This protocol involves three peers: a client (cl), a Web ap-

plication (appli), and a database (db). The client first submits

a storage request to the application (req), then the application

interacts with a database to store the information (store), and

2

Fig. 3. Example of Conversation Protocol

the database sends back an acknowledgment (ack). On the

right hand side of Figure 3, we give the projection obtained

from this choreography, where interactions are replaced with

message receptions (question marks) and message emissions

(exclamation marks). Even with this introductory example, it

is difficult to say whether this choreography is realizable. This

conversation protocol is actually realizable with synchronous

communication but not realizable if peers interact via FIFO

buffers (asynchronous communication), because the peer client

can send in sequence several req messages whereas in the

original contract, these messages can be sent only at a certain

moment in time (but for the first one, after an ack interaction).

Motivations. The existing techniques for formally verify-

ing choreographies suffer several drawbacks. First, they are

language-specific, i.e., they focus on a single choreography

modelling language, e.g., UML collaboration diagrams [6],

[9], conversation protocols [3], Singularity channels [10] or

BPMN 2.0 choreographies [11]. As a consequence, the other

existing languages cannot take profit of these analysis tech-

niques, which limits their applicability and impact. Second,

most existing works, e.g., [4], [12]–[16], propose techniques

for checking the realizability property only. Other formal

properties and composition issues also need to be verified for

choreographies but are hardly tackled in the literature. For

instance, if a choreography is not realizable, it is of prime

importance from a user perspective to provide automated

solutions for resolving these issues, that is enforcing realiz-

ability by correcting the possible message sequences. Third,

most existing choreography analysis techniques oversimplify

verification by assuming a synchronous communication model.

This is sufficient in some cases, but the asynchronous com-

munication semantics, used in most distributed systems, raises

important theoretical issues such as state space explosion due

to communication buffers. These issues are not dealt with

by purely synchronous approaches. It should be noted that

the use of data being exchanged between peers may also

result in state space explosion. Still, this has been recently

addressed using symbolic models [17]. Last but not least, but

for some exceptions [17]–[19], limited effort has been spent

to develop available formal verification tools for supporting

the choreography-based design of communicating software.

Models. As classified by [20], there are two interaction

models for choreography: interconnected interface models,

where conversations are defined at (each) peer level and

interactions are defined by connecting these conversations,

and interaction models, where interactions between peers

are the basic building blocks. The former nicely suits low-

level languages such as WS-BPEL where an orchestration

would be defined for each peer and communications would

OK ?

✓SUCCESS

!REDESIGN

peer
skeletons

synchr. peer
composition

peer
code

controllers

yes

no

yes

yes

no

no

asynch. peer
composition

choreoography
C

C

P

P

S

A

S A S

Design
(external IDE)

Projection Composition

Implementation
(manual)

Controller
Generation

Conformance

Repairability

Synchronizability OK?

OK?

OK?

Conformance (refined in VerChor)

Fig. 4. Top-Down Development Process (Refined) in VerChor

correspond to connections between peer models. However,

from a designer perspective, and following the separation of

concerns principle, interaction models better suit the needs

of choreography specification due to their global perspective.

Hence, we focus on interaction-based languages in this article.

Approach. In this paper, we present VerChor, a formal

and tool-supported framework available at [21], that supports

both bottom-up and top-down development. It also considers

both synchronous and asynchronous communication models.

As far as verification is concerned, in this article we focus on

the compliance between the choreography and its distributed

version consisting of interacting peers. This check includes

not only the conformance and realizability properties, but

also synchronizability [15], which addresses conditions under

which synchronous and asynchronous peer compositions are

equivalent. The benefit of synchronizability is that if a chore-

ography is synchronizable, conformance (hence realizability)

can be checked for synchronous communication and yields for

asynchronous communication too. Beyond these checks, if the

choreography is not realizable, we propose a transparent and

non-intrusive solution, which enforces the distributed system

to respect the choreography requirements. This is achieved by

synthesizing automatically distributed controllers that interact

together for resolving message ordering issues. However,

realizability enforcement is not possible for all choreographies.

Therefore, before applying our solution based on controller

generation, we need to check whether the repairability prop-

erty is satisfied or not. This check can be achieved on the

choreography itself and does not require an analysis of the

distributed version of the system.

Figure 4 presents the models being used in a top-down

development process, and the order in which properties and

synthesis techniques are achieved. This applies also to bottom-

up development where peer skeletons are not obtained by

projection but are available as an input of the process.

In order to accept the choreography specification languages

commonly used by designers as input, we define a chore-

ography intermediate format (CIF) and propose automated

connections from existing choreography languages (such as

conversation protocols or BPMN 2.0 choreographies) to this

intermediate format. As far as the back-end connection is

concerned, we have developed a translation from our interme-

GÜDEMANN et al.: VERCHOR: A FRAMEWORK FOR THE DESIGN AND VERIFICATION OF CHOREOGRAPHIES 3

Choreography Design Environment

e.g., Eclipse IDE

Choreography
DSL

e.g., BPMN 2.0

Choreography
Intermediary
Format (CIF)

Formal Verification Toolbox

CADP

Verification
Processes

Process Algebra
Encoding (LNT)

Verification
Script (SVL)

model transformation

script execution

model transformation
+

script generationdiagnostic (+ counter-example)

Fig. 5. Framework Overview

diate format to the LOTOS NT (LNT) process algebra [22],

which is one of the CADP input specification languages [23].

CADP is a verification toolbox providing a large variety of

automated analysis techniques. This connection to LNT/CADP

enabled us to develop a fully operational verification library for

automating the key choreography synthesis and analysis tasks

using behavioral model operations such as products, alphabet

hiding, and equivalence checking.

All the steps of our approach, described in Figure 5, are fully

automated by model transformations we have implemented,

verification scripts we generate, and verification tools we

reused from the CADP toolbox.

Other back-end verification toolboxes can be connected

to our intermediate format. This requires to develop other

translations from the intermediate format to one of the input

formal languages of the targeted toolbox. If, for instance, one

is interested in using interactive theorem proving for chore-

ographies, an encoding into Isabelle, Coq or PVS input formats

could be developed. Translating our intermediate format to

Petri net models is also a promising option for reusing existing

analysis techniques developed for Petri nets, e.g., [24]–[26].

It is worth noting that, since we have developed a con-

nection to the CADP toolbox through a translation to LNT,

all verification tools available in CADP can also be used

on the system under design (choreography and distributed

implementation). A noticeable example is the Evaluator 4.0

on-the-fly model checker that can verify temporal properties

specified in MCL [27], an extension of alternation-free µ-

calculus with regular expressions, data-based constructs, and

fairness operators.

Contributions. Our contributions are as follows:

• We propose a generic, extensible format for describing

choreographies accepting several languages as input (e.g.,

conversation protocols and BPMN 2.0 choreographies).

• We define a verification library, automating key choreog-

raphy analysis tasks using model and equivalence check-

ing, with a focus on asynchronous communication (via

FIFO buffers). Beyond property checking, we also present

controller synthesis techniques for enforcing realizability.

• We present a set of freely available tools we have im-

plemented that supports and automates the different parts

of our approach that is (i) translating the choreography

description languages accepted as input into the inter-

mediate format, (ii) translating the intermediate format

into the input language of the verification tools used for

the analysis, and (iii) generating the necessary scripts for

automating all the translation and verification steps.

Outline. Section II introduces the choreography languages

connected so far to our intermediate format, with a particular

emphasis on BPMN 2.0. The choreography intermediate for-

mat is itself presented in Section III. In Section IV, we present

our verification library. Section V describes the tools we have

implemented for supporting our approach. Finally, Section VI

reviews related work and Section VII concludes the article.

II. CHOREOGRAPHY DESCRIPTION LANGUAGES

We have considered the following three groups of

interaction-based choreography description languages for de-

signing the intermediate format presented in Section III:

• WSCI and WS-CDL rely on a standard exchange format

(XML) which simplifies model Transformation. However,

these languages are not systematically equipped with

formal semantics and the absence of graphical front-end

makes writing painful.

• BPMN 2.0 choreographies [28] or UML collaboration

diagrams [9] are user-friendly graphical notations, conve-

nient for end-users, but they often either lack of formal

semantics or exhibit various (divergent) ones.

• Chor [5] and conversation protocols [3] are formal de-

scription languages equipped with a formal semantics and

analysis techniques. Yet, they are difficult for non-experts.

In this section, we introduce conversation protocols and

BPMN 2.0 choreographies, because these are the currently

available front-ends in the VerChor framework. Yet all the

languages mentioned above can be transformed to our inter-

mediate format. We have a particular interest in BPMN 2.0

choreographies, because it became an OMG standard notation

in 2011, an ISO standard in 2013 [29], and it is now commonly

used for modelling choreographies.

A. Conversation Protocols

A conversation protocol [3] is a Labeled Transition Sys-

tem (LTS) specifying the desired set of interactions from a

global point of view. Each transition specifies an interaction

between two peers Psender, Preceiver on a specific message m.

A conversation protocol makes explicit the execution order of

interactions. Sequence, choice, and loops are modelled using

a sequence of transitions, several transitions going out from

the same state, and a cycle in the LTS, respectively.

Definition 1 (Conversation Protocol): A conversation pro-

tocol CP for a set of peers P = {P1, . . . , Pn} is an LTS

(SCP , s
0
CP

, LCP , TCP) where SCP is a finite set of states;

s0
CP

∈ SCP is the initial state; LCP is a set of labels where

a label l ∈ LCP is a tuple mPi,Pj such that Pi, Pj ∈ P
are the sending and receiving peers, respectively, Pi 6= Pj ,

and m is a message on which those peers interact; finally,

TCP ⊆ SCP × LCP × SCP is the transition relation.

A transition t ∈ TCP is usually denoted as s
m

Pi,Pj

−−−−→ s′

where s and s′ are source and target states and mPi,Pj is

4

Chor. Task Name

B

A

Chor. Task Name

B

A

Chor. Task Name

B

A

Chor. Task Name

B

A

Chor. Task Name

B

A

(a) (b) (c) (d) (e)

M2

M1 M1 M1 M1 M1

Fig. 6. BPMN 2.0 Notation Primer — Choreography Tasks

the transition label. An introductory example of conversation

protocol is given in Figure 3.

A conversation protocol is a low-level formal model, which

can be computed from other existing specification formalisms

such as UML collaboration diagrams [9], Singularity chan-

nels [10], or BPMN [11]. It is worth noting that conversation

protocols can serve as formal semantic model for the Chore-

ography Intermediate Format (CIF) we present in Section III.

However, it is much easier to transform a choreography

description language to CIF than going directly to such a low-

level model. Indeed, CIF consists of high-level operators that

assure a straightforward translation for all afore-mentioned

languages, whereas a transformation to conversation protocols

requires the flattening of all operators (e.g., expanding a

parallel composition to all the possible corresponding inter-

leavings), which is quite difficult, see [11] for a transformation

from BPMN choreographies to conversation protocols.

We use LTSs for specifying the peer behavioral model,

which defines the order in which the peer messages are

executed. A label consists of a message name and a direction

(emission ! or reception ?).

Definition 2 (Peer): A peer is an LTS P = (S, s0,Σ, T)
where S is a finite set of states, s0 ∈ S is the initial state,

Σ = Σ! ∪Σ? is a finite alphabet partitioned into a set of send

and receive messages, and T ⊆ S × Σ × S is the transition

relation. We write m! for a message m ∈ Σ! and m? for

m ∈ Σ?.

Each peer is obtained by projection from a CP by keeping

only messages where that peer appears, and replacing interac-

tions by emissions or receptions.

Definition 3 (Projection): Peer LTSs Pi = (Si, s
0
i ,Σi, Ti)

are obtained by replacing in CP = (SCP , s
0
CP

, LCP , TCP)
each label mPj ,Pk ∈ LCP with m! if j = i, with m? if k = i,

and with τ (internal action) otherwise; and finally removing

the τ -transitions by minimizing the LTS modulo weak trace

equivalence [30], which yields a τ -free and deterministic LTS.

B. BPMN 2.0 Choreographies

BPMN 2.0 [28] (BPMN in the rest of this article) intro-

duces Choreography Diagrams to support conversations with

choreography tasks as first class entities. The basic building

block of BPMN Choreography Diagrams is a one-way or

two-way interaction between peers. This is modelled using a

choreography task (Figure 6), where interactions involve two

peers, A and B, represented by participant bands. A is the

initiating peer, i.e., the one that decides when the interaction

takes place, it is represented by a white band as opposed

to a gray filled band for B. Together with the choreography

start state end state

exclusive gatewayor

or event-based gateway

inclusive gateway parallel gateway

sequence flow

CT2

B

A

CT1

B

A

CT3

B

A

diverging pattern (diverging parallel gateway)

CT2

B

A

CT1

B

A

CT3

B

A

converging pattern (converging parallel gateway)

Fig. 7. BPMN 2.0 Notation Primer — Control Flow and Gateways

tasks, there exist message flows relating the interaction with

an initiating message (represented by a white envelope) and,

possibly, a return message (represented by a black envelope).

This yields one-way interactions (Figure 6, (a, c, d, e)) or

two-way interactions (Figure 6, (b)). In the rest of this article,

for simplification purposes, we assume that message and task

names are always identical.

A choreography task may have an internal marker to denote

whether, and how the related interaction (one or two message

exchanges) is repeated. In a standard loop (Figure 6, (c)),

the interaction is performed several times. In multi-instance

parallel loops, the interactions are performed by several in-

stances of the choreography task. This can be done in parallel

(Figure 6, (d)) or in sequence (Figure 6, (e)). If the exchange

is not repeated, no marker is used (Figure 6, (a, b)).

BPMN enables one to describe control flows using sequence

flows for performing two tasks in sequence or gateways for

more complex behaviors. In our work we take into account the

main gateways found in BPMN (Figure 7), that is: exclusive

gateways (decision, alternative paths), inclusive gateways (all

combinations, from one to all), parallel gateways (creation of

parallel flows), and event-based gateways (choice based on

events, i.e., message reception or timeout). We require that

gateways are either diverging / splitting (multiple outgoing

sequence flows and at most one incoming sequence flow) or

converging / joining (multiple incoming sequence flows and

at most one outgoing sequence flow). Diagrams that would

not adhere to this requirement can be transformed by adding

new gateways [28], e.g., a gateway being both converging and

diverging can be transformed as the sequence of a converging

one and a diverging one.

III. CHOREOGRAPHY INTERMEDIATE FORMAT

In this section, we present the choreography intermediate

format (CIF) we propose for automated verification of chore-

ography description languages. Such an intermediate language

presents several advantages. First, several input languages can

be connected to it, and this allows designers to use their

favorite choreography description language. Second, it makes

it possible to use jointly several formal verification tools and

techniques as back-end, provided that a connection to those

tools exists. Third, it can also serve as an expressive standalone

specification language for choreographies. Last but not least,

the language can be easily extended with new choreography

GÜDEMANN et al.: VERCHOR: A FRAMEWORK FOR THE DESIGN AND VERIFICATION OF CHOREOGRAPHIES 5

+default

SubsetSelect

Choreography

FinalState

Join

InitialState

Interaction Peer

+content: MessageContent

Message

+getSuccessors(): list

State

DominatedChoice

Selection

getSuccessors().size() >= 1

getSuccessors().size() == 1

getSuccessors().size() == 0

getSuccessors().size() == 1

getSuccessors().size() == 1

SubsetJoin

*

2..**

1..*1..*

participants

alphabet

◀ startsWith

 ◀ endsWidth

stateMachine

sentBy ▼receivedBy ▼
1

1..*

1

1..*

succeededBy ►

sends ►

1

1

* *

1

1..*

dominatedBy ▲

AllSelect AllSelect

SimpleJoin AllJoin

Fig. 8. CIF Meta-Model

constructs, and the framework enriched with other front-

end (back-end, resp.) connections from other choreography

languages (to other formal verification tools, resp.).

A. A State Machine Meta-model

The CIF meta-model is based on a state machine repre-

sentation of choreographies, where states model either inter-

actions or choreography operators such as exclusive choice,

start of parallel activities, or merging of execution flows.

Sequence, i.e., the ordering between states, is modeled using

arcs, each arc connecting a source and a target state. Such

a meta-model is very close to the meta-models of workflow-

based notations, which are the main family of domain specific

modeling languages for business processes, choreographies,

and orchestrations, with e.g., the WS-BPEL language and

the BPMN notation. Indeed, workflows are directed graphs

with nodes that correspond not only to gateways, but also to

interactions, as demonstrated for example in the BPMN meta-

model with ChoreographyTask (the class for interactions),

which is a subclass of FlowNode, the class representing nodes

in the workflow (these nodes being related by arcs of type

SequenceFlow).

A first advantage of such a state machine meta-model

is therefore to make it easier to transform workflow-based

choreography languages into it, as demonstrated in Figure 9,

still without hindering the transformation from other state and

transition models such as the conversation protocols presented

in Section II. A state machine meta-model also makes it easily

possible to represent unbalanced workflows and complex loops

(where the flow of execution gets back at some point earlier

in the behavior) using arcs between states. Last but not least,

the state machine pattern significantly facilitates a further

encoding into any formal model of choreographies. This is

the case for instance with LNT where some CIF constructs are

translated in a straightforward way to the target language (see

Section III-C for details), although other constructs deserve

more attention.

state0:InitialStatestate1:Interactionstate4:Interaction state3:Interaction

CT1:MessageCT3:Message CT2:Message

A:PeerB:Peer

:Choreography

participantsparticipants

sentBy ▲

receivedBy ▲

sentBy ▲sentBy ▲

sends ▲sends ▲sends ▲

startsWith ▼

 ◀ succeededBy

alphabetalphabetalphabet

receivedBy ▲

receivedBy ▲

state2:AllSelect

 ◀ succeededBy ◀ succeededBy

succeededBy ▲

Fig. 9. CIF Model for the Choreography in Fig. 7, left (with an added initial
state and message contents abstracted)

We give in Figure 8 the CIF meta-model describing more

precisely the structure of our intermediate format, expressed as

a class diagram. One of the main classes for the state machine

representation is the State abstract class which provides an

abstract method to access its list of successor states. The

InitialState class represents the unique initial state of a chore-

ography. It implements the getSuccessors operation, but has

only a single successor state. The FinalState class represents

a terminal state of the choreography and will therefore always

have an empty list of successors. The Interaction class is used

to model a basic choreography interaction through a Message

exchanged between a sender and a receiver peer.

The Selection abstract class provides means to split the

flow of a choreography into multiple possible continuations.

Any instance of a class which extends it will always provide

multiple successors through the getSuccessors operation.

The most basic variants are Choice and DominatedChoice,

where exactly one of the successor states continues. Choice is

found in most choreography languages: one branch is executed

among a number of possible executions. DominatedChoice

is used in some languages (e.g., Chor [5]) for specifying

explicitly the peer that makes the choice in case of ambiguity.

The parallel execution of all continuations after a selection

is represented by the AllSelect class. The parallel execution

of a subset of the continuations can be specified using the

SubsetSelect class. In this last case, all possible combina-

tions should be possible in the corresponding behavior (e.g.,

if there are two branches involved we can execute only one

of them or the two in parallel) as well as a default branch if

such case is specified.

The dual of the Selection class is the abstract Join class,

which is realized either by SimpleJoin which has only one

incoming active flow, AllJoin for full parallel active flows and

SubsetJoin for a subset of all incoming flows. Each join waits

for the corresponding number of incoming active flows and

synchronizes accordingly. Inconsistencies in a choreography,

such as possible mismatches of selection and join operators,

can be detected by structural analysis. It does not make sense

for instance to match a single choice (Choice) with an all join

(AllJoin), as only a single incoming flow is active and should

be expected at the corresponding join point.

Figure 9 shows the CIF representation of the choreography

in Figure 7, left, with an added initial state. One can easily

6

identify the participants, represented with objects of class

Peer. The exchanged messages are represented by objects of

class Message, where each message has an associated sender

and receiver. The interactions are represented by objects of

class Interaction, with an association to the message which

is exchanged, while the parallel gateway is represented by the

object of class AllSelect. The sequence in the choreography is

represented by the succeededBy association between objects.

One could wonder why we have not chosen other languages

as intermediate format such as BPMN, conversation protocols,

or the LNT process algebra that we use in the sequel as an

intermediate step for generating the behavioral models (LTSs)

of peers and choreographies. CIF is close to BPMN in the

sense that it consists of high-level operators, but CIF may

contain more operators than BPMN, the dominated choice

for instance. The main issue with conversation protocols

and LNT is that transforming the choreography description

languages we consider here (e.g., BPMN) to such languages

is quite complex for some constructs (see see Section III-C

for details on the encoding from CIF to LNT). One of our

main motivations was to make the front-end transformations

as simple as possible, which is the case with CIF.

B. Front-end Connections

For illustration purposes, we focus on the subset of

BPMN 2.0 choreographies introduced in Section II and show

how to transform it into CIF, as illustrated in Figure 9. BPMN

ChoreographyTask is transformed into CIF Interaction. If

the task is related to a message via a BPMN MessageFlow

(as in Fig. 6), we generate a CIF Message from it. Else,

we use the ChoreographyTask name (as in Fig. 9). BPMN

two-way interactions are first transformed into a sequence of

two one-way interactions. BPMN gateways are transformed

into corresponding CIF class instances, i.e., exclusive and

event-based splits are transformed into Choice instances,

parallel and inclusive splits into AllSelect and SubsetSelect

constructs, respectively, exclusive and event-based joins into

SimpleJoin, inclusive joins are encoded into SubsetJoin, and

parallel joins into AllJoin. The sequencing between choreogra-

phy nodes, achieved with SequenceFlow instances in BPMN,

is transformed in CIF using the succeededBy association.

Similarly, the translation of the choreography description

languages mentioned at the beginning of Section II is straight-

forward except for UML collaboration diagrams. Their encod-

ing is slightly more complicated than for the others due to the

use of synchronization points between concurrent threads that

cannot be encoded using join operators. Therefore, the sim-

plest solution is first to translate UML collaboration diagrams

into a lower level formalism, such as conversation protocols

or LTSs as done in [6], and then connect this low-level format

to our intermediate format. This connection is straightforward

for conversation protocols, where sequences and loops are

implicitly encoded using arcs in the state machine, and non-

deterministic branches are translated to Choice states.

The semantics of our intermediate format is formalized by

encoding into LNT (see Section III-C), LNT itself having

a formal operational semantics defined in terms of LTSs.

Even if the semantics of the input choreography languages

are not always formally defined (e.g., conversation protocols

are equipped with a formal semantics, while the semantics of

BPMN is informally defined [29]), we paid a lot of attention

when building our framework to preserve their semantics

during the successive translations necessary for making their

formal verification possible. We will comment on that with

more details in Section V.

C. Back-end Connections

Several back-end connections can be proposed from our

intermediate format. Possible candidates are for instance input

languages of theorem proving tools (such as Coq, Isabelle, or

PVS) and Petri net formalisms. In this article, we focus on

input languages for model checking tools, because these ver-

ification techniques turn out to be adequate for the properties

of interest here (see Section IV). In particular, we propose a

connection to the LNT process algebra, which is one of the

CADP input specification languages [23].

Now we briefly describe the principles for translating CIF

to LNT. More details are available in Appendix, in particular

for unbalanced choreographies. The reader can also refer to

Section V for technical details of the tool support. For each

CIF state, we generate an LNT process as follows:

• Initial/Final state: for the initial state n, suppose n _ m,

i.e., m is the next state of n. The process for n calls the

process for m. For a final state, its process does nothing

but terminates by using the empty statement (null).

• Interaction: each interaction is encoded as an LNT action.

• Selection: we focus here on three types of selection.

1) all select state n: suppose that n has k outgoing

branches, i.e., n _ mi, i ∈ {1, ..., k}. The LNT

process models the parallel execution of all outgoing

branches using the LNT parallel operator (par).

Each branch mi, i ∈ {1, ..., k} is translated by a

call to the LNT process encoding the node mi.

In addition, if there exists a corresponding all join

state mp, we need to generate an additional parallel

branch to realize the synchronization point among

the different branches. To do so, for this join, we

create a synchronization action sync at the begin-

ning of the additional branch and at the end of all

other branches. In this way, the additional branch

synchronizes with all other branches on sync before

calling the process for the next node after mp.

2) subset select state n: suppose n _ mi, i ∈
{1, ..., k}. Any combination of the branches mi can

be executed. For each subset {mi1 , ...,min}, 1 ≤
n ≤ k, ∀j ∈ {1, ..., n}, ij ∈ {1, ..., k}, we obtain

all combinations of this subset by using the LNT

parallel operator between mij , j ∈ {1, ..., n}. Then

the LNT choice operator (select) is used between

all combinations of all subsets. If there exists a

corresponding subset join state, we generate an

additional branch for synchronization purpose as

above.

GÜDEMANN et al.: VERCHOR: A FRAMEWORK FOR THE DESIGN AND VERIFICATION OF CHOREOGRAPHIES 7

3) choice state n: suppose n _ mi, i ∈ {1, ..., k}. The

process models the choice execution of all outgoing

branches mi using the LNT choice operator. Each

branch calls the LNT process encoding the corre-

sponding node.

• Join: We have three types of join state. A join state has

only one outgoing branch.

1) all join (subset join, resp.) state n: suppose n _ m.

The process for n first synchronizes with all cor-

responding incoming active branches on the syn-

chronization action sync before calling the process

for m, i.e., it corresponds to the additional par-

allel branch produced by translating the selection

(all/subset select) state.

2) simple join state n: suppose n _ m, then the

process for n calls the process for m. Recall that

there is no synchronization point for this state.

Once a CIF instance C has been translated to LNT, one

can obtain the corresponding LTS using classical enumerative

exploration techniques, e.g., the LNT compilers of CADP. The

LTS generated from this LNT specification corresponds to all

possible enactments of C.

D. Extensibility

Although CIF covers a large and important part of the

possible modelling artifacts for choreographies, there exist

possible extensions to the format. An interesting extension to

CIF is adding data to message contents [17]. For example, it

could be possible to have gateways where the choice among

several flows depends on data exchanged in earlier messages.

The currently implemented analysis abstracts from the data

and can therefore be regarded as an over-approximation. For

some of the formal properties of choreographies described

in Section IV, data-dependent choices could be helpful. In

particular in the case of realizability, where the distributed

system obtained after projection is analyzed, data dependency

could provide additional means to coordinate choices between

distributed peers, which is not possible without data exchange.

Data parameters are supported in the LNT formal language,

which we use to encode CIF. However, the inclusion of data

parameters may increase drastically the size of the LTS model

obtained from the LNT encoding, limiting the usefulness of

the approach. On the other hand, regarding the properties

presented in Section IV, the results of the current encoding

without data-dependent choices, can be analyzed a-posteriori

to identify false-negatives. For example, it could be verified

afterwards that data-dependent choices restore a property like

realizability. In such a case our approach would support the

choreography designer by highlighting the potential problems.

IV. VERIFICATION LIBRARY

We present in this section key properties which are of utmost

importance when designing choreography-based communicat-

ing systems. Following the process described in Figure 4, we

proceed as follows. From a choreography model, projection

is used to retrieve one model for each peer in the choreog-

raphy. The synchronous and asynchronous compositions are

computed from these behavioral models. Synchronizability

checking is then achieved by checking the equivalence be-

tween these synchronous and asynchronous compositions. If

the choreography is synchronizable, realizability checking is

run, by checking the equivalence between the synchronous

composition of the peers and the choreography model. If

realizability yields, then the choreography design is fine. If

either synchronizability or realizability is not achieved, we

run the repairability check on the choreography model. If

this fails too, the choreography design is incorrect and it

must be modified using counter-examples produced in the

different verification steps. If the choreography is repairable,

then we generate distributed controllers to make the peers

behave exactly as prescribed in the choreography. All these

tasks are fully automated thanks to the encoding of CIF into

the LNT process algebra, and the use of the CADP toolbox

for model generation and verification.

The notion of realizability (conformance, resp.) we present

in this paper is quite strong yet often used in the literature,

see, e.g., [4]–[6]. It ensures that the distributed system exactly

reproduces the same sequences of messages as those defined

in the choreography. This means that whatever composition

is used (synchronous or asynchronous), the visible behaviour

must remain exactly the same. This is what the synchroniz-

ability property checks. Weaker realizability notions could be

considered such as those presented in [12].

A. Synchronizability

Synchronizability is used to check if all interaction se-

quences in the asynchronous system are also possible in the

synchronous one, ensuring that the asynchronous version of

the system does not exhibit additional behavior, which is not

present in the synchronous composition. These compositions

must be the same, otherwise they cannot be conform to

the choreography since the asynchronous system diverges

somehow by introducing new (unexpected) behaviors.

Definition 4 (Synchronizability): A set of peers

{P1, . . . ,Pn} is synchronizable when the synchronous

composition of these peers LTSs = (P1 | . . . | Pn)
is equivalent to their asynchronous composition

LTSa = (P1,B1) || . . . || (Pn,Bn) (both compositions

are defined in [15]), that is, LTSs ≡t LTSa, where ≡t

stands for weak trace equivalence as advocated in [15] and

compares synchronizations in the synchronous composition

with emissions from peers to peer buffers in the asynchronous

composition.

A recent decidability result [15] proposes the following

decision procedure for checking synchronizability: The set

of peers is first generated by projecting the choreography

specification to each peer, ignoring the messages that are not

sent or received by that peer. Then, both the system consisting

of peers interacting synchronously and the system consisting

of peers interacting via 1-bounded FIFO buffers are computed.

Finally, equivalence checking is used to decide whether the

two systems are equivalent. If this is the case, the chore-

ography is synchronizable, meaning that the behavior of the

distributed implementation will remain the same whatever is

8

Fig. 10. Example of a Non-Synchronizable Choreography

the size chosen for bounding buffers. This decision procedure

relies on bounded, hence finite, systems and thus avoids the

generation and analysis of possibly infinite systems.

Definition 5 (Synchronizability Decision): A set of peers

{P1, . . . ,Pn} is synchronizable iff LTSs ≡t LTS1
a. In other

words: LTSs ≡t LTS1
a ⇔ LTSs ≡t LTSa.

When computing synchronizability, only send actions are

considered in the asynchronous case. Ignoring receive actions

makes sense for checking synchronizability because: (i) send

actions are the actions that transfer messages to the network

and are therefore observable, (ii) receive actions correspond

to local consumptions by peers from their buffers and can

therefore be considered to be local and private information.

We show in Figure 10, the peers obtained by projection from

the choreography in Figure 3. This system is not synchroniz-

able, because cl can send several requests (req) in sequence

in the asynchronous system, whereas the three interactions

req, store, and ack always occur one after the other in the

synchronous system, as specified in the choreography.

B. Realizability

This property is used to check if the distributed version of

the system behaves exactly as specified in the choreography.

This is crucial in a top-down development process in order

to ensure that the implementation obtained via projection

respects the global specification. Strong notions of realizability

can be checked using equivalence checking. Other notions

of realizability [12] can be verified similarly, using pre-order

simulation or partial order techniques.

Realizability as presented in [15] is checked as follows: one

first checks that a set of peers obtained via projection from

the choreography is synchronizable. If the synchronizability

check returns false, the system is not realizable. Second, if

synchronizability is satisfied, the peer composition is com-

puted from the choreography specification: the synchronous

version is enough because we know it is equivalent, by syn-

chronizability, to the asynchronous system. We finally compare

the choreography with the peer composition, and if they are

equivalent, the choreography is realizable.

Definition 6 (Realizability): A conversation protocol C and

the set of peers Pi = (Si, s
0
i ,Σi, Ti) obtained by projection

from this choreography (see, Def. 3) are realizable iff the set of

peers is synchronizable (Def. 5) and the choreography is equiv-

alent to the synchronous composition, that is, C ≡t LTSs.

We recall that a conversation protocol is a low-level formal

model, which can be computed from other existing choreog-

raphy description languages, see Sections II-A and V.

Figure 11 gives an excerpt of a choreography originally

presented in [11], where a client (cl) pays a bank (bk), and in

sequence, a booking system (bs) stores some information in

a database (db) to keep track of a completed transaction. This

choreography is synchronizable but not realizable: the result-

ing (synchronous and 1-bounded asynchronous) compositions

are the same, but they are not equivalent to the choreography.

C. Conformance

In a bottom-up development process, peers are being reused

and integrated into a new composition. The choreography

serves as a contract that the implementation under construction

must respect. From a verification point of view, it can be

checked exactly as realizability, except that projection is not

necessary. Conformance checking takes as input a choreog-

raphy and a set of peers, whereas realizability checking only

requires a choreography specification.

Definition 7 (Conformance): A conversation protocol C and

a set of arbitrary peers Pi = (Si, s
0
i ,Σi, Ti) are conformant

iff the set of peers is synchronizable (Def. 5) and the chore-

ography is equivalent to the synchronous composition, that is,

C ≡t LTSs.

D. Repairability

When a choreography is not realizable, an automated and

non-intrusive solution for enforcing realizability is to generate

distributed controllers that are in charge of correcting ordering

issues to make the corresponding distributed implementation

respect the choreography requirements. Repairable choreogra-

phies are those for which this controller synthesis solution

Fig. 11. Example of a Synchronizable but Non-Realizable Choreography

GÜDEMANN et al.: VERCHOR: A FRAMEWORK FOR THE DESIGN AND VERIFICATION OF CHOREOGRAPHIES 9

Fig. 12. Example of a Non-Repairable Choreography

Fig. 13. Architectural View of the System

is possible. But not all choreographies are repairable: A

choreography is not repairable when at some point in its

behavior there is a choice between interactions involving

different sending peers [10]. In that case, realizability cannot

be enforced because there is no way to impose the same choice

on several distributed peers interacting using asynchronous

communication. Therefore, it is important to check whether

an unrealizable choreography respects this property before

applying the controller generation solution.

Definition 8 (Repairability): A conversation protocol

C = (S, s0, L, T) is repairable if ∄ s ∈ S such that

s
m

Pi,Pj

−−−−→ s′, s
mPk,Pl

−−−−−→ s′′ ∈ T and Pi 6= Pk.

We can imagine finer notions of repairability, because

there are situations where such a divergent choice actually

corresponds to the start of interleaved behaviors (i.e., this is

not a real choice but all possible interleavings of a same set of

interactions), and in that case, the choreography is repairable.

Figure 12 presents a partial choreography involving two

peers, client (cl) and booking system (bs), which communicate

on two messages pay and alert. Here, there is a divergent

choice because each peer can take a different decision than

its partner, possibly resulting in a deadlock in the system if

both peers choose to send, pay (cl) and alert (bs), respec-

tively (grey state in the resulting asynchronous composition,

Figure 12, right). Typically, such a situation is not repairable.

E. Control for Enforcing Realizability

If a choreography is not realizable yet repairable, we

propose an approach to enforce that the distributed system

respects the (synchronizability and) realizability of a chore-

ography by generating distributed controllers [31]. These con-

trollers act locally by interacting with their peer and the rest of

the system in order to make the peers respect the choreography

requirements. A controller catches local peer emissions and

relays them to other peers. Synchronization messages between

controllers make them respect the choreography ordering

constraints. Figure 13 gives an architectural view of how peers,

buffers, and controllers interact altogether.

Definition 9 (Controller): A peer controller is an LTS

C = (S, s0,Σ, T) where S is a finite set of states, s0 ∈ S

is the initial state, Σ = Σ! ∪ Σ? ∪ Σs is a finite alphabet

partitioned into send, locally receive, and synchronization

messages. T ⊆ S × Σ× S is the transition relation.

These controllers are obtained by first generating the set

of distributed peers by projection from the choreography

specification. Then, we check in sequence the system syn-

chronizability and realizability using equivalence checking.

If one of these properties is violated, we exploit the gener-

ated counterexample to augment the controllers with a new

synchronization message. This process is iterated to obtain

the controllers via automatic refinement until satisfying both

synchronizability and realizability.

A communicating system is controlled if we can synthesize

a set of controllers that are able to enforce the peers to realize

the choreography specification.

Definition 10 (Controlled System): A set of peers Pi =
(Si, s

0
i ,Σi, Ti) obtained by projection from a conversation

protocol C is controlled if there exists a set of controllers

Ci = (Si, s
0
i ,Σi, Ti) such that:

• the controlled synchronous composition is equivalent

to the controlled asynchronous composition (both com-

positions are defined in [31]), i.e., ((P1, C1) | . . . |
(Pn, Cn)) ≡t ((P1, C1,B1) ‖ . . . ‖ (Pn, Cn,Bn))

• and the choreography is equivalent to the controlled

synchronous composition, i.e., C ≡t ((P1, C1) | . . . |
(Pn, Cn))

where local interactions (peers to controllers) and interactions

between controllers are achieved synchronously, and remote

interactions (controllers to peers) are achieved using hand-

shake communication in the synchronous composition and

via FIFO buffers (Bi) in the asynchronous composition. In

that case, ≡t also ignores local interactions from peers to

controllers and synchronizations among controllers.

Figure 14 shows the example introduced in Figure 11. While

this choreography is not realizable, it is repairable because

it does not involve any divergent choice. Non-realizability is

caused by peer bs that can send store before peer cl sends

pay, and this violates the message ordering as defined in

the choreography. We show how controllers for peers cl and

bs can solve this problem. Both controllers catch messages

sent by their peers. The client controller can immediately

forward the payment message to the bank peer. In contrast, the

booking system controller is waiting for a message from the

client controller (sync cl bs) indicating that it can proceed

with the emission of the store message. This additional

synchronization between both controllers enforces the peers to

realize the choreography as shown in the resulting composition

(Figure 14, bottom left) where we can see that store! always

10

Fig. 14. Example of Repairable Choreographies and Generated Controllers

Fig. 15. Connection of VerChor to the Eclipse IDE

appears after pay!.

V. TOOL SUPPORT AND EXPERIMENTS

A. Tool Support

In this section, we present the tool support [21] that enables

the use of VerChor for a fully-automated choreography-based

design approach. As presented in Figure 5, VerChor can be

applied to a given choreography specification language pro-

vided that a model transformation from it to the choreography

intermediate language (CIF) is defined. We have chosen to

illustrate here the use of VerChor on the BPMN 2.0 standard.

In that case the choreography designer can design BPMN

choreographies with the Eclipse IDE using the Eclipse BPMN

modeler plugin1. This plugin is based on an EMF meta-model

that is compatible with the OMG BPMN 2.0 specification [28].

We use XML for the textual representation of the interme-

diate format. Accordingly, we have defined an XML schema

(XSD) for it. This schema can be used to validate the (syn-

tactic) correctness of XML intermediate format descriptions.

Further, the XML schema can be used to automatically retrieve

class implementations of the intermediate format concepts,

together with parsers (retrieving object instances from an

XML file) and printers (generating an XML file from object

instances), e.g., in Java with the JAXB framework.

We have extended the Eclipse IDE, Figure 15, in order to

seamlessly integrate our formal verification techniques within

1http://www.eclipse.org/bpmn2-modeler/

the choreography design activity. This is achieved by using

the Eclipse IDE external tool extension mechanism. Each tool

supporting a formal activity in the choreography design can

be called using the Eclipse IDE external tools menu. These

tools operate on a given BPMN choreography specification,

selected by the designer:

1) clean project removes all intermediate files that have

been generated for the BPMN specification verification,

2) generate intermediate format generates the CIF repre-

sentation of the BPMN specification (XML file),

3) generate verification models and scripts generates the

LNT models and the verification scripts (written in the

SVL language [32]) from the CIF representation,

4) check synchronizability and realizability checks if the

BPMN specification is synchronizable and realizable,

5) check repairability and generate controllers checks if the

BPMN choreography is repairable, and, if so, generates

a set of controllers.

We made the choice to let the designer decide in which order

to apply the verifications that we propose. Still, one has to

apply steps (2) and (3) first to have any of the subsequent

verifications working.

The model transformation from BPMN 2.0 into our inter-

mediate format could have been defined using different tech-

niques, e.g., using an XSLT transformation or dedicated model

transformation description languages such as ATL. However,

to promote modularity and reuse, we have defined it directly

in Java. The EMF resource corresponding to the BPMN model

within the Eclipse IDE (this is an object instance) is retrieved

and analyzed to generate an object instance of the CIF Java

meta-model obtained using JAXB (see above). This object

instance may then easily be serialized into the CIF XML

format using the JAXB-generated XML printers.

As for back-end verification techniques, we have connected

our intermediate format to the CADP verification toolbox [23],

used here for checking the properties presented in Section IV,

with a translation library we implemented in Python. First, we

use the PyXB Python library for parsing XML files written

using our intermediate format, and for encoding them into

a corresponding Python model, which implements classes

presented in the meta-model given in Figure 8. Second, we

have developed a translation from this Python model for

GÜDEMANN et al.: VERCHOR: A FRAMEWORK FOR THE DESIGN AND VERIFICATION OF CHOREOGRAPHIES 11

TABLE I
EXPERIMENTAL RESULTS

Ex. Lang. |P| |Inter.| |Sel.| |S|/|T | Async. parallel Time Results
compo. |S|/|T | C | Sc | R | Rp Sc | R | Rp

1 CIF 3 10 1 21 / 29 127 / 200 13s | 1s | 1s | —
√ | √ | —

2 BPMN 6 19 1 580 / 1,828 4,054 / 12,814 86s | 1s | 2s | —
√ | √ | —

3 BPMN 6 19 1 18 / 20 750 / 3,298 83s | 1s | 2s | —
√ | √ | —

4 BPMN 6 19 1 580 / 1,842 16,129 / 51,317 87s | 2s | 2s | —
√ | √ | —

5 CP 7 11 1 11 / 11 158,741 / 853,559 213s | 2s | 2s | 1s × | × | √

6 BPMN 12 25 4 577 / 2,499 ∼1*106 / ∼7*106 648s | 3s | 5s | —
√ | √ | —

7 BPMN 15 31 5 65,556 / 573,479 ∼2*106 / ∼18*106 4,711s | 3s | 3s | 5s × | × | √

choreographies to the LNT process algebra (Section III-C).

CADP tools are convenient for verifying automatically all

the properties presented in Section IV, because they enable the

verification of choreographies using both model and equiva-

lence checking. Verification of the properties is fully auto-

mated thanks to verification scripts generated by our Python

translator. It is worth observing that the encoding into LNT

also enables other kinds of formal analysis with CADP, such as

deadlock search, simulation, or checking temporal properties

written in MCL using the Evaluator model checker [27].

An intermediate model in Python code was necessary,

instead of translating directly XML to LNT, because we

also use Python code for automating various tasks, such

as the generation of verification scripts or the analysis of

counterexample for distributed controller generation.

The successive encodings (source choreography language,

CIF, LNT, and LTS models) on which we rely on in this article

must preserve the semantics of the original choreography

specification language. Since the final model is an LTS, this

is feasible for languages such as conversation protocols or

Chor, and it can be verified using trace (or strongest if

necessary) equivalence [33]. In contrast, this is much more

difficult for notations like WS-CDL or BPMN choreogra-

phies. Indeed, these notations do not come with a formal

semantics. It is even worse because industrial tools often

interpret differently existing standards. Business processes

defined with BPMN and the resulting LTS models cannot

be compared easily because the first one advocates high-level

diagrammatic notation whereas LTSs give low-level flattened

views of choreographies. Consequently, in order to validate

semantics preservation, model transformations involved in the

VerChor platform have been validated experimentally: the

results obtained during our experiments were always consistent

with the expected verification results. Other techniques such

as co-simulation techniques or conformance testing could be

considered for comparing both description levels.

B. Evaluation

Table I shows experimental results on some examples of our

database, which contains about 400 choreographies, many of

them are real-world examples found in the literature, e.g., [3],

[6], [10], [11], [15], [28], [31], [34], [35]. Experiments have

been carried out on a Xeon W3550 (3.07GHz, 12GB RAM)

running Linux. It is worth observing that the translation time

(from the input languages to CIF and from CIF to LNT) is

negligible even for the largest examples. For each experiment,

the table gives the specification language used for describing

the input choreography and the size of the choreography

in terms of number of peers (P), interactions (Inter.), and

selection operators (Sel.). Then, we give the size of the

corresponding LTS and the size of the largest intermediate

state space for generating the asynchronous version of the

distributed system (number of states and transitions). In order

to reduce the generation time for compiling the LTS for the

asynchronous system, we use recent compositional aggrega-

tion techniques [36], which heuristically determine the best

sequence of successive composition/reduction for minimizing

the intermediate state spaces size. The times for generating

all LTSs (C), i.e., synchronous and asynchronous versions

of the distributed system, verifying synchronizability (Sc)

and realizability (R), and checking whether the choreography

is repairable or not (Rp), are given. We have not checked

conformance directly when making these experiments because

we followed a top-down design approach and used a choreog-

raphy as input in our experiments. However, the equivalence

checking that is central to conformance is used in realizability

checking when it comes to compare the choreography model

and the product of the peers that have been generated by pro-

jection. Finally, the last column details the results for checking

synchronizability, realizability, and repairability. Repairability

does not need to be checked when the choreography is both

synchronizable and realizable.

First of all, when a choreography specification (written

in CIF or BPMN for instance) involves parallel operators

(AllSelect, SubSetSelect), they are expanded in all the

possible interleaved behaviors when the corresponding LTS is

generated. This can result in large LTSs (see example 7). We

note that the overall time for generating LTSs for choreography

and both distributed systems (synchronous and asynchronous)

as well as for verifying properties Sc and R is reasonable for

medium-size choreographies, see for instance examples 2, 3,

4, 6 in Table I. In any case, even when it takes some time, this

is not an issue since these checks are achieved at design-time.

In most cases it is more costly to check realizable examples

because it deserves an exhaustive exploration of all cases,

whereas when the choreography is not realizable, the analysis

stops as soon as a violation is found, which can appear early

during equivalence computation. We observe that the main

cause of explosion, particularly in the asynchronous distributed

system and its corresponding computation time, is an increase

in the parallelism degree that can arise from (i) the number

of peers (e.g., 15 peers in example 7) or (ii) the number of

12

100

1,000

10,000

100,000

1,000,000

10,000,000

5 7 9 11 13 15

N
u

m
b

e
r

o
f

tr
a

n
si

ti
o

n
s

Number of peers

Topology1

Topology2

Topology3
0

20

40

60

80

100

120

5 7 9 11 13 15

T
im

e
 (

m
)

Number of peers

Topology1

Topology2

Topology3

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

0 5 10 15 20

N
u

m
b

e
r

o
f

tr
a

n
si

ti
o

n
s

Number of branches

Case1

Case2

Case3
0

5

10

15

20

0 5 10 15 20

T
im

e
 (

m
)

Number of branches

Case1

Case2

Case3

Fig. 16. Experimental Measures: Increased Number of Peers (top) and
Increased Number of Branches (bottom)

(interactions in) parallel branches.

In Figure 16, the top part shows that for each topology

(choreography with the same structure) the augmentation of

peer number leads to an exponential grow in terms of state

space size and generation time. Note that we give the largest

intermediate number of transitions, which is always larger

than the number of states, and represent it using logarithmic

coordinates. Similarly, the bottom part of Figure 16 shows

that for each case (choreography with the same number of

peers and interactions) if we augment the number of parallel

branches, size and time gradually increase but less quickly

than for the number of peers.

If the choreography is not realizable but repairable, we

generate local controllers which synchronize together in order

to force the distributed system to respect the order of messages

as specified in the global contract. For instance, example 5

presents several ordering issues if peers are generated using

projection. In that case, our process requires 6 iterations to

construct these controllers, meaning that 6 additional syn-

chronization messages are necessary to make the system

realizable. It takes about 20 minutes for this example to succes-

sively check synchronizability/realizability using equivalence

checking and exploit the resulting counterexample to refine

controllers, until completion of the process.

VI. RELATED WORK

The advent of choreography description languages for de-

signing interaction-based systems has raised many issues, such

as analysis and verification (projection, realizability, confor-

mance, repair), discovery, code generation, and testing. In this

state-of-the-art overview, we will focus on existing works for

analyzing and verifying choreography specifications.

Realizability by construction. The results presented in [5],

[37], [38] formalize well-formedness rules to enforce the

specification to be realizable. More precisely, in [37], [38],

Carbone et al. identify three principles for global description

under which they define a sound and complete end-point pro-

jection that is the generation of distributed processes from the

choreography. Qiu et al. [5] propose a choreography language

with new constructs (named dominated choice and dominated

loop) ensuring realizability by design. During the projection

of these new operators, communications are added to make

peers respect the choreography specification. These solutions

make the system design more complicated by obliging the

designer to specify extra-constraints in the choreography,

e.g., by associating dominant roles to certain peers. In [26],

Decker and Weske propose a Petri Net-based formalism to

specify choreographies. They also define realizability and local

enforceability and propose algorithms to check them. How-

ever, they consider synchronous communication, and have not

investigated mappings from higher-level modeling languages

(e.g., UML collaboration diagrams or BPMN).

Asynchronous communication. Several works focused on

the realizability problem assuming asynchronous communica-

tion. Fu et al. [3] proposed three sufficient conditions (lossless

join, synchronous compatible, autonomous) that guarantee

a realizable conversation protocol. More recently, Basu and

Bultan proposed to check choreography conformance and

realizability verifying the synchronizability property [15]. Syn-

chronizability compares both the synchronous version of the

system with the asynchronous one, and relies on existing finite

state verification techniques. [14] studies several notions of

realizability and investigates decidability results for chore-

ographies involving services interacting via buffers, which do

not assume that messages arrive in the same order in which

they have been sent. In [2], the authors tackle the choreog-

raphy conformance issue from a theoretical point of view,

and propose notions of contract refinement and choreography

conformance for services that communicate through message

queues. [16] proposes techniques to check whether a set of

peers interacting asynchronously can realize a choreography

with finite buffers, and if so, for what buffer sizes.

Bultan and Fu [9] defined sufficient conditions to check the

realizability of choreographies specified with UML collabo-

ration diagrams (CDs). In [6], Salaün and Bultan refine and

extend this work with techniques to enforce realizability by

adding additional synchronization messages among peers, and

a tool-supported approach to automatically check the realiz-

ability of CDs for bounded asynchronous communication. The

realizability problem for Message Sequence Charts (MSCs)

has also been studied (e.g., [4], [39], [40]). [4] for instance

presents some decidability results on bounded MSC graphs,

which are graphs obtained from MSCs using bounded buffers.

These notations are limited because branching and cyclic

behaviors are not well supported by CDs and MSCs (e.g., no

choice operator and repetition limited to a message at a time

in CDs). [41] analyzes the computational complexity of the

composition problem, which aims at generating a composition

of services interacting via bounded buffers that satisfies a given

goal. Our synthesis techniques are quite different because

peers are obtained via projection from a choreography speci-

fication and controllers non-intrusively monitor those peers to

make them respect the choreography ordering constraints.

Realizability enforcement. Lanese et al. [42], [43] present

a transformation procedure for amending choreographies that

does not respect common syntactic conditions for projec-

tion correctness. Their approach adds interactions on private

operations that make the choreography respect the desired

GÜDEMANN et al.: VERCHOR: A FRAMEWORK FOR THE DESIGN AND VERIFICATION OF CHOREOGRAPHIES 13

conditions, while preserving the observational semantics. To

do so, they define three connectedness properties (sequence,

choice, repeated operation) and show how to enforce each of

them, preserving the set of weak traces of the choreography.

The main difference compared to our work is that they change

the peers’ behaviors whereas our approach is non-intrusive and

ordering issues are corrected via external controllers.

In [44], the authors present a model-based synthesis process

for automatically enforcing choreography realizability. This

approach relies on several model transformations for synthe-

sizing the coordination delegates. The provided tool supports

the generation of Java code for coordinating, e.g., SOAP-based

Web services. This work assumes that actions inside the peers

are controllable, which allows to implement an election pro-

cess in case of divergent choices and pick a winner among the

possible senders. Controllability is possible only if developers

have preemptively anticipated it. Since this is not always the

case, we prefer in our approach to assume that peer actions

cannot be controlled. Another work [31] proposes a similar

approach for generating distributed controllers enforcing real-

izability for asynchronously communicating peers. This work

tackles this issue from a formal point of view and introduces

a sufficient condition for detecting faulty choreographies, that

is, choreographies for which realizability cannot be enforced.

BPMN verification. Decker and Weske present, in [45],

an extension of BPMN 1.0 (iBPMN) in the direction of

interaction modeling. They also propose a formal semantics

for iBPMN in terms of interaction Petri nets. Interaction

Petri nets are an extension to classical place/transition nets

presented in [45] for formalizing choreography semantics

through labeling of transitions and thus simplifying the reuse

of existing tools for conversation-based languages. At the end

of this paper, the authors mention realizability as a novel

challenge, but do not give any solution for this issue. Lohmann

and Wolf [13] show how realizability can be verified by using

existing techniques for the controllability problem, which

checks whether a service has compatible partner processes.

They mention several models that can be used for modeling

choreographies, such as iBPMN, but present their results

on multi-peer automata called choreography automata. Their

approach works for peers interacting via arbitrary bounded

buffers and only consider finite conversations. In [11], the

authors have focused on the translation of a subset of BPMN

into process algebra for automating the formal analysis of

choreographies using model and equivalence checking.

All this related work focuses on specific languages and veri-

fication problems (mainly realizability). Our goal is to provide

a generic framework, which considers several choreography

description languages as input and provides verification prim-

itives for checking some crucial properties in choreography-

based design of distributed software, in a fully automated way.

Preliminary versions of this work have been published

in [11], [46] and are extended here as follows: we present

the Choreography Intermediate Format (Section III), which

allows external developers to plug their own languages and

tools as front-end and back-end, respectively; we describe in

detail the properties that can be analyzed using our framework

(Section IV); we present the different components of our

verification platform that automates all the checks presented

in this article (Section V); we present an extended discussion

comparing our approach with related work (Section VI) ; we

introduce a new encoding into LNT, which takes unbalanced

split/join operators into account (Section III-C, Appendix).

VII. CONCLUDING REMARKS

Designing software applications consisting of communi-

cating entities has been greatly simplified with the advent

of choreography description languages. Yet, these languages

and development processes raise new issues that deserve to

be worked out in order to become mainstream in this area.

One central problem concerns the correspondence between

the global choreography specification and the distributed ver-

sion of the system composed of a set of peers interacting

asynchronously. Beyond providing automated techniques for

verifying model compliance, there is also a need for techniques

that enforce peers to respect the requirements specified in

the choreography. There has been quite some works on these

issues, but most results are hardly reusable because they focus

on specific notations and do not provide available tool support.

In this article, we have first proposed an intermediate format

for describing choreographies. Several interaction-based nota-

tions already existing for choreographies (e.g., conversation

protocols or BPMN) have been connected to this interme-

diate format. We have also presented a verification library,

which presents a set of key properties that choreographies

must respect for ensuring correctness of the system under

development. We show how these properties can be auto-

matically verified in practice using model and equivalence

checking techniques, via an encoding into process algebra.

We had a particular focus on asynchronous communication

semantics, that is, peers involved in the distributed version of

the system exchange messages via FIFO buffers. Our approach

is fully supported by freely available tools that we have

implemented [21]. This work can be seen as a first step for

joining forces and mutual effort for developing verification

techniques and tools for formally analyzing choreographies.

REFERENCES

[1] A. Bertolino, P. Inverardi, P. Pelliccione, and M. Tivoli, “Automatic
Synthesis of Behavior Protocols for Composable Web-Services,” in Proc.

of ESEC/FSE’09, 2009, pp. 141–150.

[2] M. Bravetti and G. Zavattaro, “Contract Compliance and Choreography
Conformance in the Presence of Message Queues,” in Proc. of WS-

FM’08, ser. LNCS, 2009, pp. 37–54.

[3] X. Fu, T. Bultan, and J. Su, “Conversation Protocols: A Formalism
for Specification and Verification of Reactive Electronic Services,”
Theoretical Computer Science, vol. 328, no. 1-2, pp. 19–37, 2004.

[4] R. Alur, K. Etessami, and M. Yannakakis, “Realizability and Verification
of MSC Graphs,” Theoretical Computer Science, vol. 331, no. 1, pp. 97–
114, 2005.

[5] Z. Qiu, X. Zhao, C. Cai, and H. Yang, “Towards the Theoretical
Foundation of Choreography,” in Proc. of WWW’07. ACM, 2007, pp.
973–982.

[6] G. Salaün, T. Bultan, and N. Roohi, “Realizability of Choreographies
Using Process Algebra Encodings,” IEEE Transactions on Services

Computing, vol. 5, no. 3, pp. 290–304, 2012.

[7] D. Grigori, J. C. Corrales, and M. Bouzeghoub, “Behavioral Matchmak-
ing for Service Retrieval,” in Proc. of ICWS’06, 2006, pp. 145–152.

14

[8] R. Mateescu, P. Poizat, and G. Salaün, “Adaptation of Service Protocols
using Process Algebra and On-the-Fly Reduction Techniques,” IEEE

Transactions on Software Engineering, vol. 38, no. 4, pp. 755–777, 2012.
[9] T. Bultan and X. Fu, “Specification of Realizable Service Conversa-

tions using Collaboration Diagrams,” Service Oriented Computing and

Applications, vol. 2, no. 1, pp. 27–39, 2008.
[10] Z. Stengel and T. Bultan, “Analyzing Singularity Channel Contracts,”

in Proc. of ISSTA’09. ACM, 2009, pp. 13–24.
[11] P. Poizat and G. Salaün, “Checking the Realizability of BPMN 2.0

Choreographies,” in Proc. of SAC’12. ACM, 2012, pp. 1927–1934.
[12] R. Kazhamiakin and M. Pistore, “Analysis of Realizability Conditions

for Web Service Choreographies,” in Proc. of FORTE’06, ser. LNCS,
vol. 4229. Springer, 2006, pp. 61–76.

[13] N. Lohmann and K. Wolf, “Realizability Is Controllability,” in Proc. of

WS-FM’09, ser. LNCS, vol. 6194. Springer, 2010, pp. 110–127.
[14] ——, “Decidability Results for Choreography Realization,” in Proc. of

ICSOC’11, ser. LNCS, vol. 7084. Springer, 2011, pp. 92–107.
[15] S. Basu, T. Bultan, and M. Ouederni, “Deciding Choreography Realiz-

ability,” in Proc. of POPL’12. ACM, 2012, pp. 191–202.
[16] G. Gössler and G. Salaün, “Realizability of Choreographies for Services

Interacting Asynchronously,” in Proc. of FACS’11, ser. LNCS, vol. 7253.
Springer, pp. 151–167.

[17] H. N. Nguyen, P. Poizat, and F. Zaı̈di, “A Symbolic Framework for the
Conformance Checking of Value-Passing Choreographies,” in Proc. of

ICSOC’12, ser. LNCS, vol. 7636. Springer, 2012, pp. 525–532.
[18] H. Foster, S. Uchitel, J. Magee, and J. Kramer, “LTSA-WS: A Tool for

Model-based Verification of Web Service Compositions and Choreogra-
phy,” in Proc. of ICSE’06. ACM, pp. 771–774.

[19] X. Fu, T. Bultan, and J. Su, “WSAT: A Tool for Formal Analysis of Web
Services,” in Proc. CAV’04, ser. LNCS, vol. 3114. Springer, 2004.

[20] G. Decker, O. Kopp, and A. Barros, “An Introduction to Service
Choreographies,” Information Technology, vol. 50, no. 2, pp. 122–127,
2008.

[21] “VerChor Framework.” http://lip6.fr/Pascal.Poizat/
VerChor/.

[22] D. Champelovier, X. Clerc, H. Garavel, Y. Guerte, V. Powazny, F. Lang,
W. Serwe, and G. Smeding, “Reference Manual of the LOTOS NT to
LOTOS Translator (Version 5.4),” 2011, INRIA/VASY, 149 pages.

[23] H. Garavel, F. Lang, R. Mateescu, and W. Serwe, “CADP 2010: A
Toolbox for the Construction and Analysis of Distributed Processes,” in
Proc. of TACAS’11, ser. LNCS, vol. 6605. Springer, 2011, pp. 372–387.

[24] A. Martens, “Analyzing Web Service Based Business Processes,” in
Proc. of FASE’05, ser. LNCS, vol. 3442. Springer, 2005, pp. 19–33.

[25] W. M. P. van der Aalst, M. Dumas, C. Ouyang, A. Rozinat, and H. M. W.
Verbeek, “Choreography Conformance Checking: An Approach based
on BPEL and Petri Nets,” in The Role of Business Processes in Service

Oriented Architectures, ser. Dagstuhl Seminar Proceedings, 2006.
[26] G. Decker and M. Weske, “Local Enforceability in Interaction Petri

Nets,” in Proc. of BPM’07, ser. LNCS, vol. 4714. Springer, 2007, pp.
305–319.

[27] R. Mateescu and D. Thivolle, “A Model Checking Language for
Concurrent Value-Passing Systems,” in Proc. of FM’08, ser. LNCS, vol.
5014. Springer, 2008, pp. 148–164.

[28] Business Process Model and Notation (BPMN) – Version 2.0, OMG,
january 2011.

[29] ISO/IEC, “International Standard 19510, Information Technology –
Business Process Model and Notation,” 2013.

[30] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory,

Languages and Computation. Addison Wesley, 1979.
[31] M. Güdemann, G. Salaün, and M. Ouederni, “Counterexample Guided

Synthesis of Monitors for Realizability Enforcement,” in Proc. of

ATVA’12, ser. LNCS, vol. 7561. Springer, 2012, pp. 238–253.
[32] H. Garavel and F. Lang, “SVL: A Scripting Language for Compositional

Verification,” in Proc. FORTE’01. Kluwer, 2001, pp. 377–394.
[33] R. Milner, Communication and Concurrency, ser. International Series in

Computer Science. Prentice Hall, 1989.
[34] “Singularity Design Note 5 : Channel Contracts. Singularity RDK

Documentation (v1.1),” 2004, http://www.codeplex.com/singularity.
[35] P. Wong and J. Gibbons, “Verifying Business Process Compatibility,” in

Proc. of QSIC’08. IEEE Computer Society, 2008, pp. 126–131.
[36] P. Crouzen and F. Lang, “Smart Reduction,” in Proc. of FASE’11, ser.

LNCS, vol. 6603. Springer, 2011, pp. 111–126.
[37] M. Carbone, K. Honda, and N. Yoshida, “Structured Communication-

Centred Programming for Web Services,” in Proc. of ESOP’07, ser.
LNCS. Springer, 2007, pp. 2–17.

[38] K. Honda, N. Yoshida, and M. Carbone, “Multiparty Asynchronous
Session Types,” in Proc. of POPL’08. ACM, 2008, pp. 273–284.

[39] R. Alur, K. Etessami, and M. Yannakakis, “Inference of Message
Sequence Charts,” IEEE Transactions on Software Engineering, vol. 29,
no. 7, pp. 623–633, 2003.

[40] S. Uchitel, J. Kramer, and J. Magee, “Incremental Elaboration of
Scenario-based Specifications and Behavior Models using Implied Sce-
narios,” ACM Transactions on Software Engineering and Methodology,
vol. 13, no. 1, pp. 37–85, 2004.

[41] P. Balbiani, F. Cheikh, and G. Feuillade, “Algorithms and Complexity of
Automata Synthesis by Asynchronous Orchestration With Applications
to Web Services Composition,” Electr. Notes Theor. Comput. Sci., vol.
229, no. 3, pp. 3–18, 2009.

[42] I. Lanese, C. Guidi, F. Montesi, and G. Zavattaro, “Bridging the Gap
between Interaction- and Process-Oriented Choreographies,” in Proc.

SEFM’08. IEEE Computer Society, 2008, pp. 323–332.
[43] I. Lanese, F. Montesi, and G. Zavattaro, “Amending Choreographies,”

in Proc. of WWV’13, ser. EPTCS, 2013.
[44] M. Autili, D. D. Ruscio, A. D. Salle, P. Inverardi, and M. Tivoli,

“A Model-Based Synthesis Process for Choreography Realizability
Enforcement,” in Proc. of FASE’13, ser. LNCS, vol. 7793. Springer,
2013, pp. 37–52.

[45] G. Decker and M. Weske, “Interaction-centric Modeling of Process
Choreographies,” Information Systems, vol. 36, no. 2, pp. 292–312,
2011.

[46] M. Güdemann, P. Poizat, G. Salaün, and A. Dumont, “VerChor: A
Framework for Verifying Choreographies,” in Proc. of FASE’13, ser.
LNCS, vol. 7793. Springer, 2013, pp. 226–230.

Matthias Güdemann received the PhD degree in
Computer Science from the Otto-von-Guericke Uni-
versity Magdeburg, Germany, in 2011. In 2011–
2012 he held a post-doctoral position in the research
team CONVECS at Inria Rhône-Alpes, focusing on
formal verification of BPMN choreography specifi-
cations. He is currently a software and systems en-
gineer at Systerel in Aix-en-Provence, France where
he is using formal methods for the development of
critical systems. His main interest is the application
of formal methods to industrial problems.

Pascal Poizat received the PhD degree in Computer
Science from the University of Nantes, France, in
2000, and the Habilitation degree in Computer Sci-
ence from Paris Sud University, France, in 2011. He
is currently a full professor at Paris Ouest University
and at the LIP6 laboratory (University Pierre et
Marie Curie and CNRS). His research activities
address software engineering and the use of formal
methods in the software development process. This
includes supporting the design, verification, adapta-
tion, automatic composition, and testing activities.

Gwen Salaün received the PhD degree in Com-
puter Science from the University of Nantes, France,
in 2003, and the Habilitation degree in Computer
Science from Grenoble University, France, in 2011.
He is currently an associate professor at Ensimag
(Grenoble INP) and at the LIG laboratory (Univer-
sity of Grenoble Alpes and CNRS). His research
interests include formal methods, automated veri-
fication, concurrent systems, software engineering,
composition of components and services.

Lina Ye received the PhD degree in Computer
Science from University of Paris-Sud 11, France,
in 2011. She held a post-doctoral position in the
research team CONVECS at Inria Rhône-Alpes, in
2012–2014. She is currently an assistant professor
of computing science at CentraleSupélec and at
the LRI laboratory (University of Paris-Sud 11),
France. Her main research interests include formal
methods, model-based design, automated verifica-
tion of concurrent and distributed systems as well
as heterogeneous systems.

