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1.Introduction

Several astronomical observations, last decades, seems in contradiction with the classical laws of gravitation. For example, the curve of rotation of galaxies can't be explain without add, inside these galaxies, a large amount of a mysterious matter, generally called «dark matter » [1]. Moreover, the expansion at an increasing rate [START_REF]Patantonopoulos The Invisible Universe[END_REF]of the universe can't be explain with these laws of gravitation, without consider another hypothetic substance, called this time « dark energy », which should be repulsive [START_REF]Patantonopoulos The Invisible Universe[END_REF][START_REF] Huterer | Prospects for probing Dark Energy via supernova distance measurements[END_REF].

However, despite all attempts of the researchers since several decades, to detect these matter and energy, it seems that there is no proof of their existence today [5]. These matter and energy could, consequently, be only a creation of the minds.

A second way, to explain these astronomical observations is to change the laws of gravitation themselves. A first problem is that these laws are well verified inside our solar system. A second problem is that the alternative theories don't do unanimity, and sometimes seems in contradiction with laws of physics [6].

Consequently, we purposed, in our turn, an alternative theory of gravitation, in two previously paper [7,8]. This theory is building with respect for classical physics. In this paper, we present a result we obtained recently. This result seems us solve the astronomical contradictions we listed before.

Our force of gravitation

We present hear the different assumptions, which lead us to our solution:

a) The classical physics can describe, with a correct approximation, the trajectories of the stars at the periphery of galaxies.

b) The trajectory of a star, which orbits around a center of mass, is a conic.

In our previously papers [7,8] we showed that the assumption b) is respected if the force is given by the relation
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Where f is a function of r and ' f its derivate. This force is given in a polar system of coordinate, where r is the distance to the foci of the conic. The origin of the system is located at this foci and the angle  is measured from the periapsis of the orbit. Ais constant and proportional to the mass of the system.
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Where a is the semi-major axis of the conic and e its eccentricity. The radial speed is given by
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Where r is given by
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we obtain the Newton's force. If we choose

) (r f as a constant
we obtain a force of Hooke [8].

We showed that, in all the cases, the force allows well to obtain a conic trajectory. We studied also the two body-problem and the conservation of the kinetic energy.

In order to determine a correct expression of
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we list now several other assumptions: c) When the acceleration is high, this force of gravitation is the Newton's d) When the acceleration is low, and in the case of circular motion, this force leads to a "flat" curve of rotation, with respect for the Tully-Fisher law e) When the acceleration is low, and in the case of parabolic motion, this force can be attractive or repulsive We purposed several possibilities for
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, in particular, in a first time, the solution given by Because this simple solution, with a correct choice of the constant 0 r allows to respect the assumption (c) and (d). But it appears this solution doesn't respect assumption (e). At a second time, we studied the solution given by
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Where k is a constant of the motion. It appears today that this second solution allows to respect all our assumptions, by a correct choice of k , and we will, consequently, in this paper, study it more detailed. 

By using relation (1) we obtain the force, given by
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The first term of this expression is naturally the Newton's. When r is small this term is dominant, but when r increases, progressively, this term disappears. Assumption c) is well respected.

Physical interpretation of this force

This force can be decomposed in two forces, by the relations
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where the force of Newton
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And the second part is
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the magnitude of this second force is given by
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by noticing that the distance OM , where M is the point-particle and O the center of the conic, is given by
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We can now determine the center of this force: by using the polar coordinate of the vector M O  given by We see that our solution is simply an addition on a force of Hooke and a force of Newton. The physical signification is that, when the acceleration decreases, the force of gravitation, in our model, becomes progressively a force of Hooke. The force of Newton is only valuable for small distances and high accelerations (as inside solar system or centers of galaxies). The force of Hooke can be more attractive than the Newton, but can also be repulsive, in the case of parabolic or hyperbolic motion. Note that these two well-known forces are central forces, and consequently can be derivative from a potential. Moreover, an important observation is that, when r increases, the center of the force and the center of mass aren't located at the same point.
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And the relation of the conic

Determination of the constant k

We will now give a correct value of k , in order to respect the other assumptions. We study the two limiting cases, the circular motion and the parabolic motion.

The motion is circular

In this particular case, the eccentricity of the conic is given by 0  e and r a  . Consequently, the force given by relation
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The curve of rotation is obtained by written the equality of the acceleration and the force

kA r A r V     2 2

Where

V is the speed of the point-particle. We obtain In order to obtain a flat curve of rotation, we see that k has to be dependant of the semi-major axis, as
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Where 0 r is constant. Moreover, we can determine this constant, because we have to respect the Tully Fisher law [9]. Indeed, this empirical relation suggests a correspondence between the visible mass of galaxies and the velocity as
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Where M is the total mass of the galaxy and 

V the constant speed of the stars. We saw that A has to be proportional to the mass thus a is an acceleration. This acceleration has to be constant in the entire universe, and can be linked with the Milgrom's acceleration used in MOND. We see that now

V is constant for circular motion and is in agreement with the Tully-Fisher law. Consequently, our choice of k allows to respect assumption d).

The motion is parabolic

In this case, the relations of the conic are given by 1  e and    By using relation (3
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And by using ( 5) we obtain
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Consequently, this force can be, in the case of parabolic motion, alternatively attractive or repulsive.

The sign of the acceleration is depending on the ratio a r . We can solve the equation to obtain the particular points of this evolution
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This equation becomes after simplification
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To solve this equation we use the method of Cardan. We write thus The discriminant is given by 5 0 we have 0  D : in this case we obtain three real solutions. As previously, it appears that one of them is negative: consequently, only two solutions are possible. Thus, the force of gravitation can be successively attractive and repulsive. We present theses results in the Figure 2.

4 2 0 2 3 27 1 4 1 2 3 a r a r q p D                
We can distinguish three different cases: When A r r  the force is always attractive and can be approximately, if r is small (as for example in solar systems), considerate as a force of Newton. When 

Our cosmological model

With the results we obtained, about the circular and parabolic motion, we can now present a simple and schematic cosmological model.

We consider a galaxy. At the periphery of this galaxy, the orbits of the stars are circular. The radius of their orbits are such 0 r r  . Consequently, the curve of rotation is given by Where 0 a is a constant acceleration of the universe (comparable or equal to the acceleration used in MOND), the curve of rotation is in agreement with the Tully-Fisher law.

0 r A V  Acceleration (parabolic motion) r A r B r

Force of Hooke

Force of Newton

Zone of repulsive force of Gravitation

We consider now two clusters of galaxies, which move by describing a parabolic motion. The semi major axis of this motion is a and 0 r is a constant of the system composed of the two clusters.

We have now two solutions to describe the force of gravitation between these clusters. If The force can be repulsive or attractive. If we consider now the modern results about the inflation of the Universe [2], we can suppose that it is the case today, for the majority of the interactions of the clusters between themselves. But this evolution isn't definitive: as shown on the figure 1. If our model is correct the force of gravitation could become a day, attractive.

Note that the difference of behavior of the force is only due to the difference of motion: in the first case, the motion is circular (in reality, approximately circular) and in the second case, the motion is parabolic (in reality, approximately parabolic). We show that with the solution given by (5) the same force can easily describe so different behaviors.

Discussion

A test in the solar system

As we suggested it previously [8], we can purpose a test inside the solar system, in order to valid or invalid our model. This test consists "simply" to do experiments about the free-fall motion. If our solution is correct this free fall motion should be describe, with the relation
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Where r  is the radial acceleration, given by
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Consequently, we should obtain a modification of the Newton's acceleration, directed to the center of Mass (in the case of parabolic motion). This modification should be very small but can perhaps be detected. We can note that such modification has recently been suspected inside the solar system, in particular about the motion of several spacecrafts [10]. Therefore, in our solar system, we think that the constant 0 r can't be linked to 0 a with the simple relation 2 0 0 r A a  Because our solar system isn't an isolated system. But we can expect perhaps that 0 r is constant in all the solar system, and deduct its value from the experiments. Indeed, naturally, only experiments on the free fall motion, in order to detect a small modification of the Newton's acceleration, could give a correct result. Therefore, we don't expect modification of the trajectories of the planets, because these trajectories are always conics and consequently, not modified.

Simulations of our model

A second method to valid or invalid our model is to do simulations of it. In particular, we could test it at the periphery of spiral galaxies. We think that results could be correct. Because in fact, our solution given by It appears that this function is proximate to the "simple" interpolating function used in MOND and given by
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This function has been tested with success [11]. Consequently, in our case, we should obtain correct results. Therefore, note that in our case the function ) (r g isn't empirically.

A second important simulation should be to test our model in the case of the bullet cluster. Because in fact, the astronomical observations inside this particular cluster [12] are generally considerate as an indirect proof of the dark matter existence. Moreover, it appears that the alternative theories of gravitation, as MOND, fail to describe the dynamics of this cluster. Consequently, this test should be important in our case.

We think that this simulation could perhaps lead to correct results. Indeed in our model, the center of mass and the center of force aren't necessary located at the same point. Consequently, we won't need, perhaps, to use ad hoc hypotheses, as "dark matter" hypothesis, to explain this difference of localization.

At end, an important test will be to see if our model can be a limiting case of a relativistic theory of gravitation. This point is naturally crucial. We think it is perhaps possible. Indeed, our force of gravitation is only the sum of two central forces, which are consequently the derivative of potentials.

Is a force of Hooke possible for large distances?

In our model, we suppose that the force of Newton turns progressively into a force of Hooke, when the acceleration decreases. A problem is to know is this evolution is possible. We can give several arguments, in order to defend this idea.

Firstly, the force of Hooke exists already in the classical theory of the gravitation: it is simply the force which describes the motion inside a homogeneous sphere. Moreover, in another physical domain, this force was used, for example, to build the Thomson's model.

Secondly, we showed that the addition of these two forces leads well to conics trajectories, and allows respecting all our assumptions. In particular, we don't need to introduce a new and hypothetic force to describe the reality. All our assumptions are simply respected, and we can build a simple cosmological model, without "dark matter", and above all, without "dark energy". Our force can be repulsive, and this point is a cogent argument for it. For example, MOND, or Dark matter hypothesis, or classical theories of gravitation, can't explain the expansion of the universe at an increasing rate, without hypothetic hypotheses, as "dark energy".

Conclusion

In this paper, we present a simple classical theory of gravitation, in order to explain several anomalies which have been detected since several decades. This theory is building with respect for classical physics and is predictive. The fundamental idea is that the force of gravitation is modified when the accelerations decreases, and becomes gradually a force of Hooke. We show that this modification can easily explain the curve of rotation of the galaxies, and the inflation of the Universe.
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