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Abelianization of Subgroups of Reflection Groups and their Braid
Groups; an Application to Cohomology

Vincent Beck

Friday 28th August, 2015

Abstract

The final result of this article gives the order of the extension

1 // P/[P, P ]
j // B/[P, P ]

p // W // 1

as an element of the cohomology group H2(W,P/[P, P ]) (where B and P stands for the braid group and
the pure braid group associated to the complex reflection group W ). To obtain this result, we first refine
Stanley-Springer’s theorem on the abelianization of a reflection group to describe the abelianization of the
stabilizer NH of a hyperplane H. The second step is to describe the abelianization of big subgroups of the
braid group B of W . More precisely, we just need a group homomorphism from the inverse image of NH by
p (where p : B→W is the canonical morphism) but a slight enhancement gives a complete description of the
abelianization of p−1(W ′) where W ′ is a reflection subgroup of W or the stabilizer of a hyperplane. We also
suggest a lifting construction for every element of the centralizer of a reflection in W .

1 Introduction
Let us start with setting the framework. Let V be a finite dimensional complex vector space; a reflection is a

non trivial finite order element s of GL(V ) which pointwise fixes a hyperplane of V , called the hyperplane of s.
The line of s is the one dimensional eigenspace of s associated to the non trivial eigenvalue of s. Let W ⊂ GL(V )
be a (complex) reflection group that is to say a finite group generated by reflections. We denote by S the set of
reflections of W and H the set of hyperplanes of W :

S = {s ∈W, codimKer (s− id) = 1} and H = {Ker (s− id), s ∈ S } .

For a reflection group, we denote by V reg = V r ∪H∈H H the set of regular vectors. According to a classical
result of Steinberg [12, Corollary 1.6], V reg is precisely the set of vectors that no non trivial element of W fixes.
Thus, the canonical map π : V reg→V reg/W is a Galois covering. So let us fix a base point x0 ∈ V reg and denote
by P = π1(V

reg, x0) and B = π1(V
reg/W, π(x0)) the fundamental groups of V reg and its quotient V reg/W , we

obtain the short exact sequence

1 // P // B
p // W // 1 (1)

The groups B and P are respectively called the braid group and the pure braid group of W .
The final result of this article (Corollary 27) gives the order of the extension

1 // P/[P, P ]
j // B/[P, P ]

p // W // 1

as an element of the cohomology group H2(W,P/[P, P ]). This order turns out to be the integer κ(W ) defined
by Marin in [9]. As explained in [9], this integer is linked to the periodicity of the monodromy representation of
B associated to the action of W on its set of hyperplanes.

To obtain this result, we first describe in section 2 the abelianization of some subgroups of complex reflection
groups. Specifically, we study the stabilizer of a hyperplane H which is the same as the centralizer of a reflection
of hyperplane H. Contrary to the case of Coxeter groups, this is not a reflection subgroup of the complex
reflection group W in general. The first step is to refine Stanley-Springer’s theorem [13][14] on the abelianization
of a reflection group (see Proposition 6 in Section 2).

The rationale also relies on a good description (Section 3) of abelianization of various types of big subgroups
of the braid group B of W (here “big” stands for “containing the pure braid group P ”). Though we just need
to construct a group homomorphism from the inverse image of the stabilizer of H by p with values in Q
(see Definition 19 and Proposition 23), we give in fact a complete description of the abelianization of p−1(W ′)
with W ′ a reflection subgroup of W or the stabilizer of a hyperplane (Proposition 15 and Proposition 24). We
also suggest a lifting construction for every element of the centralizer of a reflection in W generalizing the
construction of the generator of monodromy of [4, p.14] (see Remark 21).

Orbits of hyperplanes and ramification index are gathered in tables in the last section.
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We finish the introduction with some notations. We fix a W -invariant hermitian product on V denoted
by 〈·, ·〉 : orthogonality will always be relative to this particular hermitian product. We denote by S(V ∗) the
symmetric algebra of the dual of V which is also the polynomial functions on V .

Notation 1 Around a Hyperplane of W . For H ∈H ,

• one chooses αH ∈ V ∗ a linear form with kernel H;

• one sets WH = FixW (H) = {g ∈ W, ∀x ∈ H, gx = x}. This is a cyclic subgroup of W . We denote
by eH its order and by sH its generator with determinant ζH = exp(2iπ/eH). Except for identity, the
elements of WH are precisely the reflections of W whose hyperplane is H. The reflection sH is called the
distinguished reflection for H in W .

For n a positive integer, we denote by Un the group of the nth root of unity in C and by U the group of unit
complex numbers. For a group G, we denote by [G,G] the commutator subgroup of G and by Gab = G/[G,G]
the abelianization of G.

2 Abelianization of Subgroups of Reflection Groups
Stanley-Springer’s Theorem (see [13, Theorem 4.3.4][14, Theorem 3.1]) gives an explicit description of the

group of linear characters of a reflection group using the conjugacy classes of hyperplanes. Naturally, it applies
to all reflection subgroups of a reflection group and in particular to parabolic subgroups thanks to Steinberg’s
theorem [12, Theorem 1.5]. But since P/[P, P ] is the ZW permutation module defined by the hyperplanes of W ,
we are interested in the stabilizer of a hyperplane which is not in general a reflection subgroup of W . So we have
to go deeper in the study of the stabilizer of a hyperplane.

Before starting our study of the stabilizer of a hyperplane, we write down Stanley-Springer’s Theorem because
we will use it many times.

Theorem 2 Stanley-Springer’s Theorem. For every map n : H →N constant on the W -orbits of H , there
exists a linear character χ :W →C× such that χ(sH) = det(sH)−nH .

Moreover, the χ-isotypic component of S(V ∗) is a free S(V ∗)W -module of rank 1 generated by

Qχ =
∏
H∈H

αH
nH

where the nH are related to χ by the formula above and satisfy the relations 0 6 nH 6 eH − 1.

For H ∈H , we set
NH = {w ∈W, wH = H} = {w ∈W, wsH = sHw}

the stabilizer of H which is also the centralizer of sH . We denote by D = H⊥ the line of sH (or of every
reflection of W with hyperplane H) it is the unique NH -stable line of V such that H ⊕ D = V and NH
is also the stabilizer of D (see [3, Proposition 1.19]). We denote the parabolic subgroup associated to D by
CH = {w ∈W, ∀x ∈ D, wx = x}.

Since D is a line stable by every element of NH and WH ⊂ NH , there exists an integer fH such that eH | fH
and the following sequence is exact

1 // CH
i // NH

r // UfH // 1 (2)

where i is the natural inclusion and r denote the restriction to D. We define r to be the natural linear character
of NH .

Before stating our main result on the abelianization of the stabilizer of a hyperplane, let us start with a
straightforward lemma.

Lemma 3 Abelianization of an exact sequence. Let us consider the following exact sequence of groups
where M is an abelian group.

1 // C
i // N

r // M // 1

Then the following sequence is exact

Cab iab // Nab rab // M // 1

Moreover the map iab is injective if and only if [N,N ] = [C,C]. When Cab and M are finite, the injectivity
of iab is equivalent to |Cab||M | = |Nab|.

We also have the following criterion : the map iab is injective if and only if the canonical restriction map
Homgr.(N,C×)→ Homgr.(C,C×) is surjective.



Proof. The first injectivity criterion is an easy diagram chasing computation. The second one is trivial. Let us
focus on the third one. Since C× is a commutative group, we have the following commutative square whose
vertical arrows are isomorphisms

Homgr.(N,C×) //

��

Homgr.(C,C×)

��
Homgr.(N

ab,C×) ◦i
ab
// Homgr.(C

ab,C×)

Moreover, since C× is a divisible abelian group, iab is injective if and only if ◦iab is surjective.

Before applying the preceding lemma to the stabilizer of a hyperplane, let us introduce a definition and a
classical linear algebra lemma.

Definition 4 Commuting hyperplanes. Let H,H ′ ∈ H . We say that H and H ′ commute if sH and sH′
commute.

We denote by HH the set of hyperplanes which commute with H and H ′
H = HH r {H}.

The next lemma on commuting hyperplanes is stated in [3, Lemma 1.7].

Lemma 5 We have the following equivalent characterizations :

(i) the hyperplanes H and H ′ commute
(ii) H = H ′ or D = H⊥ ⊂ H ′
(iii) every reflection of W with hyperplane H commutes with every reflection of W with hyperplane H ′

(iv) there exists a reflection ofW with hyperplane H which commutes with a reflection ofW with hyperplane H ′

As a consequence of Lemma 3, we are now able to formulate the following proposition.

Proposition 6 Abelianization of the stabilizer of a hyperplane. For a hyperplane H ∈H , the following
sequence is exact

Cab
H

iab // Nab
H

rab // UfH // 1

Moreover, we have the following geometric characterization of the injectivity of iab : the map iab is injective if
and only if the orbits of the hyperplanes commuting with H under NH and CH are the same.

Proof. Steinberg’s theorem and Lemma 5 (ii) ensure us that CH is the reflection subgroup of W generated by
the sH′ for H ′ 6= H commuting with H. Thanks to Theorem 2, we are able to describe the linear characters of
CH . For every linear character δ of CH , there exists integers eO for O ∈H ′

H/CH such that the polynomial

Qδ =
∏

O∈H ′
H/CH

∏
H′∈O

αH′
eO ∈ S(V ∗)

verifies gQδ = δ(g)Qδ for every g ∈ CH .
Let us assume that the orbits of the hyperplanes commuting with H under NH and CH are the same. For

every g ∈ NH and every O ∈H ′
H/CH , there exists λg ∈ C× such that

g
∏
H′∈O

αH′ = λg
∏
H′∈O

αH′

So we obtain that, for every g ∈ NH , there exists µg ∈ C× such that gQδ = µgQδ. Thus every linear character
of CH extends to NH and Lemma 3 tells us that the map iab is injective.

Let us assume now that every linear character of CH extends to NH . The orbit of H under NH and CH is
{H}. So let us consider an orbit O ∈H ′

H/CH . We define

Q =
∏
H′∈O

αH′ ∈ S(V ∗) .

Thanks to Theorem 2, Q define a linear character χ of CH : for every c ∈ CH , there exists χ(c) ∈ C× such that
cQ = χ(c)Q for every c ∈ CH . We then consider the NH -submodule M of S(V ∗) generated by Q. As a vector
space, M is generated by the family (nQ)n∈NH

. But, since CH is normal in NH , we obtain for c ∈ CH ,

cnQ = nn−1cnQ = nχ(n−1cn)Q .

Since χ extends to NH , we have χ(n−1cn) = χ(c) and then cnQ = χ(c)nQ. Theorem 2 allows us to conclude
that nQ = λnQ for some λn ∈ C×. Since S(V ∗) is a UFD, we obtain that O is still an orbit under NH .



Remark 7 Commuting Orbits. The orbits of the hyperplanes commuting with H under NH and CH are
the same for every hyperplane H of every complex reflection group except the hyperplanes of the exceptional
group G25 and the hyperplanes Hi (1 6 i 6 r) of the group G(de, e, r) when r = 3 and e is even (see section 5
for the notations).

In Section 5, we give tables for the various orbits of hyperplanes for the infinite series G(de, e, r). For the
exceptional complex reflection groups, we check the injectivity or non-injectivity of iab using the package CHEVIE
of GAP [6][8].

For a hyperplane H ∈H , the comparison of eH and fH leads to the following definition.

Definition 8 Ramification at a hyperplane. We define dH = fH/eH to be the index of ramification of W
at the hyperplane H. We say that W is unramified at H if dH = 1.

We say that an element w ∈ NH such that r(w) = exp(2iπ/fH) realizes the ramification.

Remark 9 The Coxeter Case. When H is an unramified hyperplane, we have NH = CH ×WH which
is generated by reflections thanks to Steinberg’s theorem [12, Theorem 1.5] and sH realizes the ramification.
Moreover iab is trivially injective.

In a Coxeter group, every hyperplane is unramified. Indeed, the eigenvalue on the line D of an element of
NH is a finite order element of the field of the real numbers.

Remark 10 The 2-dimensional Case. When W is a 2-dimensional reflection group, NH is an abelian
group and i = iab is injective.

In section 5, we give tables for the values of eH , fH and dH for every hyperplane of every complex reflection
groups. From these tables, we obtain the following remarks.

Remark 11 Unramified G(de, e, r). All the hyperplanes of G(de, e, r) are unramified only when r = 1 or
when G(de, e, r) is a Coxeter group (that is to say if d = 2 and e = 1 and r > 2 (Coxeter group of type Br) or if
d = 1 and e = 2 and r > 3 (Coxeter group of type Dr) or if d = 1 and e = 1 and r > 3 (Coxeter group of type
Ar−1) of if d = 1 and r = 2 (Coxeter group of type I2(e)).

Remark 12 Unramified exceptional groups. The only non Coxeter groups for which every hyperplane is
unramified are G8, G12 and G24.

Remark 13 Generating Set. Since CH is the parabolic subgroup associated to D, it is generated by the
reflections it contains (this is Steinberg’s theorem). Moreover, if wH ∈ NH realizes the ramification. Then, the
exact sequence (2) tells us that NH is generated by wH and the family of sH′ such that H ′ ∈H ′

H .

3 Abelianization of Subgroups of Braid Groups
In this section, we describe abelianizations of subgroups of B containing P that is to say of inverse images of

subgroups W ′ of W . Explicitly, we are able to give a complete description of p−1(W ′)ab if W ′ is a reflection
subgroup (Proposition 15) or if W ′ is the stabilizer of a hyperplane under geometrical assumptions on the
hyperplane (Proposition 24). We also construct a particular linear character of p−1(NH) lifting the natural
linear character r of NH which is of importance for the next section (Definition 19).

Our method is similar to the method of [4] for the description of Bab : we integrate along paths invariants
polynomial functions. So, we have first to construct invariant polynomial functions and then verify that we have
constructed enough of them.

3.1 Subgroup Generated by Reflections
In this subsection, we fix C a subgroup of W generated by reflections. We denote by HC ⊂H the set of

hyperplanes of C. For H ∈HC , then CH = {c ∈ C, ∀x ∈ H, cx = x} is a subgroup of WH and so generated
by sHaH with aH | eH . For H ∈ H r HC , we set aH = eH . We then obtain C = 〈sHaH , H ∈ H 〉. For
C ∈H /C a C-class of hyperplanes of W , we denote by aC the common value of aH for H ∈ C.

The aim of this subsection is to give a description of the abelianization of p−1(C) ⊂ B. For this, we follow
the method of [4] and we start to exhibit invariants which will be useful to show the freeness of our generating
set of p−1(C)ab.

Lemma 14 An invariant. We define, for C ∈H /C,

αC =
∏
H∈C

αH
eH/aH ∈ S(V ∗) .

Then αC is invariant under the action of C.

Proof. If C is a class of hyperplanes of HC then this is an easy consequence of Theorem 2.



Assume that C is not a class of hyperplanes of HC . Let us choose a reflection s of C and let ns be the order
of s. Since C is not a class in HC , the hyperplane of s does not belong to C. We then deduce that the orbits of
C under the action of 〈s〉 are of two types.

First type : the orbits of H ∈ C such that sH and s commute. Since ssHs−1 = ss(H), we then deduce that
s(H) = H. And so the orbit of H under 〈s〉 is reduced to H. We denote by Hs the hyperplane of s. Since
H 6= Hs, Lemma 5 tells us that D = H⊥ ⊂ Hs and so s acts trivially on D which is identified to the line spanned
by αH through the inner product.

Second type : the orbits of H ∈ C such that sHs 6= ssH . If siH = H then si and sH commute and thus,
Lemma 5 ensures us that si is trivial. We then obtain that the orbit of H under 〈s〉 has cardinality ns. So if we
denote by Q the following product αHαsH · · ·αsns−1H = λαHsαH · · · sns−1αH with λ ∈ C×, we have sQ = Q.

We then easily obtain sαC = αC for every s ∈ C and so αC is invariant under the action of C.

Before stating the main result of the subsection, we recall the notion of “generator of the monodromy around
a hyperplane” as defined in [4, p.14]. For H ∈H , we define a generator of the monodromy around H to be a
path sH,γ in V reg which is the composition of three paths. The first path is a path γ going from x0 to a point
xH which is near H and far from other hyperplanes. To describe the second path, we write xH = h+ d with
h ∈ H and d ∈ D = H⊥, and the second path is t ∈ [0, 1] 7→ h+ exp(2iπt/eH)d going from xH to sH(xH). The
third path is sH(γ−1) going from sH(xH) to sH(x0). We can now state our abelianization result.

Proposition 15 Abelianization of subgroups of the braid group. Let C be a subgroup of W generated by
reflections. Then p−1(C)ab is the free abelian group over H /C the C-classes of hyperplanes of W .

Explicitly, we have p−1(C) = 〈sH,γaH , (H, γ)〉 (see [4, Theorem 2.18]). For C ∈H /C, we denote by (saCC )ab

the common value in p−1(C)ab of the sH,γaH for H ∈ C. Then p−1(C)ab = 〈(saCC )ab, C ∈H /C〉. Moreover, for
C ∈H /C, there exists a group homomorphism ϕC : p

−1(C)→Z such that ϕC((saCC )ab) = 1 and ϕC((s
aC′
C′ )

ab) = 0
for C′ 6= C.

Proof. First of all, Lemma 2.14.(2) of [4] shows that sH,γaH = sH,γ′
aH in p−1(C)ab. Now, for c ∈ C, we choose

x ∈ p−1(C) such that p(x) = c. We have xsH,γx−1 = scH,x(cγ). So scH,x(cγ)acH and sH,γaH are conjugate by an
element of p−1(C). So, we have

scH,x(cγ)
acH = sH,γ

aH ∈ p−1(C)ab .

And then p−1(C)ab = 〈(saCC )ab, C ∈H /C〉.
Let us now show that the family ((saCC )ab)C∈H /C is free over Z. We identify p−1(C) with

p−1(C) =

 ⊔
c,c′∈C

π1(V
reg, cx0, c

′x0)

 /C

where π1(V reg, cx0, c
′x0) denotes the homotopy classes of paths from c(x0) to c′(x0) and the action of C on

paths is simply the composition.
Since αC : V reg→C× is C-invariant (Lemma 14), the functoriality of π1 defines a group homomorphism

π1(αC) from p−1(C) to π1(C×, αC(x0)). Moreover, the map

I : γ 7−→ 1

2iπ

∫
γ

dz
z

realizes a group isomorphism between π1(C×, αC(x0)) and Z. The composition of these two maps defines a
group homomorphism. We denote it by ϕC and we now want to show that ϕC verifies the condition stated in the
Proposition.

For H ∈ C and C′ ∈H /C, let us compute ϕC′(sH,γaH ). The path sH,γaH is the composition of three paths.
The first one is γ, the third one is sHaH (γ−1) and the second one is η : t ∈ [0, 1] 7→ h+ exp(2iπaHt/eH)d.

Since αC′ is C-invariant, when we apply π1(αC′), the first part of the path and the third one are inverse from
each other. So when applying I, they do not appear. We thus obtain

ϕC′(sH,γ
aH ) =

1

2iπ

∫
αC′◦η

dz
z
.

Using the logarithmic derivative, we obtain

ϕC′(sH,γ
aH ) =

1

2iπ

∑
H′∈C′

eH′

aH′

∫ 1

0

2iπ
aH
eH

exp(2iπaHt/eH)αH′(d)

αH′(h+ exp(2iπaHt/eH)d)
dt

To compute this sum, we regroup the terms according to the orbit of H ′ under 〈sHaH 〉.
Lemma 5 shows that there are three types of orbits : two types of orbits reduced to one single hyperplane

and one other type of orbits corresponding to reflections that do not commute with sH .
Let us first study the orbits reduced to one single hyperplane. The first type corresponds to the hyperplane

H whose term of the sum is 1 and this term appears if and only if H ∈ C′. The second type corresponds to
hyperplanes H ′ such that D = H⊥ ⊂ H ′. The corresponding term of the sum is 0 since αH′(d) = 0



Let us now study the non trivial orbits. The orbits of H ′ under sHaH is {H ′, . . . , sHaH (eH/aH−1)(H ′)}.
Moreover, since a quotient of the form αH′(x)/αH′(y) does not depend of the linear form with kernel H ′, we can
replace αsHkH′ by skHαH′ to obtain

exp(2iπaHt/eH)αsH−kaHH′(d)

αsH−kaHH′(h) + exp(2iπaHt/eH)αsH−kaHH′(d)

=
exp(2iπaHt/eH)sH

−aHkαH′(d)

sH−aHkαH′(h) + exp(2iπaHt/eH)sH−aHkαH′(d)

=
exp(2iπaH(t+ k)/eH)αH′(d)

αH′(h) + exp(2iπaH(t+ k)/eH)αH′(d)
.

Considering the sum over the orbit under 〈sHaH 〉 of H ′, we obtain

eH/aH−1∑
k=0

∫ 1

0

exp(2iπaH(t+ k)/eH)αH′(d)

αH′(h) + exp(2iπaH(t+ k)/eH)αH′(d)
dt =

eH
aH

∫ 1

0

exp(2iπt)αH′(d)

αH′(h) + exp(2iπt)αH′(d)
dt .

Since xH is chosen such that αH′(h) 6= 0 for H ′ 6= H and d is small, the last term is 0 as the index of the circle
of center 0 and radius |αH′(d)| relatively to the point −αH′(h).

Remark 16 Extreme cases. The two extreme cases where C = 1 and C = W may be found
in [4, Prop. 2.2.(2)] and [4, Theorem 2.17.(2)]. In the first case, p−1(C) = P is the pure braid group whose
abelianization is the free abelian group over H . In the second case p−1(C) = B is the braid group whose
abelianization is the free abelian group over H /W .

Remark 17 The logarithmic derivative shows that for every γ ∈ p−1(C) and n ∈ Z, we have∫
αCn◦γ

dz
z

= nϕC(γ) .

3.2 Stabilizer of a hyperplane
Let us recall the notation of Section 2; we consider H ∈ H a hyperplane of the reflection group W . We

denote by NH the stabilizer of H in W and CH the parabolic subgroup of W associated to the line D = H⊥.
The set of hyperplanes commuting with H is HH (see Definition 4).

A group homomorphism
The aim of this paragraph is to construct an “extension” of the natural character of NH to the group p−1(NH)

which will be useful for the third section. We still follow the method of [4] : we construct an invariant function
with values in C× (Lemma 18) and integrate it (Definition 19). To obtain the “extension” properties of the
linear character of p−1(NH) (Proposition 23), we construct a lifting in the braid group of the elements of NH
(Remark 21). This lifting is inspired from the construction of the generator of the monodromy.

Lemma 18 An invariant function. The function αNH
= αH

fH ∈ S(V ∗) is invariant under NH .

Proof. This is clear since the line spanned by αH is identified to D through the inner product.

Definition 19 The group homomorphism. As in the proof of Proposition 15, we write

p−1(NH) =

 ⊔
n,n′∈NH

π1(V
reg, nx0, n

′x0)

 /NH .

Since αNH
: V reg→C× is NH -invariant (Lemma 18), the functoriality of π1 allows us to define a group

homomorphism π1(αNH
) from p−1(NH) to π1(C×, αNH

(x0)). Moreover, the map

I : γ 7−→ 1

2iπ

∫
γ

dz
z

realizes a group isomorphism between π1(C×, αNH
(x0)) and Z. The composition of this two maps defines a

group homomorphism ρ′ : p−1(NH)→Z. We also define ρ = fH
−1ρ′ : p−1(NH)→Q.



Remark 20 Center of the braid group of G31. In [4, Theorem 2.24], it is shown that the center of the braid
group B of an irreducible reflection group W is an infinite cyclic group generated by β : t 7→ exp(2iπt/|Z(W )|)x0
(where x0 ∈ V reg is a base point) for all but six exceptional reflection groups. In his articles [1][2], Bessis proves
that the result holds for all reflection groups but the exceptional one G31.

This remark is a first step toward the case of G31 : we show that if ZB is an infinite cyclic group, it is
generated by β. For this, let us consider H ∈H a hyperplane of G31 and ρ′ the group homomorphism defined
above. Since ZB ⊂ p−1(NH), ρ′ restricts to a group homomorphism from ZB to Z such that ρ′(β) = 1. So if
ZB is an infinite cyclic group, it is generated by β.

Remark 21 The lifting construction. Let us consider w ∈ NH . We now construct a path w̃ in V reg starting
from x0 and ending at w(x0) : p(w̃) = w. We use the notations of the description of the generators of the
monodromy around H : we write xH = h+ d with h ∈ H and αH′(h) 6= 0 for H ′ 6= H and d ∈ D = H⊥. Since
w ∈ NH , we have w(xH) = h′ + exp(2ikπ/fH)d with h′ ∈ H and 0 6 k < fH .

The path w̃ consists into four parts. As in the case of the generators of the monodromy, the first part is a
path γ from x0 to xH and the fourth path is w(γ−1) from w(xH) to w(x0). Let us now describe the second part
and the third part. The second part of w̃ is the path

t ∈ [0, 1] 7→ h+ exp(2ikπt/fH)d ∈ V reg .

The third part is of the form t ∈ [0, 1] 7→ θ(t) + exp(2ikπ/fH)d where θ(t) is a path in the complex affine line D
generated by h′ and h. It is easy to force the third part of w̃ to stay in V reg since its image is contained in the
affine line exp(2ikπ/fH)d+ D which is parallel to the hyperplane H and meets each of the other hyperplanes in
a single point : so we just have to avoid a finite number of points in C.

Remark 22 Generating set. We have seen in Remark 13 that

NH = 〈wH , sH′ , H ′ ∈HH〉

where wH ∈ NH is a once and for all fixed element realizing the ramification. It is now an easy consequence of
Theorem 2.18 of [4] that

p−1(NH) = 〈w̃H , sH′,γ, sH′′,γ′eH′′ , H ′ ∈HH , H
′′ ∈H r HH , γ, γ

′〉 .

It remains to show that the constructed group homomorphism ρ is an “extension” of the natural character of
NH . More precisely, we have the following proposition.

Proposition 23 The “extension” property. We have the following commutative square

p−1(NH)
ρ //

p

��

Q

π′

��
NH

r // UfH

where π′ : x ∈ Q 7→ exp(2iπx).

Proof. Using the generating set of NH given in Remark 22, we only need to show that
(i) ρ′(w̃H) = 1

(ii) ρ′(sH,γ) = fH/eH
(iii) ρ′(sH′,γ) = 0 for H ′ ∈H ′

H = HH r {H}
(iv) ρ′(sH′,γeH′ ) = 0 for H ′ ∈H r HH .

As in the proof of Proposition 15, the γ-part of sH,γ (resp. sH′,γ forH ′ ∈H ′
H and sH′,γeH′ forH ′ ∈H rHH)

does not appear in the computation of ρ′. We thus obtain

ρ′(sH,γ) =
1

2iπ

∫ 1

0

fH
2iπ

eH

αH(exp(2iπt/eH)d)

αH(h+ d exp(2iπt/eH))
dt = fH/eH .

For H ′ ∈H ′
H , we set xH′ = h′ + d′ with h′ ∈ H ′ and d′ ∈ D′ = H ′

⊥. We then obtain

ρ′(sH′,γ) =
1

2iπ

∫ 1

0

fH
2iπ

eH′

αH(exp(2iπt/eH′)d
′)

αH(h′ + d′ exp(2iπt/eH′))
dt = 0

since αH(d′) = 0 for H ∈H ′
H . With the same arguments, we obtain for H ′ ∈H r HH

ρ′(sH′,γ
eH ) =

1

2iπ

∫ 1

0

2iπfH
exp(2iπt)αH(d′)

αH(h′) + exp(2iπt)αH(d′)
dt = 0

since d′ is small and αH(h′) 6= 0.
For w̃H , neither the first and fourth part are involved in the computation nor the third one. Moreover, as in

the computation of ρ′(sH,γ) the second part of w̃H gives 1.



The Stabilizer Case
In this paragraph, we extend the results of Section 2 to the braid group. Namely, since p : B/[P, P ]→W is a

surjective homomorphism, the classical isomorphism theorems give the following short exact sequence

1 // p−1(CH)
j // p−1(NH)

rp // UfH // 1

which gives rise to the following exact sequence (Lemma 3)

p−1(CH)ab
jab // p−1(NH)ab

(rp)ab // UfH // 1

and Proposition 6 extends to the braid group in the following way.

Proposition 24 Abelianization in the braid group. If the orbits of the hyperplanes of H under NH and
CH are the same, the map jab is injective.

Moreover under this hypothesis, p−1(NH)ab is the free abelian group with basis w̃H , (sC)ab for C ∈H ′
H/CH

and (seCC )ab for C ∈ (H r HH)/CH .

Proof. From Lemma 3, it is enough to show that every linear character of p−1(CH) with values in C× extends
to p−1(NH). But the group of linear characters of p−1(CH) is generated by the exp(zϕC) for z ∈ C and C an
orbit of H under CH . So it suffices to show that ϕC extends to p−1(NH).

Since the orbits of H under CH and NH are the same, then for every C ∈H /CH , there exists n ∈ N∗ such
that αCn is invariant under NH (see Lemma 14 for the definition of αC). Then Remark 17 shows that

ψC : γ ∈ p−1(NH) 7−→ 1

n

∫
αCn◦γ

dz
z
∈ Q

is a well defined linear character of p−1(NH) extending ϕC .
Proposition 15 applied to CH ensures us that p−1(CH)ab is the free abelian group generated by (s

e{H}
{H} )

ab,

(sC)
ab for C ∈H ′

H/CH and (seCC )ab for C ∈ (H r HH)/CH . Moreover, we have w̃H
fH ∈ p−1(CH) and, thanks

to Remark 17,

ϕ{H}(w̃H
fH ) =

1

fH
ρ′(w̃H

fH ) = 1

We then deduce that the family w̃H
fH , (sC)ab for C ∈H ′

H/CH and (seCC )ab for C ∈ (H rHH)/CH is a basis for
p−1(CH)ab. The short exact sequence

1 // p−1(CH)ab
jab // p−1(NH)ab

(rp)ab // UfH // 1

gives the result.

Remark 25 Comparison of orbits. In this remark, we give a list of the hyperplanes for which the orbits
of hyperplanes under NH and CH are not the same. Of course, we find again in this list the hyperplanes of
Remark 7 but we have to add some others.

Let us consider the infinite series (see Section 5 for notations). When H = Hi, the orbits under NH and CH
are always the same except when r = 3 and e is even and when r = 2 and e > 3. If H = Hi,j,ζ , the orbits under
NH and CH are the same when de is even and r 6= 3 or when r = 3 and e ∈ {1, 3} or when r = 2 and d = e = 1.

For the exceptional types, G25 is the only case where the commuting orbits under NH and CH are not the
same. The only exceptional types where the non commuting orbits under NH and CH are not the same are G4,
the second (named after GAP) class of hyperplanes of G6, the first (named after GAP) class of hyperplanes of
G13 and the third (named after GAP) class of hyperplanes of G15.

4 An Application to Cohomology
In this section, we apply the preceding constructions and results to obtain a group cohomology result.

Specifically, the derived subgroup of P is normal in B, so we obtain the following short exact sequence

1 // P/[P, P ]
j // B/[P, P ]

p // W // 1 (3)

which induces a structure of W -module on P ab. By a classical result on hyperplanes arrangements (see [10] for
example), the W -module P ab is nothing else that the permutation module ZH and this section describes the
extension (3) as an element of H2(W,ZH ) using methods of low-dimensional cohomology.

The rationale breaks down into three steps and each step consists of a translation of a standard isomorphism
between cohomology groups in terms of group extensions.



(i) We decompose H into orbits under W : H = tC and uses the isomorphism

H2(W,ZH ) =
⊕

C∈H /W

H2(W,ZC)

(ii) In each orbit, we set a hyperplane HC and then ZC = IndWNC (Z) where NC is the stabilizer of HC . Shapiro’s
lemma (see [5, Proposition III.6.2]) then gives us

H2(W,ZH ) =
⊕

C∈H /W

H2(NC ,Z)

(iii) The short exact sequence 0→Z→Q→Q/Z→ 0 of NC-modules gives a long exact sequence in cohomology.
Since |NC | is invertible in Q, we have H1(NC ,Q) = H2(NC ,Q) = 0 and so we obtain the isomorphism
H2(NC ,Z) = H1(NC ,Q/Z) and

H2(W,ZH ) =
⊕

C∈H /W

H1(NC ,Q/Z) =
⊕

C∈H /W

Homgr.(NC ,Q/Z) .

The results of this section are the following proposition and corollary.

Proposition 26 Description. Under the isomorphism

H2(W,ZH ) =
⊕

C∈H /W

Homgr.(NC ,Q/Z)

the extension (3) corresponds to the family (rC : NC→Q/Z)C∈H /W where rC is the natural linear character of
NC (we identify UfHC with a subgroup of Q/Z via the exponential map).

The next corollary is a trivial consequence of Proposition 26 and generalizes a result of Digne [7, 5.1] for the
case of Coxeter groups.

Corollary 27 Order in H2(W,ZH ). Since the order of rC is fHC , we deduce that the order of the
extension (3) is κ(W ) = lcm(fHC , C ∈H /W ) (this integer κ(W ) was first introduced in [9]).

The rest of the section is devoted to the proof of Proposition 26 : one subsection for each of the three steps.

4.1 First step : splitting into orbits
The isomorphism

H2(W,ZH ) =
⊕

C∈H /W

H2(W,ZC)

is simply given by applying the various projections pC : ZH →ZC to a 2-cocycle with values in ZH where

pC :
∑
H∈H

λHH 7−→
∑
H∈C

λHH .

To give a nice expression of the corresponding extensions, we need the following lemma.

Lemma 28 Extension and direct sum. Let G be a group, X = Y ⊕ Z a direct sum of G-modules and

0 // X
u // E

v // G // 1

an extension of G by X. We denote by q : X→Y the first projection and ϕ the class of the extension E in
H2(G,X). The extension associated to q(ϕ) is

0 // Y // E/Z // G // 1

Proof. Let us denote by θ : E→E/Z the natural surjection and i : Y →Y ⊕ Z the natural map. Let us first
remark that Z is normal in E since Z is stable by the action of G. Since v is trivial on Z, then it induces a
group homomorphism ṽ : E/Z→G whose kernel is X/Z = Y . Thus the sequence

0 // Y
θui // E/Z

ṽ // G // 1 (4)

is an exact one.
If s : G→E is a set-theoretic section of v, then θs is a set-theoretic section of ṽ. The expression of a 2-cocycle

associated to an extension in terms of a set-theoretic section gives the result.

For C ∈H /W , we denote by BC the quotient group

BC = B/〈[P, P ], sH,γeH , H /∈ C〉
Lemma 28 tells us that the extension (3) is equivalent to the family of extensions

0 // ZC
jC // BC

pC // W // 1 (5)

for C ∈H /W .



4.2 Second step : the induction argument

In each orbit C ∈ H /W , we choose a hyperplane HC ∈ C and write ZC = IndWNC (Z) where NC ⊂ W is
the stabilizer of HC . Shapiro’s isomorphism lemma [5, Proposition III.6.2] shows that H2(W,ZC) = H2(NC ,Z).
Exercise III.8.2 of [5] tells us that in term of 2-cocycles Shapiro’s isomorphism is described as follow

S : (ϕ : G2 → ZC) 7−→ (fC ◦ ϕ : NC
2 → Z)

where fC : ZC→Z is the projection onto the HC-component.
Decomposing Shapiro’s isomorphism into the following two steps

(ϕ : G2 → ZC) 7−→ (ϕ : NC
2 → ZC) 7−→ (fC ◦ ϕ : NC

2 → Z) ,

allows us to interpret it in terms of group extensions. Exercice IV.3.1.(a) of [5] gives a description of the first
step : the corresponding extension is given by

0 // ZC // pC−1(NC) // NC // 1

since pC−1(NC) is the fiber product of BC and NC overW . Moreover, since fC is a split surjection as a NC-module
map, Lemma 28 gives us the following extension

0 // Z // pC−1(NC)/〈sH,γeH , H ∈ C r {HC}〉 // NC // 1

Finally, the extension (3) is equivalent to the family of extensions

0 // Z // B′C
pC // NC // 1 (6)

where B′C = p−1(NC)/〈[P, P ], sH,γeH , H 6= HC〉 and C ∈H /W .

4.3 Third step : linear character

For the third step, we use results and notations of Section 2 and Section 3. Let us consider the group
homomorphism ρC : p

−1(NC)→Q of Definition 19. Since it is trivial on 〈[P, P ], sH,γeH , H 6= HC〉, it induces a
group homomorphism from B′C to Q still denoted by ρC . Moreover, since ρC(sHC,γeHC ) = 1, Proposition 23 gives
the following commutative diagram

0 // Z // Q // Q/Z // 0

0 // Z // B′C
pC //

ρC

OO

NC //

rC

OO

1

Exercises IV.3.2 and IV.3.3 of [5] tell us precisely that the group homomorphism corresponding to (6) is rC . So
the extension (3) is equivalent to the family (rC)C∈H /W . This concludes the proof of Proposition 26.

5 Tables

5.1 The infinite series
In this subsection, we bring together tables for the orbits of the hyperplanes of G(de, e, r) under the centralizer

of a reflection and under the parabolic subgroup associated to the line of the reflection and tables for the values
of fH and the index of ramification. So let us consider the complex reflection group G(de, e, r) acting on Cr
with canonical basis (e1, . . . , er). The standard point of Cr is denoted by (z1, . . . , zr).

The hyperplanes of G(de, e, r) are Hi = {zi = 0} for i ∈ {1, . . . , r} (when d > 1) and Hi,j,ζ = {zi = ζzj}
for i < j and ζ ∈ Ude (when r > 2). They split in general into two conjugacy classes under G(de, e, r) whose
representant may be chosen as follow H1 and H1,2,1.

Let us continue with more notations. For every triple of integers d, e, r, we denote by π : G(de, e, r)→U the
following group morphism : for g ∈ G(de, e, r), π(g) is the product of the nonzero coefficients of the monomial
matrix g. When e is even, we denote by e′ = e/2. We denote by e′′ = e/ gcd(e, 3) and by P the set of elements
of Ude with strictly positive imaginary part.

The case of the hyperplane H1 = {z1 = 0}
We then have d > 1. The stabilizer N of H1 is described by

N = {(α, g), g ∈ G(de, 1, r − 1), α ∈ Ude, (π(g)α)d = 1}

and the pointwise stabilizer C of D1 = H1
⊥ = Ce1 is C = G(de, e, r − 1). Table 1 gives the orbits of the

hyperplanes under N and C. In Table 1, C.O. stands commuting orbits and N.C.O. stand for non commuting
orbits.



The hyperplane H1,2,exp(2iπ/de) with r = 2

We set ζ = exp(2iπ/de). The reflection of G(de, e, 2) with hyperplane H1,2,ζ is

s =

[
ζ

ζ−1

]
The line of s is D = C(e2 − ζe1). The centralizer of s is given by

N =

{
dλ =

[
λ
λ

]
, tλ =

[
λζ

λζ−1

]
, λ2d = 1

}
.

The eigenvalue of tλ on D is λ whereas the eigenvalue of dλ on D is −λ. So the parabolic subgroup C associated
to D is C = {id,−s}. The orbits of hyperplane under C and N are the same. The commuting ones are {H1,2,ζ}
and {H1,2,−ζ}. The non commuting ones are {H1, H2} and {H1,2,µ, H1,2,ζ2µ−1} for µ ∈ Ude r {±ζ}.

The hyperplane H1,2,1 = {z1 = z2}
We then have r > 2. The reflection of G(de, e, r) with hyperplane H1,2,1 is the transposition τ12 swapping 1

and 2. Since the elements of G(de, e, r) are monomial matrices, an element of G(de, e, r) commuting with τ12
stabilizes the subspace spanned by e1 and e2. Thus the stabilizer N of H1,2,1 is given by

N =

{
dλ,g =

[
λ
λ

g

]
, tλ,g =

[
λ

λ
g

]
,

λ ∈ Ude, g ∈ G(de, 1, r − 2), (π(g)λ2)d = 1

}
The line of τ12 is C(e1 − e2). So the eigenvalue of dλ,g on C(e1 − e2) is λ whereas the eigenvalue of tλ,g on
C(e1 − e2) is −λ. Thus, when de is odd, the parabolic subgroup associated to the line C(e1 − e2) is given by

C =

{[
1
1

g

]
, g ∈ G(de, e, r − 2)

}

and when de is even, the parabolic subgroup associated to the line C(e1 − e2) is given by

C =

{[
1
1

g

]
,

[
−1

−1
g

]
, g ∈ G(de, e, r − 2)

}

Table 2 gives the orbits the hyperplanes of G(de, e, r) under N and C. In Table 2, C.O. stands commuting
orbits and N.C.O. stand for non commuting orbits.

Value for fH and the index of ramification
The computations of the preceding paragraphs also lead to Table 3 which brings together the values of eH , fH

and dH for every class of hyperplanes. In Table 3, we set ζ = exp(2iπ/de).
We obtain the following errata for the proposition 6.1 of [9]. Let us consider r > 2. For W = G(de, e, r), we

have κ(W ) = 2de if de is odd and r > 3. We have κ(W ) = de if (d 6= 1 and r = 2 and de even) or (r > 3 and de
even). We have κ(W ) = 2de if (d 6= 1 and r = 2 and de odd). We have κ(W ) = 2 if d = 1 and r = 2 1.

5.2 Exceptional types
With the package CHEVIE of GAP [8][6], we obtain Table 4 for the values of eH , fH and fH/eH for the

hyperplanes of the exceptional reflection groups. In particular, the only non Coxeter groups with only unramified
hyperplanes are G8, G12 and G24. Table 4 can also easily be obtained from the table of [9] for the value of κ(W ).
The first and fifth columns stand for the number of the group in the Shephard and Todd classification. We also
write instructions which determines, for a given hyperplane H, the orbits of commuting and non commuting
hyperplanes under NH and CH which is used to obtain the results of Remark 7 and Remark 25.

1Comparing to the preceding versions, we correct here the value of κ(W ) for de odd and r = 2. This was pointed out by Ivan
Marin.
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H fH eH dH
z1 = 0 r = 1 d d 1
z1 = 0 r > 2 d 6= 1 de d e
z2 = z1 r > 3 de odd 2de 2 de
z2 = z1 r > 3 de even de 2 de/2
z2 = z1 r = 2 e odd and d even d 2 d/2
z2 = z1 r = 2 e even or d odd 2d 2 d
z2 = ζz1 r = 2 e even 2d 2 d
Table 3: Values for the ramification index for G(de, e, r)

ST eH fH dH ST eH fH dH
4 3 6 2 21 2,3 12,12 6,4
5 3,3 6,6 2,2 22 2 4 2
6 2,3 4,12 2,4 23 2 2 1
7 2,3,3 12,12,12 6,4,4 24 2 2 1
8 4 4 1 25 3 6 2
9 2,4 8,8 4,2 26 3,2 6,6 2,3
10 3,4 12,12 4,3 27 2 6 3
11 2,3,4 24,24,24 12,8,6 28 2,2 2,2 1,1
12 2 2 1 29 2 4 2
13 2,2 8,4 4,2 30 2 2 1
14 2,3 6,6 3,2 31 2 4 2
15 2,3,2 12,12,24 6,4,12 32 3 6 2
16 5 10 2 33 2 6 3
17 2,5 20,20 10,4 34 2 6 3
18 3,5 30,30 10,6 35 2 2 1
19 2,3,5 60,60,60 30,20,12 36 2 2 1
20 3 6 2 37 2 2 1

Table 4: Values for the ramification index for the exceptional groups
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