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Abstract

The final result of this article gives the order of the extension
1— > P/[P,P|— = B/[P,P| —2>W — 1

as an element of the cohomology group H?(W, P/[P, P]) (where B and P stands for the braid group and
the pure braid group associated to the complex reflection group W). To obtain this result, we first refine
Stanley-Springer’s theorem on the abelianization of a reflection group to describe the abelianization of the
stabilizer Ny of a hyperplane H. The second step is to describe the abelianization of big subgroups of the
braid group B of W. More precisely, we just need a group homomorphism from the inverse image of Ny by
p (where p : B— W is the canonical morphism) but a slight enhancement gives a complete description of the
abelianization of p~*(W’) where W’ is a reflection subgroup of W or the stabilizer of a hyperplane. We also
suggest a lifting construction for every element of the centralizer of a reflection in W.

1 Introduction

Let us start with setting the framework. Let V' be a finite dimensional complex vector space; a reflection is a
non trivial finite order element s of GL(V') which pointwise fixes a hyperplane of V, called the hyperplane of s.
The line of s is the one dimensional eigenspace of s associated to the non trivial eigenvalue of s. Let W C GL(V)
be a (complex) reflection group that is to say a finite group generated by reflections. We denote by . the set of
reflections of W and ¢ the set of hyperplanes of W :

S ={seW, codimKer(s—id) =1} and # ={Ker(s—id), se.v}.

For a reflection group, we denote by V'8 =V \ UgcH the set of regular vectors. According to a classical
result of Steinberg [12] Corollary 1.6], V"8 is precisely the set of vectors that no non trivial element of W fixes.
Thus, the canonical map 7 : V'8 — V™8 /TV is a Galois covering. So let us fix a base point ¢ € V"8 and denote
by P = m(V*8, xy) and B = w1 (V'8 /W, 7(x)) the fundamental groups of V¢ and its quotient V**¢ /W, we
obtain the short exact sequence

1 P B—7"

W 1 (1)

The groups B and P are respectively called the braid group and the pure braid group of W.
The final result of this article (Corollary gives the order of the extension

1— = P/[P,P|—2~B/[P,P| LW 1

as an element of the cohomology group H?(W, P/[P, P]). This order turns out to be the integer (W) defined
by Marin in [9]. As explained in [9], this integer is linked to the periodicity of the monodromy representation of
B associated to the action of W on its set of hyperplanes.

To obtain this result, we first describe in section [2] the abelianization of some subgroups of complex reflection
groups. Specifically, we study the stabilizer of a hyperplane H which is the same as the centralizer of a reflection
of hyperplane H. Contrary to the case of Coxeter groups, this is not a reflection subgroup of the complex
reflection group W in general. The first step is to refine Stanley-Springer’s theorem [I3][14] on the abelianization
of a reflection group (see Proposition |§| in Section .

The rationale also relies on a good description (Section [3]) of abelianization of various types of big subgroups
of the braid group B of W (here “big” stands for “containing the pure braid group P”). Though we just need
to construct a group homomorphism from the inverse image of the stabilizer of H by p with values in Q
(see Definition [19] and Proposition [23]), we give in fact a complete description of the abelianization of p~1(W’)
with W’ a reflection subgroup of W or the stabilizer of a hyperplane (Proposition [15| and Proposition . We
also suggest a lifting construction for every element of the centralizer of a reflection in W generalizing the
construction of the generator of monodromy of [4, p.14] (see Remark .

Orbits of hyperplanes and ramification index are gathered in tables in the last section.



We finish the introduction with some notations. We fix a W-invariant hermitian product on V denoted
by (,-) : orthogonality will always be relative to this particular hermitian product. We denote by S(V*) the
symmetric algebra of the dual of V' which is also the polynomial functions on V.

Notation 1 — Around a Hyperplane of W. For H € J7,
e one chooses ay € V* a linear form with kernel H;

e one sets Wy =Fixw (H) ={g €W, Vze€ H, gxr=xz}. Thisisa cyclic subgroup of W. We denote
by ey its order and by sp its generator with determinant (g = exp(2in/ey). Except for identity, the
elements of Wy are precisely the reflections of W whose hyperplane is H. The reflection sg is called the
distinguished reflection for H in W.

For n a positive integer, we denote by U,, the group of the n'" root of unity in C and by U the group of unit
complex numbers. For a group G, we denote by [G, G] the commutator subgroup of G and by G** = G/[G, G|
the abelianization of G.

2 Abelianization of Subgroups of Reflection Groups

Stanley-Springer’s Theorem (see [I3, Theorem 4.3.4][14, Theorem 3.1]) gives an explicit description of the
group of linear characters of a reflection group using the conjugacy classes of hyperplanes. Naturally, it applies
to all reflection subgroups of a reflection group and in particular to parabolic subgroups thanks to Steinberg’s
theorem [12], Theorem 1.5|. But since P/[P, P] is the ZW permutation module defined by the hyperplanes of W,
we are interested in the stabilizer of a hyperplane which is not in general a reflection subgroup of W. So we have
to go deeper in the study of the stabilizer of a hyperplane.

Before starting our study of the stabilizer of a hyperplane, we write down Stanley-Springer’s Theorem because
we will use it many times.

Theorem 2 — Stanley-Springer’s Theorem. For every map n : 5 — N constant on the W-orbits of ¢, there
exists a linear character x : W — C* such that x(sgy) = det(sgy) "H.
Moreover, the y-isotypic component of S(V*) is a free S(V*)"-module of rank 1 generated by

Qx = H oyt

Heow

where the ng are related to x by the formula above and satisfy the relations 0 < nyg <ey — 1.

For H € 57, we set
Ny={weW, wH=H}={weW, wsy=syw}

the stabilizer of H which is also the centralizer of sy. We denote by D = H~ the line of sy (or of every
reflection of W with hyperplane H) it is the unique Np-stable line of V such that H @ D = V and Ny
is also the stabilizer of D (see [3, Proposition 1.19]). We denote the parabolic subgroup associated to D by
Cy={weW, VzeD, wr=cz}.

Since D is a line stable by every element of Ny and Wy C Ny, there exists an integer fg such that ey | fu
and the following sequence is exact

1 Cy ——> Ny —> Uy, 1 (2)

where 4 is the natural inclusion and r denote the restriction to D. We define r to be the natural linear character
Of NH .

Before stating our main result on the abelianization of the stabilizer of a hyperplane, let us start with a
straightforward lemma.

Lemma 3 — Abelianization of an exact sequence. Let us consider the following exact sequence of groups
where M is an abelian group.

1 C—>N—"sM 1
Then the following sequence is exact

o 0 e Ty 1

Moreover the map i*" is injective if and only if [N, N] = [C, C]. When C®® and M are finite, the injectivity
of i*" is equivalent to |C?*P||M| = |N#P|.

We also have the following criterion : the map i*" is injective if and only if the canonical restriction map
Hom,, (N, C*) — Homy, (C,C*) is surjective.



Proof. The first injectivity criterion is an easy diagram chasing computation. The second one is trivial. Let us
focus on the third one. Since C* is a commutative group, we have the following commutative square whose
vertical arrows are isomorphisms

Homgr- (N7 Cx ) Homgr. (Ca C* )

|

Homyg, (NP, C*) o Homy,, (C*P,C*)

b

Moreover, since C* is a divisible abelian group, i*" is injective if and only if 07" is surjective. O

Before applying the preceding lemma to the stabilizer of a hyperplane, let us introduce a definition and a
classical linear algebra lemma.

Definition 4 — Commuting hyperplanes. Let H, H' € 5#. We say that H and H' commute if sg and sy
commute.
We denote by % the set of hyperplanes which commute with H and s¢}; = 565 ~ {H}.

The next lemma on commuting hyperplanes is stated in [3, Lemma 1.7].
Lemma 5 We have the following equivalent characterizations :

() the hyperplanes H and H' commute
(il) H=H' or D =H* C H'
(i1) every reflection of W with hyperplane H commutes with every reflection of W with hyperplane H’
(iv) there exists a reflection of W with hyperplane H which commutes with a reflection of W with hyperplane H’

As a consequence of Lemma [3] we are now able to formulate the following proposition.

Proposition 6 — Abelianization of the stabilizer of a hyperplane. For a hyperplane H € J#, the following
sequence is exact

-ab ab
ce L N2> T > Uy, 1

Moreover, we have the following geometric characterization of the injectivity of i®® : the map i*" is injective if
and only if the orbits of the hyperplanes commuting with H under Ny and Cp are the same.

Proof. Steinberg’s theorem and Lemma (1) ensure us that Cy is the reflection subgroup of W generated by
the sy for H' # H commuting with H. Thanks to Theorem [2] we are able to describe the linear characters of
Cp. For every linear character ¢ of Cy, there exists integers ep for O € J};/Cy such that the polynomial

Q= [I 1II «a s

Oe), /Cx H'€O

verifies Qs = 0(g)Qs for every g € C.
Let us assume that the orbits of the hyperplanes commuting with H under Ny and Cp are the same. For
every g € Ny and every O € 7, /Cp, there exists Ay € C* such that

So we obtain that, for every g € Np, there exists py; € C* such that gQs = 114Qs. Thus every linear character
of Cy extends to Ny and Lemma tells us that the map i®P is injective.

Let us assume now that every linear character of C'y extends to Ng. The orbit of H under Ny and Cp is
{H}. So let us consider an orbit O € 7, /Cy. We define

Q=[] o €s(v).

H'eO

Thanks to Theorem [2, @) define a linear character y of Cy: for every ¢ € Cy, there exists x(c) € C* such that
cQ = x(c)Q for every ¢ € Cy. We then consider the Ny-submodule M of S(V*) generated by Q. As a vector
space, M is generated by the family (nQ)nen,. But, since Cp is normal in Ny, we obtain for ¢ € Cyy,

en@ =nn"ten@Q = nx(n"'en)Q.

Since x extends to Ny, we have x(n~'cn) = x(c) and then en@ = x(c)nQ. Theorem [2] allows us to conclude
that n@Q = A, @ for some A, € C*. Since S(V*) is a UFD, we obtain that O is still an orbit under Ng. O



Remark 7 — Commuting Orbits. The orbits of the hyperplanes commuting with H under Ny and Cy are
the same for every hyperplane H of every complex reflection group except the hyperplanes of the exceptional
group G5 and the hyperplanes H; (1 < i < r) of the group G(de, e,r) when r = 3 and e is even (see section
for the notations).

In Section [} we give tables for the various orbits of hyperplanes for the infinite series G(de, e, r). For the
exceptional complex reflection groups, we check the injectivity or non-injectivity of *P using the package CHEVIE
of GAP [6][8].

For a hyperplane H € 57, the comparison of ey and fy leads to the following definition.

Definition 8 — Ramification at a hyperplane. = We define dy = fy/eq to be the index of ramification of W
at the hyperplane H. We say that W is unramified ot H if dg = 1.
We say that an element w € Ny such that r(w) = exp(2in/fu) realizes the ramification.

Remark 9 — The Coxeter Case. When H is an unramified hyperplane, we have Ny = Cy x Wy which
is generated by reflections thanks to Steinberg’s theorem [I2, Theorem 1.5] and sg realizes the ramification.
Moreover P is trivially injective.

In a Coxeter group, every hyperplane is unramified. Indeed, the eigenvalue on the line D of an element of
Ny is a finite order element of the field of the real numbers.

Remark 10 — The 2-dimensional Case. When W is a 2-dimensional reflection group, Ny is an abelian
group and i = i®" is injective.

In section [5] we give tables for the values of ey, fiy and dy for every hyperplane of every complex reflection
groups. From these tables, we obtain the following remarks.

Remark 11 — Unramified G(de,e,r).  All the hyperplanes of G(de, e, r) are unramified only when r =1 or
when G(de, e,r) is a Coxeter group (that is to say if d =2 and e =1 and r > 2 (Coxeter group of type B,.) or if
d=1and e =2 and r > 3 (Coxeter group of type D,.) or if d =1 and e = 1 and r > 3 (Coxeter group of type
A,_1) of if d =1 and r = 2 (Coxeter group of type Iz(e)).

Remark 12 — Unramified exceptional groups. The only non Coxeter groups for which every hyperplane is
unramified are Gg, G1o and Gay.

Remark 13 — Generating Set. Since Cy is the parabolic subgroup associated to D, it is generated by the
reflections it contains (this is Steinberg’s theorem). Moreover, if wy € Ny realizes the ramification. Then, the
exact sequence tells us that Ny is generated by wy and the family of sgy+ such that H' € 7.

3 Abelianization of Subgroups of Braid Groups

In this section, we describe abelianizations of subgroups of B containing P that is to say of inverse images of
subgroups W’ of W. Explicitly, we are able to give a complete description of p~!(W’ )ab if W’ is a reflection
subgroup (Proposition [15)) or if W' is the stabilizer of a hyperplane under geometrical assumptions on the
hyperplane (Propositio. We also construct a particular linear character of p~1(Npg) lifting the natural
linear character r of Ny which is of importance for the next section (Definition .

Our method is similar to the method of [4] for the description of B : we integrate along paths invariants
polynomial functions. So, we have first to construct invariant polynomial functions and then verify that we have
constructed enough of them.

3.1 Subgroup Generated by Reflections

In this subsection, we fix C' a subgroup of W generated by reflections. We denote by & C S the set of
hyperplanes of C. For H € ¢, then Cy = {c€ C, Va € H, cx =z} is a subgroup of Wy and so generated
by sy with ay | ey. For H € 5 \ ¢, we set ag = eg. We then obtain C = (syg®®, H € 5). For
C € s /C a C-class of hyperplanes of W, we denote by ac the common value of ay for H € C.

The aim of this subsection is to give a description of the abelianization of p~*(C') C B. For this, we follow
the method of [4] and we start to exhibit invariants which will be useful to show the freeness of our generating
set of p~1(C)2b.

Lemma 14 — An invariant. We define, for C € 52/C,

oc = H apti/iH e S(V*).
HecC

Then a¢ is invariant under the action of C.

Proof. If C is a class of hyperplanes of J# then this is an easy consequence of Theorem



Assume that C is not a class of hyperplanes of 5. Let us choose a reflection s of C' and let ng be the order
of s. Since C is not a class in ¢, the hyperplane of s does not belong to C. We then deduce that the orbits of
C under the action of (s) are of two types.

First type : the orbits of H € C such that sy and s commute. Since ssys~! = Ss(m), we then deduce that
s(H) = H. And so the orbit of H under (s) is reduced to H. We denote by H, the hyperplane of s. Since
H # Hg, Lemmatells us that D = H+ C H, and so s acts trivially on D which is identified to the line spanned
by oy through the inner product.

Second type : the orbits of H € C such that sys # ssy. If s’H = H then s* and sy commute and thus,
Lemma ensures us that s is trivial. We then obtain that the orbit of H under (s) has cardinality n,. So if we
denote by Q the following product apgigpr -« Ogns—1p = g say - - - s Lay with A € C*, we have sQ = Q.

We then easily obtain sac = a¢ for every s € C and so ag¢ is invariant under the action of C. O

Before stating the main result of the subsection, we recall the notion of “generator of the monodromy around
a hyperplane” as defined in [4], p.14]. For H € 7, we define a generator of the monodromy around H to be a
path sg - in V' which is the composition of three paths. The first path is a path y going from z( to a point
xy which is near H and far from other hyperplanes. To describe the second path, we write zy = h + d with
h € H and d € D = H*, and the second path is ¢ € [0,1] — h + exp(2int /ey )d going from xp to sy (zg). The
third path is sy (y™') going from sy (zg) to sg(xo). We can now state our abelianization result.

Proposition 15 — Abelianization of subgroups of the braid group. Let C be a subgroup of W generated by
reflections. Then p~!(C)?P is the free abelian group over .7 /C the C-classes of hyperplanes of W.

Explicitly, we have p~1(C) = (sy**, (H,~)) (see [4, Theorem 2.18]). For C € 5 /C, we denote by (s3°)*"
the common value in p~1(C)?P of the sy for H € C. Then p~}(C)*> = ((s&¢)*P, C € #/C). Moreover for
C € A /C, there exists a group homomorphism ¢c : p~(C) — Z such that ¢ ((s6¢)*?) = 1 and e ((sgs’)*P) =0
for ¢’ #£C.

Proof. First of all, Lemma 2.14.(2) of [4] shows that sy # = sy %" in p~(C)*". Now, for ¢ € C, we choose
x € p~1(C) such that p(z) = c. We have rsgyxTt = ScH,z(cy) S0 ScH,x(ey) < and sy @ are conjugate by an
element of p~1(C). So, we have

SCH,z(cy)aCH = SH,YaH € p—l(c)ab :

And then p~1(C)*P = ((sg¢)**, Ce #/C).
Let us now show that the family ((s&€)*)ce/c is free over Z. We identify p~!(C) with

p (C) = |_| 1 (V'8 cxg, d'mo) | /C

c,c'eC

where 71 (V™8 cxg, 'zy) denotes the homotopy classes of paths from c(zg) to ¢(z) and the action of C' on
paths is simply the composition.

Since a¢ : V™8 — C* is C-invariant (Lemma , the functoriality of 7 defines a group homomorphism
71 (ae) from p~1(C) to m1 (C*, ac(xg)). Moreover, the map

realizes a group isomorphism between w1 (C*, ac(zp)) and Z. The composition of these two maps defines a
group homomorphism. We denote it by ¢¢ and we now want to show that ¢¢ verifies the condition stated in the
Proposition.
For H € C and C' € /C, let us compute ¢¢:(sgy*™). The path sy 7 is the composition of three paths.
The first one is y, the third one is sy 7 (y~!) and the second one is n : t € [0,1] — h + exp(2imayt/ey)d.
Since a¢r is C-invariant, when we apply m1(acs), the first part of the path and the third one are inverse from
each other. So when applying I, they do not appear. We thus obtain

1 dz
A GH) = — —.
wer(sHy"") QiWL o 2

Using the logarithmic derivative, we obtain

dt

u en’ an exp(2iragt/ey)an (d)
po(s115") = 5= [
im A A eH ap (h+ exp(2iragt/er)d)
To compute this sum, we regroup the terms according to the orbit of H' under (sg®).
Lemma [5| shows that there are three types of orbits : two types of orbits reduced to one single hyperplane
and one other type of orbits corresponding to reflections that do not commute with sg.
Let us first study the orbits reduced to one single hyperplane. The first type corresponds to the hyperplane
H whose term of the sum is 1 and this term appears if and only if H € C’. The second type corresponds to
hyperplanes H' such that D = H+ C H’. The corresponding term of the sum is 0 since ag(d) =0



Let us now study the non trivial orbits. The orbits of H' under sz is {H',..., sy (¢n/an=D ([},
Moreover, since a quotient of the form a g (x)/am (y) does not depend of the linear form with kernel H’, we can
replace o, s by sk ap to obtain

exp(2imagt/em)a, —ray g (d)
A, —kag g (h) +exp(2imant/em)o,, ~ray g (d)

exp(2imagt/em)sy " Fay (d)
- sgTeHko g (h) + exp(2i7mHt/eH)sH*aHkaH/ (d)
B exp(2iray(t +k)/ex)an (d)
ap:(h) + exp(2iray (t + k) /en)an (d)

Considering the sum over the orbit under (sy®#) of H’, we obtain
”%1 /1 exp(iman(t+k)/em)aw(d) .
P 0 aH/(h) +exp(2i7raH(t—|—k)/eH)aH/(d)
en ! exp(2imt) oy (d)
ag Jo ap (h)+exp(2int)ay (d)

dt.

Since xp is chosen such that ag:(h) # 0 for H' # H and d is small, the last term is 0 as the index of the circle
of center 0 and radius |a g (d)| relatively to the point —ag (h). O

Remark 16 — Extreme cases. The two extreme cases where C = 1 and C' = W may be found
in [4, Prop. 2.2.(2)] and [4, Theorem 2.17.(2)]. In the first case, p~1(C) = P is the pure braid group whose
abelianization is the free abelian group over .#. In the second case p~(C) = B is the braid group whose
abelianization is the free abelian group over 2 /W.

Remark 17 The logarithmic derivative shows that for every v € p~1(C) and n € Z, we have

dz
[ G =neetn.
xc™oy

3.2 Stabilizer of a hyperplane

Let us recall the notation of Section [2} we consider H € . a hyperplane of the reflection group W. We
denote by Ng the stabilizer of H in W and Cy the parabolic subgroup of W associated to the line D = H +.
The set of hyperplanes commuting with H is 5% (see Definition .

A GROUP HOMOMORPHISM

The aim of this paragraph is to construct an “extension” of the natural character of N to the group p~!(Ng)
which will be useful for the third section. We still follow the method of [4] : we construct an invariant function
with values in C* (Lemma and integrate it (Definition . To obtain the “extension” properties of the
linear character of p~*(Ng) (Proposition , we construct a lifting in the braid group of the elements of Ny
(Remark . This lifting is inspired from the construction of the generator of the monodromy.

Lemma 18 — An invariant function. The function ay, = ag’™ € S(V*) is invariant under N.
Proof. This is clear since the line spanned by o« is identified to D through the inner product. O

Definition 19 — The group homomorphism. As in the proof of Proposition we write

p ' (Nu) = |_| w1 (V'8 nao,n'xo) | /Nu .

n,n'ENg

Since ap, : V' —-C* is Npy-invariant (Lemma , the functoriality of m; allows us to define a group
homomorphism 1 (ay,, ) from p~ (N ) to m1(CX, an, (70)). Moreover, the map

L[

I:iyr— —
YT o

vy %

realizes a group isomorphism between 71 (C*, any, (29)) and Z. The composition of this two maps defines a
group homomorphism p’ : p~'(Ng) — Z. We also define p = fz'p' : p~(Ng) = Q.



Remark 20 — Center of the braid group of Gs;.  In [4, Theorem 2.24], it is shown that the center of the braid
group B of an irreducible reflection group W is an infinite cyclic group generated by S : t — exp(2int/|Z(W)|)xo
(where x( € V™8 is a base point) for all but six exceptional reflection groups. In his articles [I][2], Bessis proves
that the result holds for all reflection groups but the exceptional one G3;.

This remark is a first step toward the case of Gi3; : we show that if ZB is an infinite cyclic group, it is
generated by 3. For this, let us consider H € J# a hyperplane of G31 and p’ the group homomorphism defined
above. Since ZB C p~!(Ng), p restricts to a group homomorphism from ZB to Z such that p'(3) = 1. So if
Z B is an infinite cyclic group, it is generated by 5.

Remark 21 — The lifting construction. Let us consider w € Ngy. We now construct a path w in V'8 starting
from zy and ending at w(zg) : p(w) = w. We use the notations of the description of the generators of the
monodromy around H : we write 2y = h +d with h € H and ag/(h) #0 for H' # H and d € D = H*. Since
w € Ny, we have w(xy) = h' + exp(2ikn/frr)d with b’ € H and 0 < k < fp.

The path w consists into four parts. As in the case of the generators of the monodromy, the first part is a
path y from x¢ to xy and the fourth path is w(y~!) from w(zg) to w(xg). Let us now describe the second part
and the third part. The second part of w is the path

t €10,1] — h + exp(2iknt/fy)d € V8.

The third part is of the form ¢t € [0, 1] — 0(t) + exp(2ikn/ fr)d where 0(¢) is a path in the complex affine line 7
generated by A’ and h. It is easy to force the third part of w to stay in V™8 since its image is contained in the
affine line exp(2ikm/ fr)d + 2 which is parallel to the hyperplane H and meets each of the other hyperplanes in
a single point : so we just have to avoid a finite number of points in C.

Remark 22 — Generating set. We have seen in Remark (13| that
Ny = (wH,sH/, H ¢ %H>

where wy € Ny is a once and for all fixed element realizing the ramification. It is now an easy consequence of
Theorem 2.18 of [4] that

P (Nu) = (Wi, swy, sur ", H' € Ay, H' € 0N Ay, v, V).

It remains to show that the constructed group homomorphism p is an “extension” of the natural character of
Npg. More precisely, we have the following proposition.

Proposition 23 — The “extension” property. We have the following commutative square

p ' (Ng) —2=Q

Ny ——= Uy,
where 7’ : x € Q — exp(2inx).

Proof. Using the generating set of Ny given in Remark 22] we only need to show that
(i) p'(wrr) =1
(i) p'(sHy) = fu/en
(133) p'(smry) =0 for H' € 7 = sy ~ {H}
(i) p' (s H) =0 for H' € S\ .
As in the proof of Proposition the y-part of sg (vesp. sp - for H' € 5¢}; and sg 4 °#" for H' € S\ )
does not appear in the computation of p’. We thus obtain

1/1 2im oy (exp(2int/ey)d)
2im J, Hen ag(h+ dexp(2int/ex))

p(sHy) = dt = fu/en -

For H' € A7}y, we set xg = b’ +d' with ' € H' and d’ € D’ = H'*. We then obtain

1 /1 2ir  ap(exp(2int/ey:)d’)
2im 0 HeH/ aH(h’+d’exp(2i7rt/eH/))

since ay(d') =0 for H € 5}, With the same arguments, we obtain for H' € ¢ \ 7%

P/<5H’,y) = dt =0

exp(2imt)ap (d)

dt =
) + exp(2int)ag(d) 0

1 1
/ ey _ N
SH = — 2
plsm ™) 2i7r/0 fHaH(
since d’ is small and ay(h’) # 0.
For wy, neither the first and fourth part are involved in the computation nor the third one. Moreover, as in
the computation of p'(sg ) the second part of wg gives 1. O



THE STABILIZER CASE

In this paragraph, we extend the results of Section [2|to the braid group. Namely, since p : B/[P, P| =W is a
surjective homomorphism, the classical isomorphism theorems give the following short exact sequence

p

1 ——p~ ! (Cu) ——p~"(Nn) Ut 1
which gives rise to the following exact sequence (Lemma [3))
-1 ab jab -1 ab (Tp)ab
p~ (Cu)® ——p  (Nnu) Ut 1

and Proposition [f] extends to the braid group in the following way.

Proposition 24 — Abelianization in the braid group. If the orbits of the hyperplanes of % under Ny and
Cy are the same, the map ;P is injective.

Moreover under this hypothesis, p~!(Nz)2P is the free abelian group with basis wgz, (s¢)*® for C € #},/Cy
and (s&)?P for C € (A~ Hi)/Ch.

Proof. From Lemma it is enough to show that every linear character of p~*(Cy) with values in C* extends
to p~1(Ng). But the group of linear characters of p~!(Cpr) is generated by the exp(zpc) for z € C and C an
orbit of # under Cp. So it suffices to show that ¢c extends to p~t(Ng).

Since the orbits of # under Cyy and Ny are the same, then for every C € 5 /Cp, there exists n € N* such
that «e™ is invariant under Ny (see Lemma [14] for the definition of «¢). Then Remark [17| shows that
1 dz

Ye:y€Ep {(Nu)r— = €Q

xemoy #

is a well defined linear character of p~1(Ng) extending ¢c.
Proposition |15/ applied to Cg ensures us that p~!(Cg )P is the free abelian group generated by (s?{;}} )ab

s¢)?P for C € ¢ /Cy and (s5°)2P for C € (4 ~ H#7)/Cr. Moreover, we have @jq/fH € p~1(Cg) and, thanks
H c
to Remark [17]

__ 1 __
<P{H}(waH) = Eﬂ'(waH) =1

We then deduce that the family wg ', (s¢)*® for C € ), /Cy and (568)?P for C € (A \ Hy)/Ch is a basis for
p~1(Cg)?P. The short exact sequence

1 b I b D
1——p (Cu)*™ ——p (Nu)" Uy 1

gives the result. O

Remark 25 — Comparison of orbits. In this remark, we give a list of the hyperplanes for which the orbits
of hyperplanes under Ny and Cpy are not the same. Of course, we find again in this list the hyperplanes of
Remark [1] but we have to add some others.

Let us consider the infinite series (see Section [5| for notations). When H = H;, the orbits under Ny and Cg
are always the same except when 7 = 3 and e is even and when 7 = 2 and e > 3. If H = H; j ¢, the orbits under
Ny and Cy are the same when de is even and 7 # 3 or when r =3 and e € {1,3} or when r =2 and d = e = 1.

For the exceptional types, G5 is the only case where the commuting orbits under Ny and C'y are not the
same. The only exceptional types where the non commuting orbits under Ny and Cpy are not the same are Gy,
the second (named after GAP) class of hyperplanes of Gg, the first (named after GAP) class of hyperplanes of
G13 and the third (named after GAP) class of hyperplanes of Gys.

4 An Application to Cohomology

In this section, we apply the preceding constructions and results to obtain a group cohomology result.
Specifically, the derived subgroup of P is normal in B, so we obtain the following short exact sequence

1— = PJ[P,P| 2~ B/[P,P| LW 1 (3)

which induces a structure of W-module on P?". By a classical result on hyperplanes arrangements (see [10] for
example), the W-module P2 is nothing else that the permutation module Z.7 and this section describes the
extension as an element of H2(W, Z.5#) using methods of low-dimensional cohomology.

The rationale breaks down into three steps and each step consists of a translation of a standard isomorphism
between cohomology groups in terms of group extensions.



(i) We decompose ¢ into orbits under W : ¢ = UC and uses the isomorphism
H(W,2) = @ H*(W,ZC)
cet )W
(#i) In each orbit, we set a hyperplane H¢ and then ZC = Indjv\‘{c (Z) where N¢ is the stabilizer of He. Shapiro’s
lemma (see [5], Proposition II1.6.2]) then gives us
H*W,z#) = @ H?*(Ne,Z)
cest /W

(#4i) The short exact sequence 0 = Z — Q — Q/Z — 0 of Ne-modules gives a long exact sequence in cohomology.
Since |N¢| is invertible in Q, we have H'(N¢, Q) = H?(N¢,Q) = 0 and so we obtain the isomorphism
H?*(Ne,Z) = H'(Nc,Q/Z) and

H*W,22) = @ H'(Ne,Q/Z)= D Homg (Ne,Q/Z).
ce|w cen|w
The results of this section are the following proposition and corollary.
Proposition 26 — Description. Under the isomorphism
H*(W,2#) = D Homy, (Ne,Q/Z)
cex|w

the extension corresponds to the family (r¢ : N¢ — Q/Z)ccn /w where rc is the natural linear character of
N¢ (we identify U fu. With a subgroup of Q /Z via the exponential map).

The next corollary is a trivial consequence of Proposition [26[ and generalizes a result of Digne [7}, 5.1] for the
case of Coxeter groups.

Corollary 27 — Order in H?(W,Z7). Since the order of r¢ is fg., we deduce that the order of the
extension (3) is k(W) = lem(fu.,C € 5 /W) (this integer k(W) was first introduced in [9]).

The rest of the section is devoted to the proof of Proposition [26]: one subsection for each of the three steps.

4.1 First step : splitting into orbits

The isomorphism
HW,22) = @ H*(W,ZC)
cet|w
is simply given by applying the various projections pe¢ : Z — ZC to a 2-cocycle with values in Z# where
pc: Y AwH+— > AgH.
He# Hec

To give a nice expression of the corresponding extensions, we need the following lemma.

Lemma 28 — Extension and direct sum. Let G be a group, X =Y @& Z a direct sum of G-modules and

0 X—>F—=@G 1
an extension of G by X. We denote by ¢ : X =Y the first projection and ¢ the class of the extension F in
H?(G, X). The extension associated to q(¢) is

0 Y E/Z G 1

Proof. Let us denote by 6 : F— E/Z the natural surjection and i : Y =Y & Z the natural map. Let us first
remark that Z is normal in F since Z is stable by the action of G. Since v is trivial on Z, then it induces a
group homomorphism v : E/Z — G whose kernel is X/Z =Y. Thus the sequence

0 y -2 Bz 2@ 1 (4)

is an exact one.
If s : G — F is a set-theoretic section of v, then 0s is a set-theoretic section of v. The expression of a 2-cocycle
associated to an extension in terms of a set-theoretic section gives the result. O

For C € 5 /W, we denote by B¢ the quotient group
BC:B/<[P’P]78H»V6H’ H¢C)

Lemma 28| tells us that the extension is equivalent to the family of extensions

Jje pe

0 zc

Be 1474 1 (5)

for Ce 52 /W.



4.2 Second step : the induction argument

In each orbit C € /W, we choose a hyperplane He € C and write ZC = Ind% (Z) where Ne C W is
the stabilizer of He. Shapiro’s isomorphism lemma [5, Proposition I11.6.2] shows that H?(W,ZC) = H?(N¢,Z).
Exercise II1.8.2 of [5] tells us that in term of 2-cocycles Shapiro’s isomorphism is described as follow

S:(p:G* = 7ZC)— (feop: N2 = 7)

where f¢ : ZC — Z is the projection onto the H¢-component.
Decomposing Shapiro’s isomorphism into the following two steps

(cp:G2—>ZC)»—>(@:NCQ%ZC)|—>(fc0g0:Nc2—>Z),

allows us to interpret it in terms of group extensions. Exercice IV.3.1.(a) of [5] gives a description of the first
step : the corresponding extension is given by

0——=ZC 4>pc_1(Nc) — Ne ——1

since pec ~(Ne) is the fiber product of Be and N¢ over W. Moreover, since f¢ is a split surjection as a Ne-module
map, Lemma 2§ gives us the following extension

0——=Z——>pc ' (Ne)/(suy", HEC~{Hc}) —= Ne —1

Finally, the extension is equivalent to the family of extensions

bc

0 Z B,

Ne 1 (6)

where B, = p~'(N¢)/{[P, P,su~%", H # H¢) and C € S |/W.

4.3 Third step : linear character

For the third step, we use results and notations of Section [2] and Section [3] Let us consider the group
homomorphism pe : p~(N¢) — Q of Definition Since it is trivial on ([P, P], su ", H # He), it induces a
group homomorphism from B/, to Q still denoted by pc. Moreover, since p¢ (s, °"c) = 1, Proposition [23| gives
the following commutative diagram

0 Z Q Q/Z 0

b T

0 Z B, — > Ne 1

Exercises IV.3.2 and IV.3.3 of [5] tell us precisely that the group homomorphism corresponding to (6] is r¢. So
the extension is equivalent to the family (r¢)ce./w. This concludes the proof of Proposition

5 Tables

5.1 The infinite series

In this subsection, we bring together tables for the orbits of the hyperplanes of G(de, e, ) under the centralizer
of a reflection and under the parabolic subgroup associated to the line of the reflection and tables for the values
of fg and the index of ramification. So let us consider the complex reflection group G(de, e, r) acting on C”
with canonical basis (e1,...,e,). The standard point of C" is denoted by (z1,...,2,).

The hyperplanes of G(de,e,r) are H; = {z; = 0} for i € {1,...,r} (when d > 1) and H; ;. = {z; = (z;}
for i < j and ¢ € Uge (when r > 2). They split in general into two conjugacy classes under G(de, e, r) whose
representant may be chosen as follow H; and H; 2.

Let us continue with more notations. For every triple of integers d, e, r, we denote by 7 : G(de, e,r) — U the
following group morphism : for g € G(de,e,r), m(g) is the product of the nonzero coefficients of the monomial
matrix g. When e is even, we denote by e’ = e/2. We denote by e” = e/ ged(e, 3) and by P the set of elements
of Uy, with strictly positive imaginary part.

THE CASE OF THE HYPERPLANE H; = {z; = 0}
We then have d > 1. The stabilizer N of H; is described by
N ={(a,9), g€G(de,1,r—1), a€Us, (n(g)o)* =1}

and the pointwise stabilizer C' of D; = H;~ = Ce; is C = G(de,e,r — 1). Table [1] gives the orbits of the
hyperplanes under N and C. In Table[I} C.O. stands commuting orbits and N.C.O. stand for non commuting
orbits.



THE HYPERPLANE H 3 exp(2in/de)y WITH 1 = 2
We set ¢ = exp(2im/de). The reflection of G(de, e,2) with hyperplane H; 5 ¢ is

SZ{Cﬂﬂ

The line of s is D = C(ez — (e1). The centralizer of s is given by

o ST o PO

The eigenvalue of t) on D is A\ whereas the eigenvalue of d) on D is —\. So the parabolic subgroup C' associated
to D is C' = {id, —s}. The orbits of hyperplane under C' and N are the same. The commuting ones are {Hj 2 ¢}
and {H1 2 _¢}. The non commuting ones are {Hy, Hy} and {H 3, Hy 5 2,1} for p € Uge \ {£C}.

THE HYPERPLANE H;; = {2 = 23}

We then have r > 2. The reflection of G(de, e, r) with hyperplane H; 2 is the transposition 712 swapping 1
and 2. Since the elements of G(de, e, r) are monomial matrices, an element of G(de, e, r) commuting with 79
stabilizes the subspace spanned by e; and e;. Thus the stabilizer N of Hj o is given by

A A
N = {d)\,g = A , o tag = |A ,
g g

Aew@,gecwaLr—m,w@»%d—l}

The line of 75 is C(eq — e2). So the eigenvalue of dy 4, on C(e; — e2) is A whereas the eigenvalue of ¢y 4 on
C(e; — e2) is —A. Thus, when de is odd, the parabolic subgroup associated to the line C(e; — e2) is given by

C’z{[ll 1, gEG(de,e,r—2)}
g

and when de is even, the parabolic subgroup associated to the line C(e; — e3) is given by

C:Hllu’[_l _1u, geG(de,e,r—2)}

Table |2| gives the orbits the hyperplanes of G(de,e,r) under N and C. In Table 2} C.O. stands commuting
orbits and N.C.O. stand for non commuting orbits.

VALUE FOR fH AND THE INDEX OF RAMIFICATION

The computations of the preceding paragraphs also lead to Table [3| which brings together the values of ey, fi
and dp for every class of hyperplanes. In Table 3| we set ( = exp(2in/de).

We obtain the following errata for the proposition 6.1 of [9]. Let us consider r > 2. For W = G(de, e,r), we
have k(W) = 2de if de is odd and r > 3. We have k(W) = de if (d # 1 and r = 2 and de even) or (r > 3 and de
even). We have k(W) = 2de if (d # 1 and r = 2 and de odd). We have k(W) =2ifd=1and r =2 E

5.2 Exceptional types

With the package CHEVIE of GAP [8][6], we obtain Table [4] for the values of ey, fr and fg /ey for the
hyperplanes of the exceptional reflection groups. In particular, the only non Coxeter groups with only unramified
hyperplanes are G, G12 and Ga4. Table |4 can also easily be obtained from the table of [9] for the value of x(W).
The first and fifth columns stand for the number of the group in the Shephard and Todd classification. We also
write instructions which determines, for a given hyperplane H, the orbits of commuting and non commuting
hyperplanes under Ny and Cy which is used to obtain the results of Remark [7] and Remark

LComparing to the preceding versions, we correct here the value of (W) for de odd and = = 2. This was pointed out by Ivan
Marin.
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H fo | ex | du
z1=0 r=1 d d 1
z1=0 r>=2 d#1 de d e
zo=2z1 =3 de odd 2de | 2 de
=z =3 de even de 2 | de/2
zo=2z1 r=2 eodd and deven | d 2 d/2
z9=2z1 r=2 eevenor dodd 2d 2 d
20=Cz r=2 e even 2d 2 d

Table 3: Values for the ramification index for G(de, e, r)

ST | ey fu dy ST e | fu |du
il 3 6 2 [[21]2,3]12,12|6.4
51 3,3 6,6 2,2 22| 2 4 2
6 2,3 4,12 2.4 23| 2 2 1
7 1233012,12,12| 644 |[24| 2| 2 |1
8 4 4 1 251 3 6 2
9| 24| 88 42 |[26(32] 66 |23
10]34] 1212 | 43 |27/ 2| 6 |3
11]2,3.4]24,2424| 1286 || 28]22] 2.2 |11

12 2 2 1 29| 2] 4 |2
13| 22 | 84 42 302 2 |1
4] 23| 66 32 (312 4 |2
15(2,3,2112,12.24| 64,12 ||32] 3| 6 | 2
16| 5 10 2 332 6 |3
17] 25| 2020 | 104 ||34]|2] 6 |3
18]35 | 3030 | 106 ||35]2] 2 |1
19 2,3,5|60,60,60 | 30,20,12(|36 | 2 | 2 |1
2

20| 3 6 2 37 2 1
Table 4: Values for the ramification index for the exceptional groups
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