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ABSTRACT

In continuation of [1], this paper presents the progress made

towards the development of a new modeling tool based on the

Weak-Scatterer approaches . Recent developments are the cou-

pling of the fluid and body solver in order to predict the free

motion response of the body. Pressure field over the wetted area

is obtained by solving an additional boundary value problem for

the time derivative of the velocity potential. Tanizawa’s [2] and

Cointe’s [3] formulations for the acceleration condition on the

body are revisited. Numerical prediction with the present method

for a submerged body in vertical free motion is presented and

energy conservation is verified. In order to adapt the mesh to

the moving body geometry, advanced mesh moving schemes have

been integrated based on radial basis functions [4] and spring

analogy methods. In this way it is possible to solve the problem

with an Arbitrary Euler Lagrangian formalism and preserve the

order of the numerical scheme. However moving mesh methods

are limited in time and automatic remeshing generation algo-

rithms have been integrated in order to enable simulating longer

durations. Finally, comparisons of wave diffraction and radia-

tion predicted by linear theory, a fully nonlinear BEM solver and

the present method are shown.

INTRODUCTION

Recent developments in marine renewable energy are facing

some new challenges in the field of fluid-structure interactions

and seakeeping analysis. Linear models are not well suited for

wave energy converter system because they are limited to small

amplitude. On the contrary, wave energy converters are submit-

ted to large amplitude motion because of their size and concep-

tion. In consequence results obtained with linear model may fail

in the prediction of the body motion response and the estima-

tion of the quantity of energy that can be extracted. CFD models

are able to model the body response in large amplitude motion

solving RANS equations but involve large CPU time require-

ment (typically hours of CPU time per wave period [5]) and

are thus limited to the study of wave energy converter design.

Several fully nonlinear potential solvers have been developed in

the last years [6]. No linear approximation is made in such mo-

dels and large amplitude motion can be simulated with the exact

free surface position and exact position of the floating system.

The boundaries of the fluid domain are also unknowns in these

models. Its accurate estimation is more efficient than CFD sol-

vers but remains time consuming and present some weaknesses

in terms of robutness.
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A weakly-nonlinear approach based on the Weak-Scatterer

equation [7] may be a good alternative. In such approach, the

flow velocity potential is decomposed in the incident potential

and the scattered potential (radiated and diffracted waves). The

scattered potential is assumed to be small. Consequently, free

surface conditions can be linearized around the incident wave

elevation. No restrictions are made on the incident wave poten-

tial (non linear steep wave may be considered) and the body mo-

tion amplitude (the body may undergo large amplitude of oscil-

lations). This approach seems more robust than the fully nonli-

near one because the position of the free surface is known at each

time step (Taylor expansion of the free surface conditions is done

around incident free surface elevation).

In this work, an Arbitrary Lagrangian-Eulerian method

(ALE) is used together with efficient algorithms for dealing with

the mesh deformations. For free body motion response, the time

derivative of the velocity potential (instantaneous pressure) over

the wetted surface is an additional unknown to the problem that is

solved by application of Green’s second identity equation. Both

Tanizawa’s [2] and Cointe’s [3] formulations for the body condi-

tion are used in this case.

In the first part of this paper, mathematical, numerical as-

pects and simulation results for the free motion of a submerged

body in waves are presented. In the second part, efficient algo-

rithms for mesh management in case of surface piercing bodies

are presented and discussed. Then, the model is validated against

litterature results for the diffraction of a fixed free surface pier-

cing vertical cylinder. For large steepness, nonlinear effects be-

come important [8] and linear models generally underestimate

the runup around the structure. Comparisons of runups around

the cylinder are compared to linear model, nonlinear model and

experimental data. Finally, results for the radiation of a surging

and pitching surface piercing vertical cylinder are shown.

THEORY
Potential Theory and Weak-Scatterer Approximation

Assuming incompressible and inviscid fluid with irrotational

flow, the flow velocity derives from a velocity potential φ which

satisfies the Laplace equation.

∇2φ(x,y,z, t) = 0 (1)

in the fluid domain, D, with a boundary, Γ. Using Green’s second

identity, the velocity potential can be written as the solution of

the boundary integral equation (BIE).

α(xl)φ(xl)=
∫∫

Γ

[

∂φ

∂n
(x)G(x,xl)−φ(x)

∂G

∂n
(x,xl)

]

dΓ ∀xl ∈Γ

(2)

where G is the Rankine singularity, α is the interior solid angle

and x and xl are vectors positions.

The Weak-Scatterer (WS) approximation [1] is used to

solve the fluid-structure interaction problem. The flow solution

(φ ,η) is split into an incident and scattered components. The

scattered component (perturbation) is supposed small compared

to the incident component.

{

φ = φ0 +φp , φp ≪ φ0

η = η0 +ηp , ηp ≪ η0
(3)

Boundary Conditions

The dynamic and kinematic free-surface conditions are











∂φ

∂ t
= −

1

2
∇φ ·∇φ −gη , for z = η

∂η

∂ t
=

∂φ

∂ z
−∇φ ·∇η , for z = η

(4)

A particular time derivative is defined to follow the nodes on the

incident free surface elevation

D0

Dt
=

∂

∂ t
+vmesh ·∇ (5)

The velocity vmesh is defined such as the free surface nodes fol-

low the body in its horizontal motions and such as they follow

vertically the motion of the incident wave elevation. Note that

for a fully submerged body, the horizontal components of vmesh

are set to 0 for convenience, leading to : vmesh =
∂η0

∂ t
z. Combi-

ning the WS approximation with this particular derivative leads

to the following equations for the free-surface conditions :

D0ηp

Dt
= −

∂η0

∂ t
+

∂φp

∂ z
+

∂φ0

∂ z
−∇φ0 ·∇η0

−∇φp ·∇η0 − (∇φ0 −vmesh) ·∇ηp

+ηp

(

∂ 2φ0

∂ 2z
−

∂

∂ z
∇φ0 ·∇η0

)

−νηp (6)

D0φp

Dt
= −

∂φ0

∂ t
−g(ηp +η0)

−
1

2
∇φ 2

0 − (∇φ0 − vmesh) ·∇φp

− ηp

(

∂ 2φ0

∂ z∂ t
+

∂

∂ z
∇φ0 ·∇φ0

)

−νφp (7)

where ν is a damping coefficient to model the absorbing beach
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The body condition is based on the impermeability of the

body surface, where xB is the center of mass of the body and n is

the normal on the control point

∂φp

∂n
=−

∂φ0

∂n
+

(

DxB

Dt
+ω × (x−xB)

)

·n (8)

At infinity, a radiation condition needs to be satisfied

{

ηp → 0

φp → 0
, when r → ∞ (9)

Hydrodynamic Force and Body Motions
The hydrodynamic pressure on the body is given using Ber-

noulli’s law

p =−ρ

(

∂φ

∂ t
+

1

2
∇φ ·∇φ +gz

)

(10)

where ρ is the fluid density and g is the gravitational

acceleration.

The hydrodynamic force is







FH =
∫∫

SB

pndS

MH =
∫∫

SB

p(r×n)dS
(11)

with SB the body immerged surface delimited by the

incident wave surface elevation and r = x−xB.

The body motions are obtained according to Newton’s law :

{

M · ẍB = FH +∑Fext

I · θ̈B = MH +∑Mext
(12)

with Fext and Mext being the external force and moment res-

pectively.

PART I : SUBMERGED BODY IN FREE MOTION
Acceleration Potential and Implicit Condition Methods

The calculation of the hydrodynamic pressure on the body

requires the potential time derivative. To obtain this quantity, a

finite difference scheme can be used if the body motions are for-

ced, however this method is not precise enough for a freely mo-

ving body. Thus a method based on the resolution of a second

BVP for
∂φ
∂ t

, called Acceleration Potential Method, is used. The

Laplace equation is satisfied by the velocity potential, thus by its

partial time derivative as well. The boundary conditions are also

of the same kind : Dirichlet for the Free-Surface and Neumann

for the body.







































△
∂φ

∂ t
= 0 in the fluid domain

∂φ

∂ t
=

D0zφ

Dt
−

∂φ0

∂ z

∂φ

∂ z
on the Free-Surface

∂ 2φ

∂n∂ t
= ẍB ·n+

(

θ̈B × r
)

·n+q on a body in free motions

∂ 2φ

∂n∂ t
= 0 on fixed boundaries

(13)

The body condition had several expressions depending on

the acceleration used. First, Cointe [3] gave a 2D expression ba-

sed on the acceleration of the body particle, ẍ

∂ 2φ

∂n∂ t
= ẍ ·n+ θ̇

(

ẋ · s−
∂φ

∂ s

)

−

(

1

R

∂φ

∂ s
+

∂ 2φ

∂n∂ s

)

ẋ · s

+

(

∂ 2φ

∂ s2
−

1

R

∂φ

∂n

)

ẋ ·n (14)

with s the local tangent vector and R the curvature radius as-

sociated to this vector. Then Van Dalen [9] expressed it in 3D,

using the same method

∂ 2φ

∂n∂ t
= ẍ ·n+

(

ẋ · s1 −
∂φ

∂ s1

)

.θ̇ · s2 −

(

ẋ · s2 −
∂φ

∂ s2

)

.θ̇ · s1

−

(

1

R1
.
∂φ

∂ s1
−

∂ 2φ

∂ s1∂n

)

.ẋ · s1 −

(

1

R2
.
∂φ

∂ s2
−

∂ 2φ

∂ s2∂n

)

.ẋ · s2

+

(

∂ 2φ

∂ s2
1

+
∂ 2φ

∂ s2
2

− (
1

R1
+

1

R2
).

∂φ

∂n

)

.ẋ ·n (15)

with also (s1,s2) the local tangent vectors and (R1,R2) the cur-

vature radius associated to these vectors.

In the meantime, Tanizawa [2] developped a 2D expression

based on the acceleration of a fluid particle sliding on the body, a

∂ 2φ

∂n∂ t
= a ·n+

1

R

(

∂φ

∂ s

2

+
∂φ

∂n

2
)

−
∂φ

∂ s

∂ 2φ

∂ s∂n
+

∂φ

∂n

∂ 2φ

∂ s2
(16)

which was extended in 3D by Berkvens [10]

∂ 2φ

∂n∂ t
= a ·n+

(

1

R1
+

1

R2

)

∂φ 2

∂n
+

1

R1

∂φ 2

∂ s1
−

1

R2

∂φ 2

∂ s2

+

(

∂ 2φ

∂ s2
1

+
∂ 2φ

∂ s2
2

)

∂φ

∂n
−

∂φ

∂ s1

∂ 2φ

∂ s1∂n
−

∂φ

∂ s2

∂ 2φ

∂ s2∂n
(17)
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Developments of all theses expressions were ascertained in

this study and their equivalence proved, taking care particularly

of the nature of the local base, direct or indirect, used in the dif-

ferent developments. The equivalence also gave additional ex-

pressions















∂ 2φ

∂ s1∂n
= −(θ̇ · s2)−

1

R1
(ẋ · s1)

∂ 2φ

∂ s2∂n
= (θ̇ · s1)−

1

R2
(ẋ · s2)

(18)

Thus a new expression is given here, based on the accelera-

tion of the center of gravity of the body, to be used directly in the

Implicit Condition method.

∂ 2φ

∂n∂ t
= ẍ ·n+(θ̇ · s2)

(

2(ẋ · s1)−
∂φ

∂ s1

)

− (θ̇ · s1)

(

2(ẋ · s2)−
∂φ

∂ s2

)

+
(ẋ · s1)

R1

(

∂φ

∂ s1
− (ẋ · s1)

)

+
(ẋ · s2)

R2

(

∂φ

∂ s2
− (ẋ · s2)

)

+(ẋ ·n)

(

∂ 2φ

∂ s2
1

+
∂ 2φ

∂ s2
2

+

(

1

R1
+

1

R2

)

∂φ

∂n

)

(19)

One can see that this body condition requires the body ac-

celeration, also unknown for a freely moving body. The Impli-

cit Condition method, introduced by Van Dalen [9] and Tani-

zawa [2], is thus solving simultaneously the time derivative of

the potential and the body acceleration, in adding the equation of

motion in the linear system to be solved for the BVP.

Numerical Validation

In [1], we presented results for a submerged sphere in for-

ced motion. Here, numerical results for the free response of a

submerged sphere are shown.

Description of the test case (figure 1)
An elastic spring, with a stiffness coefficient of k =

50000N.m−1, is applied to the center of gravity of a sphere of

radius a = 2m. The fixed end of the spring is at a vertical posi-

tion of zs =−2a below the free-surface.

The sphere, with a zero buoyancy, is set free at an initial

vertical distance of d = 0.5a from the spring fixed end.

The closed domain, cylindrical of radius R = 10m and depth

H = 10m, is deprived of any absorbing beach to ensure the

energy conservation. No incident wave is applied, which implies

that the free-surface equations are linearized on the mean posi-

tion z = 0.

FIGURE 1. Test case schema

The fluid energy is given by

E f luid = Ep +Ek =
∫∫∫

D

(

1

2
ρv

2 +ρgz

)

dv

=
1

2
ρ
∫∫

SF+SB

φ
∂φ

∂n
dS+

1

2
ρg

∫∫

SF

η2dS (20)

and its variation in time is equal to the work of the force of the

body FH acting on the fluid

dEFluid

dt
= PFH

=−FH · ẋB (21)

Results
The vertical motion of the sphere is presented in figure 2.
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FIGURE 2. Vertical motion of the center of gravity of the sphere
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One can see the damped oscillations of the sphere, around its

equilibrium position zs, with a body motion period of T = 6.51s,

and a logarithmic decrement of δ = 6.4.10−2.

The body motion creates a perturbation on the free surface,

as seen in figure 3 for three different radial distances r from the

center of the free-surface : above the sphere at r = 0m, at r = a

and r = 2a.

FIGURE 3. Wave elevation at different radius : 0m, 2m, 4m

The mean period of the wave elevation solutions is close to

T = 3.4s, for the 3 positions. However non-linearities are easily

seen on this plot, even if the propagation of the wave from one

point to the next is difficult to analyze. Since the domain is quite

small compared to the wavelength of the perturbation generated

by the body, the reflections are present in the wave elevation so-

lution after only a few seconds. However, this test case was set

up to ensure the energy conservation was correct with free body

motions.

One can see, in the figure 4, the energy conservation, com-

pared to the energy in the closed fluid domain and the work of

the hydrodynamic force.

FIGURE 4. Energy Conservation of the fluid domain

The relative error is close to ε = 1.5% and constant during

the simulation of the five periods of motion of the body. While

the energy in the fluid domain is growing periodically, the error

stays relatively equals to 1.5%.

Several possibilities can explain the error obtained, even if

said error can be considerated sufficiently small to validate the

model. The supplementary term q in the body condition for the

BVP on φt requires second order spatial derivatives, difficult to

compute precisely numerically. However a mesh convergence on

the body was performed, and similar errors obtained. The second

source of errors lies on the resolution of the free-surface mesh,

which may not be small enough to capture short waves, high har-

monics in the scattering solution. A mesh convergence was also

performed which tends to validate this hypothesis. Solutions for

rougher meshes on the free-surface were indeed of poorer preci-

sion. However a solution with a refined mesh on the free-surface

could not be obtained, due to some instabilities generated by

the local derivative calculations at the center of the free-surface

mesh. A non structured mesh on the free-surface may thus give

better results.

PART II : DIFFRACTION AND RADIATION OF SURFACE
PIERCING BODY

DISCRETISATION OF THE DOMAIN
In order to be able to mesh complex geometry, an unstruc-

tured mesh is adopted (figure 5). The fluid domain geometry

FIGURE 5. View of the unstructured mesh

changes with the elevation of the incident free surface and exact

body position. It is thus necessary to adapt the mesh at each time

step according to these deformations. In order to avoid reme-

shing the domain at each time step, (which would be time consu-

ming and sources of numerical errors due to interpolation), mesh

deformations algorithms have been integrated. In this way it is

possible to keep the same mesh topology during the deforma-

tion and good quality mesh thanks to the arbitrary Lagrangian-

Eulerian method. However, for long duration of simulation, de-

generated elements may appear through the deformation. In this
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case, a complete remeshing of the instantaneous wetted surface

of the body and free surface is necessary. An advancing front

method [11] has been integrated in such case. Shape and size of

cell elements and the global mesh quality are controlled by qua-

lity metric functions. Combining mesh deformations algorithms

and remeshing capabilities allows maintaining a good mesh qua-

lity over the whole duration of the simulation while minimising

the computational time.

Mesh deformation on the body
Mesh on the wetted surface of the body is deformed with a

spring analogy method. In this method, each edge of the mesh

is modelled like a spring. Nodes are submitted to stress resulting

on the compression and expansion of edges during deformation.

The resulting stress applied on nodes can be defined from the

effort of each edge connected to it and the displacement of its

neighbours nodes.

Fi =
nv

∑
j=1

ki j (∆xi ·ni j −∆x j ·ni j)ni j (22)

where ki j =
1

||xi−x j ||2
is the stiffness of the spring connecting

nodes i and j, ni j is the direction of the spring and nv the number

of neighbours nodes. Displacements ∆xi and ∆x j of the node i

and j are described on the local base (u,v,nSM).

∆x = du ·u+dv ·v+dw ·nSM (23)

with nSM the unit normal vector to the surface, u and v two

unit vectors tangential to the surface of the body and (u,v,nSM)
orthogonal and direct.

The zero flux boundary condition on the body surface im-

plies that

dw =

(

DxB

Dt
+ω × (x−xB)

)

·nSMdt (24)

Besides, nodes on the edge between two surfaces should remain

on this edge. Thus, nodes located at the intersection of the free

surface and the body-interface should remain at this intersection.

The local base is defined such as nSM is normal to one surface,

u is tangential to the edge and v is chosen in order that the local

reference frame created with this three vectors is orthogonal and

direct. These condition implies a condition on dv.

dv =







∂φ0

∂nSL
nSL ·vdt on the water line

(

DxB
Dt

+ω × (x−xB)
)

·vdt in other case
(25)

with nSL the normal vector on the free-surface.

The displacement of nodes located at the intersection of at

least three surfaces is completly defined as it should remain at

this intersection.

When the equilibrium is reached, the resulting force on

nodes is equal to 0. Thus, one can write a system of equations

with size 2ne with ne being the number of nodes on the wetted

surface of the body.

Fi ·u = 0

Fi ·v = 0 (26)

The resulting linear sparse matrix equation AX = b is solved

using LU factorisation algorithm.

Deformation of the free surface mesh
The previous method is not applicable for the free surface

because the size of the linear system would become too large.

Instead, an interpolation scheme for the deformation is adopted

[4]. The deformation function s is a function of the position of

nodes and a sum of basis functions.

s(x) =
nb

∑
j=1

α jΨ(||x−x j||)+ p(x) (27)

with nb the number of structural node on the boundary inter-

face, Ψ a radial basis function and p a polynomial of degree

1. In the following sections we use the radial basis function

Ψ(x) = x2log(x). Coefficient α j are determined by the interpo-

lation conditions for nodes at the intersection of the body and

the free surface and at the intersection of the free surface and the

outer cylinder limiting the fluid domain.

s(xb j) = db j (28)

An additional requirement is needed to estimate the coefficient

of the polynomial p :

nb

∑
j=1

α jq(x j) = 0 (29)

where db j is the displacement of the jth node and q is a poly-

nomial with a degree less or equal to the degree of polynomial

p.

The size of the linear system to be solved is equal to the

number of nodes at the intersections. It is much smaller than the

total number of nodes on the free surface.
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FIGURE 6. Size metric fsize after deformation

The horizontal velocity of the nodes are obtained by numeri-

cal differentiation. An additional condition on the mesh velocity

is needed to ensure that the node on the free surface stays at this

interface.

vmesh ·n =
∂φ0

∂n
(30)

on the free-surface.

The mesh quality can be evaluated through metric functions

fsize and fshape reflecting the size and shape of elements. A de-

tailed review of possible metrics is presented in [12]. fsize = 1

when an element keeps the same size after deformation whereas

fsize = 0 when an element becomes degenerated. fshape = 1 when

the shape of the element is ideal (corresponding to an equilateral

triangle for triangular meshes) whereas fshape = 0 when an ele-

ment becomes degenerated. The conservation of these two me-

trics represents a good tool for monitoring the mesh quality du-

ring the deformation.

For sake of illustration, the mesh deformation for a free sur-

face piercing cube of size a in translation of 5a in the x and y

direction and in rotation of π/3 in z direction (the vertical direc-

tion) is considered.

Figure 6 shows the mesh and the contour field for the me-

tric fsize on the free surface after deformation. Minimal value of

fsize is about 0.7 which implies that no degenerated cell has been

created. In the vicinity of the cube, fsize is close to the maximum

value 1 which means that sizes of those elements are not altered

by the translation. Cells close to the cube are translated without

deformation. In consequence, mesh refinement is well preserved

by this mesh deformation algorithm. One can see that the maxi-

mum mesh deformation is absorbed close to the outer boundary

limit of the domain along the axis of the displacement.

SPATIAL SMOOTHING
Instabilities known as saw-tooth instabilities generally ap-

pear close to the interface between the free surface and the

body during time domain simulation of fluid-structure interac-

tion. These instabilities are related to small wave length which

are difficult to model accurately. Many methods have been deve-

loped. Most of them are based on the interpolation scheme from

neighbouring nodes for a structural mesh [13, 14] . Fewer me-

thods have been developed for unstructured meshes. In this work,

the method developed in [15] is used. It is a generalisation of a

three point interpolation model. This low pass filter is applied for

each node of the free surface mesh.

f 0 = (1− c) f0 +
N

∑
j=1

w j f j (31)

with f0 being the value at the node before smoothing and f 0 the

value after smoothing. Weighting coefficients w j depend on the

distance l j between the jth neighbour node and the selected node

and c the strengh of the filter.

wi = c
l2
i

∑N l2
j

(32)

The low pass filter is applied every 5 steps in order to limit its

effect on the numerical accuracy.

NUMERICAL RESULTS

Diffraction by a vertical truncated cylinder
Wave runup for a vertical truncated cylinder is first studied

in this section. Runups are compared to numerical results of the

fully nonlinear potential flow model Xwave developped by Fer-

rant [16]. The incident nonlinear regular wave is obtained from

the stream function theory of Rienecker & Fenton [17] and has

a wave period of 1.8s. The domain is a circular cylinder of 2λ0

radius (with λ0 the wave lenght of the incident wave) and of fi-

nite depth h = 10m. An absorption zone is defined on the outer

region of the domain and extended over one wavelength. Charac-

teristics of the domain give the following non-dimentional para-

meters kh = 11.9, kR = 0.372, 2a/λ0 = 0.046 (wave steepness
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FIGURE 7. Time traces of the runup around the cylinder (θ = π on

top, θ = π/2 on the midle, θ = 0 on bottom). Comparison of numerical

result with the weak-scatterer approach (black) and the fully nonlinear

model Xwave (blue).

of 4.6%), with R being the radius of the internal cylinder and a

being the wave amplitude. The cylinder in the center of the do-

main extends to 1m below the still water level. The mesh contains

2241 elements with a finer resolution in the close vicinity of the

body. The refinement is used because wave scattering is genera-

ted close to the body and is dissipated at the outer regions. The

time step for the simulation is fixed. It is equal to 0.04s.

Time traces of the runups are shown in figure 7 for three

differents positions around the cylinder corresponding to the bow

side (θ = π), the side (θ = π/2) and the lee side (θ = 0). One

can see that results from the weak-scatterer approach agree well

with the nonlinear potential flow results for θ = π and θ = π/2.

However, we can notice that the weak-scatterer approach unde-

restimates the crest of the wave elevation on the bow side of the

cylinder. On the lee side, one can see that the general shape of the

runup is correctly predicted by the model but the weak-scatterer

approximation overestimates the maximum runups in compari-

son with the nonlinear potential flow results. All nonlinearities

are not taken into account by the weak-scatterer approximation

FIGURE 8. Maximum runup around the cylinder for a wave steep-

nexx of 3.2%. kR = 0.374, kh = 1.036. Comparison of weak-scatterer

results (WSC), second-order theory, experimental data, linear and non-

linear Xwave [20]

which explains those differences.

Diffraction by a bottom-mounted vertical cylinder

In this section, the diffraction by a bottom-mounted vertical

cylinder is studied. This configuration has been widely studied.

Thus, it is an interesting benchmark to validate the present mo-

del. Experimental data is available for different wave steepness

in [8] and can be compared to numerical results. In the follo-

wing simulation the incident nonlinear regular wave is defined

by the stream function theory of Rienecker & Fenton [17]. The

configuration of the domain gives the following non dimentional

parameters kh = 1.036, kR = 0.374 (with R the radius of the in-

ternal cylinder). The domain extension is 2λ0 radius length with

λ0 the wave length of the incident wave. Two differents wave

amplitudes are simulated corresponding to a wave steepness of

3.2% and 4.6%. Maximum runups around the cylinder are repre-

sented in figure 8 and figure 9 for a wave steepness of 3.2%

and 4.6% respectively. They are compared to experimental data

(Kriebel [8]), results from fully nonlinear model (Xwave [16]).

Results from the second order theory (Pelletier [18]) and from

the linear theory of MacCamy and Fuchs [19] are also shown.

In this test case, non linear effects are known to be impor-

tant. Consequently, the linear model underestimates the maxi-

mum runup on the bow size of the cylinder (relative error of

about 36% for the wave steepness of 3.2%). The weak-scatterer

approach and the nonlinear model Xwave agree well on the wea-
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FIGURE 9. Maximum runup around the cylinder for a wave steep-

ness of 4.6%. kR = 0.374, kh = 1.036. Comparison of weak-scatterer

results (WSC), second order theory, experimental data, linear and fully

non linear model Xwave [20]

ther side of the cylinder for both steepnesses. For the first steep-

ness, the relative error for the maximum runup on the bow side

is about 6% for the weak-scatterer model. Besides the crest loca-

ted near θ = π/3 is better predicted by the model. One can note

that the weak-scatterer approach gives a better estimation of the

maximum runup on the bow side than the second order model

which underestimates the maximum runup. On the lee side, the

weak-scatterer model overestimates the maximum runup compa-

red to the fully nonlinear model and the second order model.

For a wave steepness of 4.6% the weak-scatterer approach

underestimates the maximum runups on the bow side of the cy-

linder but remains close to the behaviour of the fully nonlinear

model.

Wave radiation by a truncated cylinder

In the following section, radiated wave generated by a trun-

cated cylinder are investigated and results are compared to a fully

nonlinear model [21]. The incident wave is equal to zero. The

radiated waves are generated by the motion of a cylinder in surge

and pitch. The mesh topology is the same in both simulations

and no remeshing is needed. For surge motion only the mesh of

the free surface is deformed using the RBF interpolation method

while for pitch motion, both mesh on the free surface and on the

body are deformed (using RBF interpolation method for the free

surface and spring analogy for the body).

The configuration of the domain leads to the following non-

FIGURE 10. Wave runup evolution in (−R,0) with the cylinder in

surge motion. ω
√

d/g = 1.257, A = 0.046h. Comparison of weak-

scatterer result (black) and nonlinear result (blue).

FIGURE 11. Wave runup evolution in (−R,0) with the cylinder

in pitch motion. ω
√

d/g = 1.257, A = π/20. Comparison of weak-

scatterer result (black) and nonlinear result (blue).

dimentional parameters R/h = 0.2 and d/h = 0.5 with R the ra-

dius of the cylindrical body and d its initial draft and h the water

depth. The motion of the cylinder is given by ξ = −Acos(ωt)
with ω the frequency and A the amplitude. The frequency is de-

fined by its non-dimensional expression ω
√

d/g = 1.257. The

amplitude is equal to A = 0.046h for surge motion and A = π/20

for pitch motion.

In figure 10 and figure 11 runup at (−R;0) is compared to

numerical results obtained with the fully nonlinear model [21].

One can see that for surge motion and pitch motion both models

agree well in their predictions. Some differences appear for the

crests where the weak-scatterer may not include all the nonlinea-

rities.

CONCLUSION

The hydrodynamic equations of the fluid-structure interac-

tion model based on the weak-scatterer approximation have been

presented. For free body motions, the instantanneous pressure

computation on the wetted surface of the body has been introdu-

ced thanks to the resolution of a Green’s Second identity equa-

tion on φt . Cointe’s [3] and Tanizawa’s [2] formulations for the

body condition have been revisited. The equation of motion is

solved simultaneously with the BVP on the time derivative of the

velocity potential using the implicit condition method. This me-
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thod has been validated by studying the energy conservation on

a freely moving submerged sphere in a closed domain. The body

motions and the wave perturbation on the free-surface have also

been presented. Test cases have been simulated for the diffraction

of a nonlinear regular wave of large steepness on a vertical cylin-

der piercing the free surface. These results have been compared

to a fully nonlinear model Xwave and to experimental data. The

capacity of the model to represent nonlinearity have been high-

lighted. We observe that the model gives results very close to a

fully nonlinear model for the part in the front of the cylinder. All

nonlinearities are not taken into account by the model and the

model overestimates the maximum runup in the lee side of the

cylinder.. The efficiency of this moving strategy has been tested

on wave radiation simulation and compared to fully nonlinear re-

sults. The general behavior of the wave runup obtained with the

weak-scatterer approximation is in good agreement with nonli-

near results. Next, those methods will allow to simulate the body

response of a free floating body with a more complex geometry

with no vertical surface interface.

Références
[1] Letournel, L., Harris, J., Ferrant, P., Benoit, M., Babarit, A.,

Ducrozet, G., and Emmanuel, D., 2014. “Comparison of

fully non-linear and weakly nonlinear potential flow solvers

for the study of wave energy converters undergoing large

amplitude motions”. In 33rd International Conference on

Ocean, Offshore and Artic Engineering.

[2] Tanizawa, K., 1995. “A Nonlinear Simulation Method of

3-D Body Motions in Waves (1st Report)”. Journal of the

Society of Naval Architects of Japan, 1995(178), pp. 179–

191.

[3] Cointe, R., 1989. “Quelques aspects de la simulation
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